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SUMMARY

The protocol provides an extensive guide to apply the generalized linear model
framework to neurophysiological recordings. This flexible technique can be
adapted to test and quantify the contributions of many different parameters
(e.g., kinematics, target position, choice, reward) on neural activity. To weight
the influence of each parameter, we developed an intuitive metric (‘‘w-value’’)
that can be used to build a ‘‘functional fingerprint’’ characteristic for each neuron.
We also provide suggestions to extract complementary useful information from
the method.
For complete details on the use and execution of this protocol, please refer to
Diomedi et al. (2020).

BEFORE YOU BEGIN

Collect neural data

Timing: weeks – months (highly depending on the task and purpose of the study)

The protocol assumes the availability: i) of a dataset describing the spiking activity of a population of

neurons recorded during the execution of a given task, ii) descriptors of observable behavior or pa-

rameters that change during the execution of the task (Figure 1, left and center). If the dataset is not

available, before starting the proposed methodology, the next steps need to be completed:

1. Training of the experimental animals.

2. Implantation of the electrodes array – recording chamber in the area of interest.

3. Neural recordings during task execution.

4. Identification of single units for each recording channel (spike sorting).

Note that the analyses in this protocol do not require necessary simultaneous recordings since this

approach seeks to explain the activity of each single cell with the recorded parameters. If simulta-

neous recordings from more units are available, the model can be extended to account also for

cross-correlations between cells of the same population. These additional neural data should be

included in the regressors matrix (see below), after being eventually passed through the same filters

as the cell past spiking activity (see paragraph ‘data preprocessing’).
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In Diomedi et al., 2020, two macaque monkeys performed a delayed fix-to-reach task toward

different spatial positions. Temporal markers describing behavior, gaze position and spiking activity

from neurons of the posterior parietal cortex (area V6A) were collected during task execution. The

protocol can be applied to neural data collected from other animal species with no need for

modifications.

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

System requirements:We recommend high CPU clock rate and a large available RAM (at least 8 Gb).

In Diomedi et al. (2020), we used a machine with Intel Core i5 1.60 GHz and 8 Gb RAM.

Note: The timing indications provided in this protocol refer only to the computations and they

are quite variable, depending on the amount of data (number of units and length of the re-

cordings) and on the complexity of the model that need to be fitted. For example, in Diomedi

et al. (2020) the model included 104 datapoints and almost 150 regressors. With the system

requirements already cited (see above), it took 30–60min / neuron to complete the fitting pro-

cedure. The other steps of this protocol (data preprocessing and final statistical analysis) took

a few minutes each. Conversely, coding time highly depends on the ability of the user, so we

did not mention it.

STEP-BY-STEP METHOD DETAILS

Data preprocessing

Timing: A few minutes (with the computer used in Diomedi et al., 2020, see ‘materials and

equipment’)

Figure 1. Workflow schematic representation

Left: experimental session during which neural data are recorded simultaneously to behavioral data. Center: data are

pre-processed (binning, normalization) to build the vector of spike-count Y and the regressor matrix X; regressors can

be in form of dummy (e.g., X1�3 in the figure) or continuous (e.g., X4�5) variables and, regardless of their type, variables

with similar meaning can be grouped together (e.g., in the scheme, X1�3 and X4�5 are grouped in block1 and block2,

respectively). Right: several models are fitted with the data (the null model based only on the neural data, the nested

models with certain block of regressors removed and the complete model) and beta coefficients are estimated. Note

that in the scheme, the LASSO feature selection is omitted for the sake of simplicity.

RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB� v. R2019a MathWorks Inc. https://www.mathworks.com/products/matlab.html

Statistics and Machine Learning
Toolbox�

MathWorks Inc. https://www.mathworks.com/products/statistics.html

ll
OPEN ACCESS

2 STAR Protocols 2, 100413, June 18, 2021

Protocol

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/statistics.html


Generalized linear models (GLMs) are a flexible generalization of ordinary linear regression used for

dependent variables that have a distribution other than Gaussian. Indeed, Poisson distribution is the

most used for modelling the number of spikes that a neuron generate in a brief time interval (bin)

(Triplett and Goodhill, 2019; Pillow et al., 2008; Truccolo et al., 2005; Paninski, 2004b; Dayan and

Abbott, 2001). Generally speaking, fitting a Poisson GLM requires a dependent variable of which

variations can be explained by the variations of a set of independent variables (hereafter called ‘re-

gressors’). Thus, in our application, before fitting the models, data must be pre-processed to create

the vector of spike counts Y (the dependent variable, vector of size [total N� of bins 3 1]) and the

regressors matrix X (matrix of size [total N� of bins 3 N� of regressors]). X and Y must have the

same number of rows to associate the spike count in each bin to the corresponding values of the

regressors.

Depending on the aims of the study and the task, the independent variables can be both dummy

(i.e., with 0 or 1 values only) or continuous (for more details, see ‘Note’ of this paragraph; Figure 1,

central part). A huge variety of different features can be included in the GLM, based on the inputs

processed by the brain area of interest. Indeed, this method has been applied to the visual domain

(e.g., Pillow et al., 2008), to the motor domain (e.g., Goodman et al., 2019; Takahashi et al., 2017;

Paniski et al., 2004a, 2004b) using as regressors kinematics, joint apertures and forces and also to the

decision making (e.g., Park et al., 2014). Each application involves different independent variables

and consequently a different construction of the X matrix. We suggest to carefully review the liter-

ature for each domain since it is not possible to provide here all the details. We will spend just a

few words on filtering the variables. Whereas it is fundamental to pass the visual stimuli (i.e., images)

through filters (the most used are Gabor-like that simulate the receptive fields of the neurons in the

early visual cortices) and fit the neural activity with the result of this convolution (Liu et al., 2016), this

step is not necessary for models that involve kinematics or motor parameters in general. GLMs with

both filtered and non-filtered (Goodman et al., 2019; Takahashi et al., 2017) features have been

used. When filters are applied, the most common are raised cosine functions (Pillow et al., 2008;

Truccolo et al., 2010), but also simple sine and cosine functions (Truccolo et al., 2005).

It is recommendable to include in the model also the cell previous spike activity that can account for

internal computations not directly linked with external, measured variables. The spike history is usu-

ally included at different time lags, both filtered with raised cosine functions (Pillow et al., 2008) or

not (Diomedi et al., 2020).

1. Choose the time window of interest (or the entire trial). In the case that neurons have not been

recorded simultaneously, align each cell neural activity on the timing of an event of reference.

Note: the analysis can focus on a fixed time window around the event of alignment or in variable

period on a trial basis between two behavioral events. In the latter case, since the time duration

could be variable between repetitions, each trial will result in a different number of bins. For the

sake of simplicity, in Diomedi et al. (2020), we chose a fixed time interval (from 3000 ms before

movement onset to 1720 ms after it, to get an integer number of bins, see below).

2. Choose an appropriate bin width depending on the dynamics of the processes of interest. The

choice of the best bin width depends on the focus of the study. To capture fine temporal dynamics

such as cell refractory period and correlation between neurons, bin width in the order of a few ms

should be used (as small as 1–2 ms, Pillow et al., 2008). For ‘slower’ processes (or with an uncertain

temporal variability), such as kinematics encoding, wider bin widths have been used (40ms, Diomedi

et al., 2020; 20 ms, Goodman et al., 2019; 50 ms, Hatsopoulos et al., 2007).

3. For each trial:

a. Bin the spike trains within the chosen time frame with the chosen bin width to obtain the spike

count Y vector (recommended: histcounts MATLAB function).
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b. Average each independent variable (e.g., the eye tracks, kinematics data .) within the same

bin edges that the Y vector (recommended: histcounts MATLAB function).

Note: the spike count of the cell (or even of other units, if recorded in parallel, Truccolo et al.,

2010) with different time lags can be included among the independent variables, thus adding

information about spike history.

c. If needed, build the vectors for the dummy independent variables: for each bin of the Y vector,

assign 1 when a particular condition is met, otherwise 0. See the note below for an example. In

Diomedi et al. (2020), we built a number of dummy variables that contained information about

the different task phases (behavioral events): planning, movement, holding phases, etc., to-

ward specific targets.

