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Abstract. In order to control cable-driven parallel robots (CDPRs), it is neces-
sary to keep all cable tensions within (positive) known limits during motion.
For CDPRs having more cables than end-effector degrees of freedom, a fea-
sible force distribution within cables should be computed beforehand. This
paper aims at evaluating how a tension error in one cable affects the overall
distribution of tensions in the other cables, by focusing on planar overcon-
strained CDPRs with four cables. The cable whose tension error more limit-
edly impact the force distribution is analytically determined by computing the
right nullspace of the manipulator structure matrix. It is then shown how the
cable least influencing the force distribution changes throughout the wrench-
feasible workspace. Lastly, the results of the proposed analysis are used to per-
form a motion-control experiment on a prototype, where, for any configura-
tion of the end-effector, the cable least influencing the force distribution is
tension-controlled, while the remaining ones are length-controlled.

Keywords: Overconstrained cable-driven parallel robots, Force distribution,
Workspace computation.

1 Introduction

A parallel robot, whose rigid links are replaced by flexible cables, is known as a Cable
Driven Parallel Robot (CDPR). Cables are coiled and uncoiled by motorized winches,
usually placed on a fixed base, and drive the end-effector (EE) throughout its work-
space (WS). The use of light cables, instead of rigid links, brings numerous advan-
tages in term of WS dimension, dynamic performances, payload capability and robot
cost. These features make CDPRs suitable for a variety of applications in the field
of logistics [1], construction [2, 3] and pick and place [4], just to name a few. CD-
PRs control is complicated by the fact that cables can only exert tensile forces, thus,
they cannot generate wrenches in every direction [5]. To overcome this issue, usu-
ally they include more actuated cables than those that are strictly needed to control
the platform pose, with cables pulling one against the other. Overconstrained CD-
PRs (OCDPRs) require special control techniques, usually based on the closed-loop
control of cable tensions between a minimum and a maximum value. Cable-force
values can be computed by solving the static equations for a given pose of the EE,
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and employed for the determination of torque set-points for the actuators. However,
under the assumption of inextensible cables, the static-equilibrium problem for an
overconstrained system is underdetermined, thus admitting an infinite number of
solutions for every EE pose. This makes the determination of cable forces non-trivial.
This problem is known in the literature as Force or Tension Distribution (FD) com-
putation. FD computation can be formulated as an optimization problem [6], or, if
real-time capability is an application requirement [7], methods with less computa-
tion complexity, such as geometrical approaches, can be used [8, 9].

The aim of this work is to evaluate how FD varies with respect to an error in the
force of one cable, and to determine which cable-tension error influences the least
the FD. In other words, the FD sensitivity to one cable tension error is evaluated
and the cable whose tension error results in the minimum FD sensitivity is identi-
fied. Then, the wrench-feasible workspace of a planar OCDPR with two different ca-
ble arrangements is computed, according to a well-known kernel-based approach,
and it is shown that the cable least influencing the FD varies in the WS. The iden-
tification of this cable is then used for the preliminary test of a hybrid-input con-
trol strategy of a 4-cable 3-DoF CDPR. This strategy, introduced in [10] and [11], re-
quires that three cables, equal to the number of platform DoFs, are length-controlled,
whereas the redundant cable is force-controlled. This simple feedforward control
scheme provides a good EE motion accuracy, while it succeeds in maintaining all ca-
bles taut throughout the WS, without requiring more involved cascade closed-loop
controllers [12]. References [10] and [11] suggest no procedure for the selection of
the force-controlled cable, while, in this paper, it is determined by way of the results
of sensitivity analysis. The aim is to ensure that the FD error is kept as low as possible,
while preserving the WS dimensions.

The paper is organised as follows. Section 2 describes the kinematic model of an
overconstrained planar CDPR with 4 cables. Section 3 provides the FD formulation
and the derivation of its sensitivity to an error in one cable tension. The WS com-
putation is shown in Section 4, as an application example. In Section 5, preliminary
experimental results for the control of a prototype are reported. Finally, results of
simulations and experiments are discussed.

