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Distributed Stochastic Dual Subgradient for
Constraint-Coupled Optimization

Andrea Camisa, IEEE Member , Ivano Notarnicola, IEEE Member , Giuseppe Notarstefano, IEEE Member

Abstract— In this paper we consider a distributed

stochastic optimization framework in which agents in a

network aim to cooperatively learn an optimal network-

wide policy. The goal is to compute local functions to

minimize the expected value of a given cost, subject to

individual constraints and average coupling constraints. In

order to handle the challenges of the distributed stochastic

context, we resort to a Lagrangian duality approach that

allows us to derive an associated stochastic dual problem

with a separable structure. Thus, we propose a distributed

algorithm, without a central coordinator, that exploits con-

sensus iterations and stochastic approximation to find an

optimal solution to the problem, with attractive scalability

properties. We demonstrate convergence of the proposed

scheme and validate its behavior through simulations.

Index Terms— Optimization algorithms, Large-scale sys-

tems, Distributed control

I. INTRODUCTION

W
E focus on a distributed optimization framework in
which agents want to find local optimal policies that

minimize the expected value of the sum of local cost functions
subject to individual constraints and a global average coupling
constraint. This stochastic constraint-coupled optimization set-
up captures various applications in smart grid control, cooper-
ative robotics and sensor networks in which multiple systems
with their own dynamics have to negotiate how to share a
common resource.

Literature. Constraint-coupled optimization is an emerging
distributed optimization scenario that is getting more and more
attention from the community. For the case of deterministic
problems, authors have proposed dual approaches [1], [2],
saddle-point methods [3]–[5] and others [6]–[10]. See also
the tutorial [11] for a recent, comprehensive literature review.
Although these algorithms can handle the complexities related
to distributed computation, they have no guarantee for the
stochastic setting. On the other hand, literature on distributed
stochastic optimization typically consider scenarios with cost
functions being all dependent on the same variable (with
no coupling constraints). An examplary, non-exhaustive list
of works tackling this set-up is [12]–[16]. We point out,
once more, that these works address a set-up that is different
from the constraint-coupled set-up considered in this paper.
Centralized dual approaches for constrained stochastic opti-
mization problems arising in the context of resource allocation
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2020 research and innovation programme (grant agreement No 638992
– OPT4SMART). The authors are with the Department of Electrical,
Electronic and Information Engineering, University of Bologna, Bologna,
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have been introduced in [17]. These approaches are based
on [18], which shows how Lagrangian duality can be used
in nonconvex stochastic resource allocation problems to turn
them into a tractable form. In [19] a similar resource allocation
set-up is solved combining online optimization with two
different accelerated stochastic algorithms. Although the setup
considered in [19] is distributed, it requires that the sparsity
of the problem matches the communication graph structure
and does not allow for coupling constraints involving all the
agents, hampering applicability in more general contexts.

Contributions. Inspired by the deterministic literature, we
design a novel distributed algorithm to solve constraint-
coupled stochastic optimization problems over networks. Our
approach relies on a proper application of Lagrange duality by
which we are able to reformulate the associated dual problem
as a separable, stochastic optimization problem. Although
the considered set-up is nonconvex, under continuity of the
cumulative distribution function of the random variables rep-
resenting the source of uncertainty, it is possible to guarantee
that strong duality holds. The proposed distributed algorithm
consists of an iterative procedure in which each agent performs
the following steps: (i) observe a new realization of the random
variable, (ii) solve a small (deterministic) local problem, (iii)

update the estimate of the dual variable by using a consensus
iteration and an ascent step. Notably, the proposed algorithm
scales well with the network size, i.e., the amount of local
computation stays constant as the number of agents increase.
We formally prove that asymptotically agents reach consensus
on a dual optimal solution. By virtue of strong duality, each
agent is able to eventually retrieve a local policy that satisfies
both local and average coupling constraints. A key feature of
the proposed algorithm is that, along its evolution, it provides
online solution estimates that satisfy the coupling constraints
in an ergodic sense. Finally, a numerical example corroborates
the theoretical findings.

Organization. In Section II, we describe the problem set-
up with a motivating application. In Section III we present
the proposed distributed algorithm, which is analyzed in
Section IV. Simulation results are in Section V.

