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In this paper, we elaborate on a method to decompose multiloop multileg scattering amplitudes into
Lorentz-invariant form factors, which exploits the simplifications that arise from considering four-
dimensional external states. We propose a simple and general approach that applies to both fermionic and
bosonic amplitudes and allows us to identify a minimal number of physically relevant form factors, which
can be related one to one to the independent helicity amplitudes. We discuss explicitly its applicability to
various four- and five-point scattering amplitudes relevant for LHC physics.
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I. INTRODUCTION

In the computation of multiloop multileg scattering
amplitudes in quantum field theory, one encounters at
least two different types of problems, whose complexity
increases quickly with the number of legs and the number
of loops involved. First, one has to write down a loop
integrand for the corresponding scattering process in a
suitable form, and, second, one has to find a way to
compute the relevant integrals efficiently, either analyti-
cally or numerically.
In this paper, we will focus on the first of the two

problems. The standard approach starts from a representa-
tion for the scattering amplitude in terms of Feynman
diagrams and requires one to perform a series of algebraic
manipulations in order to separate the overall Lorentz
structures (i.e., combinations of spinors, polarization vec-
tors, etc.) from what are properly called scalar Feynman
integrals. The Feynman integrals encompass the analytic
dependence of the amplitude on the external kinematics,
its branch cuts, and its divergences. While following this
program might appear straightforward at first, it can
become extremely cumbersome in practice for multiloop
and multileg scattering amplitudes, where different sets of
manipulations have to be performed on different diagrams
in order to achieve the desired decomposition.

A common solution, which allows one to readily
decompose any scattering amplitude in terms of scalar
Feynman integrals, is the so-called projector method:
Starting from the symmetries of the scattering amplitudes,
in primis Poincaré and gauge invariance, one can write
down a generic decomposition for any amplitude in terms
of a basis of Lorentz tensors, multiplied by scalar form
factors. The decomposition, being only based on symmetry
considerations, is nonperturbative and holds at any number
of loops. Starting from this, one can build projector
operators which, once applied on the scattering amplitude,
extract the corresponding form factors. Very importantly,
since loop amplitudes are generically divergent in d ¼ 4
space-time dimensions, and dimensional regularization
[1–3] is used throughout the computation of Feynman
integrals, the aforementioned tensor and projector decom-
position is usually performed in d space-time dimensions.
After the form factors have been computed, one can use
them to compute the so-called helicity amplitudes for the
process considered. In practice, one identifies the set
of independent helicity amplitudes necessary to fully
characterize the problem, and, starting from the generic
d-dimensional tensor decomposition, one fixes the helic-
ities of the external states, obtaining a representation for the
helicity amplitudes in terms of linear combinations of the
form factors. Clearly, in doing this, one has to switch from
d- to four-dimensional external states, moving from what is
usually referred to as common dimensional regularization
(CDR) to the so-called ’t Hooft-Veltman scheme (tHV).1 In
this step, one often realizes that only specific linear
combinations of the original form factors appear in the
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physical helicity amplitudes, often leading to simplifica-
tions in the final result.
This method has been applied extremely successfully

in the calculation of a countless scattering amplitudes
for 2 → 1 and 2 → 2 processes; see, for example, [5–8].
Nevertheless, there are (at least) two main reasons why one
might want to improve on this method. First of all, with the
increase of the number of external legs, the number of
d-dimensional tensors required is bound to increase very
fast due to the combinatorics stemming from the large
number of independent external momenta. Moreover,
insisting on using d-dimensional external states, when
dealing with external fermions, forces us to work with
the d-dimensional algebra of gamma matrices which,
differently from the four-dimensional one, is not closed.
As we will see in an explicit example below, for some
processes, this prevents us from even being able to provide
a generic nonperturbative tensor decomposition valid at any
number of loops. Finally, it seems reasonable to expect that
if we were able to identify from the beginning those and
only those (combinations of) form factors that contribute
to the physical scattering amplitudes, their calculation
could turn out to be simpler than that of the full, unphysical,
d-dimensional ones.
This is not the first paper where this question has been

addressed. In Ref. [9], a solution was proposed, which
involves the computation of polarized scattering amplitudes
in an hybrid dimensional regularization scheme. In the
context of this method, a connection between helicity
amplitudes and a four-dimensional treatment of tensors
and projectors has also been highlighted in Ref. [10]. A
different idea has been proposed in Ref. [11], where it has
been shown that one can build projector operators that project
directly onto the helicity amplitudes. The important finding
of [11] was that, when applying this idea to the scattering of
n > 4 particles, the ensuing helicity projectors could be
expressed as linear combinations of a physical subset of
the standard d-dimensional tensors. Interestingly, the number
of independent tensors would match the number of helicity
amplitudes, pointing to the fact that the minimal complexity
of the problem could be exposed. As a consequence,
restricting to the subspace of physical four-dimensional
tensors allows one to keep the complexity stemming from
the large number of independent d-dimensional tensors under
control, since their number is always bound by the number of
helicity amplitudes in the problem.
Two important considerations were still missing in [11]:

first, how to generalize those findings to (the, in principle,
simpler case of) the scattering of n ≤ 4 particles; and
secondly, an efficient way to determine the basis of
independent tensors in the fermionic case, which does not
go through the enumeration of all d-dimensional tensor
structures and the explicit construction of helicity
projectors. In this paper, we provide a solution for these
two remaining issues, describing a new generic approach to

the decomposition of multiloop multileg Feynman ampli-
tudes in the ’t Hooft-Veltman scheme, which matches one to
one the number of independent helicity amplitudes in the
problem.

II. THE GENERAL IDEA

In order to describe the idea behind this paper, let us
consider a generic process, where n unspecified bosonic
and/or fermionic particles collide. For definiteness, we
could imagine to be working in QCD, but this is not
necessary for the discussion that will follow. Using Lorentz
invariance, gauge invariance, and any other symmetries of
the problem at hand, we can parametrize the scattering
amplitude for the process in terms of a basis of independent
tensor structures Ti as

Aðp1;…; pnÞ ¼
XN
i¼1

F iðp1;…; pnÞTi; ð2:1Þ

where F i are scalar form factors. The tensors Ti are
built using the polarization states of the external
particles, respecting the Lorentz and gauge symmetries
of the problem and assuming that external states are
d-dimensional. The standard procedure would then consist
in defining projector operators, decomposed in terms of the
same basis tensors,

Pj ¼
XN
i¼1

cðjÞi ðd;p1;…; pnÞT†
i ; ð2:2Þ

such that, by applying them on the amplitude in Eq. (2.1)
and summing over the polarizations of the external states,
one findsX

pol

PjAðp1;…; pnÞ ¼ F jðp1;…; pnÞ: ð2:3Þ

The coefficients cðjÞi ðd;p1;…; pnÞ in Eq. (2.2) can be
computed by imposing that Eq. (2.3) is satisfied. This
requires one, in general, to solve a system of N equations in
N unknowns. Equivalently, it is convenient to define the
matrix,

