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Abstract—Very high throughput satellite (VHTS) systems are
expected to have a huge increase in traffic demand in the
near future. Nevertheless, this increase will not be uniform
over the entire service area due to the non-uniform distribu-
tion of users and changes in traffic demand during the day.
This problem is addressed by using flexible payload architectures,
which allow the allocation of payload resources flexibly to meet
the traffic demand of each beam, leading to dynamic resource
management (DRM) approaches. However, DRM adds significant
complexity to VHTS systems, so in this paper we discuss the use
of one reinforcement learning (RL) algorithm and two deep rein-
forcement learning (DRL) algorithms to manage the resources
available in flexible payload architectures for DRM. These algo-
rithms are Q-Learning (QL), Deep Q-Learning (DQL) and
Double Deep Q-Learning (DDQL) which are compared based
on their performance, complexity and added latency. On the
other hand, this work demonstrates the superiority a cooperative
multiagent (CMA) decentralized distribution has over a single
agent (SA).

Index Terms—Bandwidth allocation, beamwidth allocation,
power allocation, deep reinforcement learning, deep learning,
dynamic resource management, flexible payload, multi-beam,
cooperative multi-agent.

NOMENCLATURE

s State
S Set of states
a action
A Set of actions
r Reward function
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st Current state
at Current action
st+1 Next state
p transition probabilities
rt Immediate reward
rt+i Immediate reward at the t + i time stamp
γ Discount factor
Rt Expected accumulated rewards
B Number of beams
N Number of agents. This paper considers

N = B
S t Set of current states of all agents
At Set of current action of all agents
Db
t Traffic demand in b-th beam at time instant t

C b
t Capacity offered in the b-th beam at time t

EIRPb
t EIRP in the b-th beam at time t

Bc Number of beams per color
Nc Number of colors of frequency plan
c Color of frequency plan
BW bc

t Bandwidth allocated to the bc-th beam of
color c at time t

β1 Weight of the error in the cost function
β2 Weight of the error in the total EIRP
β3 Weight of the error in the total bandwidth

assigned
Pb
t Power allocated to the b-th beam at time t

θbt Beamwidth allocated to the b-th beam at
time t

f1(·) Function to calculate C b
t

f2(·) Function to calculate EIRPb
t

Pmax ,b Maximum power per beam
BWmax ,b Maximum bandwidth per beam
θmax ,b Maximum beamwidth per beam
Pmax ,S Maximum total system power
BWmax ,C Available bandwidth per color
SE b

t Spectral efficiency of the b-th beam at time t
Gb
t Gain of the b-th beam at time t

dbt traffic demand expected value over all the
area inside b-th beam at time t

Ab
t b-th beam area at time t

CNRb
t Carrier to Noise Ratio of the b-th beam at

time t
CIRb

t Carrier to Interference Ratio of the b-th beam
at time t
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CINRb
t Carrier to Interference plus Noise Ratio of

the b-th beam at time t
I bt Co-channel power interference in b-th beam

at time t
Pco Power level of ϕ-th interference inside the b-

th beam
ϕ ϕ-th interferer spot
Φ Total number of interfering beams of the

beam b
K Number of possible actions
δk k-th possible action
Vb Verification in the b-th beam
Umax Maximum allowed of |C b

t −Db
t |

Z Penalty received
F1 Cost function of the DRM
Psat Verification parameter of power constraint on

the satellite
BW c Verification parameter of bandwidth con-

straint on the color of frequencies plan
ρ Amount of penalization
Xb Movement that the b-th agent makes in the

resource allocation space
μi Priority that has to select i-th action
Qb Value of a pair (sbt , abt ) contains the sum of

all these possible rewards
α Learning rate
Qb
′ Temporal difference target of a pair (sbt , abt )

Mb b-th memory
ωt Current neural network parameters
ωt−1 Previous neural network parameters
ωt
− Current target neural network parameters

ε Probability threshold
λ Constant scaling factor for ε decay
PPayload Normalized payload power
PTotal ,UPA Total Payload Power when using a Uniform

Power Allocation
PTotal ,Alg Total Payload Power when using the Power

Allocation using the proposed algorithm
NCT Normalized convergence time
ET alg Average time per episode of the algorithm
ETQL Average time per episode of the QL algorithm
NEalg Number of episodes in which the algorithm

converges.

I. INTRODUCTION

VERY high throughput satellite (VHTS) systems have
a fundamental role in the support of future 5G

and broadcast terrestrial networks [1], [2]. VHTS systems
exceed the capacity of traditional systems providing fixed
and mobile satellite services using contoured regional foot-
prints. VHTS aims to achieve a satellite Terabit/s data rate
in the near future [3], based on multi-beam coverage
with polarization schemes, frequency reuse and spectrum
optimization [4].

VHTS systems currently provide uniform throughput over
the service area; however, traffic demands are expected to be
unevenly distributed over the service area, as the distribution

of users is not uniform within the coverage. This will result
in a system where some beams do not have the necessary
capacity, i.e., they do not meet the traffic demands, while
other beams exceed the required capacity or simply waste
resources [5], [6]. On the other hand, operators claim that one
of the main challenges in the design of future satellite broad-
band systems is how to increase revenues from satellites and,
at the same time, meet unequal and dynamic traffic demands.
In that sense, flexible payload is a promising solution to meet
changing traffic demand patterns [3], [7]–[9].

Nowadays, most satellite communication (SatCom) pay-
loads are not flexible in terms of bandwidth or coverage.
Moreover, power flexibility can now be achieved using the
on-board amplifier working point to be modified according
to the transponder load. However, the most recent research
interests have focused on the design of a new generation of
flexible satellite payloads that allow dynamic resource man-
agement (DRM) [7]–[9]. In this sense, the SatCom uplink and
downlink characteristics were analyzed in [10], as a function
of dynamic spectrum allocation.

VHTS next generation systems will provide Terabit con-
nections using advanced flexible payloads, allowing beam
reorientation and reconfiguration, while allowing individual
allocation of power per beam and bandwidth. Therefore, DRM
techniques for SatCom will be a key for operators [11].
In that sense, Cocco et al. [12] represent the problem of
radio resource allocation for VHTS as an objective func-
tion that minimizes the error between the capacity offered
and the capacity required. Nevertheless, a thorough analysis
of both the design of the payload architecture and resource
management is required.