4. Concatenate tip-to-tail the spike counts of all trials to obtain a unique Y vector (size: [total N� of
bins 3 1]) that contains the cell activity. Concatenate also the independent variables vectors and

pool them together in a unique X matrix [total N� of bins 3 N� of regressors].

Note: To avoid the inclusion in the model of certain continuous variables, it is possible to dis-

cretize them in fixed intervals and transform them into a set of dummy variables. This proced-

ure is useful especially in such contexts in which the proper encoding of some variables is un-

known. For example, let’s consider a variable A to be included in the model because it is

thought to modulate neural activity. It can be a regressor as it is (A), but also, for example,

squared (A2) or filtered with a set of Gaussian kernels (varyingmean and sigma) producing pro-

foundly different effects on GLM fitting. When understanding the precise type of encoding of

the variable is not the focus of the work, the discretization in a bunch of dummy variables can

be a solution to avoid annoying, complex data elaboration. This approach has some draw-

backs: first, as alreadymentioned, it does not provide information about the type of encoding;

second, it can critically enlarge the dimensionality of the model. For example, if the variable A

(range [0 10]) is discretized in dummy variables using fixed intervals with unitary width (i.e., the

first will take 1 when A is in the range [0 1), the second will take 1 when A is between [1 2) and so

on), we will end up with a set of 10 dummy variables that represent A. To give an experimental

example, in Diomedi et al. (2020), we discretized the gaze position version, elevation and ver-

gence in a 3D-grid associating to each little spatial volume a dummy variable that took the

value 1 in every bin in which the animal fixates in it (otherwise, 0). In conclusion, discretization

of continuous variables can help in such situations in which the type of encoding is unknown

and out of the scope of the work, but it should be applied after a careful evaluation of pros and

contra.

CRITICAL:

� Once the X matrix has been built, it is highly recommendable to standardize (calculating the z-

score, i.e., first subtracting the mean and then dividing for the standard deviation; Bring, 1994)

the continuous variables to get beta coefficients directly comparable. This step is fundamental

when one wants to further study the beta coefficients estimated during the fitting, especially

when the regressors have different scales and/or are expressed with different units of measure-

ment. Note that dummy variables will be 0 or 1 by definition and unitless, so they can be intro-

duced in the model without further standardization. It would not make much sense to get a

beta coefficient that refers to ‘standard deviation’ increments (or decrements) of a dummy vari-

able.

� Be careful in adding new independent variables since if the sample size (i.e., the number of bins) is

too small respect to the number of regressors, the fitting can lead to a poor estimation and unre-

liable beta coefficients. Although there is not a rule that always applies, you can use the ‘one in ten

rule’, a rule of thumb which states that the maximal number of regressors in a model is equal to the
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number of observations (bins) / 10 (Steyeberg and Harrel, 2004; Peduzzi et al., 1996; Harrel et al.,

1996).

Fitting procedure

Timing: A few days (with the computer used in Diomedi et al., 2020, see ‘materials and

equipment’; highly depending on the number of cells and complexity of the

model, see the note in ‘materials and equipment’ section)

The direct comparisons between beta coefficients in non-linear models are usually not straight-for-

ward and often discouraged since many calculations on them are not statistically correct (for

example, when they are input of an exp function, as in this case; see the equation in the paragraph

below). For this reason, we suggest grouping the regressors with similar ‘meaning’ (e.g., the vari-

ables that indicate the 3D position of gaze in terms of version, elevation and vergence angles or

x, y and z; the variables that encode kinematics; the variables that contain information about the de-

cision.) in ‘blocks’. After the fitting of the complete model, each block of regressors will be

removed in turn to evaluate its influence in terms of goodness-of-fit (see below; Figure 1, right).