Mij ¼
X
pol

T†
i Tj; ð2:4Þ

such that the projectors can be obtained by computing its
inverse,

cðjÞi ðd;p1;…; pnÞ ¼ ðM−1Þij: ð2:5Þ

We stress here that, in general, the solution for

cðjÞi ðd;p1;…; pnÞ will depend on the space-time
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dimensional regulator d and might, in particular, be
singular as d → 4.
Let us now go back to the amplitude in Eq. (2.1). In order

to compute physical observables, we are ultimately inter-
ested in considering so-called helicity amplitudes, which
are obtained by fixing the helicities of the external states in
all possible ways. This can be done directly in Eq. (2.1),
where the only dependence on the polarization of the
external states resides in the tensors Ti. In particular, if the
helicity of particle i is λi, we can write

Aλ1;…;λnðp1;…; pnÞ ¼
XN
i¼1

F iðp1;…; pnÞTλ1;…λn
i : ð2:6Þ

Importantly, when we fix the helicities, we also specify the
external states to be four-dimensional. This calculation
scheme, where the form factors are computed in dimen-
sional regularization but the external states are kept four-
dimensional, corresponds to the so-called ’t Hooft-Veltman
scheme, where external momenta and polarizations are in
four dimensions, while internal states and loop momenta
are in d dimensions. It is not difficult to imagine that when
this is done, some of the tensors that used to be independent
for generic d can become linearly dependent of each other.
It is easy to see that this should happen whenever the
number of d-dimensional tensors N is larger than the
number of helicity amplitudes with four-dimensional exter-
nal states. In this case, in fact, one could imagine promoting
the linear combinations of tensors in Eq. (2.6) to new
independent tensors, and one would expect that only those
combinations should be enough to describe the helicity
amplitudes. Here, it is important to stress that the counting
of the independent helicity amplitudes slightly changes
depending on the number of external legs in the process.
Indeed, it is easy to convince oneself that, with n ≤ 4
external particles in four dimensions, it is impossible to
construct a parity-odd invariant free of spinor phases. This
implies that the helicity amplitudes for such processes, up
to an overall helicity-dependent spinor phase that does not
depend on the loop order, have trivial behavior under parity
transformation. This allows one to reduce the number of
different helicity amplitudes by a factor of 2. On the other
hand, for n ≥ 5 external particles, one can build parity-odd
invariants, and the helicity amplitudes will depend in a
nontrivial way on them. The typical example is the
scattering of five massless partons in QCD where the
amplitudes depend on the parity odd invariant tr5 ¼
trðγ5=p1=p2=p3=p4Þ. In this case, all helicities have to be
treated as different.
Wewill see various examples of this in the following. For

now, let us ignore the details and simply assume that, when
four-dimensional external states are considered, only the
first Q ≤ N tensors are independent, and they are sufficient
to span the tensor space on which the scattering amplitude
is defined. As we will see more explicitly later, one way the

linear dependence manifests in our calculation is through
the fact that the determinant of the matrix in Eq. (2.4)
would go to zero as d → 4. In order words, in d ¼ 4, the
matrix M would not be full rank; i.e., rankðMÞ ¼ Q ≤ N.
In this situation, we can always reorder the tensors such that
the independent ones are the first Q,

T̄j ¼ Tj; j ¼ 1;…; Q: ð2:7Þ

We also assume that the first Q tensors are sufficient to
describe the tensor space spanned by the external helicity
states. It is then convenient to define Q intermediate
projector operators, given by

MQ×Q
ij ¼

X
pol

T̄†
i T̄j; PQ×Q

i ¼
XQ
j¼1

ðMQ×QÞ−1ij T̄†
j ;

i; j ¼ 1;…; Q: ð2:8Þ

The matrix MQ×Q
ij is computed and inverted in d dimen-

sions, but, by construction, it has full rank even in the
limit d → 4.
At this point, we complete the basis of d-dimensional

tensors by defining the remaining N −Q tensors,

T̄i ¼ Ti −
XQ
j¼1

ðPQ×Q
j TiÞT̄j; i ¼ Qþ 1;…; N; ð2:9Þ

where, once more, projections and sums over polarizations
are performed in d dimensions. The definition in Eq. (2.9)
amounts to removing from the original Ti their projection
along the first Q tensors. Of course, if we are only
interested in the d-dimensional problem, it is always
possible to perform such a redefinition of the basis of
tensors, which will effectively block diagonalize the
corresponding projectors. Indeed, we can now define

M̄ij ¼
X
pol

T̄†
i T̄j; P̄i ¼

XN
j¼1

ðM̄Þ−1ij T̄†
j ; i; j ¼ 1;…; N;

ð2:10Þ

where the inverse of the matrix M̄ will have, by con-
struction, the block form,

ðM̄Þ−1ij ¼
� ðMQ×QÞ−1ij 0

0 Yij

�
: ð2:11Þ

Until now, we have performed all manipulations in d
dimensions and have not made explicit use of the fact that
the first Q tensors span the entire physical space required
to compute the helicity amplitudes in four-dimensional
external states. Let us go now back to Eq. (2.1). It is
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straightforward to reexpress it in terms of the new basis
of tensors,

Aðp1;…; pnÞ ¼
XQ
i¼1

F iðp1;…; pnÞTi

þ
XN

i¼Qþ1

F iðp1;…; pnÞTi;

¼
XQ
i¼1

�
F i þ

XN
j¼Qþ1

F jðPQ×Q
i TjÞ

�
T̄i

þ
XN

j¼Qþ1

F jT̄j ¼
XN
i¼1

F̄ iT̄i; ð2:12Þ

where

F̄ i ¼
�
F i þ

P
N
j¼Qþ1F jðPQ×Q

i TjÞ i ¼ 1;…; Q

F i i ¼ Qþ 1;…; N:

ð2:13Þ

From Eq. (2.13), we see that, as long as the matrix MQ×Q
ij

defined in Eq. (2.8) has full rank in d ¼ 4 (and, therefore,
its inverse is finite in d ¼ 4), the new form factors F̄ i are
smooth linear combinations of the original form factors F i.
We proceed now and fix the helicities on Eq. (2.12), finding

Aλ1;…;λnðp1;…; pnÞ ¼
XQ
i¼1

F̄ iðp1;…; pnÞT̄λ1;…λn
i ; ð2:14Þ

where we stress that the sum runs only over the first Q
tensors. We stress that this is the crucial point; as long as
the first Q tensors span the full tensor space defined by the
external states, the N −Q remaining tensors defined in
Eq. (2.9) are exactly zero for four-dimensional external
states, and, in particular, they are zero when we fix the
helicities of the external particles in all possible ways,

T̄λ1;…λn
i ¼ 0; i ¼ Qþ 1;…; N: ð2:15Þ

From now on, we will refer to these tensors as irrelevant
tensors and similarly to their projectors as irrelevant
projectors, while the nonzero ones will be refereed to as
relevant ones.
Let us pause here to stress what we have achieved: We

have found a new decomposition of the amplitude, which
allows us to extract the full information necessary for
computing all physical helicity amplitudes from a minimal
number of form factors, which multiply tensors that are
independent in d ¼ 4 space-time dimensions. As we will
see explicitly below, in our construction, it is crucial that
the tensors that we pick span the full tensor space where the
scattering amplitude is defined. Intuitively, we expect the

dimension of this space to coincide with the number of
different helicity amplitudes for the process considered,
which implies that there is a one-to-one correspondence
between the helicity amplitudes and our relevant tensor
structures. Notice also that, since the matrix in Eq. (2.11) is
in block form, theQ physical form factors can be computed
using projectors that are decomposed purely in terms of the
Q independent tensors. We never need to compute the
contractions of the amplitude with the irrelevant tensors T̄i,
i ¼ Qþ 1;…; N. While these properties are clearly
appealing from an aesthetic point of view, depending on
the complexity of the problem at hand, they might also
constitute a source of substantial practical simplification.
In the next section, we will show how the formal

construction works out in practice for different four- and
five-point scattering processes, trying to elucidate all points
discussed above.

