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Matrix oriented reduction of space-time
Petrov-Galerkin variational problems.

Julian Henning, Davide Palitta, Valeria Simoncini, and Karsten Urban

Abstract Variational formulations of time-dependent PDEs in space and time yield
(d + 1)-dimensional problems to be solved numerically. This increases the number
of unknowns as well as the storage amount. On the other hand, this approach enables
adaptivity in space and time as well as model reduction w.r.t. both type of variables.
In this paper, we show that matrix oriented techniques can significantly reduce the
computational timings for solving the arising linear systems outperforming both
time-stepping schemes and other solvers.

1 Introduction

Time-stepping schemes based upon variational semi-discretizations are the standard
approach for the numerical solution of time-dependent partial differential equations
(PDEs). Using a variational formulation in space and a subsequent discretization e.g.
in terms of finite elements, one is left with an evolution problem in time. Standard
finite difference techniques then yield a time-marching scheme, where a spatial
problem needs to be solved in each time step.

Even though theoretical investigations on space-time variational formulations of
PDEs have been around for a long time, [10], it was seen prohibitive to treat the time
as an additional variable for numerical simulations. In fact, if Ω ⊂ Rd denotes the
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spatial domain, adding the time t ∈ (0,T ) =: I as an additional unknown results in
a PDE on ΩI := I ×Ω in Dimension d + 1, which is costly both w.r.t. the amount of
storage and the required computation time.

Also due to the increasing computing power the point of view has changed over
the past years. In fact, being able to simulate problems for d up to three until about
20 years ago, adding another dimension seemed to be impossible. Nowadays, where
we face high-dimensional problems (e.g. from quantum physics or finance) with
d � 100, adding another dimension seems almost negligible. Another aspect to
use space-time variational problems arose from model reduction of parameterized
time-dependent PDEs. In fact treating both time and space as variables allows one
to perform model reduction for space and time, [14]. The time-stepping model
reduction approach yields a time-marching scheme for a reduced spatial dimension
but with the same number of time steps, [7].

In this paper, we address the question of how to efficiently solve the linear
systems arising from a (full) Petrov-Galerkin discretization of space-time variational
formulations of time-dependent PDEs. It turns out that the involved coefficient
matrices, combining space and time discretizations, have a tensorproduct structure,
which allows us to use more efficient matrix equations solvers than what can be done
with the usual vector representation.

This paper is organized as follows: In §2 we review space-time variational formu-
lations of some PDEs and describe corresponding Petrov-Galerkin discretizations
as well as the arising linear systems in §3; §4 is devoted to the description of the
numerical schemes and §5 to numerical experiments, in particular the comparison
with time-stepping schemes.

2 Space-Time Variational Formulation of PDEs

The Heat Equation. Let A : X → X ′ be an elliptic operator on X := H1
0 (Ω)

associated to a coercive bilinear form a : X × X → R, and f ∈ L2(I; X ′). We
look for u ∈ U := H1

(0) (I; X ′) ∩ L2(I; X ) such that1 ut + Au = f , u(0) = 0, where
homogeneous initial conditions are chosen only for convenience. The variational
formulation then reads

find u ∈ U : b(u, v) = 〈 f , v〉 for all v ∈ V, (1)

where V := L2(I; X ), b(u, v) :=
∫ T

0

∫
Ω

ut (t, x) v(t, x) dx dt +
∫ T

0 a(u(t), v(t)) dt

and 〈 f , v〉 :=
∫ T

0

∫
Ω

f (t, x) v(t, x) dx dt. The well-posedness is ensured by Nečas’
conditions, namely boundedness, injectivity and inf-sup condition of b(·, ·), [5].
The Wave Equation. Next, we consider an equation of wave type. Here, for H :=
L2(Ω), we view the operator A as a mapping A : Dom(A) := {φ ∈ H : Aφ ∈
H } → H , or A : H → Dom(A)′. For f ∈ L2(I; H), we seek u ∈ L2(I; H)

1 H 1
(0) (I ; X ′) := {w : I → X ′ : w ∈ H 1(I ; X ′), w (0) = 0}, recall that H 1(I ; X ′) ↪→ C ( Ī ; X ′).
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such that utt + Au = f , u(0) = 0, ut (0) = 0, where we choose homogeneous
initial conditions again only for convenience. In this case, it is not so obvious
how to setup a well-posed variational form. It turns out that a very-weak setting is
appropriate. We formulate the problem as in (1) by using U := L2(I; H) as trial
and V := {v ∈ L2(I; H) : vtt + Av ∈ L2(I; H), v(T ) = vt (T ) = 0} as test space.
Then, one can show that (1) is well-posed for b(u, v) := (u, vtt + Av)L2 (I ;H ) and
〈 f , v〉 := ( f , v)L2 (I ;H ) for fixed T < ∞.