II. STOCHASTIC CONSTRAINT-COUPLED OPTIMIZATION

In this section we formalize the stochastic constraint-
coupled framework and present a motivating example.

A. Problem Set-up
Let w be a random vector with support set W ✓ Rq with w

denoting a realization of w and let E[·] denote the expectation
operator with respect to w. We consider a network of N agents



that must cooperatively solve the stochastic constraint-coupled
problem

min
�1(·),...,�N (·)

NX

i=1

E [fi(�i(w); w)]

subj. to �i(w) 2 Xi, 8w 2 W, 8i
NX

i=1

E [gi(�i(w); w)]  0,

(1)

where �i : W ! Rni is the local policy to be optimized,
fi : Rni ⇥W ! R is the i-th cost function, gi : Rni ⇥W !
Rp is the i-th contribution to the inequality constraints, and
Xi ✓ Rni is the i-th set of individual constraints. We assume
problem (1) is feasible with optimal cost f

?. The random
vector w represents the state of the environment and, as such,
influences agents’ decisions. That is, for all i, the policy �i(·)
yields a different outcome for each realization w of w.

In the considered distributed setting, agents aim to solve the
problem without a centralized coordinator. They are assumed
communicate according to a connected and undirected graph
G = (V, E), with V = {1, . . . , N} being the set of nodes and
E ✓ V ⇥ V being the set of edges. If (i, j) 2 E , then also
also (j, i) 2 E and agents i and j can exchange information.
We denote by Ni the set of neighbors of agent i in G, i.e.,
Ni = {j 2 {1, . . . , N} | (i, j) 2 E}. Agents are assumed to
have a partial knowledge of problem (1). Specifically, each
agent i is assumed to know only the functions fi, gi and the
set Xi. Denoting by (�?

1(·), . . . ,�?
N (·)) an optimal policy for

problem (1), the goal is that each agent i computes its local
policy �

?
i (·).

We point out that, even under convexity of fi, gi and Xi,
problem (1) is in general a nonconvex program due to the
generality of the distribution of w. Moreover, the policies
�i(·) to be optimized are infinite dimensional variables. These
issues make this set-up more challenging than other distributed
set-ups investigated in the literature (such as [2], [8]), where
typically the optimization variables are finite dimensional and
the considered problems are convex. The approach that we
will adopt allows us to turn problem (1) into a tractable form
by relying on duality theory.

B. Motivating Application: Distributed Steady-state
Control

Let us consider a distributed control scenario with N

discrete-time linear dynamical systems that want to solve the
optimization problem

min
z1(·),...,zN (·)
u1(·),...,uN (·)

NX

i=1

E
⇥
zi(w)

>
Qizi(w)+ui(w)

>
Riui(w)

⇤
(2a)

subj. to zi(w)=Aizi(w) +Biui(w), 8w, 8i (2b)

¯
zizi(w) z̄i, ¯

uiui(w) ūi, 8w, 8i (2c)
NX

i=1

E [Cizi(w) +Diui(w) +Hiw]  0, (2d)

where (2b) is the equilibrium dynamics of each system i, (2c)
represent box constraints on the state and input of agent i, and

the matrices Qi, Ri, Ci, Di, Hi have proper dimensions. The
purpose of problem (2) is to determine for all i an optimal
state-input map (z?i (·), u?

i (·)), which, based on the influence
of the environment (modeled by w), determines an equilibrium
pair that each system i must stabilize. Such state-input map
must minimize a given (quadratic) cost figure and satisfy
local box constraints and average coupling constraints (2d).
Problems in the form (2) typically arise, e.g., when controlling
microgrids where the objective is to optimize the consumption
schedule on a daily basis (see also [11]), in such a case the
random vector w can be used to model the uncertainty due to
unknown power production of renewable energy sources.

III. DISTRIBUTED STOCHASTIC DUAL SUBGRADIENT

In this section we propose our novel Distributed Stochas-
tic Dual Subgradient algorithm. We first introduce the dual
approach and then provide the algorithm description.