Kawamoto et al. [13] comment that resource allocation
problem can be solved through optimization techniques but,
on a larger scale, the number of resources to be managed,
the limitations that come from the system and the huge num-
ber of traffic demand situations can give rise to a problem
that cannot be solved with conventional techniques. On the
other hand, Kisseleff et al. explain in [14] that the resource
management problem in SatComs is, in most cases, nonlin-
ear and nonconvex due to the logarithmic function as well
as the nonlinear dependencies of the carrier to interferences
plus noise ratio (CINR) on the optimization. In addition, the
binary indicator of carrier assignment makes it a mixed-integer
program. Therefore, an optimal solution cannot be obtained
using known convex optimization methods. One could attempt
to solve this problem by exhaustive search, but this strat-
egy has a very high computational complexity, which is
often beyond the capabilities of satellite processors in online
operation.

As an alternative, Lei and Vázquez-Castro have proposed
a suboptimal method [15], which addresses parts of the
problem separately and then iteratively adjusts the parameters.
The problem splitting is done in such a way that power allo-
cation and carrier allocation are separated. However, if it adds
more complexity to the system, such as beamwidth flexibility,
the proposal is no longer feasible.

In addition, Liu et al. [16] suggested an assignment game-
based dynamic power allocation (AG-DPA) to achieve a low
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suboptimal complexity in multibeam satellite systems. They
compared the results obtained with a proportional power
allocation (PPA) algorithm, obtaining a remarkable advan-
tage in terms of power saving; however, resource manage-
ment is still insufficient with respect to the required traf-
fic demand since the error obtained between the capacity
offered and the traffic demand in some cases is greater than
200 Mbps.

Regarding this, Ortiz-Gomez et al. [17]–[19] suggest solv-
ing the DRM problem using a Supervised Learning algorithm
through a Classification Neural Network, in which the classes
correspond to all possible configurations of payload resource
allocation. The main advantage of this methodology is that
the management is done with a low computational cost since
the neural network training is performed offline. However,
this methodology presents several challenges; one of them is
the exponential dependence of the number of classes on the
number of beams, in addition to the possible variations of
power, bandwidth and/or beamwidth, which results in unsolv-
able problems due to the increase in flexibility. That is, as
the number of beams and possible resources to be managed
increases, the number of neurons required in the input and
output layer increases considerably.

On the other hand, Ortiz-Gomez et al. [20] suggest a novel
system model and a cost function that allows to get an
optimal solution, by determining how to match resources to
a demand pattern, while minimizing the resource consump-
tion of satellites. The authors suggest a Convolutional Neural
Networks (CNN) algorithm that allows the system to be imple-
mented offline. In contrast to most approaches, the authors
consider three possible flexible resources for the study of
DRM, i.e., power, bandwidth, and beamwidth. The suggested
CNN algorithm shows superiority in power management when
compared to AG-DPA and PPA algorithms. However, one of
the most important limitations of this proposed CNN in DRM
is the dependence on the traffic model used during train-
ing. Thus, in a real system with changes in traffic behavior
that do not fit the model, the CNN will have to be trained
again.

Concerning the research suggesting deep reinforcement
learning (DRL) algorithms to solve the DRM problem,
Ferreira et al. [21], [22] stated that a feasible solution to the
problems of real-time and single-channel resource allocation
can be designed. However, in their study, the DRL archi-
tectures are based on the discretization of resources before
their allocation, while satellite resources, such as energy, are
inherently continuous. Therefore, Luis et al. [23] explore
a DRL architecture for energy allocation that uses continuous
and stateful action spaces, avoiding the need for discretiza-
tion. However, the policy is not optimal, since some demand
is still being lost. On the other hand, Liu et al. [24] sug-
gest a novel dynamic channel assignment algorithm based
on deep reinforcement learning (DRL-DCA) in multibeam
satellite systems. The results proved that this algorithm can
achieve a lower blocking probability, in comparison with tra-
ditional algorithms; nevertheless, the joint channel and power
allocation algorithm are not taken into account.

Liao et al. [25] build a game model to learn the optimal
strategy in the satellite communication scenario. The authors
suggest a bandwidth allocation framework based on DRL,
which can dynamically allocate the bandwidth in each beam
to improve transmission efficiency. The effectiveness of the
proposed method in time-varying traffic and large-scale com-
munications is verified in the problem of bandwidth manage-
ment with an acceptable computational cost. However, only
one resource can be managed on the satellite with this method,
leading to a critical limitation when looking for full flexibility
in the VHTS system.

According to the current state of the art, the effectiveness
of reinforcement learning algorithms to manage the resources
of a multi-beam satellite has been demonstrated, although the
algorithms proposed in the literature are only capable of sin-
gle resource management in a multi-beam system [21]–[25].
However, a fully flexible payload must be able to manage at
least three resources (i.e., power, bandwidth, and beamwidth).
In this paper, we assume that as the available resources to
manage in all the satellite beams increase, it becomes a very
complicated problem for a single agent (SA). Therefore, in this
work we propose to use the Cooperative Multi-Agent (CMA)
approach to obtain a better performance and compare it
with that of a SA to manage the three resources in all the
satellite beams.

The main contributions of this work can be listed below:
• The DRM problem for VHTS systems is defined as

a MDP (Markov Decision Process) that proposes a decen-
tralized distribution of CMA (Cooperative Multiagent),
that works cooperatively to achieve maximum reward.

• Different from the current state-of-the-art, thanks to the
use of deep reinforcement learning (DRL) techniques, the
proposed algorithm allows to achieve full flexibility in the
multibeam satellite resources, i.e., power, bandwidth, and
beamwidth.

• The state-of-the-art has demonstrated the effectiveness of
using DRL in satellite DRM. However, being an online
algorithm, the convergence time is very important and has
not been evaluated in other proposals; in our proposals
the convergence time is presented as a KPI of the system.

• One reinforcement learning (RL) and two DRL algo-
rithms to manage the resources available in flexible
payload architectures for DRM are suggested, i.e., Q-
Learning (QL), Deep Q-Learning (DQL) and Double
Deep Q-Learning (DDQL), and compared based on their
performance, complexity, and additional latency.

• This work demonstrates the superiority a CMA distribu-
tion has over a single agent (SA) to DRM in multibeam
SatComs systems.