III. CASE OF STUDY: gg → gg SCATTERING

We start by considering the scattering of four massless
spin-1 bosons. For definiteness, we imagine dealing with
four-gluon scattering, but this is not necessary for the
arguments that follow. Let us consider the process,

gðp1Þ þ gðp2Þ þ gðp3Þ þ gðp4Þ → 0; ð3:1Þ

and call ϵμj the polarization vector for to the gluon j. We
define the usual Mandelstam invariants to be

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 þ p3Þ2;
u ¼ ðp2 þ p3Þ2 ¼ −s − t: ð3:2Þ

We indicate the scattering amplitude as A4gðp1; p2; p3Þ.
Once stripped of the polarizations of the external gluons,
this amplitude must be a rank-4 Lorentz tensor,

A4gðp1; p2; p3Þ ¼ ϵ1;μϵ2;νϵ3;ρϵ4;σA
μνρσ
4g ðp1; p2; p3Þ: ð3:3Þ

The most general Lorentz-covariant decomposition for a
rank-4 tensor in d space-time dimensions involves 138
tensor structures; see, for example, [12]. Imposing trans-
versality for each external gluon ϵi · pi ¼ 0, together with
fixing the gauge, allows one to reduce these structures to 10
independent ones. In the case of gluon scattering, given
the symmetry of the external states and the fact that color
ordering can be used to isolate simpler primitive ampli-
tudes, a convenient gauge choice is the cyclic one
ϵi · piþ1 ¼ 0, where we identify p5 ¼ p1. With this choice,
the 10 tensors read
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T1 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · p1ϵ4 · p2;

T2 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · ϵ4; T3 ¼ ϵ1 · p3ϵ3 · p1ϵ2 · ϵ4; T4 ¼ ϵ1 · p3ϵ4 · p2ϵ2 · ϵ3;

T5 ¼ ϵ2 · p1ϵ3 · p1ϵ1 · ϵ4; T6 ¼ ϵ2 · p1ϵ4 · p2ϵ1 · ϵ3; T7 ¼ ϵ3 · p1ϵ4 · p2ϵ1 · ϵ2;

T8 ¼ ϵ1 · ϵ2ϵ3 · ϵ4; T9 ¼ ϵ1 · ϵ4ϵ2 · ϵ3; T10 ¼ ϵ1 · ϵ3ϵ2 · ϵ4: ð3:4Þ

Following the notation introduced in Sec. II, we then write
the amplitude for the scattering of four gluons as

A4gðp1; p2; p3Þ ¼
X
j

F jðp1; p2; p3ÞTj; ð3:5Þ

where Fj are the 10 scalar form factors. In CDR (i.e.,
keeping the external polarizations in d dimensions), these
10 tensors are independent, and they must be kept as they
are. As described in the previous section, the standard
approach would then be to derive 10 projectors that single
out each of the form factors.
Nevertheless, we have seen that as long as not all tensors

are independent for four-dimensional external states, this
procedure can be simplified. A first counting of the number
of helicities involved shows immediately that we expect
24 ¼ 16 helicities, which are reduced to eight by parity (we
recall, from the previous section, that this reduction by
parity holds up to n ¼ 4 external legs). We expect, there-
fore, to be able to describe the physical process in terms of
eight independent tensor structures. Indeed, two of the
tensors in Eq. (3.4) do become linear dependent when the
external states are specialized in four dimensions. This can
be demonstrated in several ways. One possibility is to
explicitly project the 10 tensors in Eq. (3.4) onto a complete
set of independent external four-dimensional helicity states
(for example, using the spinor helicity formalism).
As hinted to in Sec. II, an alternative way to see this is to

study the rank of the matrix,

Mij ¼
X
pol

T†
i Tj;

where, in the case under study, the sum over polarizations
has to be performed respecting

X
pol

ϵμi ϵ
ν
i ¼ −gμν þ pμ

i p
ν
iþ1 þ pν

i p
μ
iþ1

pi · piþ1

: ð3:6Þ

In the standard approach, the 10 projectors that single out
the 10 form factors Fj would then be obtained by inverting
the matrix Mij. If one attempts to do this in d ¼ 4 space-
time dimensions, one finds that Mij is not full rank and, in
particular, rankðMijÞ ¼ 8. This implies, as expected, that
only eight tensors are independent when external states are
taken in four dimensions. In particular, in order to cover the
physical space defined by the external polarizations, we
consider the first seven tensors T1;…; T7 and the sym-
metric combination T8 þ T9 þ T10. While one can intui-
tively understand this to be a good choice due to symmetry
reasons, we also show how construct the basis in a more
systematic way in the Appendix A.
Let us then follow Sec. II and define

T̄i ¼ Ti; i ¼ 1;…; 7

T̄8 ¼ T8 þ T9 þ T10

Mð8×8Þ
ij ¼

X
pol

T̄†
i T̄j; ð3:7Þ

where we still perform all polarization sums in d dimen-

sions to compute Mð8×8Þ
ij . The matrix Mð8×8Þ

ij is now
invertible in d ¼ 4 dimensions. Keeping still generic
dependence on d, its inverse can be easily computed to be

ðMð8×8ÞÞ−1ij ¼ 1

3ðd − 1Þðd − 3Þt2 ðX
ð0Þ
ij þ dXð1Þ

ij Þ; ð3:8Þ

with

Xð0Þ
ij ¼

0
BBBBBBBBBBBBBBBBBB@

− 8ðs2−4suþu2Þ
s2u2

2t
su

4ðt2þ5tuþ3u2Þ
su2 − 2t

su
2t
su

4ðs2þ3su−u2Þ
s2u − 2t

su
−2t2þ3tuþ3u2

su

2t
su −2 sþ2u

u −1 1 2tþu
s −1 sþ u

4ðt2þ5tuþ3u2Þ
su2

sþ2u
u − 2ðt2þ4tuþu2Þ

u2
t−u
u

sþ2u
u − ð2sþuÞðsþ2uÞ

su
t−u
u

tðt−uÞ
u

− 2t
su −1 t−u

u −2 −1 2sþu
s 1 t

2t
su 1 sþ2u

u −1 −2 2tþu
s −1 sþ u

4ðs2þ3su−u2Þ
s2u

2tþu
s − ð2sþuÞðsþ2uÞ

su
2sþu
s

2tþu
s

2ð2s2−2tu−3u2Þ
s2

2sþu
s − tð2tþuÞ

s

− 2t
su −1 t−u

u 1 −1 2sþu
s −2 t

−2t2þ3tuþ3u2
su sþ u tðt−uÞ

u t sþ u − tð2tþuÞ
s t t2

1
CCCCCCCCCCCCCCCCCCA
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Xð1Þ
ij ¼

0
BBBBBBBBBBBBBBBBBB@

3ðdþ2Þ
t2 þ 12

s2 −
12
su þ 12

u2 − 3
sþu

3sð2sþuÞ
tu2

3
sþu − 3

sþu
3uðsþ2uÞ
s2ðsþuÞ

3
sþu 0

− 3
sþu 3 0 0 0 0 0 0

3sð2sþuÞ
tu2 0 3s2

u2 0 0 0 0 0

3
sþu 0 0 3 0 0 0 0

− 3
sþu 0 0 0 3 0 0 0

3uðsþ2uÞ
s2ðsþuÞ 0 0 0 0 3u2

s2 0 0

3
sþu 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCA

: ð3:9Þ

This matrix allows us to define eight intermediate
projectors,

Pð8×8Þ
i ¼

X8
j¼1

ðMð8×8Þ
ij Þ−1T̄†

j ;

which can now by used to find the last two orthogonal
tensors T̄9 and T̄10, following the prescription given in
Eq. (2.9). This just amounts to removing their projection
along the independent tensors as follows:

T̄9 ¼ T9 −
X8
i¼1

ðPð8×8Þ
i T9ÞT̄i;

T̄10 ¼ T10 −
X8
i¼1

ðPð8×8Þ
i T10ÞT̄i: ð3:10Þ

As long as the first eight tensors T̄1;…; T̄8 cover the
full space spanned by the external polarizations, we can
forget about these last two tensors T̄9 and T̄10 for any
physical calculation with four-dimensional external hel-
icity states. We can easily prove this by showing that T̄9

and T̄10 vanish when contracted with external helicity
states, combined with the fact that—by construction—the
last two tensors are completely orthogonal to the first
eight. Indeed, if we insist in considering all 10 tensors T̄i
and define the matrix,

M̄ij ¼
X
pol

T̄†
i T̄j; for i; j ¼ 1;…; 10; ð3:11Þ

its inverse can be easily computed to be

ðM̄Þ−1ij ¼

0
BBB@

ðMð8×8ÞÞ−1ij 0 0

0 2
ðd−3Þðd−4Þ

1
ðd−3Þðd−4Þ

0 1
ðd−3Þðd−4Þ

2
ðd−3Þðd−4Þ

1
CCCA: ð3:12Þ

As expected, the matrix is in block-diagonal form, such
that the two dependent projectors (and tensors) com-
pletely decouple from the relevant ones.
It is thus straightforward to check that the tensors

T̄1;…; T̄8 form a complete physical basis by fixing the
helicities of the gluons in all possible ways and showing
that the two additional tensors always evaluate to zero. In
other words, we have

T̄λ1;λ2;λ3;λ4
9 ¼ T̄λ1;λ2;λ3;λ4

10 ¼ 0 ð3:13Þ

for any choice of the external helicities. As before, we
indicate with λi ¼ � the helicity of the ith gluon. In
particular, we can use the spinor-helicity formalism and
parametrize the polarization vector of gluon i as follows:

ϵμi;þ ¼ hqijγμji�ffiffiffi
2

p hqiii
; ϵμi;− ¼ ½qijγμjiiffiffiffi

2
p hiqii

; ð3:14Þ

where qi is the gauge fixing four-momentum, which is
chosen respecting Eq. (3.6). Equations (3.13) can thus be
shown to be correct for any helicity configuration. A simple
way to do this is by means of the momentum twistor
parametrization for the spinor products [13,14]. This proves
that the tensors T̄9 and T̄10 are irrelevant, and thus,
T̄1;…; T̄8 form a complete basis of physical tensors for
all helicity amplitudes with four-dimensional external states.
Before moving to the next example, let us see how we

expect the construction to generalize if we consider massive
external bosons instead of massless ones, i.e., for example
for the production of two Z=W bosons in gluon fusion
gg → ZZ or gg → WþW−. If we limit ourselves to vector-
like coupling (which is enough if we are only interested in
massless quark loops up to two loops; see, for example, the
discussion in [15,16]), there are 20 independent tensor
structures in d dimensions. On the other hand, having two
gluons and two massive vector bosons and taking
parity invariance under account tells us that there should
be ð22 × 32Þ=2 ¼ 18 independent tensor structures when
only four-dimensional external states are considered. This
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matches indeed the 18 independent combinations of form
factors, which were identified a posteriori in [15,16]. We
do not construct the tensors explicitly here, but we want to
stress that, more recently, the same number of independent
structures has been obtained with a different approach
in [17]. There, the 20 independent tensors have been
orthonormalized in d ¼ 4 using the well-known Gram-
Schmidt procedure, which has allowed the authors to
construct 18 independent tensors in the limit d → 4.

IV. EXAMPLE 2: qq̄ → gg SCATTERING

Let us repeat the same exercise for the production of two
gluons in qq̄ annihilation,

qðp1Þ þ q̄ðp2Þ þ gðp3Þ þ gðp4Þ → 0:

Since all external states are massless, we use the same
Mandelstam invariants defined in Eq. (3.2). We start again
from the generic d-dimensional decomposition for the
amplitude and impose transversality for the external gluons
ϵi · pi ¼ 0, with i ¼ 3, 4. In order to further simplify the
problem, we fix the gauge for the external gluons, such
that ϵ3 · p2 ¼ ϵ4 · p1 ¼ 0, which implies for the gluons the
polarization sums,

X
pol

ϵμ3ϵ
ν
3 ¼ −gμν þ pμ

3p
ν
2 þ pν

3p
μ
2

p2 · p3

;

X
pol

ϵμ4ϵ
ν
4 ¼ −gμν þ pμ

4p
ν
1 þ pν

4p
μ
1

p2 · p3

: ð4:1Þ

With this choice, we are left with five independent
tensors structures in d dimensions. A common choice is [6]

T1 ¼ ūðp2Þ=ϵ3uðp1Þϵ4 · p2;

T2 ¼ ūðp2Þ=ϵ4uðp1Þϵ3 · p1;

T3 ¼ ūðp2Þ=p3uðp1Þϵ3 · p1ϵ4 · p2;

T4 ¼ ūðp2Þ=ϵ4=p3=ϵ3uðp1Þ;
T5 ¼ ūðp2Þ=ϵ3=p3=ϵ4uðp1Þ: ð4:2Þ

Now, if we count the different helicities for the process, we
get 23 ¼ 8, which should be divided by 2 due to parity
invariance, such that we expect to have four helicities and
four different tensors to describe them. We then expect that
one of the tensors above should be linearly dependent when
four-dimensional external states are considered. In order to
verify that this is the case, we define the matrix,

Mij ¼
X
pol

T†
i Tj;

where all polarization sums are done in d dimensions as in
Eq. (4.1) and verify easily that it is indeed not full rank in
d ¼ 4, where rankðMijÞ ¼ 4 instead. In order to find a

subset of tensors that spans the full physical space, it is
convenient to trade T4 and T5 for their symmetric combi-
nation and take as four independent tensors,

T̄i ¼ Ti; i ¼ 1;…; 3; T̄4 ¼ ūðp2Þ=p3uðp1Þϵ3 · ϵ4:
ð4:3Þ

The fact that this is indeed the right combination can be
justified by a similar argument as the one used to pick the
eighth tensor in Eq. (3.7) (see also the discussion in the
appendices).
As before, in order to define the fifth tensor T̄5, we start

from the matrix,

M4×4
ij ¼

X
pol

T̄†
i T̄j; i; j ¼ 1;…; 4;

whose inverse reads

ðM4×4Þ−1ij ¼ Xij

ðd− 3ÞðsþuÞ ;

