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A New Performance Index for Underactuated
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Abstract. Cable-driven parallel robots (CDPRs) equipped with less cables than
the end-effector (EE) degrees of freedom (DoFs) are underactued and under-
constrained by design. These characteristics imply that only a subset of the
EE DoFs can be assigned for planning purposes, and that the EE can freely
move when actuators are locked. The performance of this class of manipula-
tors has yet to be fully analyzed, since common performance indices for fully
or redundantly actuated robots may not directly apply. In this paper, a novel
index is proposed, which is tailored for suspended underactuated CDPRs. This
index analyses cable-tension sensitivity to cable-length variation, and aims at
determining if a static equilibrium configuration is attainable under bounded
cable-length control errors. When 4- or 5-cable UACDPRs have to perform po-
sitioning tasks, the optimization of such an index may be used to determine
the safest EE orientation with respect to actuation errors.

Keywords: Underactuated cable-driven parallel robots, Underconstrained cable-
driven parallel robot, performance index, trajectory optimization.

1 Introduction

Underactuated Cable-driven parallel robots (underactuated CDPRs, or UACDPRs in
short) control the end-effector (EE) pose by means of n extendable cables, whose
number is smaller than the EE degrees of freedom (DoFs). UACDPRs are intrinsi-
cally underconstrained [1], since their EE is subject to less constaint actions than the
number of its DoFs. As a consequence, only a subset of the EE coordinates can be di-
rectly controlled, and the EE preserves some freedoms once the actuators are locked.
Given the reduced mechanical complexity and increased workspace accessibility of
UACDPRs, a growing number of studies are being conducted on these systems in the
field of trajectory planning [2–5], geometrico-static modeling [6], control [7], cali-
bration [8], and workspace analysis [9]. On the other hand, UACDPRs performance
evaluation is still an open problem.

Robot performance indices have been vastly investigated [10], and a few spe-
cific studies exist on their application to suspended, completely actuated CDPRs: the
global conditioning index was used in [11] to evaluate the kinematic dexterity perfor-
mance of a generic 6-cable CDPR; rotation and displacement sensitivity to actuator
displacement errors were investigated in [12] for translational CDPRs and in [13] for

http://www.irmalab.org/


2 E. Idà et al.

rotational CDPRs. As far as redundantly constrained CDPRs are concerned, the ra-
tio between maximum and minimum cable tensions was introduced in [14] (called
tension factor in [15]); the maximum acceptable horizontal distance between the plat-
form reference point and the center of mass of the set composed of the platform and
a payload was introduced in [16] to determine whether a handling task was feasi-
ble; and the maximum wrench that can be applied in a given direction, the wrench
exertion capability, was explored in [17].

In this paper, a novel index for the evaluation of the geometrico-static perfor-
mance of UACDPRs is introduced. This index, called maximum tension variation un-
der a cable displacement error, aims at analysing the influence of actuator errors on
UACDPRs static cable tensions. This analysis allows one to determine whether an
equilibrium configuration may be safely attained under bounded cable-length con-
trol errors, with cables remaining likely taut. In addition, if 4- or 5-cable UACDPRs
have to perform positioning tasks and the additional cables are used only to widen
their static reachable workspace, the optimization of such an index could be used to
determine the safest EE orientation with respect to actuation errors.

This paper is structured as follows. Section 2 recalls the geometrico-static model
of UACDPRs with massless straight cables. Section 3 introduces the maximum ten-
sion variation under a cable displacement error index, based on the differential anal-
ysis of the geometrico-static model. An application is proposed in Sec. 4, where the
orientation of a 4-cable UACDPR for a given reference position is determined as the
one that minimizes the new index. In the end, conclusions and future works are dis-
cussed in Sec. 5.

2 Geometrico-Static Model

A UACDPR consists of a mobile platform coupled to the base by n < 6 cables, which
can be coiled and uncoiled by motorized winches. In the following, Ox y z is an iner-
tial frame, whereas Gx ′y ′z ′ is a mobile frame attached to the moving platform center
of mass. The EE pose is described by the position vector p of G , and the rotation ma-
trix R (Fig. 1). In this paper, R is parametrized by a minimal set of angles ε= [φ,θ,χ]T .

The platform generalized coordinates are thus ζ= [
pT εT

]T
.