A. Lagrange Duality Approach
The main idea to solve problem (1) is to formulate its dual

problem and then reconstruct the primal solution. The proce-
dure presented here is inspired to a duality-based stochastic
approach proposed for resource allocation problems in [17]–
[19]. Let us associate the multiplier µ 2 Rp to the stochastic
inequality constraint

PN
i=1 E [gi(�i(w); w)]  0. The La-

grangian of problem (1) is

L({�i(·)}8i, µ) , E
"

NX

i=1

fi(�i(w); w) + µ
>
gi(�i(w); w)

#

where the local constraints �i(w) 2 Xi are kept implicit
and thus not dualized. With the Lagrangian at reach, the dual
function can be defined as

q(µ) = min
{�i(·)}8i

L({�i(·)}8i, µ)

subj. to �i(w) 2 Xi, 8w 2 W, 8i.
(3)

Thus, the dual problem of (1) can be posed as

max
µ�0

q(µ). (4)

We denote by q
? the optimal cost of problem (4) and by

µ
? an optimal solution (if any), such that q

? = q(µ?).
Irrespective of the properties of the primal problem (1), the
dual problem (4) enjoys a number of appealing features, [20].
Indeed, problem (4) is always a concave program; moreover,
by the weak duality theorem, its cost provides a lower bound
on the optimal cost of (1), i.e., q?  f

?.
Note that computing the value of the dual function in (3)

requires the minimization of an expected value over the proba-
bility distribution of w. However, in general, the distribution of
w may not be known, and even if this was the case, this task is
intractable within an iterative optimization process. Therefore,
we pursue a stochastic approximation approach that involves
reformulating problem (4) into a stochastic problem. To this
end, we make the following assumption on problem (1).

Assumption 3.1: The functions fi and gi are continuous and
the sets Xi are compact, for all i 2 {1, . . . , N}. ⇤



Note that problem (2) satisfies Assumption 3.1 since the cost
is quadratic, the coupling constraints (2d) are linear and the
functions zi(·) and ui(·) must satisfy box constraints (2c).

We restrict our attention to policies �i(·) that are sufficiently
regular, so as to guarantee that the expected values are well de-
fined, i.e., we assume that the random variables fi(�i(w); w)
and gi(�i(w); w) are integrable with respect to the distribution
of w. All these assumptions guarantee that the minimization
in (3) is well defined for all µ 2 Rp. The following lemma is
a key result that legitimates a stochastic dual approach and is
important for the subsequent analysis.

Lemma 3.1: Let Assumption 3.1 hold and define for all µ �
0 and w 2 W the function

q̃(µ;w), min
x12X1,...,xN2XN

NX

i=1

[fi(xi;w)+µ
>
gi(xi;w)], (5)

where xi 2 Rni for all i. Then, the stochastic problem

max
µ�0

E
⇥
q̃(µ; w)

⇤
(6)

is equivalent to problem (4), i.e., the two problems have the
same optimal solution set and the same optimal cost.

Proof: We follow the same arguments of [17, Proposition
1]. Let (⌦,F,P) be the probability space associated to w
and let us denote the function in the expectation in the
Lagrangian as �(x; y) =

PN
i=1 fi(xi; y)+µ

>
gi(xi; y), where

x = (x1, . . . , xN ) and y is a generic variable playing the
role of w. Let us use Xi to denote the set of locally feasible
policies, i.e., Xi , {�i(·) : �i(w) 2 Xi, 8w 2 W}. We obtain

q(µ) = min
{�i(·)2Xi}8i

E [�(�(w); w)]

= min
{�i(·)2Xi}8i

Z

⌦
�(�(w(!)); w(!))dP(!).

(a)
=

Z

⌦
min

{xi2Xi}8i

�(x; w(!))dP(!)

= E


min
{xi2Xi}8i

�(x; w)

�
= E

⇥
q̃(µ; w)

⇤
,

where in (a) we used linearity of the integral to carry out
the minimization for each value in the sample space ⌦
separately, moreover we renamed to x the (finite dimensional)
optimization variable �(w(!)) for a fixed value of ! 2 ⌦ for
notational convenience. The proof follows.

To see the impact of Lemma 3.1, note that, contrarily to the
previous formulation of the dual problem (4), with the new
formulation (6) the cost can be evaluated at any given µ � 0
by solving a deterministic, finite dimensional minimization
(cf. (5)), which is parametric in w, and then compute the
expected value with respect to w (either using its probability
distribution or by simulation).