Xij ¼

0
BBBBB@

− u
2s2 0 − u

2s2ðsþuÞ 0

0 − u
2s2

u
2s2ðsþuÞ 0

− u
2s2ðsþuÞ

u
2s2ðsþuÞ − du2þ4s2þ4su

2s2uðsþuÞ2
2sþu

2suðsþuÞ

0 0 2sþu
2suðsþuÞ − 1

2u

1
CCCCCCA
:

ð4:4Þ
We then use this matrix to define the four intermediate
projectors,

P4×4
i ¼

X4
j¼1

ðMð4×4Þ
ij Þ−1T̄†

j ;

such that the fifth orthogonal (irrelevant) tensor can be
chosen as

T̄5 ¼ T5 −
X4
i¼1

ðP4×4
i T5ÞT̄i: ð4:5Þ

Once more, this achieves effectively a block decomposition
of the projector matrix, which now reads

M̄ij ¼
X
pol

T̄†
i T̄j; for i; j ¼ 1;…; 5; ð4:6Þ

ðM̄Þ−1ij ¼ 1

ðd − 3Þðsþ uÞ
�Xij 0

0 − 1
2uðd−4Þ

�
: ð4:7Þ

Note that this ensures that we only need to perform four
contractions and not five in order to obtain the full
information required to reconstruct the helicity amplitudes.
For completeness, we write down the explicit expression
for the fifth tensor in terms of the original ones,
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T̄5 ¼ T5 −
u
s
T1 þ

u
s
T2 −

2

s
T3 þ T4; ð4:8Þ

which is identically zero when evaluated for four-
dimensional external states for any combination of
helicities. Recently, these projector operators have been
successfully applied for the calculation of the three-loop
QCD corrections to the production of two photons in
quark-antiquark annihilation [18].

V. EXAMPLE 3: qq̄ → QQ̄ SCATTERING

The attentive reader might be rather disappointed at this
point. In the previous two examples, we have indeed
achieved a simplification, which, nevertheless, appears to
be mainly of aesthetic nature; going from 10 to eight
tensors for four-gluon scattering or from five to four for
qq̄ → gg does not seem to be impressive. As we will see
in the next sections, more impressive simplifications
happen when considering the scattering of n ≥ 5 particles.
Moreover, for what concerns four-particle scattering, the
fact that the new projectors are smooth as d → 4 and their
number matches one to one the number of independent
helicity amplitudes could be already a reason for satisfac-
tion. Nevertheless, in order to convince also the most
demanding reader that this approach is worth pursuing and
conceptually more appropriate also when dealing with four-
particle scattering, in this section, we discuss a four-point
scattering amplitude where substantial simplifications can
be achieved.
The prototypical example of what we want to show is the

production of a pair of quarks in qq̄ scattering,

qðp1Þ þ q̄ðp2Þ þQðp3Þ þ Q̄ðp4Þ → 0:

This example is particularly interesting because, if one
insists in working in CDR, it is not possible to find a finite
number of tensor structures that span the whole space at
every number of loops. The reason is simply that the
algebra of the γ matrices in d dimensions is not closed.
Indeed, following the standard approach to compute qq̄QQ̄
scattering up to two loops, the following six tensor
structures would be needed [7,19]:

T1 ¼ ūðp2Þγμ1uðp1Þūðp4Þγμ1uðp3Þ;
T2 ¼ ūðp2Þ=p3uðp1Þūðp4Þ=p1uðp3Þ;
T3 ¼ ūðp2Þγμ1γμ2γμ3uðp1Þūðp4Þγμ1γμ2γμ3uðp3Þ;
T4 ¼ ūðp2Þγμ1=p3γμ3uðp1Þūðp4Þγμ1=p1γ

μ3uðp3Þ;
T5 ¼ ūðp2Þγμ1γμ2γμ3γμ4γμ5uðp1Þūðp4Þγμ1γμ2γμ3γμ4γμ5uðp3Þ;
T6 ¼ ūðp2Þγμ1γμ2=p3γμ4γμ5uðp1Þūðp4Þγμ1γμ2=p1γ

μ4γμ5uðp3Þ;
ð5:1Þ

but more would be needed at a higher number of loops.

It should be clear that all of these structures cannot be
independent when the external states are four-dimensional.
Indeed, as argued more extensively in Appendix B, it turns
out that one only needs to consider tensors involving spinor
chains, which are independent in four dimensions. In
particular, the six structures presented above can be all
related to the first two tensors T1 and T2 by use of four-
dimensional Fiertz identities; hence, we only need to
consider T1 and T2. Alternatively, we can also start with
the full set of tensors and, using the same procedure
illustrated in the previous sections, show that they can
be replaced with only two physical tensors when external
four-dimensional states are specified. Indeed, let us define
once more the matrix,

Mij ¼
X
pol

T†
i Tj:

It is easy to verify that in d ¼ 4, the rankðMijÞ ¼ 2. We
define, therefore, the two independent tensors,

T̄i ¼ Ti; i ¼ 1; 2;

and the 2 × 2 matrix,

M2×2
ij ¼ T†

i Tj; i; j ¼ 1; 2;

which now has a smooth inverse in d ¼ 4,

ðM2×2Þ−1ij ¼ 1

d − 3
Xij;

Xij ¼
 1

4s2
sþ2u

4s2uðsþuÞ
sþ2u

4s2uðsþuÞ
ds2−2s2þ4suþ4u2

4s2u2ðsþuÞ2

!
: ð5:2Þ

It is worth comparing these expressions with the standard
d-dimensional projectors derived in Eq. (2.15) of [7] to
appreciate the gain in simplicity.
As for the previous examples, we use this matrix to

define the intermediate projectors,

P2×2
i ¼

X2
j¼1

ðMð2×2Þ
ij Þ−1T̄†

j ; ð5:3Þ

which allows us to decouple the irrelevant tensors by the
projection,

T̄i ¼ Ti −
X2
j¼1

ðP2×2
j TiÞT̄j; for i ≥ 3:

For the computation of the helicity amplitudes, all these
extra tensors can be neglected. We stress once more that,
if we insisted in using the d-dimensional tensors, their
number would increase with the number of loops, while
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with our approach two tensors and two form factors is
sufficient to obtain the helicity amplitudes at any number of
loops. Finally, we can verify that the irrelevant tensors are
all zero when we fix the polarizations of the external quarks
in all possible ways, as expected.