In this protocol, the fitting procedure consists of two stages: 1) selection of most influential regres-

sors via LASSO optimization; 2) GLM fitting of the complete and nested models considering only the

regressors previously selected. During this latter stage, the models are not LASSO regularized to get

a value of the goodness of fit that is not penalized by LASSO additional term. Moreover, the protocol

requires that blocks of regressors are removed ‘manually’ starting from the complete model to build

the nested models, whereas if LASSO was used in this step, there would be the possibility that other

regressors would be removed ‘automatically’ (by LASSO) besides those removed ‘manually’ in an

uncontrollable way.

Note: The LASSO optimization introduces a penalization term during the fitting procedure

that shrinks the beta estimate values and sets the less influent to 0. The weight of this new

term is represented by the hyper-parameter l and it can be adjusted to avoid overfitting

and/or to handle a lower number of selected variables (see Figure 2). This optimization is

commonly used when a model includes many independent variables and their correlation

with the dependent variable is not known a priori.

The fitting procedure includes the following steps:

5. Fit a cross-validated (10-fold) LASSO GLM with Poisson link function to explain the spike count in

Y with the regressors in X (in MATLAB: betas = lassoglm (X, Y, ’poisson’, ’CV’, 10)). Calling the

MATLAB lassoglm function with these inputs, it will automatically vary the shrinking parameter

l to individuate the value that returns theminimal cross-validated deviance of the model (see Fig-

ure 2).

6. Remove from the X matrix the independent variables (columns) that correspond to the zero beta

coefficients assigned during LASSO fitting (take the betas of the model with the l that minimizes

the deviance).

7. Fit the complete GLMwith Poisson canonical link function (no LASSO regularized; fitglmMATLAB

function) to explain the spike count in Y with all the remaining regressors in X after the LASSO se-

lection. For each block of variables, fit a nested model (fitglm MATLAB function) with all the re-

maining regressors in X (non-zero LASSO betas) except those belonging to that block. To avoid

overfitting, an additional cross-validation (k-fold or leave-one-out) can be performed during this

step, training on a part of the dataset and testing on the other part (see the Note below).
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8. Fit also the ‘null’ model that includes no regressors at all. The goodness-of-fit of this last model

will be used as reference value (fitglm with (real) Y and a vector of 1s of the same length, as an X

placeholder). If the cross-validation was performed during step 7, it must be used here as well to

fit the ‘null’ model on the same parts of the dataset.

As use case, in Diomedi et al. (2020), we grouped the regressors in ‘extrinsic’ blocks (namely EYE

POSITION, EYE SPEED/DIR, POSTSACC, DELAY, PREP, PREMOV, MOV, HOLD, PREMOV2,

MOV2) that carried information about task phases (and so, likely the ongoing corresponding neural

processes); and the ‘intrinsic’ SPIKE HISTORY block that carried information about the previous cell

spiking activity. We thus obtained i) 1 complete model that included all the regressors blocks, ii) 10

nested models removing a different extrinsic block for each run, iii) 1 ‘only extrinsic’ model using all

the extrinsic blocks but not the SPIKE HISTORY, iv) 1 ‘only intrinsic’ model removing all the extrinsic

blocks (i.e., X matrix consisted only of the variables in SPIKE HISTORY) and v) the ‘null’ model.

Prior to further evaluation (see next section) of the fitting, it is possible to assess the appropriateness

of the model at glance by plotting an estimate of the firing rate (predictMATLAB function) vs the real

spike rate. Alternatively, the firing rate at time t predicted by the model can be calculated as the

exponential of the linear combination of the regressors:

mt = expðb0 + b1X1;t + ::: + bKXK;tÞ (Equation 1)

where K is the number of regressors, fbkgk = 1;:::K are the beta coefficients, Xk;t is the value of kth var-

iable at time t and b0 is the intercept of the model. Figure 3 (left) shows an example of recorded

(black line) vs estimated (red line) firing rate of a parietal neuron during a reaching task. The pre-

dicted activity closely matches the observed, peaking just after movement onset (time: 0 s) and re-

sulting slightly inhibited respect to baseline during the hold phase.

Note: Apply this procedure separately for each cell data.