B. Distributed Algorithm Derivation and Description

Now we present our novel Distributed Stochastic Dual Sub-
gradient algorithm. An important consequence of Lemma 3.1
is that the dual problem (4) can now be solved with a stochastic
approximation approach. Further note that the function in (5)

can be reformulated as the sum of N terms. Formally, let us
define for each i the function

qi(µ;w) , min
xi2Xi

�
fi(xi;w) + µ

>
gi(xi;w)

�
,

for all µ � 0 and w 2 W . Then, q̃(µ;w) =
PN

i=1 qi(µ;w),
from which we see that problem (6) can be written as

max
µ�0

E
 NX

i=1

qi(µ;w)

�
. (7)

The formulation (7) of the dual problem lends itself well to
consensus-based distributed optimization schemes.

Denote with t 2 Z the iteration index and introduce a
stochastic process {wt}t�0, with realizations {wt}t�0 having
values wt independent and identically distributed according to
the distribution of w. We assume that, at each time instant
t, agents have access to the functions fi(·, wt) and gi(·, wt).
Each agent maintains (i) a primal variable x

t
i 2 Rni and (ii) a

dual solution estimate µ
t
i 2 Rp, both of which are iteratively

updated. Once a new realization w
t has been observed, neigh-

boring agents first combine their dual solution estimates in a
consensus fashion (cf. (8a)) using certain weights aij . Then,
agent i performs a local minimization (cf. (8b)) and the result
is used to update the local dual solution estimate (cf. (8c)),
where ↵

t � 0 denotes the step-size and [·]+ denotes the
Euclidean projection onto the positive orthant. In Algorithm 1
we provide a pseudocode of the distributed algorithm from the
perspective of node i. We stress once again that the algorithm
is fully distributed and that all the agents perform the same
steps.

Algorithm 1 Distributed Stochastic Dual Subgradient
Initialization: µ0

i � 0

For t = 0, 1, 2, . . .

Observe current realization w
t

Receive µ
t
j from j 2 Ni and compute

v
t
i =

X

j2Ni

aijµ
t
j (8a)

Perform primal and dual updates

x
t
i 2 argmin

xi2Xi

�
fi(xi;w

t) + v
t
i
>
gi(xi;w

t)
 

(8b)

µ
t+1
i =

⇥
v
t
i + ↵

t
gi(x

t
i;w

t)
⇤
+

(8c)

Let us now outline some properties of the proposed al-
gorithm. Recall that the original problem (1) is nonconvex.
Remarkably, Algorithm 1 provides a computationally afford-
able method to compute the optimal policy in a distributed
fashion, while also enjoying attractive scalability properties.
Indeed, even though the local problem (8b) is nonconvex,
it is much smaller than the original one and its size does
not depend on the number of agents. If convexity of fi and
gi is additionally assumed, a solution to problem (8b) can
then be found in a reasonably short time interval even though
problem (1) remains nonconvex and intractable in general.



IV. ALGORITHM ANALYSIS

In this section, we provide a convergence analysis for
Algorithm 1. We first characterize strong duality and then we
provide results on both dual and primal quantities.

A. Strong Duality Characterization

As already mentioned in Section III-A, problem (4) (and
thus also problem (7)) has an optimal cost q

? that, in gen-
eral, is less than or equal to the optimal cost f

? of the
nonconvex problem (1). Nevertheless, it can be proven that
strong duality stems from existing results given the particular
problem structure provided that the cumulative distribution
function (cdf) of the random variable w is continuous, or,
equivalently, its probability density function does not contain
any Dirac delta function. Formally, denoting the cdf of w as
Fw(w) = P(w  w), we make the following assumption.

Assumption 4.1: The cdf Fw(·) is continuous. ⇤
Moreover, as usually done in distributed approaches based on
Lagrange duality, we assume some regularity conditions on
problem (1), namely Slater’s constraint qualification.

Assumption 4.2: There exist functions �̄i(·), . . . , �̄N (·) that
are feasible for problem (1) and satisfy the strict inequalityPN

i=1 E [gi(�̄i(w); w)] < 0. ⇤
The next proposition formalizes the strong duality result for

our stochastic constraint-coupled optimization set-up.
Proposition 4.1: Let Assumptions 3.1, 4.1 and 4.2 hold.

Then, the duality gap is zero, i.e., f? = q
?. ⇤

The proof of Proposition 4.1 is based on the so-called
Lyapunov’s convexity theorem and can be obtained by fol-
lowing arguments that are similar to [18, Thm. 1], and hence
is omitted.