VI. TENSOR DECOMPOSITION FOR n-POINT
AMPLITUDES

The upshot of the previous sections can be summarized
as follows: In order to exploit the simplifications that arise
from treating external states in four space-time dimensions
in the ’t Hooft-Veltman scheme, one only needs identify
how many tensor structures remain independent when four-
dimensional external states are considered. We have seen
that this number corresponds to the number of independent
helicity amplitudes for the process studied. Then, for all
practical purposes, one can simply throw away all the
linearly dependent ones, which we referred to as irrelevant
tensor structures. We have, in fact, shown, both in
complete generality and with many explicit examples, that
these irrelevant tensors can be decoupled from the relevant
ones through a redefinition of the tensor basis, which
amounts to choosing irrelevant tensors that are zero when
evaluated for any combination of helicity for the external
states. Therefore, the only nontrivial step in extending this
procedure to the scattering of n ≥ 5 particles consists in
determining a priori which tensors are independent in four
dimensions. In principle, one could, of course, start with the
full set of d-dimensional tensors Tj and study the rank of
the corresponding projector matrix Mij in Eq. (2.4). While
this is doable, it can become very soon impractical due to
obvious combinatorics arguments.
Fortunately, it turns out that we do not need to go

through the enumeration of the d-dimensional tensor
structures at all for n ≥ 5 scattering. The crucial point is
that, starting at five points, the external momenta naturally
provide us with four independent vectors to parametrize the
helicity amplitudes. This, combined with the fact that only
spinor chains that are independent in d ¼ 4 are needed (see
Appendix B), allows us to decompose every Lorentz
covariant object that appears in the calculation in terms
of the of four independent four-dimensional external
momenta and determine the independent tensors using
four-dimensional algebra only. This is not true for n ≤ 4,
where we only have three or fewer independent momenta,
and we need to introduce extra tensorial structures
(as γμ, gμν etc.) in order to be able to span the full four-
dimensional space.
The simplest case is the scattering of five or more spin-1

massless particles and was treated in detail in [11]. In that
case, it is immediate to see that the amplitude must be a
rank-5 (or higher) tensor, made of the four independent
momenta pμ

1;…; pμ
4, which implies the existence of 45

different tensor structures. Applying transversality plus a

gauge choice for each external gluon, allows us to go down
to 25 ¼ 32 tensor structures, which equals the number of
independent helicities. In [11], it was shown explicitly that,
by projecting on the physical helicity amplitudes, all extra
d-dimensional tensor structures would not contribute and
could be neglected. Note that here, unlike the four-point
case, we cannot use parity to reduce the number of
independent helicity amplitudes by a factor of 2. The
reason is that, starting at five points, the helicity amplitudes
depend on the parity odd invariant tr5 ¼ trðγ5=p1=p2=p3=p4Þ.
More explicitly, focusing on five-gluon scattering for
definiteness, each helicity amplitude can be separated into
a parity-even and a parity-odd part,

Aλ1;…;λ5
5g ðp1;…; p4Þ ¼ Aλ1;…;λ5þ ðp1;…; p4Þ

þ tr5Aλ1;…;λ5− ðp1;…; p4Þ; ð6:1Þ

where we indicated with Aλ1;…;λ5
5g ðp1;…; p4Þ the amplitude

for the scattering of five gluons of momenta pj and
helicities λj. The fact that these amplitudes transform
nontrivially under parity, even after dividing them by an
overall spinor phase, does not allow us to restrict our tensor
basis to 16 tensors only. Clearly, the same type of argument
can be generalized for the scattering of five or more
particles of any type. In what follows, we will show
how to obtain a minimal number of four-dimensional
tensor structures for different types of massless and massive
five-point scattering amplitudes, which match the number
of corresponding helicity amplitudes.

A. Example 1: qq̄ → ggg scattering

We start with the production of three spin-1 massless
bosons from a spinor pair. For definiteness, we identify
them with gluons, but, clearly, the same considerations
would apply for photons. We then consider the process,

qðp1Þ þ q̄ðp2Þ þ gðp3Þ þ gðp4Þ þ gðp5Þ → 0:

If we were to enumerate all d-dimensional tensor structures
for this process, we would start noticing that, by stripping
the amplitude of the gluon polarization vectors, we are left
with a rank-3 Lorentz tensor, with one fermion line for the
massless quarks. Each tensor will have the form,

T ∼ ϵ3μ3ϵ4μ4ϵ5μ5 ūðp2ÞΓμ3μ4μ5uðp1Þ; ð6:2Þ

where, in d dimensions, the tensor Γμ3μ4μ5 can be built using
combinations of Dirac γ matrices, gμν, and the external
momenta pμ

i , i ¼ 1;…; 4. Note that the maximum number
of γ matrices is, in general, given by the number of particles
that can attach on the fermion line, which, in turn, depends
on the number of loops. Of course, since we have only a
finite number of contractions that we can do with the four
independent external momenta, there is a finite number of
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such structures that we can build. Still, doing this exercise
is very tedious and, as we have seen, not needed, since we
only need to consider spinor chains that are independent in
d ¼ 4 space-time dimensions.
Indeed, let us start considering the fermion lines

ūðp2ÞΓμ3μ4μ5uðp1Þ. Their nontrivial part is given by the
insertions of (arbitrary numbers of) γ matrices,

ūðp2Þγμ1…γμnuðp1Þ: ð6:3Þ

In order to see which structures are effectively allowed to
show up in four dimensions, the crucial observation is that
we can decompose any γ matrix as

γμ ¼ a1p
μ
1 þ � � � þ a4p

μ
4; ð6:4Þ

where the coefficients aj will, in general, depend on the
external invariants and on all possible combinations of
strings of =pi. Note that this is a nontrivial point. In fact,
while the external states are assumed to be four-
dimensional, the general prescription for ’t Hooft-
Veltman scheme implies that the γ matrices in the spinor
chain be d-dimensional. Nevertheless, one can show that
when four-dimensional external states are considered, one
only needs to consider spinor chains, which are indepen-
dent when also all γ matrices are in four dimensions (see
Appendix B for a more detailed discussion). This implies
that, for the purpose of finding a physical tensor basis, the
only independent structures that we need to consider are of
the form,

T ∼ ϵ3μ3ϵ4μ4ϵ5μ5 ūðp2Þ=pi1…=pinuðp1Þpμ3
j3
pμ4
j4
pμ4
j4
: ð6:5Þ

Now, let us first focus on the fermion line. Clearly, the
indices i1;…; in can be only i ¼ 3, 4; otherwise, we could
anticommute the momenta to the left or to the right and use
the Dirac equation to get rid of them. Also, since both p1

and p2 are massless, helicity conservation along the quark
line implies that we can only have one occurrence of each,
which limits the possible structures to

T ∼ ϵ3μ3ϵ4μ4ϵ5μ5 ūðp2Þ=p3;4uðp1Þpμ3
j3
pμ4
j4
pμ5
j5
: ð6:6Þ

A simple counting shows that these are 2 × 43 ¼ 128
different structures. Now, we can use the physical con-
straints imposed by gauge invariance and transversality of
the external gluons to show that many of these structure do
not contribute. In particular, for each gluon, we can impose
ϵi · pi ¼ 0 and ϵi · pj ¼ 0, leaving 2 × 23 ¼ 16 structures.
As expected, the number matches the number of helicity
amplitudes for the process (two for the quark-line times 8
for the three external gluons). Once an explicit gauge
choice is performed (or Ward identities are imposed), the
corresponding 16 projectors can be obtained inverting a

rather simple 16 × 16 matrix, which can be easily done
with any computer algebra system.
It should be straightforward to see how to extend these

considerations in the case of massive spin-1 external
particles. For simplicity, we assume that we are working
in a parity invariant theory as QCD or that, for other
considerations, we expect the amplitude not to have any
explicit dependence on parity-odd tensor structures. For
each massive boson, we are allowed to impose only the
transversality constrain ϵi · pi ¼ 0, leaving one more pos-
sible choice for the momenta to contract the corresponding
polarization vector. So, for example, if we are interested in
the production of two massive vector bosons and a gluon in
qq̄ annihilation qq̄ → VVg, we will be left with an upper
bound of 2 × 2 × 32 ¼ 36 different tensor structures, cor-
responding to the 36 helicity amplitudes.

