Supporting Information

PHOTOREDOX PROPARGYLATION OF ALDEHYDES CATALYTIC IN TITANIUM.

Francesco Calogero,^a Andrea Gualandi,^{*a} Marco Di Matteo,^a Simone Potenti,^{a,b} Andrea Fermi,^a Giacomo Bergamini,^a and Pier Giorgio Cozzi^{*a}

^a Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy

^b Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

E-mail: andrea.gualandi10@unibo.it; piergiorgio.cozzi@unibo.it

Table of Contents

Reaction set-up	3
Photophysical and mechanistic studies	5
Copies of NMR spectra	7

Reaction set-up

Figure S1. Reaction setup

Figure S2. Reaction set-up with Kessil® PR160L@456 nm lamp for 1 mmol scale.

The reaction flasks were positioned approximatively at 10 cm from the light source and Kessil® PR160 Rig with Fan Kit¹ was used to control the temperature. The reaction temperature was close to room temperature during the irradiation as measured with a thermometer at 1 cm from reaction flask.

Photophysical and mechanistic studies

All the photophysical analyses were carried out in air-equilibrated tetrahydrofuran at 298 K unless otherwise specified. UV–vis absorption spectra were recorded with a PerkinElmer λ 40 spectrophotometer using quartz cells with optical path length of 1.0 cm. Degassed solutions are obtained by means of repeated pump-freeze-thaw cycles (ca. 4•10⁻⁶ mbar) in sealed quartz cuvettes. Luminescence spectra were performed with a PerkinElmer LS-50, a Varian Cary Eclipse or an Edinburgh FLS920 spectrofluorimeter equipped with a Hamamatsu R928 phototube. Lifetimes shorter than 10 μ s were measured by the above-mentioned Edinburgh FLS920 spectrofluorimeter equipped with a TCC900 card for data acquisition in time-correlated single-photon counting experiments (0.5 ns time resolution). The estimated experimental errors are 2 nm on the band maximum, 5% on the molar absorption coefficient and luminescence lifetime.

Figure S3. A: absorption spectra of solutions of **3-DPAFIPN** in air-equilibrated THF (blue line) obtained upon addition of increasing amounts of propargyl bromide (**prop-Br**, up to ca. 0.13 M, red line). **B**: fluorescence spectra of **3-DPAFIPN** obtained from the same solutions at λ_{ex} = 450 nm. Inset: Stern-Volmer diagram relative to the fluorescence spectra shown in B. C: fluorescence decays of **3-DPAFIPN** obtained from the same solutions as B, at λ_{em} =510 nm (λ_{ex} = 405 nm). Since the fluorescence lifetime of **3-DPAFIPN** is not significantly changing upon increasing additions of propargyl bromide, no Stern-Volmer constant has been calculated.

Figure S4. A: prompt fluorescence decays of **3-DPAFIPN** obtained from degassed THF solutions at λ_{em} =510 nm (pump-freeze-thaw, 3 cycles; λ_{ex} = 405 nm) in the absence and in the presence of **prop-Br** 0.11 M (blue and green dots, respectively). The corresponding biexponential fitting curves are shown as the blue and green solid lines. The instrument response function is also shown (black dots). **B**: normalised emission decays of **3-DPAFIPN** in degassed THF solutions (pump-freeze-thaw, 3 cycles) in the absence (blue dots) and in the presence of **prop-Br** 0.11 M (green dots). The decays are fitted with monoexponential functions (blue and green solid lines, respectively). λ_{ex} =350 nm, λ_{em} =510 nm; delay=0.05 ms; gate=0.01 ms. Based on these emission lifetimes, the quenching constant k_q is estimated as ca. 1.8•10⁵ M⁻¹s⁻¹.

Copies of NMR spectra

f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) -10

-114.35 -114.45 -114.55 f1 (ppm)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

f1 (ppm)

110 100 f1 (ppm)

6	N 0	7 / 0 3 3 2 0 0 0 0 0 0 0 / -
o.	00	9-000000-004
œ	<u> </u>	ω
1	\mathbf{Y}	

¹³C{¹H} NMR (101 MHz, CDCl₃)

-142.0 128.4 128.4 128.4 125.8 -101.9	<pre> <77.2 <76.9 <71.8 </pre> ~71.8 ~69.4	-37.8 -36.8 -36.8 -31.9 -27.8	-14.4
--	---	---	-------