B. Dual Convergence

Before stating the convergence properties of our Distributed
Stochastic Dual Subgradient, we introduce assumptions on the
network weights (cf. (8a)), on the step-size (cf. (8c)) and on
the (sub)gradients of the dual function (3).

Assumption 4.3: The weights aij , i, j 2 {1, . . . , N} match
the graph G, i.e., aij 6= 0 for all (i, j) 2 E and aij = 0
otherwise. Moreover, they satisfy (i)

PN
j=1 aij = 1 for all i,

(ii)
PN

i=1 aij = 1 for all j, (iii) aii > 0 for all i. ⇤
We point out that Assumption 4.3 can be relaxed by using

different consensus schemes that accommodate more general
(e.g. directed and/or time-varying) networks, see e.g. [2].

Assumption 4.4: The step-size sequence {↵t}t�0 is such
that 0  ↵

t+1  ↵
t for all t � 0,

P1
t=0 ↵

t = 1,P1
t=0(↵

t)2 < 1 and limt!1 t↵
t = 1. ⇤

An example of step-size sequence satisfying Assumption 4.4
is ↵

t = K/t
� , with any K > 0 and 1

2  � < 1.
Assumption 4.5: The stochastic (sub)gradients are uni-

formly bounded, i.e., for all i 2 {1, . . . , N} it holds
kgi(xi;w)k  Ci for all xi 2 Xi and w 2 W . ⇤

We are now ready to provide the convergence result.
Theorem 4.2 (Dual convergence): Let Assumptions 3.1,

4.1, 4.2, 4.3, 4.4, and 4.5 hold and consider the sequences

{xt
1, . . . , x

t
N}t�0 and {µt

1, . . . , µ
t
N}t�0 generated by Algo-

rithm 1. Then, almost surely, there hold

lim
t!1

NX

i=1

E[qi(µt
i; w

t)] = q
?
, (9a)

lim
t!1

µ
t
i = µ

?
, 8i 2 {1, . . . , N}, (9b)

for some µ
? 2 Rp optimal solution of problem (4). ⇤

Before proceeding with the proof, we point out that all
the quantities generated by Algorithm 1 (i.e. xt

i, µ
t
i, v

t
i ) must

be regarded as realizations of random processes, since they
depend on the specific realization of the process wt.

Proof: Let us define q̄i(µ) = E[qi(µ; w)]. First, we claim
that the (sub)gradient estimators are unbiased, i.e.,

E
⇥
gi(x

t
i; w

t)
⇤
= erq̄i

�
v
t
i

�
. (10)

To see this, let us follow the line of proof in [17, Prop. 1].
By (8b), the value of the function q̄i at vti is

q̄i(v
t
i) = E

⇥
fi(x

t
i; w

t)
⇤
+ v

t
i
>E
⇥
gi(x

t
i; w

t)
⇤
.

Similarly, the value of the function q̄i at a generic µ 2 Rp is

q̄i(µ) = E

min
xi2Xi

�
fi(xi; w) + µ

>
gi(xi; w)

��

 E
⇥
fi(x

t
i; w)

⇤
+ µ

>E
⇥
gi(x

t
i; w)

⇤
,

where the inequality follows since the expression fi(xi; w) +
µ
>
gi(xi; w) at any xi 2 Xi is greater than or equal to its

minimum over Xi. Subtracting the last two expressions we
obtain that, by definition, E [gi(xt

i;w
t)] is a (sub)gradient of

�q̃i at vti .
Second, we show that the dual estimates µ

t
i are asymp-

totically consensual. To do so, rewrite the update of µ
t
i as

µ
t+1
i = v

t
i + ✏

t
i, with ✏

t
i = [vti + ↵

t
gi(xt

i; w
t)]+ � v

t
i . Let us

define the mean of the dual variables among the agents as
µ̄
t , 1

N

PN
i=1 µ

t
i for all t � 0. The update of µ̄t reads

µ̄
t+1 =

1

N

NX

i=1

✓ X

j2Ni

aijµ
t
j + ✏

t
i

◆
= µ̄

t +
1

N

NX

i=1

✏
t
i,

where the equality follows by Assumption 4.3. By denoting
the column stack µ

t = (µt
1, . . . , µ

t
N ), ✏t = (✏t1, . . . , ✏

t
N ) and

the weight matrix A 2 RNp⇥Np with block entry (i, j) equal
to aijIp (Ip is the p-by-p identity), the consensus error is