2 Kinematic model

An overconstrained planar CDPR consists of a moving platform driven by n actuated
cables, with n greater than the EE DoFs, i.e. 3. The degree of redundancy can be de-
fined as µ = n − 3. In this paper, n = 4 and µ = 1. Moreover, cables are considered
massless and inextensible, and modeled as the line segments between the anchor
points on the platform and the ones on the fixed base (Ai and Bi respectively, for
i = 1, ...,n, as in Fig. 1). An inertial frame Ox y and a mobile frame P x ′y ′ , attached to
the platform center of mass P , are introduced. Points P , Ai and Bi are described by
vectors p, ai and bi with respect to the inertial frame, whereas they are identified by
p′, a′

i and b′
i in the mobile frame. The orientation of the platform is described by the
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Fig. 1: Geometry of the i -th constraint of a planar CDPR.

rotation matrix R(θ). The i -th cable vector is:

ρi = ai −bi = p+R(θ)a′
i −bi , R(θ),

[
cos(θ) −si n(θ)
si n(θ) cos(θ)

]
(1)

If the pose [pT ,θ]T of the platform is assigned, the i -th cable length li can be
determined from the constraint imposed by the i -th cable:

ρT
i ρi − l 2

i = 0 (2)

The unit vector of the i -th cable, pointing from the base towards the platform, is:

ti =
ρi

li
(3)

3 Force-distribution sensitivity

The static equilibrium of the platform can be formulated as:

JT τ−W = 0 (4)

where JT ∈R3×4, referred to as structure matrix, is the transpose of the Jacobian ma-
trix of the inverse kinematics [13], whose i -th row is:

Ji =
[
ti

T −tT
i ERa′

i

]
, E,

[
0 −1
1 0

]
(5)

τ ∈R4 is the array of cable tensions, and W = mg
[
0 1 0

]T ∈R3 is the external wrench
if only gravity is acting on the system (m is the EE mass and g =−9.81 m/s2).

For an OCDPR, if cable elasticity is not taken into account, the inverse static prob-
lem is underdetermined, due to actuation redundancy [14], thus it admits infinite
solutions in the cable tensions. This problem is known in the literature as Force or
Tension Distribution (FD) computation. The FD problem can be solved by differ-
ent approaches, carefully analysed and compared in [15], depending on application
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requirements. In general, for cables to remain taut, while the EE moves along a pre-
scribed trajectory, an acceptable FD must be determined for each pose.

To derive the cable-tension sensitivity index, suitable partitions of the structure
matrix and the tension array are introduced into the static equation (4). These par-
titions are based on the assumption that one cable, whose tension is called τc , can
be force-controlled, whereas the tensions of the remaining cables, τd , depend on τc

and the external wrench W. If we assume, for the time being, that the 4th cable is
force-controlled, the array τ of cable tensions is:

τ,
[
τd

τc

]
=

[
τ0 +∆τ

τc

]
(6)

and the structure matrix can be partitioned as:

JT = [
Jd Jc

]
(7)

where Jd ∈R3×3 and Jc ∈R3. Introducing definitions (6) and (7) in Eq. (4) yields:

W = JT τ= [
Jd Jc

][
τ0 +∆τ

τc

]
= Jd (τ0 +∆τ)+τc Jc (8)

If Jd is invertible (which is true if the EE is not in a geometrically singular configura-
tion), τ0 is defined as the solution of Eq. (8) when τc = 0 and ∆τ= 0:

τ0 , J−1
d W (9)

The expression of ∆τ is deduced from Eq. (8), by considering Eq. (9):

∆τ=−τc J−1
d Jc (10)

Following the geometrical approach proposed in [7], the force distributionτ in Eq. (6)
can be divided into two terms: τl s , obtained from the solution of the linear sys-
tem (9), and τker , which provides a variation of the overall distribution that still sat-
isfies the EE equilibrium (4):

τ=τl s +τker (11)

With the definition given in Eq. (6), the first contribution is expressed as:

τl s =
[
τ0

0

]
=

[
J−1

d W
0

]
(12)

while the contribution τker can be written as:

τker =
[
∆τ

τc

]
= τc

[−J−1
d Jc

1

]
= τc J⊥, J⊥ ,

[−J−1
d Jc

1

]
(13)

J⊥ ∈R4 is the right nullspace of the (3×4) matrix JT , namely the 4-dimensional vector
such that JT J⊥ = 03×1. Indeed:

JT J⊥ = [
Jd Jc

][−J−1
d Jc

1

]
=−Jc + Jc = 0 (14)
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The introduction of Eqs. (12) and (13) in Eq. (11) yields:

τ=
[

J−1
d W

0

]
+τc

[−J−1
d Jc

1

]
=

[
J−1

d (W−τc Jc )
τc

]
(15)

So, a FD can be determined by choosing a value of τc ∈ R and substituting it back
in the first three elements at the right-hand side of Eq. (15), in order to compute the
remaining three tensions:

τd =τ0 +∆τ= J−1
d (W−τc Jc ) (16)

It can be noticed from Eq. (13) that the right nullspace J⊥ of the structure matrix JT

represents the force-distribution sensitivity σ. Namely, σ shows how the overall cable
tensions vary due to a unit change in the tension of the force-controlled cable:

σ= τker |τc=1 =


σ1

σ2

σ3

σ4

, τc J⊥
∣∣
τc=1 = J⊥ =

[−J−1
d Jc

1

]
(17)

A value |σi | > 1 (resp. |σi | < 1) in Eq. (17) means that the tension in cable i varies
more (resp. less) than the tension in the 4th cable. Thus, if the cable with the largest
|σi | is (locally) chosen to be force controlled, all other cables are guaranteed to have
smaller tension errors than the error committed in the control of that cable. The
largest component (in magnitude) of σ is denoted σi? and the corresponding ca-
ble, i?. As a matter of fact, the preliminary choice of τc as the tension of the 4th cable
is irrelevant: the choice of another cable would change the numerical value of σ but,
thanks to the linear nature of the problem, the cable with the highest sensitivity to
tension variations would remain the same.

As a result, it is possible to compute σ in advance, along with the WS, so that,
for every EE pose, the cable with highest sensitivity can be selected to be force-
controlled.

4 Workspace characterization

As an example of application of the FD sensitivity, the constant-orientation wrench-
feasible WS of a planar OCDPRs with two different cable arrangements is presented
in this section, and the highest-sensitivity cable i? is determined in each WS con-
figuration. A kernel-based approach is used for the WS calculation [13], where the
nullspace (or kernel) J⊥ is computed as in Eq. (17).

The wrench-feasible WS is defined as the set of poses [pT ,θ]T for which:

∃τ : Tmi n ≤τ≤ Tmax , JT τ−W = 0 (18)

where all elements of the arrays Tmi n and Tmax ∈ R4 are equal to the tension limits
τmi n and τmax , respectively. Considering the partition (6), Eq. (18) can be written as:

τmi n ≤ τc ≤ τmax (19)
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(a) Standard layout (b) Crossed layout

Fig. 2: Cable arrangements of the planar 4-cable OCDPR.

τmi n ≤τd ≤τmax , τmi n ,τmax ∈R3 (20)

Due to Eq. (16), Eq. (20) yields:

τmi n ≤ J−1
d (W−τc Jc ) ≤τmax (21)

−τmax + J−1
d W ≤ τc J−1

d Jc ≤−τmi n + J−1
d W (22)

a ≤ τc c ≤ b, a,−τmax + J−1
d W, b,−τmi n + J−1

d W, c, J−1
d Jc (23)a1

a2

a3

≤ τc

c1

c2

c3

≤
b1

b2

b3

 (24)

Thus, if the intersection between the four inequalities in Eq. (19) and (24) is nonempty,
there is at least one value of τc for which a feasible FD exists, for a given EE pose.

By using the above method, the wrench-feasible constant-orientation WS of a
planar 3-DoF 4-cable CDPR model may be computed and characterized by the vari-
ation of i? throughout it. In case of planar CDPRs, the constant-orientation WS can
be easily visualized in 2D, and represented with a regular discrete grid of N × M
points. In the following example, N = M = 100. Moreover, m = 2.5 kg, τmi n = 10 N,
and τmax = 80 N.

The CDPR at hand (Fig. 2) has rectangular base (0.875 m×0.700 m) and mobile
platform (0.080 m×0.100 m). The inertial frame Ox y is located in center of the base
and the moving frame P x ′y ′ at the center of the EE, coinciding with its center of
mass. Two different cable arrangements are considered on the same model: a stan-
dard layout (Fig. 2a), where each cable goes from one vertex of the rectangular base
to the corresponding vertex of the EE, and a crossed layout (Fig. 2b), where cables
cross under and above the platform.