3 Petrov-Galerkin Discretizations

In order to determine a numerical approximation to the solution of a variational
problem (1), one chooses finite-dimensional trial and test spaces, Uδ ⊂ U, Vδ ⊂ V ,
respectively. For convenience, we assume that their dimension is equal, i.e., Nδ :=
dimUδ = dimVδ . The Petrov-Galerkin method then reads

find uδ ∈ Uδ : b(uδ, vδ ) = 〈 f , vδ〉 for all vδ ∈ Vδ . (2)

As opposed to the coercive case, the well-posedness of (2) is not inherited from that
of (1). In fact, the spaces Uδ and Vδ need to be appropriately chosen in the sense
that the discrete inf-sup (or LBB –Ladyshenskaja-Babuška-Brezzi) condition holds,
i.e., there exists an β > 0 such that infuδ ∈Uδ supvδ ∈Vδ

b(uδ,vδ )
‖uδ ‖U ‖vδ ‖V

≥ β > 0, where
the crucial point is that β , βδ . The size of β is also crucial for the error analysis,
since it holds that ‖u − uδ ‖U ≤ 1

β infwδ ∈Uδ ‖u − wδ ‖U , [15].
The Heat Equation. Starting with the temporal discretization, choose some in-
teger Nt > 1 and set ∆t := T/Nt resulting in a temporal triangulation T time

∆t
≡

{tk−1 ≡ (k − 1)∆t < t ≤ k ∆t ≡ tk, 1 ≤ k ≤ Nt } in time. Denote by
S∆t = span{σ1, . . . , σNt } piecewise linear finite elements on I, where σk is the
(interpolatory) hat-function with the nodes tk−1, tk and tk+1 (resp. truncated for
k ∈ {0, Nt }) and Q∆t = span{τ1, . . . , τNt } piecewise constant finite elements, where
τk := χI k , the characteristic function on the temporal element Ik := (tk−1, tk ). For
the spatial discretization, we choose any conformal Xh = span{φ1, . . . , φNh

} ⊂ X ,
e.g. piecewise linear finite elements. Then, we set Uδ := S∆t ⊗ Xh , Vδ = Q∆t ⊗ Xh ,
δ = (∆t, h). It can be shown that this yields LBB. Moreover, for A = −∆ and choos-
ing the energy norm on X as well as a slightly modified norm on U, one can even
prove that β = 1, [14]. Finally, we remark that this specific discretization coincides
with the Crank–Nicolson (CN) scheme if a trapezoidal approximation of the right-
hand side temporal integration is used. Hence, we can later compare space-time
Petrov-Galerkin numerical schemes with a CN time-stepping scheme.

Finally, we detail the linear system of equations BT
δ uδ = fδ , where

[Bδ](k, i), (`, j ) = (σ̇k, τ`)L2 (I ) (φi, φ j )L2 (Ω) + (σk, τ`)L2 (I ) a(φi, φ j ), (3)

[ fδ](`, j ) = ( f , τ` ⊗ φ j )L2 (I ;H ), (4)
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which means that we get a tensorproduct structure for the stiffness matrix Bδ =
D∆t ⊗ Mh + C∆t ⊗ Ah , where the matrices are defined in an obvious manner. The
right-hand side is not yet in a tensorproduct structure. However, we can achieve that
by determining an approximation

f (t, x) ≈
P∑

p=1

ϑp (t) f p (x) =: f P (t, x), (5)

e.g. by the Empirical Interpolation Method (EIM), [2]. By choosing P suffi-
ciently large, we can achieve any desired accuracy. Then, we get [ f Pδ ](`, j ) =∑P

p=1(ϑp, τ
`)L2 (I ) ( f p, φ j )L2 (Ω) , i.e., f Pδ =

∑P
p=1 hp ⊗ gp .