µ
t+1� 1µ̄t+1=Aµ

t + ✏
t � 1

✓
µ̄
t +

1

N

NX

i=1

✏
t
i

◆

=(A� 11>
/N)(µt � 1µ̄t)+(I � 11>

/N)✏t

in which 1 2 RNp⇥p is the vertical stack of N times Ip. By
taking the norm of both sides of the previous equality and by
using the properties of the consensus weight matrix A (see
also the proof of [11, Theorem 2.5]), it follows that

��µt+1 � 1µ̄t+1
��  �

��µt � 1µ̄t
��+

��✏t
�� ,

where � 2 (0, 1) is the contraction factor associated to the
consensus weight matrix A. Due to Assumptions 4.4 and 4.5,
it can be proven that k✏tk goes to 0 as t ! 1 (cf. [11, Section



2.1]). It follows that limt!1
PN

i=1 kµt
i � 1µ̄tk = 0, which

concludes the proof of consensus of the dual estimates. Next,
we show that the vectors µ

t
i converge to an optimal solution

of problem (4). Let us analyze the aggregate evolution of µ
t
i

for all i 2 {1, . . . , N}

NX

i=1

��µt+1
i � µ

?
��2 (a)


NX

i=1

��vti + ↵
t
gi(x

t
i; w

t)� µ
?
��2

(b)


NX

i=1

✓��µt
i � µ

?
��2+ (↵t)2C2

i + 2↵t
�
v
t
i � µ

?
�>

gi(x
t
i; w

t)

◆
,

where in (a) we used (8c) and the non-expansiveness property
of the projection [20] and in (b) we expanded the squared
norm and we used Assumption 4.5.

After defining C
2 =

PN
i=1 C

2
i and after taking

the conditional expected value with respect to all
the history up to time t, represented by F t =
{{µ0

i }i, w1
, {x1

i }i, {µ1
i }i, . . . , wt

, {xt
i}i, {µt

i}i}, we obtain

E
 NX

i=1

kµt+1
i � µ

?k2 | F t

�


NX

i=1

kµt
i � µ

?k2 + (↵t)2C2

+ E

2↵t

NX

i=1

�
v
t
i � µ

?
�>

gi(x
t
i; w

t) | F t

�

=
NX

i=1

kµt
i � µ

?k2 + (↵t)2C2

+ 2↵t
NX

i=1

�
v
t
i � µ

?
�> E

⇥
gi(x

t
i; w

t) | {µt
j}j2Ni

⇤
,

where in the last equality we used the fact that, due to the
conditional expectation, the value of v

t
i is fixed. Now, by

using (10) with the definition of subgradient of
PN

i=1 q̃i(v
t
i)

we obtain
PN

i=1 (v
t
i � µ

?)
> E

⇥
gi(xt

i; w
t) | {µt

j}j2Ni

⇤
⇣PN
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i)� q
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, which we plug in the previous inequality
to obtain
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where in the last equality we added and subtracted
2↵t

PN
i=1 q̃i(µ̄

t). Following similar arguments
as in [11, Theorem 2.5], it can be seen thatP1

t=0{↵t
PN

i=1 (q̃i(µ̄
t)� q̃i (vti))}t�0 < 1 is summable.

Thus, by using the Supermartingale convergence theorem
[21, Proposition 8.2.10] and by following similar arguments
as in [21, Proposition 8.2.13], it follows that, almost
surely, limt!1 µ̄

t = µ
? and limt!1 q(µ̄t) = q

?.
Then, the proof follows by using the consensus result
limt!1

PN
i=1 kµt

i � 1µ̄tk = 0.

We are now able to clarify in what sense the iterations of
Algorithm 1 lead to the computation of the optimal policy
(�?

1(·), . . . ,�?
N (·)) of problem (1) (cf. Section III). As we just

shown, the sequences {µt
i}t�0 converge to a dual optimal

solution µ
?. Thus, step (8b) is “asymptotically performed”

with µ
? in place of v

t
i . Together with Proposition 4.1, this

means that the minimization in (8b) eventually yields the
optimal policy for given w 2 W , i.e.,

�
?
i (w) 2 argmin

xi2Xi

�
fi(xi;w) + µ

?>
gi(xi;w)

 
.