The wrench-feasible WS with constant orientation θ = 0◦ is shown in Fig. 3 for the
standard (Fig. 3a) and the crossed layout (Fig. 3b). Four distinct constant-i? areas
emerge from the FD sensitivity analysis: the change in i? occurs exactly when the
EE position crosses one coordinated axis of the inertial frame Ox y . For the standard
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(a) Standard layout (b) Crossed layout

Fig. 3: Highest-sensitivity cable (i?) on the wrench-feasible WS of the planar 4-cable
OCDPR with constant orientation θ = 0◦.

layout, only the case with θ = 0◦ is analysed, since this cable configuration has a very
limited orientation capability, as reported in [16]. For the crossed layout, four other
different cases are investigated. The WS for constant orientations θ =±10◦ is shown
in Figs. 4a and 4b. It can be noticed that, one sensitivity area, respectively for i? = 3
when θ = 10◦ (Fig. 4a), and i? = 2 when θ = −10◦ (Fig. 4b), is significantly larger,
compared to the case θ = 0◦ in Fig. 3b. Also, the dimensions of this area increase for
larger values of θ, as shown in Figs. 4c and 4d.

Due to space limitations, the detailed analysis of FD sensitivity valuesσi through-
out the WS is not reported. However, simulation results show that, for all configura-
tions near transition borders, the values of σi in contiguous areas are very similar.
On the other hand, at the edges of the WS, far from transitions, those values signifi-
cantly differ. For example, in the bottom left corner of the crossed-layout WS in Fig.
3b, |σ3| is ten times greater than |σ4|. As a consequence, for close-to-transition con-
figurations, it may not be worth changing the force-controlled cable, but it may be
beneficial near WS edges.

Two facts are noteworthy: (i) the sensitivity areas for negative angles are sym-
metrical with respect to those for positive angles, and (ii) when θ 6= 0◦ the bound-
aries of the regions where i? is constant are not straight lines. These observations
are relevant if a hybrid-input control strategy is implemented on the manipulator,
as proposed in [10,11]. According to this strategy, three cables are length-controlled,
while the remaining one is force-controlled. As introduced in Sec. 3, cable i? can
be chosen to be force-controlled, since its tension-control error causes the small-
est tension errors in the other cables in a given configuration. On the other hand,
while the EE performs a prescribed trajectory inside the WS, the force-controlled ca-
ble should change when crossing from one sensitivity area to another. Changing the
control input type (length or force) could cause a discontinuity of the control action,
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(a) Crossed layout with θ = 10◦ (b) Crossed layout with θ =−10◦

(c) Crossed layout with θ = 20◦ (d) Crossed layout with θ =−20◦

Fig. 4: Highest-sensitivity cable (i?) on the wrench-feasible WS of the planar 4-cable
OCDPR with variable constant orientation θ = 10◦, −10◦, 20◦ and −20◦.

since the error tracked by the controller changes. Thus, it can be beneficial to reduce
the number of constant-i? boundary transitions during motion. To do so, an area
with constant i? can be enlarged, in order to perform an entire trajectory without
crossing such boundaries. For this purpose:

1. for a given robot design, the platform orientation can be varied, unless θ = const
is prescribed by the application;

2. the positions of cable anchor points on the EE can be optimized in order to max-
imize one sensitivity area so that it includes the entire WS needed by the appli-
cation at hand.
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platform

cable 

load 

pulley system

servo 

servo 
winch

drive

cell

loop

Fig. 5: Planar 3-DoF 4-cable OCDPR prototype developed at IRMA L@B.

5 Experiments on hybrid-input control

In this section, a hybrid-input control strategy is preliminarily investigated, and ap-
plied to a planar 3-DoF 4-cable OCDPR prototype developed at IRMA L@B (Fig. 5):
this prototype has to perform quasi-static non-contact tasks, such as laser engrav-
ing or laser cutting. The prototype presents a crossed cable layout, as in Fig. 2b, and
its geometrical parameters are those given in Sec. 4. Four self-manufactured servo
winches are fixed to the corners of an aluminium-profile base and each one of them
drives a cable coiled in a loop onto the pulley system. The high-level robot controller
runs on a Real-Time Linux PC at 1 kHz rate. When a trajectory in the Cartesian space
is assigned, the controller computes the feedforward hybrid inputs for the robot ac-
tuators. The servo-winch control schemes are also developed in house and run on a
ST Nucleo-H743ZI development board at 10 kHz. In addition to controlling the mo-
tor angle, this allows us to directly feed a cable-tension command to the drive, to
compare said command with the signal of a load-cell embedded in the cable trans-
mission, and regulate the tension by a PID controller at drive level.