2.1 Geometric model

For the sake of simplicity, we assume that the i-th cable is massless and rigid, and
is guided into the workspace through an eyelet at point Bi , described in the inertial
frame by vector bi , and attached to the platform in point Ai , described in the moving
frame by (the constant) P a′

i , and in the inertial frame by ai = p+a′
i = p+RP a′

i , where

a′
i = RP a′

i . The cable vector connecting points Ai and Bi is ρ = ai −bi and, if li is
the length of the i-th cable and (·) indicates the scalar product between vectors, the
geometric constraint imposed by the cable on the platform is:

ρ ·ρ− l 2
i = 0 (1)
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Fig. 1: Geometrico-static model of the UACDPR

2.2 Kinematic model

Ifω is the EE angular velocity, v = [ṗTωT ]T the EE twist, ti =ρi /li the cable direction,
and (×) indicates the vector product between vectors, differentiating Eq. (1) with re-
spect to time yields:

ξi ·v− l̇i = 0, ξi =
[

ti

a′
i × ti

]
, i = 1, . . . ,n (2)

The n relations in Eq. (2) can be grouped as::

Ξv− l̇ = 0n×1, l̇ = [
l̇1 · · · l̇i · · · l̇n

]T
, Ξ= [

ξ1 · · · ξi · · · ξn
]T ∈Rn×6 (3)

The EE twist v is related to the pose time derivative ζ̇ through a matrix D, whose for-
mulation depends on the specific orientation parametrization employed and whose
elements depend on the EE pose [4]:

v = D(ζ)ζ̇= Dζ̇ (4)

If Eq. (4) is substituted in Eq. (3), one gets:

ΞDζ̇− l̇ = Jζ̇− l̇ = 0n×1, J =ΞD ∈Rn×6 (5)

Matrices Ξ and J are the kinematic and analytical Jacobian matrices of the system
and, since the robot is underactuated, they are rectangular; in case the manipula-
tor is not in a singular configuration (whether a geometric or a representation one),
rank(Ξ) = rank(J) = n < 6, which is strictly less than the number of EE DoFs. Thus,
only n coordinates of the EE pose can be controlled by varying the UACDPR cable
lengths, while the remainingλ= 6−n are to be determined according to the mechan-
ical equilibrium of the platform. In addition, even if the actuators are locked and ca-
ble lengths are kept constant, λ freedoms remains. The n controlled coordinates are
denoted as ζc ∈ Rn , whereas the non-controllable coordinates will be referred to as
free coordinates and denoted as ζ f ∈Rλ. For simplicity sake, we will assume that the

controlled coordinates are the first in the array ζ, that is, ζ= [ζT
c ζ

T
f ]T .
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This coordinate partition is particularly useful in trajectory planning of UACD-
PRs, but it attains additional kinematic meaning. In fact, the EE twist v can be de-
composed into two contributions, namely a free twist1 v f and a controlled twist vc ,
so that:

v = v f +vc (6)

The free twist is defined as the EE twist when the platform is in free motion, and it
can be derived as the solution of Eq. (3) when l̇ = 0n×1, namely:

Ξv f = 0n×1 (7)

The solution to Eq. (7) is readily obtained by considering the right nullspace Ξ⊥ of
matrix Ξ. By definition, the right nullspace of a (n ×6) matrix is a (6×λ) matrix such
thatΞΞ⊥ = 0n×λ, thus its columns define a basis for the free twist v f :

v f =Ξ⊥c for some c ∈Rλ (8)

If J⊥ is the right nullspace of matrix J, we also have:

Ξv f =Ξ Dζ̇︸︷︷︸
v f

= ΞD︸︷︷︸
J

ζ̇= 0n×1 =⇒ ζ̇= J⊥c′ for some c′ ∈Rλ (9)

so that:
v f = Dζ̇= DJ⊥c′ (10)

By comparing Eqs. (8) and (10) and by choosing c = c′, we have:

Ξ⊥ = DJ⊥ (11)

The coefficients c coincide with the free coordinates derivative ζ̇ f , if Ξ⊥ (and thus

J⊥, cf. Eq.(11)) is computed according to the following procedure. First, we partition
the analytical Jacobian matrix J as:

J =ΞD =Ξ[
Dc D f

]= [
ΞDc ΞD f

]= [
Jc J f

]
(12)

where Dc ∈R6×n , D f ∈R6×λ, Jc =ΞDc ∈Rn×n , and J f =ΞD f ∈Rn×λ. Matrix J⊥ can be
symbolically computed under the assumption that rank(Jc ) = n and, thus, invertible.
By assuming so2, matrix J⊥ can be derived from Eq. (5) by setting l̇ = 0n×1:

Jζ̇= Jc ζ̇c + J f ζ̇ f = 0n×1 =⇒ ζ̇c =−J−1
c J f ζ̇ f (13)

and finally:

ζ̇=
[
ζ̇c

ζ̇ f

]
=

[−J−1
c J f

Iλ×λ

]
ζ̇ f = J⊥ζ̇ f , J⊥ =

[−J−1
c J f

Iλ×λ

]
(14)

v f = Dζ̇= DJ⊥ζ̇ f =Ξ⊥ζ̇ f , Ξ⊥ = DJ⊥ (15)

1 The free twist is derived in [18] and reported here in order to make the paper self contained.
2 By suitably choosing controlled and free coordinates, it can be proven that this is always

true for UACDPR [18], but the demonstration is omitted due to space limitation.
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where c = ζ̇ f . It should be noted that the expression of ζ̇ provided in Eq. (14) is valid

only when l̇ = 0n×1.
The controlled twist is defined as the EE twist due to cable actuation only, that is,

the twist resulting from a zero free-coordinate derivative, ζ̇ f = 0λ×1. The expression

of vc is determined by considering Eq. (4) and setting ζ̇ f = 0λ×1:

vc = Dζ̇= [
Dc D f

][
ζ̇c

0λ×1

]
=

[
Dc ζ̇c
0λ×1

]
(16)

In addition, by recalling position (12):

l̇ = Jζ̇= [
Jc J f

][
ζ̇c

0λ×1

]
=⇒ ζ̇c = J−1

c l̇ (17)

and thus:

vc =
[

Dc ζ̇c
0λ×1

]
=

[
Dc J−1

c l̇
0λ×1

]
=

[
Dc J−1

c
0λ×n

]
l̇ =Ξ∥ l̇, Ξ∥ =

[
Dc J−1

c
0λ×n

]
∈R6×n (18)

while an expression of ζ̇which is valid only when ζ̇ f = 0λ×1 is deduced from Eq. (17):

ζ̇=
[

J−1
c

0λ×n

]
l̇ = J∥ l̇, J∥ =

[
J−1

c
0λ×n

]
, Ξ∥ = DJ∥ (19)

The newly defined matrix Ξ∥ has the property to be a right inverse for the kinematic
JacobianΞ, namelyΞΞ∥ = In×n , when ζ̇ f = 0λ×1. This can be verified by substituting
Eq. (18) in (3):

Ξvc − l̇ =ΞΞ∥ l̇− l̇ = 0n×1 =⇒ ΞΞ∥ = In×n (20)

Finally, one has:
v = v f +vc =Ξ⊥ζ̇ f +Ξ∥ l̇ (21)

It can be verified that the expression of v in Eq. (21) verifies the EE first-order kine-
matics expressed in Eq. (3):

Ξv− l̇ =Ξ
(
Ξ⊥ζ̇ f +Ξ∥ l̇

)
− l̇ =ΞΞ⊥︸ ︷︷ ︸

0n×λ

ζ̇ f +ΞΞ∥︸︷︷︸
In×n

l̇− l̇ = 0n×1 (22)

At last, the complete expression of the pose derivative can be written as:

ζ̇= J⊥ζ̇ f + J∥ l̇ (23)

2.3 Static Modelling

The static model of the EE is determined by considering that cable tensions counter-
act the external actions applied onto the EE. If we consider gravity as the only load
applied to the EE center of mass G , the static equilibrium yields (see Fig. 1):

ΞTτ= f, f =
[
φ

03×1

]
(24)
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whereφ= mg, m is the EE mass, g is the gravitational acceleration, andτ= [τ1, · · · ,τn]T

is the array containing the cable tensions.
The static constraint that the EE coordinates must statify at equilibrium (regard-

less of the sign of cable tensions), is obtained by pre-multiplying Eq. (24) byΞ⊥T
:

Ξ⊥T
ΞTτ= 0λ×1 =Ξ⊥T

f (25)

whereΞ⊥T
ΞT = 0λ×n by definition of nullspace. Cable tensions can be computed by

pre-multiplying Eq. (24) byΞ∥T
, instead:

Ξ∥T
ΞTτ=τ=Ξ∥T

f (26)

The geometrico-static model is established by considering Eq. (1) for i = 1, . . . ,n
and Eq. (25): 

ρ ·ρ− l 2
1 = 0

...