The paper is organized as follows: Section II includes
a background summary of reinforcement learning, Section III
explains the full flexibility system model and problem definition,
Section IV presents reformulating the problem as a CMA RL
and CMA DRL problem, Section V describes the proposed
DRL algorithm using a CMA distribution, Section VI presents
the simulation results and the analysis of the case study and,
finally, Section VII contains the conclusions of the study.
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II. REINFORCEMENT LEARNING BACKGROUND

This section outlines the basic concepts of reinforcement
learning and the algorithms used in this work; for additional
details, the interested reader could refer to [26]–[29].

Reinforcement learning is an area of the artificial intelli-
gence (AI) focused on identifying which actions should be
taken to maximize the reward signal; in other words, it is con-
cerned on how to map situations to actions that are focused
on finding that reward.

In the DRL, the agent represents the hardware or software
that must learn to perform a specific action; in that sense, the
agent interacts with an “environment”, which can be a real
decision process or a simulation of it. The agent works observ-
ing the environment, making a decision and checking which
effects it produces. If the outcome of that decision is bene-
ficial, the agent automatically learns to repeat that decision
in the future, while, if the outcome is harmful, it will avoid
making the same decision again.

In this way, following a process of learning by condition-
ing similarly to that of living beings, the agent learns which
decisions are most appropriate according to the situation, and
develops long-term strategies that maximize benefits.

The “brain” or the learning capacity of the agent is given
by a Machine Learning (ML) or a Deep Learning (DL) model.
This allows the exploitation of all recent advances in artificial
neural networks, thus being able to deal with problems that
require the analysis of unstructured data.

In an episode that starts at instant t until reaching the last state
of the sequence at instant T, the accumulated reward would be the
sum of all the rewards of its states. The objective of the agent is
not to maximize the immediate reward (of the following action),
while its objective is to maximize the accumulated reward in
each of the possible combinations of actions.

MDP provides a mathematical framework to model the
interaction between the agent and the environment. MDP key
target is a discrete time stochastic model whose evolution can
be controlled over time. A stochastic process and a value func-
tion are associated with the control policy. The end goal is
finding a “good” policy that solve the described problem [30].
For this reason, MDPs are useful for studying optimization
problems solved via dynamic programming and RL.

The MDP contains a set of states s ∈ S , a set of actions a ∈ A,
a reward function r ∈ R, and a series of transition probabil-
ities p(st+1|st , at ) of moving from the current state st to
the next state st+1 given an action at . The goal of an MDP
is to find a policy that maximizes the expected accumulated
rewards Rt =

∑∞
i=0 γ

i rt+i , where rt+i is the immediate
reward at the t + i time stamp and γ ∈ [0, 1] is the dis-
count factor. In this work we chose the non-model method,
which means that there is no knowledge of the transition
probabilities.

On the other hand, CMA systems are those in which sev-
eral agents attempt, through their interaction, to jointly solve
tasks or to maximize utility. A decentralized multi-agent envi-
ronment is one in which there is more than one agent, in
which the agents interact with each other and, in addition,
in which there are constraints in that environment, so that
the agents may not know at any given time everything that

the other agents know about the environment (including the
internal states of the agents themselves) [31].

Overall, cooperation among multiple RL agents is more crit-
ical, as multiple agents must collaborate to achieve a common
goal, accelerate learning, protect privacy, provide resilience
against failures and attacks, and overcome the physical behav-
ior of each RL individual actions of each agent. Under this
mechanism, each agent seeks to learn the best strategy to
maximize the reward of the shared team, while working with
the unknown random environment and the interaction of other
agents. Compared with the SA case, the CMA is much more
challenging, as the search space increases exponentially. In
addition, the non-stationary and unpredictable environment
is caused by agent concurrency and diversity behavior also
brought many difficulties to CMA. These difficulties can be
alleviated by proper coordination among agents to guarantee
Nash equilibrium [32].

In the proposed cooperative environment, there is a global
reward function and each agent will know the states and
actions of all agents, each agent must meet the minimum
requirements to achieve equilibrium in the system. The illus-
tration of the CMA is shown in Fig. 1. Considering a multi-
agent environment involving N agents, the n-th agent observes
the state of the globally shared environment and independently
selects an action to perform. Then, the current state is trans-
formed into a new state. All the agents are in the same environ-
ment and have a common goal, so they work in cooperation to
maximize the reward where S t = {s1t , s2t , . . . , sNt } represents
the current states of the agents, and At = {a1t , a2t , . . . , aNt }
represents the actions.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Fig. 2 shows the high-level architecture of the full flexible
VHTS system implementing the CMA based resource man-
agement. It is assumed that the considered payload is capable
of flexibly managing three types of resources, i.e., power,
bandwidth, and beamwidth, in a similar way to [20].

The system is composed of B beams. The suggested system
manages the communication resources in response to changes
in traffic demand D t = {D1

t ,D
2
t , . . . ,D

B
t } where Db

t repre-
sents the traffic demand in b-th beam at time instant t.

The resource management training is supposed to be per-
formed online, that is, every time the traffic requirements
change the values are updated to retrain the DRM agents given
the new conditions. For this reason, processing time will play
a very important role in DRM performance.

The proposed system assumes that the manager is on board,
the manager receives in input the traffic demand of the user
beams through the return link, and then generates an optimal
control through the Payload Control Center.

In the following, we consider the satellite to be a bent pipe
transponder architecture. Satellite-gateway feeder link is not
considered in the forward link because different technologies
are considered to ensure the overall link budget, such as ULPC
(Uplink Power Control), and gateway diversity [31], [34].

A. DRM Problem Statement

DRM must manage available resources to minimize
the error between the capacity offered in each beam
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Fig. 1. Cooperative Multi-Agent Reinforcement Learning for resource management in a VHTS satellite: System model.