Figure 2. Example of feature selection using LASSO optimization method on randomly generated data

Left: Cross-validated deviance of LASSO fit models as a function of the shrinking parameter lambda (l). The green

dashed line corresponds to the lambda that produce the minimum deviance. Lower lambdas (on the right of the green

line) produce a model with too many parameters that suffer of overfitting. Higher lambdas (on the left of the green

line) tend to shrink too much the model removing important regressors. Right: Beta coefficients fitted by LASSO as a

function of l. Each coloured line represents the value of the coefficient corresponding to a regressor in the model. The

green dashed line corresponds to the lambda that produce the minimum deviance, thus the optimal beta coefficients.

Lower lambdas (on the right of the green line) produce a model that retains more features (fewer beta coefficients

have a 0 estimate). With higher lambdas (on the left of the green line) important features are removed from the model,

greatly worsening the fit.
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Note: For non-LASSO regularized models, the cross-validation strategy is not necessary.

When dealing with highly variable data such as neural recordings, the approach can be useful

to get more robust estimates. In this protocol, we suggest averaging cross-validated models

that revealed to be the simplest, but valid solution to finally handle unique values (Zhang and

Zou, 2020; Jung and Hu, 2015).

Statistical analysis

Timing: A few minutes (with the computer used in Diomedi et al., 2020, see above)

After the fitting procedure during which we estimated the beta coefficients for all the models

detailed above, it is possible to extract information in different ways from the models depending

on the aims of the study. Our statistical analyses focused on the goodness-of-fit (GOF) of the com-

plete vs the nested models to get insights about the underlying neural modulations. We will also

give some advices on how to treat the beta coefficients of the complete model to get more comple-

mentary information.

9. Goodness-of-fit: get the w-values. In the context of non-linear models, the goodness-of-fit is

measured as likelihood (or its logarithm). The log-likelihood [, easier to compute, is used by

the algorithms to estimate the parameters (betas) through a procedure called Maximum Likeli-

hood Estimation (MLE). In our case, the likelihood is the probability, given a model, to observe

a given spike train thus it ranges from 0 to 1, while its logarithm (the log-likelihood) ranges

from -N to 0.

a. Assess the GOF of all the models. It can be done in two ways:

i. the [ value is directly provided by the fitting function (in MATLAB; from the GeneralizedLi-

nearModel object in MATLAB obtained with fitglm function.

ii. by calculation with the following formula, remembering that the firing rate depends on the

beta coefficients b (see Equation 1):

[ ðy; bÞ =
XT

t= 1

ytlogðmtÞ +
XT

t= 1

ytlogðDÞ �
XT

t= 1

logðyt!Þ � D
XT

t= 1

mt (Equation 2)

where y is the spike count, m is the firing rate predicted by the model (see above), D is the bin width,

t is the bin number and T the total number of bins.

Figure 3. Neural data recorded from a parietal neuron during a fix-to-reach task in darkness

Left: Observed (black line) and estimated (red line) firing rates (non-overlapping 40 ms bins). In the plot, data are

cross-validated (for the estimation data never seen by the model are used) and averaged across 10 trials. Right: Bars

show the weights (w-values) of the 10 blocks of regressors (the ‘functional fingerprint’ of the neuron) on the neural

activity. Asterisks indicate most important w-values for each cell. Adapted from Diomedi et al., 2020.
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b. For higher interpretability, calculate McFadden’s pseudo-R2 (Cameron and Windmeijer,

1997):

R2
pseudo = 1� [ complete

[ null
(Equation 3)

Starting from the log-likelihood of the complete ([complete) and null ([null) models.[null represented the

fitting of the simplest possible model and, by definition, it is independent from every regressor (the

model includes only a constant term). McFadden’s pseudo-R2 can be interpreted as the more com-

mon R2 in ordinary linear regression, ranging from 0 (extremely poor fit) to 1 (perfect fit), but it tends

to be remarkably lower (values of 0.2 to 0.4 are considered excellent fit).

c. Select only the units with a R2
pseudo>threshold to discard noisier cells for which the model failed

to capture neural modulations. In Diomedi et al. (2020), we set the threshold at 0.05, as in pre-

vious works (Goodman et al., 2019; Paninski et al., 2004a).

d. For each nested model, compute a relative pseudo-R2 as:

R2
relativepseudo =

[ nested � [ null

[ complete � [ null
(Equation 4)

where [nested is the log-likelihood of the nested model.