ρ ·ρ− l 2
n = 0

Ξ⊥T
f = 0λ×1

(27)

The non-linear system (27) has 6 equations in 6+n unknowns, namely the 6 EE co-
ordinates ζ and the n cable lengths l. By assigning l, the forward geometrico-static
problem is established; if instead ζc is assigned, the inverse geometrico-static prob-
lem is determined. Both problems are well-posed, since the system (27) has 6 equa-
tions in 6 unknowns, and they may admit multiple real solutions: a solution is ac-
ceptable if cable tensions, obtained from Eq. (26), are strictly positive, and the equi-
librium is stable [1].

3 Maximum Tension Variation under a Cable Displacement Error

In this section, the maximum tension variation under a cable displacement error, de-
noted by στ%,∞, is formulated by considering how cable length variations, or errors,
influence cable tensions around equilibrium.

The equilibrium of a UACDPR may vary for two reasons, namely a change of cable
lengths or external wrench. In this paper, we only consider the former. By differenti-
ating Eq. (26), we evaluate how tensions vary due to pose variations:

dτ= d
(
Ξ∥T

f
)
=
∂
(
Ξ∥T

f
)

∂ζ
dζ (28)

If we considerΞTτ= f, the partial derivative in Eq. (28) is:

∂
(
Ξ∥T

f
)

∂ζ
=

(
∂Ξ∥T

∂ζ
f+Ξ∥T ∂f

∂ζ

)
=

(
∂Ξ∥T

∂ζ
ΞTτ+Ξ∥T ∂f

∂ζ

)
(29)
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∂
(
Ξ∥T

f
)

∂ζ
=−

(
Ξ∥T ∂ΞT

∂ζ
τ−Ξ∥T ∂f

∂ζ

)
=−Ξ∥T

[
n∑

i=1

(
τi
∂ξi

∂ζ

)
− ∂f

∂ζ

]
(30)

where we have taken into consideration that, sinceΞ∥T
ΞT = In×n :

∂Ξ∥T

∂ζ
ΞT +Ξ∥T ∂ΞT

∂ζ
= 0n×n (31)

It can be shown by computation that Eq. (30) can be rewritten as3:

∂
(
Ξ∥T

f
)

∂ζ
=−Ξ∥T

KD (32)

K =
n∑

i=1

τi

li

[
Ti −Ti ã′

i
ã′

i Ti −ã′
i Ti ã′

i

]
, Ti = I3×3 − ti tT

i (33)

where (̃·) denotes the skew-symmetric representation of a vector. Matrix K is referred
to as Geometric Stiffness of the CDPR [18, 19], because it depends on geometry, and
it is fundamentally different from the so-called Passive Stiffness generated by cable
deformations (not considered in this paper).

From Eq. (23), we infer that the pose variation dζ in Eq. (28) is produced by a
variation of either cable lengths or free-pose coordinates, namely:

dζ= J⊥dζ f + J∥dl (34)

On the other hand, the variation of free coordinates is not independent, since Eq.
(25) must hold in the newly attained equilibrium. Thus, the free-coordinate variation
upon a cable-length change can be determined by differentiating Eq. (25):

d
(
Ξ⊥T

f
)
=
∂
(
Ξ⊥T

f
)

∂ζ
dζ= 0λ×1 (35)

If we substitute Eq. (34) in Eq.(35), we obtain:

d
(
Ξ⊥T

f
)
=
∂
(
Ξ⊥T

f
)

∂ζ
J⊥dζ f +

∂
(
Ξ⊥T

f
)

∂ζ
J∥dl = 0λ×1 (36)

SinceΞTτ= f at equilibrium, the partial derivative in Eq. (36) is:

∂
(
Ξ⊥T

f
)

∂ζ
=

(
∂Ξ⊥T

∂ζ
f+Ξ⊥T ∂f

∂ζ

)
=

(
∂Ξ⊥T

∂ζ
ΞTτ+Ξ⊥T ∂f

∂ζ

)
(37)