Fig. 2. Architecture of the CMA system: Agents share the same reward.

and the required traffic demand, and, at the same time,
optimizing the resources used over time. In that sense, by
recalling [20], the minimization of the DRM cost function
can be defined as:

min
Pb
t ,BW bc

t ,θbt

F1 → F1 =
β1
B

B∑

b=1

∣
∣
∣C b

t −Db
t

∣
∣
∣

+
β2
B

B∑

b=1

EIRPb
t +

β3
B

Nc∑

c=1

Bc∑

bc=1

BW bc
t (1)

where

C b
t = f1

(
Pb
t ,BW

bc
t , θbt

)
(2)

EIRPb
t = f2

(
Pb
t , θ

b
t

)
(3)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

C b
t ≥ Db

t , if Pb
t < Pmax ,b , θ

b
t < θmax

or BW bc
t < BWmax ,b

C b
t = Cmax , if Pb

t = Pmax ,b , θ
b
t = θmax

and BW bc
t = BWmax ,b

(4)

B∑

b=1

Pb
t ≤ Pmax ,S (5)

Bc∑

bc=1

BW bc
t ≤ BWmax ,c (6)

θbt ε{θ1, θ2, . . . , θmax} ∀ b, t (7)

where the capacity offered in the b-th beam at time t, C b
t (in

bps), should cope with Db
t (in bps), the demand required in

the b-th beam at time t.
The minimization of the DRM cost function defined in (1),

similarly to [20], aims to minimize three parameters for each
time instant, t. The first parameter is the error between the
capacity offered and the demand required, where β1 (in s/bit)
is the weight of the error in the cost function. The second
parameter to be minimized is the total EIRP (effective isotropic
radiated power) assigned to all beams (in W), where β2 (in
1/W) is the weight of the total EIRP; the third parameter to
be minimized is the total bandwidth (in Hz) that is assigned
to the beams of each color (BWc) within the frequency plan,
where Nc is the number of colors in the frequency plan and
β3 (in 1/Hz or s) is the weight of the total bandwidth assigned
in each color of the frequency plan.

On the other hand, C b
t can be calculated as C b

t = BW bc
t ·

SE b
t , where SE b

t is the spectral efficiency of the modulation
and coding scheme of a commercial reference modem used in
the b-th beam over t [35]. As explained in [20], SE b

t depends
on the CINR in the b-th beam and in turn the CINR depends
on the resources allocated in each beam (Pb

t ,BW
bc
t , θbt ), the

CINR is obtained with the traditional link budget calculation.
Therefore, C b

t is a function f1(·) of the power, bandwidth
and beamwidth allocated to the b-th beam at time t (i.e.,
Pb
t ,BW

bc
t , θbt , respectively) as seen in (2) [3], [20].

Moreover, the EIRPb
t depends on the Pb

t and the Gb
t , max-

imum gain of the b-th beam over t, as well as the Gb
t depends
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Fig. 3. One-day cycle of traffic demand per beam.

on the θbt pattern as explained in [20]. Therefore, EIRPb
t is

a function f2(·) of the power and beamwidth assigned to the
b-th beam at time t (3) [3], [20].

The cost function constraints are presented in (4)-(7). The
minimum capacity restriction is shown in (4) where C b

t ≥ Db
t

for each beam, provided that the power, beamwidth, or band-
width assigned to the b-th beam at time t are less than
the maximum allowed for each beam (Pmax ,b , θmax and
BWmax ,b , respectively) [20]. In case the offered capacity can-
not satisfy the limitation of the beam requirement, the offered
capacity in the b-th beam shall be the maximum possible value.

Moreover, the overall power allocated to every beam
must not be greater than the maximum total system
power (Pmax ,S ) (5), and the total bandwidth allocated in each
color of the frequency plan must not be greater than the avail-
able bandwidth per color (BWmax ,c) (6). In addition, the
beamwidth of the b-th beam must belong to the set of pos-
sible configurations previously established (7). The selected
beamwidths must meet the requirement of completely covering
the entire service area [20].

In [20], [36] the authors propose a traffic model based
mainly on the fact that the density of traffic demand per km2

depends on the throughput per user (in bps/user), the pop-
ulation density (in inhabitant/km2), the penetration rate (in
user/inhabitant), and the concurrency rate that depends on the
time of day. The authors in [36], in addition to the above, also
consider the time zone in which the b-th beam is geograph-
ically located. In this sense, this work uses the traffic model
considered by the authors in [36].

The traffic demand at b-th beam at time t is calculated as
Db
t = dbt ·Ab

t , where Ab
t is b-th beam area (in km2) and which

depends on the θbt , it is to say greater beamwidth greater area,
and dbt is traffic demand expected value over all the area inside
b-th beam at time t (in bps/km2) which is obtained with the
study presented in [36]. In this sense, we obtain a behavior of
the traffic demand as shown in Fig. 3.

The selected reference scenario corresponds to a multi-
beam coverage for Europe and the Mediterranean basin with
82 beams, similar to the coverage currently provided by KA-
SAT [37]. In Fig. 3, the behavior of the traffic demand
is depicted for 4 reference beams, out of the possible 82:

Beam 1 is located centered on the geographic coordinates
(40.95, −3.25) and provides coverage to Madrid, Spain,
Beam 24 is located centered on the geographic coordinates
(50.51, 39.4) and covers a portion of the central region of the
European zone of Russia, Beam 57 is centered on the geo-
graphic coordinates of (40.11, 7.95) and covers the region
of Sardinia, Italy, Beam 82 is centered on the geographic
coordinates of (50.23, 11.4) and covers a portion of central
Germany.

IV. PROBLEM REFORMULATION AS COOPERATIVE

MULTI-AGENT DRL

The DRM cost function can be reformulated as a CMA RL
problem, for which the possible Pb

t ,BW
bc
t and θbt must

be established. C b
t ∈ {C1,C2, . . . ,Cmax ,b} is calcu-

lated assuming that Pb
t ∈ {P1,P2, . . . ,Pmax ,b}, BW b

t ∈
{BW 1,BW 2, . . . ,BWmax ,b} and θbt ε{θ1, θ2, . . . , θmax}.
That is, the space of all the capacity values that can be assigned
to the b-th beam depends on the resources allocated to the b-th
beam, therefore a distribution like that in Fig. 4 is obtained,
where it is observed that as the power and the bandwidth allo-
cated to the b-th beam increase, the offered capacity increases
forming a surface, and that by changing the beamwidth allo-
cated to b-th beam the surface moves with respect to the axis
of the capacity offered.

The offered capacity is related to the space of the pos-
sible resource allocations in the b-th beam and is obtained
with the conventional link budget analysis [3], [20], where
CNRb

t , CIRb
t and CINRb

t (Carrier to Noise Ratio, Carrier
to Interference Ratio and Carrier to Interference plus Noise
Ratio, respectively) depend on Pb

t ,BW
bc
t and θbt [3], [20].