This value compares the log-likelihood (i.e., the goodness-of-fit) of each nestedmodel with the com-

plete model (and the null model).

e. Convert the relative pseudo-R2 in a weight for each nested model:

w � value= 1 � R2
relativepseudo (Equation 5)

This score is directly associated with the importance of the group (block) of variables removed to

build the nested model with respect to the complete model. Whether a block of regressors con-

tained important information for the model, its removal causes a great worsening of the fit, the rela-

tive pseudo-R2 will decrease (towards 0) and the w-value will increase (towards 1). Vice versa,

whether a regressors’ block had little influence on the complete model, its removal will cause a little

worsening of the fit, an increase (towards 1) in the relative pseudo-R2 resulting finally in a low w-value

(towards 0). The Figure 3 (right) shows an example ‘functional fingerprint’ of a parietal neuron

composed by 10 different w-values. The w-values marked with the asterisks are important to

describe the neural modulations (computed as described in the next section, point B.). For more de-

tails about the 10 w-values meaning, please see Diomedi et al., 2020.

CRITICAL: If the complete, nested and null models have been cross-validated during the

fitting (steps 7 and 8 in ‘fitting procedure’ section), average the log-likelihoods across the

different testing partitions of the data to compute all the scores in this section.

10. Goodness-of-fit and analysis of the w-values, a few suggestions. The set of w-values describes a

‘functional fingerprint’ characteristic for each cell and summarizes the neural modulations eli-

cited by the entire blocks of regressors. The ‘functional fingerprints’ can be further analyzed

to investigate the relative weights of the groups of variables on the population, the presence

of specialized subpopulations of cells, the dynamics of the encoding.

Here we provide a few suggestions following the analyses in Diomedi et al. (2020), but the w-

values can be hypothetically treated with many other approaches.

a. It is possible to compare directly the distributions of the w-values across the neural popula-

tion to investigate the relevance of each block of variables on the spiking activity. We suggest

the use of the median values and non-parametric tests such asWilcoxon’s to evaluate the sig-

nificance of the observed differences (see Figure 4A for an application).

b. It is also possible to assess which regressor blocks significantly influence each cell activity.

i. For each cell, sum all its w-values.
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ii. Iteratively, add together the w-values in descending order up to reach the 85% of the total

sum. The blocks needed to achieve this value are considered significant in modulating cell

activity (see Figure 4D).

c. The ‘functional fingerprints’ describe single cell activity patterns. However, it might be inter-

esting tomove towards a population analysis starting from the compact view provided by the

‘functional fingerprints’ and to seek functionally specialized sub-populations. This can be

done in a few steps:

i. Visualize the N-dimensional data points (N = number of w-values) in a 2D or 3D space per-

forming a Principal Component (PC) Analysis on the matrix [N� of units 3 N] and plotting

the projections of the neurons on the first PCs (2 or 3).

ii. It is possible to apply standard clustering algorithms (e.g., K-means or hierarchical clus-

tering) on the functional fingerprints and identify clusters of units with shared activity pat-

terns.

Figure 4. Figure and data adapted from Diomedi et al. (2020) showing the w-values across the population

(A) Box plot of w-values for each block of regressors across the population (2 animals separated).

(B) The w-values are plotted in ascending order for each block of regressors.

(C) The neural population (a dot for each cell) is projected onto the 3 first principal components (PCs) of the principal

component analysis (PCA) performed on the 10 w-values.

(D) Histogram showing the minimum number of regressors’ blocks (w-values) necessary for each cell to reach at least

the 85% of its extrinsic w-values total sum (i.e., the blocks of regressors with a significant effect on cell modulations).
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Figure 4C shows the functional structure of our neural population (Diomedi et al., 2020) that was

characterized by the lack of units clustered according to their functional fingerprints.