C. Ergodic Primal Feasibility
Next, we provide a feasibility result of the primal iterates.
Theorem 4.3: In the same setting of Theorem 4.2, it holds

limT!1
1
T

PT�1
t=0

PN
i=1 gi(x

t
i; w

t)  0 almost surely.
Proof: By using the update rule (8c), we have µ

t+1
i =

[vti + ↵
t
gi(xt

i; w
t)]+ � v

t
i + ↵

t
gi(xt

i; w
t), for all t � 0.

Reorganizing the previous inequality and summing over i 2
{1, . . . , N}, it follows that, for all t � 0,
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.

By summing both sides of the previous inequality over t from
0 to T � 1, we obtain
T�1X
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where the second inequality follows by the assumption ↵
t+1 

↵
t and from non-negativity of µ

t
i for all t � 0 (by construc-

tion). Dividing by T yields, for all T � 1,

1

T

T�1X
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NX

i=1
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i; w
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T
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PN
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Since the sequences {µt
i}t�0 converge almost surely for all

i 2 {1, . . . , N} (Theorem 4.2), it follows that the sequences
{µt

i}t�0 are bounded. By taking the limit of both sides as T

goes to infinity and using the assumption limt!1 t↵
t = 1,

the right-hand side goes to zero, and the proof follows.
Note that the result provided by Theorem 4.3 is about the

non-positivity of the limiting time average of the coupling
constraint. Under ergodicity assumptions of the sequence
{
PN

i=1 gi(x
t
i; w

t)}t�0, this is equivalent to the constraint of
problem (1) expressed in terms of expected value.

V. NUMERICAL EXAMPLE

In this section, we provide a numerical study that focuses on
the motivating example presented in Section II-B. We consider
N = 30 MIMO systems with state zi 2 R5 and input ui 2 R3.
The random vector w is uniformly distributed in W = [0, 1]5.
The system matrices Ai 2 R5⇥5, Bi 2 R5⇥3, Ci 2 R5⇥5,
Di 2 R5⇥3 and Hi 2 R5⇥5 are randomly generated with
entries in (0, 1). The lower bounds

¯
zi, ¯

ui have random values
in (�10,�5) while the upper bounds z̄i, ūi are random in
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Fig. 3. Dual cost computed on the aver-
age dual variable µ̄t. Expected values are
estimated through Monte Carlo simulation.

(5, 10). The matrices Qi 2 R5⇥5 and Ri 2 R3⇥3 are identities
scaled by a random factor in (1, 5). Notice that Assumption 4.1
is satisfied therefore strong duality holds.

We run Algorithm 1 (solid lines in plots) and compare with
a stochastic distributed primal-dual algorithm (dashed lines
in plots) inspired to [4]. Agents communicate according to
an Erdős-Rényi graph with edge probability 0.2. As for the
weights aij , we use the Metropolis-Hastings rule, and initialize
the local dual estimates µ0

i to random non-negative values. The
step-size is ↵

t = 1/t0.7.
In Figure 1, the consensus error is shown as a function

of the iteration t. The figure highlights that, as the algorithm
evolves, the local dual estimates µ

t
i of the agents get closer to

their mean, as expected from the convergence result of Theo-
rem 4.2. Figure 2 shows horizontal and vertical averages of the
maximum coupling constraint value (across its components) as
a function of t. Both the Monte Carlo average (computed on
104 trials) and the time average asymptotically go to zero, as
expected from Theorem 4.3. However, due to the diminishing
step-size, this convergence can become slow. In Figure 3, we
plot the dual cost computed at the mean dual solution estimate
µ̄
t = 1/N

PN
i=1 µ

t
i. The expected values are approximated

with Monte Carlo simulation over 104 trials. As expected from
a dual method, the picture emphasizes that the cost increases
toward optimality with the typical sublinear rate of subgradient
methods.

VI. CONCLUSIONS

In this paper we proposed a distributed algorithm to solve
constraint-coupled stochastic optimization problems over net-
works. The proposed algorithm relies on a stochastic duality-
based approach, where the dual problem is solved with a
stochastic distributed subgradient method. We proved dual
convergence and average primal feasibility, confirmed by
numerical computations.
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