A fixed availability is assumed, and the geographic position
of the b-th beam is not considered. For the CIRb

t , it is assumed
that the co-channel power interference (the same color in the
frequency plan) can be calculated as I bt =

∑Φ
ϕ=1 Pco(φ, θ

b
t ),

where ϕ represents the ϕ-th interferer spot, Φ is the total num-
ber of interfering beams of the beam b, and Pco is the power
level (in W) of ϕ-th interference inside the b-th beam.

On the other hand, DRM training is performed through
a DRL algorithm. A CMA distribution is used, where N equals
B (number of beams). The b-th agent represents a manager
of the resources of b-th beam. All agents have a joint objec-
tive, so they work in cooperation to maximize the accumulated
reward Rt .

There are B agents sharing the same space of pos-
sible resource allocation, each agent manages the power,
beamwidth, and bandwidth in each beam (Fig. 4).

The following parameters are defined to solve the DRM
problem using a CMA distribution of DRL algorithm.

The environment at each time t is composed of D t =
{D1

t ,D
2
t , . . . ,D

B
t }, representing the traffic demand in each of

the B beams, C t = {C 1
t ,C

2
t , . . . ,C

B
t }, the offered capacity

in the B beams, P t = {P1
t ,P

2
t , . . . ,P

B
t }, the current power

allocated in the B beams, BW t = {BW 1
t ,BW

2
t , . . . ,BW

B
t },

the current bandwidth allocated in the B beams, and θt =
{θ1t , θ2t , . . . , θBt } as current beamwidth allocated in the B
beams. Moreover,
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Fig. 4. Definition of possible movements of the b-th agent in the resource allocation space (a) power and bandwidth, (b) beamwidth.

Fig. 5. Multi-Agent (B Agents).

1) St = {s1t , s2t , . . . , sBt } represents the current states of
the B agents, that is the current positions in space
of possible allocated resources. That is, this parameter
indicates the power, bandwidth and bandwidth currently
allocated to each beam.

2) At = {a1t , a2t , . . . , aBt } represents the action of each
agent, that is, the movement it makes in the space of
possible allocated resources, where:

abt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1, increase in power
δ2, decrease in power
δ3, increase in bandwidth
δ4, decrease in bandwidth
δ5, increase in beamwidth
δ6, decrease in beamwidth
δ7, do nothing

(8)

is the space of the possible actions of the b-th agent,
where δk ∈ R and k ∈ {1, 2, 3, 4, 5, 6, 7} (Fig. 5).

3) The B agents share the same immediate reward rt that
is defined by:

rt =

⎧
⎨

⎩

−h1F1−h2Psat−h3BWc−h4

∑B
b=1 Xb ,

∏B
b=1 Vb = 1

−h1F1−h2Psat−h3BWc−h4

∑B
b=1 Xb−Z ,

∏B
b=1 Vb = 0

(9)

subject to:

Vb =

⎧
⎨

⎩

1,
∣
∣
∣C b

t −Db
t

∣
∣
∣ ≤ Umax

0,
∣
∣
∣C b

t −Db
t

∣
∣
∣ > Umax

(10)

PSat =

{
0,
∑B

b=1 P
b
t ≤ Pmax ,S

ρ,
∑B

b=1 P
b
t > Pmax ,S

(11)

BW c =

{
0,
∑Bc

bc=1 BW
bc
t ≤ BWmax ,c

ρ,
∑Bc

bc=1 BW
bc
t > BWmax ,c

(12)

Xb =

⎧
⎪⎪⎨

⎪⎪⎩

μ1, abt = δ1 or abt = δ2
μ2, abt = δ3 or abt = δ4
μ3, abt = δ5 or abt = δ6
μ4, abt = δ7

(13)

It is required that each agent will seek its own benefit even
if the immediate reward, rt , is the same for all agents. For
that reason, rt is conditioned to the constraint that

∏B
b=1Vb

is either 1 or 0 (9), where Vb has to be equal to 1 if the
absolute difference between the traffic demand and the offered
capacity of the b-th beam is less than or equal to the maximum
allowed, Umax (10). Thus, guaranteeing that, although agents
work cooperatively to maximize a shared reward, each agent
has to seek its own benefit.

In (9), F1 is the cost function of the DRM (1) which is
a function of the resources allocated and will depend on the
actions of the B beams, At . PSat is a power constraint on
the satellite, BW c is a bandwidth constraint on the color of
frequencies plan and ρ is a positive value that decreases the
immediate reward when agents default on power and/or band-
width constraint. Xb is defined by the movement that the b-th
agent makes in the resource allocation space and μ1, μ2, μ3,
and μ4 are the priority that has the resource allocation, depend-
ing on the payload features, it has a priority or another. That is,
if power, bandwidth, and beamwidth have the same priority in
the system, and μ1, μ2, μ3, and μ4 will have the same value,
otherwise the weights should be different in order to receive
a higher reward when the agent increases or decreases the
resource with higher priority. In addition, h1, h2, h3, and h4
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Algorithm 1 DRM Algorithm Online (It is Performed Every
Time the Traffic Demand Changes)
- Observe the current environment:

Dt =
{
D1
t ,D

2
t , . . . ,D

B
t

}
as traffic demand in the B beams, C t ={

C1
t ,C

2
t , . . . ,C

B
t

}
as offered capacity in the B beams over time

t, Pt =
{
P1
t ,P

2
t , . . . ,P

B
t

}
as current power allocated in the B

beams, BW t =
{
BW 1

t ,BW 2
t , . . . ,BWB

t

}
as current bandwidth

allocated in the B beams, and θt =
{
θ1t , θ

2
t , . . . , θ

B
t

}
as current

beamwidth allocated in the B beams
- Train the DRL algorithm with the current conditions
- Obtain policies for agents
- Update Resources:

Pt+1 =
{
P1
t+1,P

2
t+1, . . . ,P

B
t+1

}
as new power allocated in

the B beams, BW t+1 =
{
BW 1

t+1,BW 2
t+1, . . . ,BWB

t+1

}

as new bandwidth allocated in the B beams, θt+1 ={
θ1t+1, θ

2
t+1, . . . , θ

B
t+1

}
as current beamwidth allocated in the B

beams.
- Update values:

Pt ← Pt+1, BW t ← BW t+1 and θt ← θt+1

are positive values and represent the weights of each parame-
ter in the immediate reward. Z is the penalty received when at
least one agent has an absolute difference between the traffic
demand and the offered capacity of the b-th beam greater than
the maximum required.