11. Beta coefficients analysis: a few suggestions. Beta coefficients carry information about the effect

of each single regressor included in the model on neural activity. However, since the non-line-

arity of the Poisson GLMs (an additive change in the predictors has a multiplicative effect on the

response, see Equation 1) and the normalization needed to compare the betas, usually it is not

recommended to interpret directly these regression coefficients. Anyway, we here report a

couple of indirect analyses that can be performed on beta coefficients of the complete GLM

to extract additional information (see Diomedi et al., 2020).

a. Correlation analysis to investigate the encoding of variables in the population:

i. For each variable of interest, build a beta vector that represents the population response

to that variable extracting from the complete model of each unit the beta value corre-

sponding to the variable. Mathematically, the beta vector for the kth variable will be

fbc;kgc = 1; :::M where M is the number of the units in the population.

ii. Compute the correlation coefficient r between beta vectors (Zhang et al., 2017). We

recommend using Spearman’s rank correlation that is best suited to deal with the non-

linearity of the modulations rather than standard Pearson coefficient.

Note: high correlation coefficients mean high similarity in the population response to the two

tested variables.

b. Clustering: similarly to what suggested for the functional fingerprints, it is possible to run

standard clustering algorithms on the beta coefficients in order to eventually identify sub-

populations that process information in different ways. For example, in Diomedi et al.

(2020), we found two separate clusters within our neural population that were differently

influenced by their own previous spiking activity.

EXPECTED OUTCOMES

Whereas the functional expected outcomes of this protocol totally depend on the purpose of its

application and the data considered, here we can make a few considerations from a statistical point

of view.

LASSO regularization was found to be well suited to handlemodels with many variables and to select

only the most important to approximate the neural response. For example, in Diomedi et al. (2020),

this optimization retained on average 90 out of about 150 independent variables across the popu-

lation. Similarly, in Goodman et al. (2019), a number between 55 and 95 of LASSO selected features

were reported to approximate the activity of neurons (recorded in M1 and somatosensory areas dur-

ing reaching and grasping tasks).

During the evaluation of the model goodness of fit, one can expect a removal of 10%–40% of the

neurons initially included in the population. (10%–30%, Goodman et al., 2019; 22%–44%, Diomedi

et al., 2020) if a threshold of 0.05 is applied to the pseudo-R2 values (see step 9 in ‘statistical analysis’

section). Moreover, an expected pseudo-R2 distribution across the population can be low as 0.127 -

0.185 (mean; Goodman et al., 2019) or 0.102 [0.073, 0.147] (median [25th, 75th percentile]; Diomedi

et al., 2020), which are substantially lower than the normal R2.

LIMITATIONS

Note that the GLM application we here propose is an extremely versatile statistical tool to investi-

gate neural dynamics with a single-cell approach. This technique per se is almost free of major draw-

backs, but a crucial point is the choice of the features to include or not in the model and their pre-

processing.
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Imagine a model that aims to explain the firing rate based on the x-position of a spatial target. The

values of x could be set positive increasing towards right, negative decreasing towards left. If x is

directly used to fit the neural activity, we are implicitly forcing the model to choose between a

right-selective (with a positive beta: the activity will grow as the target moves further to the right

that means higher values of x), a left-selective (with a negative beta), or no-spatial selective unit

(beta around 0). For how the model is built in this case, a preference for central or peripheral space

(irrespectively to left or right) cannot be taken into account.

One solution may be to include in the model x squared (or alternatively the absolute value of x) so

that themodel also considers a preference for the central space (with a positive beta, or inhibition for

the central space when beta is negative, see Figure 5).

Thus, both linearities and non-linearities can be considered with an appropriate choice or an appro-

priate processing of the features as well as different temporal lags with which the regressors are

introduced in the model. Note that these steps require an extensive preprocessing of the data.