∂
(
Ξ⊥T

f
)

∂ζ
=−

(
Ξ⊥T ∂ΞT

∂ζ
τ−Ξ⊥T ∂f

∂ζ

)
=−Ξ⊥T

(
∂ΞT

∂ζ
τ− ∂f

∂ζ

)
(38)

3 Detailed computation of K is reported in [18] for a more general case, i.e. when cables are
guided by swivel pulleys and an arbitrary external wrench is applied to the EE.
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where we have taken into consideration that, sinceΞ⊥T
ΞT = 0λ×n :

∂Ξ⊥T

∂ζ
ΞT +Ξ⊥T ∂ΞT

∂ζ
= 0λ×n (39)

and ultimately (cf. Eqs. (30) and (32)):

∂
(
Ξ⊥T

f
)

∂ζ
=−Ξ⊥T

KD (40)

By substituting Eq. (40) in Eq. (36), and considering Eqs. (19) and (15), one obtains:

Ξ⊥T
KDJ⊥dζ f +Ξ⊥T

KDJ∥dl = K⊥
f dζ f +K⊥

l dl = 0λ×1 (41)

where:
K⊥

f =Ξ⊥T
KΞ⊥ ∈Rλ×λ, K⊥

l =Ξ⊥T
KΞ∥ ∈Rλ×n (42)

Note that, if the equilibrium is stable, K⊥
f is positive definite, thus invertible [18].

Then, the free-coordinate variation upon a variation of cable lengths is:

dζ f =−K−⊥
f K⊥

l dl (43)

and substituting Eq. (43) in Eq. (34) the overall pose variation is determined as:

dζ=
(
−J⊥K−⊥

f K⊥
l + J∥

)
dl (44)

In the end, the variation of cable tension upon a change of the cable lengths is
evaluated by substituting Eq. (32) and (44) into Eq. (28):

dτ=−Ξ∥T
KD

(
−J⊥K−⊥

f K⊥
l + J∥

)
dl = Kτdl (45)

Kτ =−Ξ∥T
K

(
−Ξ⊥K−⊥

f K⊥
l +Ξ∥

)
(46)

Finally, the maximum tension variation under a cable displacement error στ%,∞
is defined as:

στ%,∞ = max
‖dl‖∞=1

‖dτ%‖∞ (47)

where dτ% = 100[(dτ1)/τ1, · · · , (dτn)/τn] is the percentage tension error, and ‖ · ‖∞
indicates the vector ∞-norm. As highlighted in [20], the use of the infinity-norm at-
tains the clearest physical meaning, since it is consistent with a realistic actuation
error model, namely −dli ,max ≤ dli ≤ dli ,max for i = 1, . . . ,n. The definition of the in-
dex based on the percentage variation of cable tensions, and not on their absolute
variation, is justified by the fact that a small tension variation on an almost slack
cable is comparably relevant to a large tension variation on a well-taut cable.

By considering Eq. (45) and the definitions of matrix norms [21], we have:

στ%,∞ = max
‖dl‖∞=1

‖dτ%‖∞ = ‖Kτ%‖∞ (48)
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where Kτ% is, by accounting for Eq. (46):

Kτ% = 100TKτ, T = diag(τ)−1 (49)

Note that the computation of the infinity norm of a matrix is straightforward, as it
consists of computing the 1-norms of its row vectors and choosing the largest.

Notice thatστ%,∞ is not dimensionless. If cable lengths are expressed in millime-
ters,στ%,∞ is the percentage error on the estimated cable tension if a control error of
at the most 1mm occurs in cable lengths.

4 Application

As an application of the proposed performance index, we optimize the static orien-
tation of a 4-cable UACDPR EE that has to perform a positioning task. Since only 3
of the 4 controllable coordinates of the robot needs to be assigned to perform the
task, it is reasonable to investigate which orientation among the possibly infinite
ones attainable by EE would locally optimize the performance of the robot. Then,
for an assigned EE position, its orientation may be determined as the one minimiz-
ing στ%,∞, so that, should cable lengths not be perfectly controlled by the robot, the
risk of cables becoming slack is minimized.