V. COOPERATIVE MULTI-AGENT DRL BASED ON

DYNAMIC RESOURCE MANAGEMENT ALGORITHM

The problem can be solved using two algorithms: on the one
hand the DRM algorithm to manage resources (Algorithm 1)
and on the other hand the algorithm used to train agents
every time there are changes in traffic requirements. Since
the training is online, the convergence time of the algo-
rithm becomes very important for the DRM system. Based on
this, three different algorithms, i.e., Q-Learning (QL), Deep
Q-Learning (DQL) and Double Deep Q-Learning (DDQL)
outlined in the following in the Algorithm 2, Algorithm 3 and
Algorithm 4, respectively, are proposed.

The DRM algorithm (Algorithm 1) first observes the current
environment, which is represented by the traffic demand and
the capacity offered depending on the distribution of resources.
With the acquired observation data, the agents are trained using
a RL or DRL algorithm to obtain the agent policies and update
the resources. This is repeated at every instant of time that the
traffic demand changes.

The QL and DRL goal is to extract which actions should be
chosen in the different states to maximize the reward. In a way,
we seek that the B agents learn what is called a policy, which
formally we can see as an application that tells each agent
what action to take depending on its current state [26]. The
policy of the agents is divided in two components: on one side,
how each agent believe that an action refers to a determined
state, and on the other side, how the agent uses what knows
to choose one of the possible actions.

In the QL algorithm (Algorithm 2), the Qb value of a pair
(sbt , abt ) contains the sum of all these possible rewards. If the
b-th agent knows a priori the Qb values of all possible pairs

Algorithm 2 Q-Learning
- Set values for learning rate α, and γ
Arbitrary initiation of the B Q-Tables
- Repeat for each episode, do

◦ Initialize St =
{
s1t , s

2
t , . . . , s

B
t

}

◦ Repeat for each step of episode, do
• Each agent

• Chose abt from sbt using policy derived from Qb
• Take action abt , observe rt and sbt+1• Update values using:

Qb

(
sbt , a

b
t

)←Qb

(
sbt , a

b
t

)

+ α
[
rt
(
sbt , a

b
t

)
+γmax

abt
Qb

(
sbt+1, a

b
t

)−Qb

(
sbt , a

b
t

)]

sbt ← sbt+1
• End do

◦ End do
- End do

Algorithm 3 Deep Q-Learning
- Set values for learning rate α, and γ and M which is the set of B

replay memories {M1,M , . . . ,MB}, where Mb represents the b-th
replay memory

- Initialize ωt and Q-values with random weights
- Repeat for each episode, do

◦ Initialize St = {s1t , s2t , . . . , sBt }◦ Repeat for each step of episode, do
• Each agent

• With probability ε select a random
action abt , otherwise select abt =

arg max
ab
t

Qb
′(sbt , abt , ωt )

• Take action abt , observe rt and sbt+1
• Store transition (sbt , a

b
t , rt , st−1, done) in

expereince replay memory Mb .
• Sample random minibatch of transitions

(sbt , a
b
t , rt , st−1) from Mb .• For every transition in minibatch, do

Qb
′ =

⎧
⎨
⎩

rt (s
b
t , a

b
t , ωt−1), if done

rt (s
b
t , a

b
t , ωt−1) + γmax

ab
t

Qb
′(sbt+1, a

b
t , ωt−1), else

• End do
• Calculate the loss

Lb(s
b
t , a

b
t , ωt ) = (Qb

′ −Qb(s
b
t , a

b
t , ωt ))

2

• Update Qb using gradient descent by
minimizing the loss Lb(s

b
t , a

b
t , ωt )• End do

◦ End do
- End do

(sbt , abt ) it could use this information to select the appropri-
ate action for each state. In that sense, there is a Q-Table
(Figure 6) for each agent that represents a matrix of size JxK
where J is the number of possible states of the b-th agent and
K the number of possible actions, and in each position of the
matrix it will be represented the value Qb for each pair of
state-action.

The problem is that at the beginning the agent does not have
this information, for which its first objective is to approximate
to the maximum this assignment of values Qb , which depend
on both future and current rewards as show in:

Qb

(
sbt , a

b
t

)
= rt

(
sbt , a

b
t

)
+ γmax

ab
t

Qb

(
sbt+1, a

b
t

)
(14)
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Fig. 6. Q-Table of b-th beam for QL algorithm.

Fig. 7. Neural network of the b-th agent to calculate the Qb -Values in the
DQL algorithm.

where sbt+1 represents the following state and γ is the discount
factor that controls the contribution of future rewards.

Since this is a recursive equation, it starts by making arbi-
trary assumptions for all Qb values and is implemented as an
update:

Qb

(
sbt , a

b
t

)
← Qb

(
sbt , a

b
t

)

+ α

[

rt

(
sbt , a

b
t

)
+ γmax

ab
t

Qb

(
sbt+1, a

b
t

)

− Qb

(
sbt , a

b
t

)
]

(15)

where α is the learning rate or step size. This simply
determines the extent to which newly acquired information
overrides old information.

The QL algorithm initializes arbitrarily the B Q-Tables and
in each iteration the matrix will be updated by using (14).

On the other hand, DQL (Algorithm 3) uses a neural
network to approximate the function of the Qb value, thus
avoiding using a table to represent it (Fig. 7). In the input of
the Neural Network there is the state of the b-th agent, and in
the output there is Qb for each of the possible actions; all the
experiences are saved by the b-th memory, Mb .

On a higher level, DQL works as such:
a. Collect and store samples in a memory replay buffer

with the current policy
b. Random sample batches of experiences from the

memory replay buffer (known as Repetition of expe-
riences)

c. Use the sample experiences to update the Q network
d. Repeat a-b
The Neural network loss function is the mean square error

of the predicted Qb value and the target Q ′b value. This is
basically a regression problem:

Lb

(
sbt , a

b
t , ωt

)
=
(
Qb
′ −Qb

(
sbt , a

b
t , ωt

))2
(16)

Qb
′ = rt

(
sbt , a

b
t , ωt−1

)

+ γmax
ab
t

Qb
′
(
sbt+1, a

b
t , ωt−1

)
(17)

Fig. 8. Target and Generated Neural Network of the b-th agent to calculate
the Qb and Qb

′ values in the DQL algorithm.

where Qb
′ is the temporal difference target, and Qb

′ −Qb is
the temporal difference error, ωt is the current neural network
parameters and ωt−1 the previous parameters.