Other methods, such as neural networks can automatically handle high-nonlinear relationships be-

tween variables, but with a higher quantity of data needed for the training and a lower interpret-

ability of the resulting models. Tailored approaches can couple the two methods, passing for

example some independent variables through the input layers of an autoenconder and using the

hidden layer as the input of the GLM.

TROUBLESHOOTING

Problem 1

We suggest removing from the analysis the cells that scored a low R2
pseudo (see step 9c in ‘‘statistical

analysis’’ section). Due to this selection many neurons may be discarded massively reducing the

population.

Potential solution

The model (i.e., the chosen features) is not appropriate to explain neural activity. Try to add

the same variables with different temporal lags (or even with different temporal scale), enrich

the model with more regressors if other data are available, manipulate (during a pre-process-

ing phase with square-root, filtering with sine and cosine functions.) the features already

included in the model in order to allow more types of neural modulations or convert the re-

gressors in a number of dummy-variables.

Problem 2

Collinearity between regressors could invalidate the model (step 3 in ‘data preprocessing’ section).

Potential solution

In order to get a reliable estimation of the beta coefficients and avoid a confusing effect on the anal-

ysis, the regressors should be as independent from each other as possible. Indeed, even if LASSO

regularization is robust to collinearity in the features, it is always a good choice to avoid correlations

with a coefficient |r| > 0.7 between regressors (Dormann et al., 2013). Whether this would be the

case, we suggest removing the less important among the more redundant variables or alternatively

aggregate them through some dimensionality reduction technique such as PCA.

Problem 3

Model fitting can require quite a long time. This can happen especially when using computers with

limited resources or when trying to fit very complex models both in terms of number of data points

and number of variables (steps 5–7 in ‘fitting procedure’ section).
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Potential solution

To exploit parallel computation and distribute the computational load on all the available cores, a

good automatic solution is to set ‘UseParallel’ option in lassoglm MATLAB function (which is highly

time consuming) to true to compute in parallel and exploit more cores. When possible, try to

Figure 5. Simulation of the spatial tuning allowed by different pre-processing of a regressor

A variable x (e.g., the horizontal position of a target) in the range [�1 +1] can be directly passed through an

exponential function (left panels) to produce firing rates with a preference for right (positive beta coefficients, left-

superior panel) or left (negative betas, left-inferior panel) positions. The same x can be pre-processed (absolute value

or squared, central and right panels respectively) to produce a preference for lateral (positive beta coefficients,

central and right-superior panels) or central (negative betas, central and right-inferior panels) positions. Four tuning

curves are obtained for each panel by simply varying the parameters of the exponential function.
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parallelize the entire code as much as possible. In MATLAB, for example, it can be done using ‘par-

for’ loops instead of the simple ‘for’ loops to have many nested GLMs or the GLMs of many units

estimated at the same time. Since the script design must be adapted, check the software documen-

tation to get more details.

It is possible also possible to reduce the overall computational load in several ways. For example,

one can try to adapt the bin width reducing the total number of bins and reaching a good compro-

mise between time resolution and computational load. To reduce the number of variables, a prese-

lection of important regressors can be performed on a small subset of units to then scale up the pro-

cess to the entire population retaining only the variables with no 0 beta coefficients (during LASSO

step) in a significant percentage of the subset of cells. If discretization of continuous variables has

been performed, it is possible to reduce the size of the resulting set of variables through a coarser

discretization.

Problem 4

The matrices that contain the data (especially the X matrices with the regressors) can be memory

consuming and if more GLMs are handled at the same time, the RAM could be saturated (steps

5–7 in ‘fitting procedure’ section).

Potential solution

This problem can be easily solved with best coding practices. Write the script to re-use X matrices

used to estimate the complete GLM without building a new one for each nested model. Save the

results of the computations frequently, delete them from temporary memory and eventually re-

load them when needed to save RAM. In MATLAB, if a big matrix contains many 0s, we recommend

the use of the ‘sparse’ function that will convert the matrix into its sparse form squeezing out the zero

elements and saving memory. The ‘full’ function, applied to the sparse matrix, will return the original

matrix.
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Materials availability

This study did not generate new unique reagents.

Data and code availability
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