Consider a UACDPR with the following parameters:

P a1 =
0.2

0.3
0.3

m, P a2 =
 0.2
−0.3
0.3

m, P a3 =
−0.2
−0.3
0.3

m, P a4 =
−0.2

0.3
0.3

m,

b1 =
1.5

1
0

m, b2 =
1.5
−1
0

m, b3 =
−1.5

−1
0

m, b4 =
−1.5

1
0

m, m = 1Kg

and the position p0 = [00 − 2]T m that the EE has to reach. Orientation ε is
parametrized with Roll-Pitch-Yaw Euler angles, namely the EE rotation matrix is
R(ε) = Rz (φ)Ry (θ)Rx (χ), with Ri , i = x, y, z being elementary rotation matrices.

The optimal orientation of the EE is determined by solving the non-linear con-
strained optimization:

εopt = min
ε
στ%,∞(ε) (50)

subject to:

Ξ⊥T
f = 0λ×1 and τº τmi n (51)

where º denotes element-wise inequality, and τmi n = 2N is the inferior tension limit.
The model presented in this paper was implemented in Matlab, and Eq. (50) was
solved by the fmincon function. The results are reported in Table 1.

Equilibrium orientations in the neighbourhood of the optimal one were also in-
vestigated, in order to understand the entity of the variation ofστ%,∞ in the assigned
p0. Accordingly, angleφwas continuously varied aroundφopt , while θ andχwere de-
termined as the solutions of the inverse geometrico-static problem in Eq. (27). The
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ε [rad] l [m] τ [N] στ%,∞ [%/m][
0,0,0

]T [
2.252,2.252,2.252,2.252

]T [
3.25,3.25,3.25,3.25

]T
2117

Table 1: Optimization results in p0

(a) στ%,∞ [%/m] for p0
(b) EE configurations in p0

Fig. 2: Simulation results for p0

results of this analysis are reported in Fig. 2a, and, in the authors’ opinion, one de-
tail is particularly interesting. The worst (highest) values of στ%,∞ are obtained for
those equilibrium orientations that results in one cable reaching the lower tension
limit τmi n : even though στ%,∞ does not vary considerably in the assigned position
of the EE, the highest value of this index, where one cable is the least tense, implies
that those configurations are intrinsically not safe to reach if cable lengths are not
perfectly controlled, since one cable may become slack.

In order to emphasize why this result is critical, consider two equilibrium ori-
entations εM and εm attainable by the UACDPR in p0, respectively maximizing and
minimizing στ%,∞ (see Fig. 2b, and note that the subscript M and m will be used to
denote all variables associated with such orientations):

ζM =



0
0
−2

−0.161
0
0

 [m,rad], lM =


2.237
2.273
2.237
2.273

 m, τM =


4.48

2
4.48

2

 N, στ%,∞,M = 3615%/m

ζm =



0
0
−2
0
0
0

 [m,rad], lm =


2.252
2.252
2.252
2.252

 m, τm =


3.25
3.25
3.25
3.25

 N, στ%,∞,m = 2117%/m
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Suppose now that the second and the fourth cable are 1cm longer than their values
in lM and lm : these new cable lengths are denoted as l?M and l?m , respectively. The
solutions to the forward geometrico-static problem for l?M and l?m are:

ζ?M =



0
0

−2.004
−0.207

0
0

 [m,rad], l?M =


2.237
2.283
2.237
2.283

 m, τ?M =


4.85
1.63
4.85
1.63

 N

ζ?m =



0
0

−2.006
−0.045

0
0

 [m,rad], l?m =


2.252
2.262
2.252
2.262

 m, τ?m =


3.59
2.90
3.59
2.90

 N

It is clear that for the pose associated with l?M cable tensions drop below the tension
limit, while for the pose associated with l?m this issues does not occur.

5 Conclusions

In this paper, a novel index στ%,∞ for the evaluation of geometrico-static perfor-
mances of UACDPRs, called maximum tension variation under a cable displacement
error, was introduced and analitically derived. Its relevance was demonstrated on a
4-cable UACDPR, by determining the orientations minimizing and maximizing said
index when the position of the EE is assigned. It was shown that, in case cable lengths
corresponding to minimal and maximal values of στ%,∞ exhibit errors, the risk of
loosing tension in one cable is the highest in the latter configuration.

In the future, this index will be used for the characterizing and optimizing UACD-
PRs reachable workspace.
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