In DDQL (Algorithm 4), each agent uses two neural
networks with the same architecture to learn and predict
what action to take at each step (Fig. 8). DDQL model
includes two deep learning networks, called the gener-
ated Q-network (Qb(s

b
t , a

b
t , ωt )) and the target Q-network

(Qb(s
b
t , a

b
t , ωt

−)) where ωt
− is the current target neural

network parameters.
DDQN can produce more accurate value estimates, and, in

addition, leads to better overall performance of the deep neural
network. The ability of the DDQN to produce more accurate
value estimates comes from the fact that it separates the neu-
ral network into two networks. The generated Q-network is
used to generate actions and the target Q-network is used to
train from randomly selected observations from the replica-
tion memory. The replay memory of the DDQN stores state
transitions received from the environment, allowing reuse of
this data. By taking a random sample from it, the transi-
tions that form a batch are related to uncorrelation, stabilizing
the DDQN.

The generated Q-network is utilized to compute the b-th
Qb value for b-th agent while the target Q-network aims to
produce the target Qb

′ value to train the parameters of the gen-
erated Q-network. Depending on the basic idea of the DDQL,
the target Qb

′ value can be defined as:

Qb
′ = rt

(
sbt , a

b
t , ωt−1

)

+ γQb

(

sbt+1, arg max
ab
t

Qb

(
sbt+1, a

b
t , ωt−1

)
, ωt
−
)

(18)

For each episode, the b-th agent choose a random
action according to whether or not a random probabil-
ity was less than ε; if the value exceed the threshold ε,
then the b-th agent chooses the action abt according to
arg maxab

t
Qb(s

b
t+1, a

b
t , ωt−1).
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TABLE I
ARCHITECTURE OF THE NEURAL NETWORK FOR DQL AND DDQL (BB)

For each episode, a decay was used at time step t where:

ε =
1√
t
λ (19)

and λ is a constant scaling factor for ε decay in the
range [0, 1].

On the one hand, DDQL algorithm needs fewer episodes to
converge with respect to DQL and QL [38], [39]. However, the
average time of a QL episode duration is significantly shorter
compared to DQL and DDQL depending on the complexity
of the problem, neural networks architecture and the features
of the computer used [38], [39].

Based on the DRM (Algorithm 1), the training of the agents
is online, hence the convergence time of the algorithm is
a trade-off, since a more complex algorithm requires fewer
episodes to converge but the time required for each episode
increases. In this sense, the normalized convergence time,
NCT, is calculated as:

NCT =
ET alg ·NEalg

ETQL
(20)

where ET alg is the average time per episode of the algorithm,
NEalg is the number of episodes in which the algorithm con-
verges and ETQL is the average time per episode of the QL
algorithm.

In DQL (Algorithm 3) and in DDQL (Algorithm 4) it is
required to define the neural networks architecture. In that
sense, in Table I we propose 3 different neural network archi-
tectures for DQL and DDQL, where the input layer has the
state shape of each agent and the output layer has the size
of the set of possible actions of each agent; the 3 proposed
architectures consist of 2 hidden layers but what changes is
the number of neurons in each hidden layer.

VI. NUMERICAL RESULTS AND ANALYSIS

The traffic model, as defined in Section III, is based on
a service area similar to that of the KaSat satellite [37] with
82 beams. The flexible parameters per beam are power with
8 to 17 dBW with steps of 0.1 dB, bandwidth with 100, 150,
200, 250, 300, 350, 400, 450 or 500 MHz and beamwidth with
0.55◦, 0.60◦ or 0.65◦.

The software tool chain used to implement CMA DRL
consist of a Jupyter development environment using Keras
2.0. The computer used for the training phase is an Intel
Core i7-7700HQ 2.8 GHz CPU and 16 GB RAM.

A. Cooperative Multi-Agent vs a Single Agent

If the proposed problem were attempted to be solved using
SA, the number of possible actions would increase to K · B ,

Algorithm 4 Double Deep Q-Learning
- Set values for γ and M which is the set of B replay memories

{M1,M , . . . ,MB}, where Mb represents the b-th replay memory
- Initialize ωt , ωt− and Q-values with random weights
- Repeat for each episode, do

◦ Initialize St = {s1t , s2t , . . . , sBt }◦ Calculate ε

ε = 1√
t
λ

◦ Repeat for each step of episode, do
• Each agent

• With probability < ε select a
random action abt , otherwise select
abt = argmax

ab
t

Qb(s
b
t+1, a

b
t , ωt−1)

• Take action abt , observe rt and sbt+1
• Store transition (sbt , a

b
t , rt , st−1, done) in

experience replay memory Mb .
• Sample random minibatch of transitions

(sbt , a
b
t , rt , st−1) from Mb .• For every transition in minibatch, do

Qb
′=

⎧
⎪⎨

⎪⎩

rt (s
b
t , a

b
t , ωt−1), if done

rt (s
b
t , a

b
t , ωt−1)+γQb(s

b
t+1, arg max

abt

Qb(s
b
t+1, a

b
t , ωt−1), ωt

−), else

• End do
• Calculate the loss

Lb(s
b
t , a

b
t , ωt ) = (Qb

′ −Qb(s
b
t , a

b
t , ωt ))

2

• Update Qb using gradient descent by
minimizing the loss Lb(s

b
t , a

b
t , ωt )

• Copy weights from ωt to ωt
−

• End do
◦ End do

- End do

where K is the number of possible actions in a beam and B the
number of beams, and the number of states would correspond
to all the possible combinations of resource allocation in the
B beams, leading to a very complex problem for a SA. This
is demonstrated by the obtained results which allow us to
make a comparison in terms of the total reward between CMA
and SA.

The results are presented in Fig. 9. The first issue that can
be observed is the superiority when using a CMA architecture
compared to a SA. It can be seen that with a SA, the QL
algorithm still does not converge even after 500 episodes and
the reward it gets is still very low. However, it is observed
that by using a Multi-Agent architecture, favorable results are
obtained even by using a simple algorithm such as QL with
which a reward of up to −0.3 is obtained.

Using a CMA architecture, it is observed that for DQL and
DDQL the convergence is faster, but the complexity of the
algorithm is higher, so it can add a greater delay because the
training is performed online. NN 1, NN 2 and NN 3 obtain
favorable results for DQL and DDQL when the architecture is
CMA, however, when the architecture is a single agent, NN
1 does not converge and has many oscillations.