B. Example 2: qq̄ → QQ̄g and qq̄ → QQ̄V scattering

We conclude by showing what our method produces
when we add an external massless or massive spin-1
particle to the qq̄QQ̄ scattering considered in Sec. V.
We remind the reader that this case was particularly
interesting since one cannot find a finite number of tensor
structures that span the full space if one insists in working
in CDR. We showed instead that, by restricting the problem
to four-dimensional external states, two tensors are enough
to characterize the helicity amplitudes at any number
of loops.
Let us start by studying what happens when we add an

external massless gluon; i.e., we consider the process,

qðp1Þ þ q̄ðp2Þ þQðp3Þ þ Q̄ðp4Þ þ gðp5Þ → 0:

As in the previous section, we start analyzing the fermion
lines. We repeat the same arguments independently for the
two fermion lines, and we find the only possible combi-
nations in four dimensions,

T ∼ ϵ5 · piūðp2Þ=p3;4uðp1Þūðp4Þ=p1;2uðp3Þ: ð6:7Þ

Without imposing gauge invariance and transversality,
these are 2 × 2 × 4 ¼ 16 different tensors, which become
2 × 2 × 2 ¼ 8 once we impose that the external gluon is on-
shell and physical; i.e., ϵ5 · p5 ¼ 0 plus one more condition
to fix its gauge (or impose that the amplitude fulfils
QCD Ward identities). Notice that, again, this matches
the number of helicity amplitudes.
As a last case, we study what happens when the gluon is

substituted by a massive external vector boson,

qðp1Þ þ q̄ðp2Þ þQðp3Þ þ Q̄ðp4Þ þ Vðp5Þ → 0:

Again, we assume that all parity-odd contributions coming
from possible axial couplings of the massive vector bosons
can be neglected. We stress here that, while this assumption
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is made only for exemplification purposes and similar
arguments can be made also in the presence of axial
couplings, it is often the case in massless QCD that axial
contributions can be argued away by summing over
degenerate isospin doublets. All considerations that lead
us to the 16 tensors in Eq. (6.7) apply equally well here.
The difference with the case of a massless gluon is that we
can only impose one condition on the massive vector
boson, namely transversality ϵ5 · p5 ¼ 0. We are, there-
fore, left with 2 × 2 × 3 ¼ 12 structures, which, of
course, match the number of helicity amplitudes for
the problem.
Finally, for both the massless and massive vector boson

case, the explicit projectors can be derived by inverting
very simple 8 × 8 or 12 × 12 matrices, respectively. The
inversion can be obtained with any standard algebra
system. As for the previous cases, we do not present an
explicit choice here since, depending on the process
analyzed, different choices of gauge can be more or less
convenient.

VII. CONCLUSIONS

In this paper, we proposed a new tensor decomposition
for bosonic and femionic scattering amplitudes that allows
us to combine naturally the form factor method usually
defined in conventional dimensional regularization with the
calculation of helicity amplitudes in ’t Hooft-Veltman
scheme. We have argued that, for an arbitrary number of
external legs, one expects a natural correspondence
between the number of independent helicity amplitudes
in the process and the number of tensor structures that
remain independent when four-dimensional external states
are considered. We have called these tensors relevant
tensors, and we have described a procedure that allows
us to effectively decouple them from all remaining
d-dimensional irrelevant tensors. While the latter would
be required to obtain the value of the scattering amplitudes
in CDR, we showed that they can be entirely neglected
when computing the helicity amplitudes. A crucial property
is that the relevant tensorsmust be chosen to span the entire
vector space where the helicity amplitudes are defined.
After describing the general idea, we have applied it to a
large number of explicit examples for both bosonic and
fermionic amplitudes with four and five external legs. The
new projector operators are smooth in the limit d → 4, and
they are substantially simpler than the ones obtained using
the standard approach in CDR. Importantly, the increase of
the number of projectors with the number of legs is much
slower than in CDR, being, in particular, bounded from
above by the number of independent helicity amplitudes in
the problem. Finally, the new projector operators can be
applied on the scattering amplitudes in the very same way
as the usual CDR projectors. We believe that the method

proposed here constitutes an improvement compared to the
commonly used approach and that it could prove useful,
in the future, to compute complicated 2 → 3 scattering
amplitudes, as well as lower-multiplicity amplitudes at
higher loops.
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APPENDIX A: FINDING A PHYSICAL BASIS
OF TENORS FOR gg → gg

In this paper, we have built a basis of physical tensors
for several processes that are complemented by a set of
irrelevant tensor, which can be ignored in the calculation
of the helicity amplitudes. The physical tensors must, in
particular, be a subset of the original tensors, or linear
combinations thereof, that cover the full physical space
spanned by the external polarizations. As explained in
Sec. VI, for the scattering of n ≥ 5 external particles, it is
always straightforward to find such a basis by decom-
posing the tensor structures in terms of four independent
external momenta. For n ¼ 4, instead, this is not always
obvious. Therefore, we show here a more systematic
approach based on the decomposition of momenta in the
parallel and orthogonal space, which has already been
successfully used in other contexts (see, e.g., Ref. [20]).
In particular, we focus on the gg → gg example of Sec. III.
Similar arguments can be applied to other four-point
processes.
Because in four-point processes we have three linearly

independent momenta, due to momentum conservation,
we can split the physical space into a three-dimensional
part spanned by the external momenta and an orthogonal
part. Therefore, we can, in principle, cover the full
physical space by adding a fourth four-dimensional
momentum v⊥, which is orthogonal to the external
momenta pj; e.g.,

vμ⊥ ¼ ϵμνρσp1νp2ρp3σ: ðA1Þ

Hence, we may define physical tensors and projectors
that only depend on scalar products of the form ϵj · pk and
ϵj · v⊥. One can also easily verify that a combination with
an odd number of momenta v⊥ is not allowed in a tensor,
since it would vanish when contracted with the amplitude
(this is also true in the presence of external fermions). A
choice of eight independent physical tensors T̃j consis-
tent with the gauge choices of Sec. III can be the
following:
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T̃1 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · p1ϵ4 · p2;

T̃2 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · v⊥ϵ4 · v⊥;
T̃3 ¼ ϵ1 · p3ϵ3 · p1ϵ2 · v⊥ϵ4 · v⊥;
T̃4 ¼ ϵ1 · p3ϵ4 · p2ϵ2 · v⊥ϵ3 · v⊥;
T̃5 ¼ ϵ2 · p1ϵ3 · p1ϵ1 · v⊥ϵ4 · v⊥;
T̃6 ¼ ϵ2 · p1ϵ4 · p2ϵ1 · v⊥ϵ3 · v⊥;
T̃7 ¼ ϵ3 · p1ϵ4 · p2ϵ1 · v⊥ϵ2 · v⊥;
T̃8 ¼ ϵ1 · v⊥ϵ2 · v⊥ϵ3 · v⊥ϵ4 · v⊥ ðA2Þ