The hybrid-input control strategy requires that three cables, equal to the number
of platform DoFs, are length-controlled while the redundant cable is force-controlled.
The rationale behind this choice is that three length-controlled cables are sufficient
for precisely controlling the pose of the planar EE, whereas the 4th cable is needed to
keep the remaining cables under tension. Cable i? is chosen to be force-controlled,
since errors in its tension estimation (or low-level feedback control) limitedly impact
the overall FD.

Two experiments are conducted, while the EE follows the same circular trajectory
with a constant linear speed of 1 cm/s, with θ = 0◦, that is:

p(t ) =
[

x
y

]
=

[
P0x + r cos

( 2πt
T

)
P0y + r sin

( 2πt
T

)] ,
P0x =−0.06 m, P0y =−0.06 m

r = 0.05m, T = 31.4s
(25)
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(a) First experiment (b) Second experiment

Fig. 6: Real (blue) and computed (black) FD during experiments.

The value of the constant speed is selected so that a piece of paper may be cut
with a 2.5 W laser-diode mounted onto the EE. The whole trajectory lies in the area
where i? = 3 in Fig.3b. The FD over the whole trajectory is calculated, by choosing
τc = 25 N as a constant value and considering gravity as the only external wrench.
In the first experiment, the 3rd cable, whose tension errors influence the FD as little
as possible, is force controlled, so that τ3 = τc . In the second experiment, the 4th
cable, whose tension errors more influence the FD, is force controlled. The tension
set-points of the tension-controlled cable are chosen so that the same theoretical FD
is generated in both experiments.

Experimental results on the actual FD attained during the trajectory execution
are shown in Fig. 6. It can be noticed that the low-level force controller is effec-
tive in maintaining the controlled cable tension very close to the assigned value,
but the other cable tensions are quite distant from their theoretical value, which
is compatible with the oversimplified model that was adopted and the cheap robot
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100.59 mm

(a) First experiment

98.56 mm

(b) Second experiment (c) Superimposed figures

Fig. 7: Results of the laser-cutting operation.

components (most of them are plastic made). However, when the 3rd cable is force-
controlled during the first experiment, the other tensions, as measured by the load
cells, never fall below the lower cable tension limit τmi n = 10 N. Conversely, during
the second experiment, when the 4th cable is force-controlled, there is a prolonged
period for which the second and third cables are practically slack (see the red-circled
areas in Fig. 6b). In practice, by force-controlling the highest-sensitivity cable (i?),
the FD errors with respect to the theoretical ones are minimized.

The paper-cutting operation confirms that the first experiment produced good
results also in practice, while the results of the second experiments are poorer (see
Fig. 7). Figure 7a shows a well-cut circle executed with millimetric accuracy, whereas
the second experiment produced a more elliptic shape (without managing to com-
plete the cut), as shown in Fig. 7b. The hybrid-input control strategy, where cable i?

is force-controlled, produced good preliminary results, despite the hardware limita-
tions.

6 Conclusions

In this paper, the FD sensitivity to tension errors in one cable was investigated, and
the cable whose tension error plays the least influence was analytically derived. The
wrench-feasible WS of a 3-DoF planar OCDPR with 4-cables was calculated with two
different cable arrangements, and the areas where different cables have the highest
sensitivity were displayed. A hybrid-input control strategy was preliminarily inves-
tigated on a prototype, with one cable being force-controlled and the others being
length-controlled. The force control of the highest-sensitivity cable showed promis-
ing results. This strategy is a simpler alternative to well known cascade position/force
control strategies, and provides a good motion accuracy while maintaining all cables
taut. In the future, we will expand the concept of FD sensitivity to OCDPRs with de-
gree of redundancy greater than one, and we will characterize the stability of the
hybrid-input controller in case the force controlled cable is changed during a trajec-
tory.
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