B. Online Processing Time

The QL and DRL algorithm training is online (Algorithm 1),
therefore the time needed to converge the DRL algorithm is
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Fig. 9. Performance comparison of algorithms using a CMA distribution with respect to a single agent. (a) CMA QL, (b) single-agent QL, (c) CMA DQL for
3 Neural Network architectures, (d) single-agent DQL for 3 Neural Network architectures, (e) CMA DDQL for 3 Neural Network architectures, (f) single-agent
DDQL for 3 Neural Network architectures.

a Key Performance Indicator (KPI) since it represents an added
delay. This added delay is a function of the number of episodes
that the QL or DRL algorithm needs to converge and the aver-
age time of each episode. The average time of each episode
depends on the features of the computer used for training. In
that sense, Table II show the Normalized convergence time of
the QL and DRL algorithms using a CMA distribution. When

considering a computer with the features previously listed, the
average time per episode is 9.36 s for the QL algorithm. In
that sense, Table II shows the normalized convergence times
for the different algorithms using a CMA distribution. It should
be mentioned that in case of higher processing capabilities of
the computer used for running the algorithms, this convergence
time can decrease remarkably.
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TABLE II
RL ALGORITHMS ADDITIONAL DELAY USING A CMA DISTRIBUTION

Fig. 10. Performance of CNN and CMA DRL algorithms at 11 a.m. over
the entire service area. After 64 normalized time of training for CMA DRL
algorithm.

QL is the least complex algorithm (Algorithm 2) so the
normalized average time of each episode is only 1, but the
number of episodes required to converge is 332, which makes
QL the algorithm that adds the highest normalized coverage
time to the system (332).

On the other hand, DDQL is the most complex algorithm
(Algorithm 4) and a normalized time average per episode of
3.60 is obtained when using the NN 3, but the added complex-
ity results in requiring only 6 episodes to converge obtaining
a normalized convergence time to the system of 21.6, that is,
93% less than the time required using QL.

DQL is the algorithm that obtains the lowest added delay
when using an NN 3 architecture, since with only 8 episodes
it converges obtaining an added delay of 18.08, allowing
an effective trade-off between average time per episode and
number of required episodes.

C. Performance Evaluation

QL and DRL algorithms performance for a CMA distribu-
tion was evaluated on simulated traffic demand required in the
service area for 24 hours, assuming a fixed normalized train-
ing time of 64. After 64 normalized training time, most of the
RL algorithms have converged except the QL and the DQL
NN1 (Table II).

CNN is an offline algorithm proposed in [20] using the
same cost function (1) for the DRM model. In that sense,
Figure 10 presents a comparison of the DRM performance
using CNN or DRL algorithms with a CMA distribution (QL,

Fig. 11. Performance of CNN and CMA DRL algorithms during 24 hours
for the Beam 1 after 64 normalized time of training.

DQL NN2 and DDQL NN2) at 11 a.m. over the entire service
area.

It is observed that due to the constraints of the DRM func-
tion in (4), the capacity offered in each beam is greater than
or equal to the traffic demand for all the evaluated algorithms.
The QL algorithm shows a greater error following the shape
of the traffic demand, this is due to the training time that
was established. The DDQL algorithm is the most success-
ful performing by following the shape of the traffic demand
on all beams. In most beams, CNN and DQL have similar
performance, although in some cases (e.g., Beam 1) DQL has
similar performance to DDQL.

The performance shown in Fig. 11 was obtained after
evaluating the algorithms performance limited to the Beam
1 for 24 hours. It is observed that using any algorithm,
the capacity offered for 24 hours is greater or equal to the
required demand. CNN demonstrates a superiority in tracking
traffic demand compared to QL except at 15 and 20 hours.
However, it is important to note that with 64 normalized time
of training the QL algorithm still does not converge. On the
other hand, DQL NN 2 and DDQL NN 2 present a superi-
ority compared to CNN. DDQL NN2 is the one that obtains
a better performance when tracking the shape of the traffic
demand.

In terms of saving resources [20], the (PPayload ) normalized
payload power is defined as:

PPayload =
PTotal ,Alg

PTotal ,UPA
(21)

where PTotal ,UPA is the Total Payload Power when using
a Uniform Power Allocation (UPA) and PTotal ,Alg is Total
Payload Power when using the Power Allocation using the
proposed algorithm.

Lei and Vázquez-Castro [15] achieve power consump-
tion reductions of up to 3 dB compared to a traditional
payload in their proposal published, in which they manage
power and bandwidth using a suboptimal method (SOM).
Figure 12 presents the normalized payload power using SOM,
CNN and the RL and DRL algorithms (QL, DQL and
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Fig. 12. System Power saving for CMA DRL algorithms compared to CNN.
Note: For DQL and DDQL the NN2 is used.

DDQL) with a CMA distribution. It is observed that ML
algorithms achieve higher power savings compared to SOM.
DQL and DDQL obtain the lowest normalized payload power
with a difference of almost 0.3 below than the CNN nor-
malized payload power. However, it is observed that QL
gets the highest normalized payload power between all ML
algorithms.

VII. CONCLUSION

The DRM problem for VHTS systems is defined as a novel
MDP with a multiagent environment that works cooperatively
to achieve maximum reward. All agents share the same reward
but each agent must meet minimum conditions, which guar-
antees that despite working cooperatively, each agent will
seek its own benefit. In that sense, one RL algorithm and
two DRL algorithms to manage the resources available in
flexible payload architectures for DRM are suggested, i.e.,
QL, DQL and DDQL using a CMA distribution, and com-
pared based on their performance, complexity and added
latency. This work demonstrates the superiority a CMA has
over a SA. The proposed algorithms are also compared with
a recently proposed offline algorithm in the state of the art,
CNN, and their performance is evaluated with respect to
resource management. In addition, a comparison is made with
an algorithm based on a sub-optimal method in terms of the
power saving. In this work it is proposed that the training
of agents is performed online, hence the time required by
each algorithm to converge is critical as it represents a delay
added to the system. It is important to note that the added
delay obtained during the simulations depends on the fea-
tures of the computer used, so when applied in a real system,
a high-performance computer could be able to reduce the
training times.

As a future work, it is intended to include a wider
study including different co-channel interference mitigation
techniques and to evaluate their effects on the proposed
system. In addition, a comparison of the cost per Gbps

in orbit with all ML algorithms used for DRM will be
carried out.
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