In practice, however, the presence of v⊥ would make the
contractions with the amplitude unnecessarily involved.
It is instead convenient to replace the terms involving
orthogonal momentum v⊥ with terms involving the
metric tensor gμν so that we can replace the tensors T̃j

with linear combinations of the original tensors Tj

defined in Eq. (3.4). We can do this by splitting the d-
dimensional metric tensor gμν into a three-dimensional
part gμν½3�, which is its projection into the subspace spanned
by the external momenta, and an orthogonal (d − 3)-
dimensional part gμν⊥ ,

gμν ¼ gμν½3� þ gμν⊥ : ðA3Þ

We can thus exploit the following identities:

vμ⊥vν⊥ ∼ gμν⊥
vμ1⊥ v

μ2⊥ vμ3⊥ v
μ4⊥ ∼ gμ1μ2⊥ gμ3μ4⊥ þ gμ1μ3⊥ gμ2μ4⊥ þ gμ1μ4⊥ gμ2μ3⊥ ; ðA4Þ

where the symbol ∼ indicates that the l.h.s. and the r.h.s.
become proportional when contracted with tensors
depending on the d-dimensional metric gμν and the
external momenta pμ

j only. We note that the identities
can be easily found (including the proportionality coef-
ficient, which is irrelevant for the purposes of this paper)
using standard tensor decomposition methods, although
they must be valid also for symmetry reasons. The
identities above allow us to replace tensors containing
v⊥, with suitable combinations of gμν⊥ . Moreover, because
gμν and gμν⊥ only differ by terms proportional to the
external momenta, which are already accounted for in
our basis of tensors, we are also allowed to replace gμν⊥
with gμν. Putting everything together, this implies that,
starting from the physical basis of tensors T̃j containing
scalar products of the form ϵj · v, we can make the
replacement,

ϵj · v⊥ϵk · v⊥ → ϵj · ϵk; ðA5Þ

in any tensor containing only two scalar products involv-
ing v⊥ that justifies replacing T̃j → Tj for j ¼ 1;…; 7.

For tensors with four scalar products involving v⊥, we
can similarly use the second Eq. (A4) to replace

T̃8 → T8 þ T9 þ T10; ðA6Þ

which then yields the same physical tensors defined
in Eq. (3.7).
The same method can be applied to any process with

n ≤ 4 external legs. One considers a set of 5 − n orthogonal
vectors vμi;⊥ that span the (5 − n)-dimensional subspace of
the physical four dimensions that is orthogonal to the
external legs. Thus, a basis of tensors is built assuming
that they can be contracted only with external momenta pμ

i
or the vectors vμi;⊥. This is also true for the γ matrices
appearing inside spinor chains for the reasons illustrated in
Appendix B. We note, again, that only combinations with
an even number of orthogonal vectors need to be consid-
ered, since odd combinations would always give zero when
contracted with a physical amplitude. Each combination of
the form,

vμ1i1;⊥ � � � vμkik;⊥; ðA7Þ

can be rewritten in terms of the metric tensor gμν⊥ , which is
the restriction of gμν⊥ in the orthogonal space, and finally, we
can replace gμν⊥ → gμν as explained above.
We also recall, from the discussion in Sec. VI, that these

arguments are not needed with n ≥ 5 external legs, since, in
those cases, we can always use a subset of four independent
external momenta to span the full physical space.

APPENDIX B: SPINOR CHAINS WITH
FOUR-DIMENSIONAL EXTERNAL STATES

When dealing with external fermions, we need to build a
basis of tensors involving spinor chains. In this Appendix,
we show that, as stated, e.g., in Sec. V, when dealing with
four-dimensional external states, we can limit ourselves to
consider spinor chains that are independent when restricted
to four dimensions. This is true despite the fact that the γ
matrices inside the spinor chain are d-dimensional objects,
having a d-dimensional Lorentz index, with d ¼ 4 − 2ϵ.
Because, as we already mentioned, the algebra of the γ

matrices in d dimensions is not closed [7], in principle,
there is no limit to the allowed length of the spinor chains,
and an infinite basis of tensors must therefore be consid-
ered. This is, in particular, relevant when two or more
external fermion pairs are present because we can contract
the Lorentz indices of gamma matrices belonging to two
different spinor chains, which can, therefore, be arbitrarily
long. In practice, at each loop order, one can always limit
the length of the spinor chain to the maximum one that can
appear in the diagrams of the process at that perturbative
order, but this still yields a basis of tensors that is much
larger than needed when dealing with four-dimensional
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external states. A different solution to this problem, which
studies how extra-dimensional spinor indices decouple
from the four-dimensional ones, has also been proposed
in Ref. [21].
Let us consider a spinor chain of length n of the form,

ūðp1Þγμ1γμ2 � � � γμnuðp2Þ; ðB1Þ

although replacing a spinor u with an antispinor v doesn’t
change our conclusions. Here, we consider the spinors
in Eq. (B1) to be four-dimensional, but the γ matrices
to be instead d-dimensional objects, with a d-dimensional
Lorentz index, satisfying the usual anticommutation
relations,

fγμ; γνg ¼ 2gμν1; ðB2Þ

where gμν is the d-dimensional metric tensor. In particular,
the Lorentz indices in Eq. (B1) can be assumed to be
contracted with either external momenta and polarization
vectors or with Lorentz indices belonging to other spinor
chains. We can thus split, for each γ matrix, contributions
from four-dimensional and (d − 4)-dimensional indices
with

γμ ¼ γμ½4� þ γμ½−2ϵ�; ðB3Þ

where γμ½4� (γ
μ
½−2ϵ�) is an object that is equal to γ

μ if μ is a four-

dimensional (−2ϵ-dimensional) index and zero otherwise.
We obviously have

fγμ½4�; γν½−2ϵ�g ¼ 0; ðB4Þ

which allows us to anticommute all the γμ½−2ϵ� matrices to

one side of the spinor chain. This way, up to a relabeling of
the indices, the chain in Eq. (B1) becomes a linear
combination of contributions of the form,

ūðp1Þγμ1½−2ϵ� � � � γ
μn1
½−2ϵ�γ

ν1
½4� � � � γ

νn2
½4� uðp2Þ: ðB5Þ

with n1 þ n2 ¼ n. We can now perform a tensor decom-
position of Eq. (B5) with respect to its free (Lorentz)
indices. In particular, we can do so in terms of a basis of
four-dimensional vectors feμjg4j¼1 and the ð−2ϵÞ-metric
tensor gμν½−2ϵ�. Because the four-dimensional and ð−2ϵÞ-
dimensional parts are now completely decoupled from each
other, we can also limit ourselves to perform a tensor
decomposition of the γμ½−2ϵ� parts alone, in terms of gμν½−2ϵ�
only. By doing that, we obtain

ūðp1Þγμ1½−2ϵ� � � � γ
μn1
½−2ϵ�γ

ν1
½4� � � � γ

νn2
½4� uðp2Þ

¼ cμ1���μn1 ūðp1Þγν1½4� � � � γ
νn2
½4� uðp2Þ; ðB6Þ

where cμ1���μn1 only depends on gμν½−2ϵ� and ϵ. The coefficients
cμ1���μn1 obviously vanish when contracted with four-
dimensional vectors, but they can give a nonvanishing
d-dependent contribution when contracted with metric
tensors, coming, e.g., from similar coefficients in other
spinor chains.
We have thus shown that any d-dimensional spinor chain

of length n, when the external states are four-dimensional,
can be rewritten in terms of purely four-dimensional spinor
chains (where also the γ matrices are in four dimensions)
with length n1 ≤ n. It is therefore easy to show (e.g., by
induction in the length n) that spinor chains in d dimen-
sions, when contracted with four-dimensional external
spinors, are linearly independent if and only if they are
independent in four dimensions. When building a physical
basis of tensors, we are therefore allowed to consider only
spinor chains that are linearly independent when restricted
to d ¼ 4.
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