The Wave Equation. Constructing a stable pair of trial and test spaces for the
wave equation is again a nontrivial task. Following an idea from [3], we first
define the test space and construct the trial space in a second step in order to
guarantee LBB, which, however, deteriorates with increasing T . Doing so, we
set R∆t := span{%1, . . . , %Nt } ⊂ H2

T (I) := {ρ ∈ H2(I) : ρ(T ) = ρ̇(T ) = 0},
e.g. piecewise quadratic splines on T time

∆t
. For space, we choose any conformal

Zh = span{ψ1, . . . , ψNh
} ⊂ H2(Ω) ∩ H1

0 (Ω), e.g. piecewise quadratic finite ele-
ments. Then, we define Vδ := R∆t ⊗ Zh , a tensor product space. The trial space Uδ

is constructed by applying the adjoint PDE operator to each test basis function, i.e.
vk, i := d2

dt2
%k (t)ψi (x) + A(%k (t)ψi (x)) = %̈k (t)ψi (x) + %k (t)Aψi (x). We detail the

arising linear system of equations starting with the stiffness matrix

[Bδ](k, i), (`, j ) = b(vk, i, %` ⊗ψ j ) = ( %̈k ⊗ψi + %
k ⊗ Aψi, %̈

` ⊗ψ j + %
` ⊗ Aψ j )L2 (I ;H )

= ( %̈k, %̈`)L2 (I ) (ψi, ψ j )L2 (Ω) + ( %̈k, %`)L2 (I ) (ψi, Aψ j )L2 (Ω)

+ (%k, %̈`)L2 (I ) (Aψi, ψ j )L2 (Ω) + (%k, %`)L2 (I ) (Aψi, Aψ j )L2 (Ω),

so that Bδ = Q∆t ⊗ Mh + (D∆t + DT
∆t

) ⊗ Ah + M∆t ⊗ Qh , again with obvious
definitions of the matrices. For the right-hand side, we perform again an EIM-
type approximation f P (t, x). Then, [ f Pδ ](`, j ) =

∑P
p=1(ϑp ⊗ f p, %` ⊗ ψ j )L2 (I ;H ) =∑P

p=1(ϑp, %
`)L2 (I ) ( f p, ψ j )L2 (Ω) , so that the right-hand side has the same structure

as in the first example. Due to the asymptotic behavior of the inf-sup-constant, we
expect stability problems as ∆t → 0, i.e., Nt → ∞.

4 Efficient Numerical Methods for Tensorproduct Systems

In both cases described above (and in fact also in space-time variational formulations
of other PDEs), we obtain a (regular) linear system of the form

Bδuδ = fδ with Bδ =
PB∑
p=1

Dp ⊗ Ap, fδ =
P f∑
`=1

h` ⊗ q`, (6)
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where all involved matrices are sparse and (at least some of) the Aq are s.p.d. Recall
that (Dp ⊗ Ap )x = vec(ApX DT

p ), where vec stacks the columns of a given matrix
one after the other, and x = vec(X ). We can thus rewrite the system Bδuδ = fδ in
(6) as the linear matrix equation

∑PB

p=1 ApUδDT
p =
∑P f

`=1 q`hT` , with uδ = vec(Uδ ).
Matrix equations are receiving significant attention in the PDE context, due to the
possibility of maintaining the structural properties of the discretized problem, while
limiting memory consumptions; see [13]. Under certain hypotheses, a large vari-
ety of discretization methodologies such as finite differences, isogeometric analysis,
spectral (element) methods, certain finite element methods as well as various para-
metric numerical schemes rely on tensor product spaces; see, e.g., [1, 4, 8, 9]. More
recently, all-at-once time discretizations have shown an additional setting where
tensor product approximations naturally arise; see, e.g., [11] and references therein.
Among the various computational strategies discussed in the literature [13], here we
focus on projection methods that reduce the original equation to a similar one, but
of much smaller dimension.
Discretized Heat Equation. The problem Bδuδ = fδ stemming from (3,4) yields
the following generalized Sylvester equation

MhUδD∆t + AhUδC∆t = Fδ, with Fδ := [g1, . . . , gP][h1, . . . , hP]T . (7)

The spatial stiffness and mass matrices Ah and Mh typically have significantly
larger dimensions Nh than the time discretization matrices D∆t , N∆t , i.e., Nt �

Nh . We therefore use a reduction method only for the space variables by pro-
jecting the problem onto an appropriate space. A matrix Galerkin orthogo-
nality condition is then applied to obtain the solution: given Vm ∈ RNh×km ,
km � Nh , with orthonormal columns, we consider the approximation space
range(Vm) and seek Ym ∈ Rkm×Nt such that Uδ,m := VmYm ≈ Uδ and the
residual Rm := Fδ − (MhUδ,mD∆t + AhUδ,mC∆t ) satisfies the Galerkin condition
Rm ⊥ range(Vm ). Imposing this orthogonality yields that VT

m Rm = 0 is equivalent
to VT

m FδVm − (VT
m MhVm )YmD∆t − (VT

m AhVm )YmC∆t = 0. The resulting problem is
again a generalized Sylvester equation, but of much smaller size, therefore Schur-
decomposition oriented methods can cheaply be used, [13, sec.4.2], see [13] for a
discussion on projection methods as well as their matrix and convergence properties.

For selecting Vm , let F = F1FT
2 with F1 having full column rank. Given the

properties of Ah , Mh , we propose to employ the rational Krylov subspace RKm :=
range([F1, (Ah−σ2Mh )−1MhF1, (Ah−σ3Mh )−1MhF1, . . . , (Ah−σmMh )−1MhF1]),
where the shifts σs can be determined adaptively while the space is being generated;
see [13] for a description and references. The obtained spaces are nested, RKm ⊆

RKm+1, therefore the space can be expanded if the approximation is not sufficiently
good. To include a residual-based stopping criterion, the residual norm can be
computed in a cheap manner, see, e.g., [6, 11] for the technical details.
Discretized Wave problem. The problem Bδuδ = fδ now takes the matrix form

MhUδQT
∆t + AhUδ (D∆t + DT

∆t ) +QhUδM∆t = Fδ . (8)
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This three-term equation cannot be solved directly as before, therefore we opt for us-
ing preconditioned GMRES on the vectorized equation. The preconditioner is given
by the functional P : U → MhUQT

∆t
+ QhU M∆t , corresponding to the discretized

forth order operators, and exploits the matrix structure. Hence, at the kth GMRES
iteration we solve the generalized Sylvester equation MhWQT

∆t
+ QhW M∆t = Vk

where Vk is such that vk = vec(Vk ) is the previous basis vector. Since in this
one-dimensional problem dimensions are limited, this matrix equation is solved by
explicitly diagonalizing the pairs (Qh, Mh ) and (Q∆t, M∆t ) [13].

5 Numerical Experiments

In this section we show that the numerical solution of the linear system Bδuδ = fδ
can largely benefit from the exploitation of its Kronecker sum structure (6). The
performance of the all-at-once methods is compared in terms of both computational
time and memory requirements. For the heat equation, We also document the per-
formances of CN in terms of computational time. We are not aware of any variant of
CN that is able to exploit the low-rank structure of the underlying problem and we
thus employ the classical CN scheme. Such implementation leads to large running
times and a storage demand that is always equal to Nt · Nh as the fullUδ is allocated.

The tolerance of the final relative residual norm is set to 10−8 and in the following
tables we also report the number of iterations needed to achieve such accuracy and
the numerical rank of the computed solution. All results were obtained with Matlab
R2017b on a machine with 2.1 GHz processors and 192GB of RAM.

Example 5.1 (The heat equation) We consider the equation on the cubeΩ = (−1, 1)3

with homogeneous Dirichlet boundary conditions and the time interval I B (0, 10)
with initial conditions u(0, x, y, z) ≡ 0. The right-hand side is f (t, x, y, z) :=
10 sin(t)t cos( π2 x) cos( π2 y) cos( π2 z) and its discretized version is thus low rank.
For discretization in space, linear finite elements were chosen, leading to the dis-
cretized generalized Sylvester equation in (7). We compare the performance of the
Galerkin projection method based upon rational Krylov spaces described in §4 (de-
noted RKSM) with that of a low-rank version of preconditioned GMRES (denoted
LR-FGMRES-RKSM). For the latter, the preconditioner is chosen as a fixed (five)
number of iterations of the rational Krylov Galerkin projection method. Since the
preconditioner is a non-linear operator, a flexible variant of GMRES is used. We
refer the reader to [11] for more details. The results are displayed in Table 1.

The CN method leads to an excessive workload compared with the all-at-once
approaches for all considered values of Nh and Nt , with the computational time
growing linearly with the number of time steps Nt . The performance of the other
methods is independent of the time discretization, and it only depends on the spatial
component of the overall discrete operator. In fact, spatial mesh independence seems
to also be achieved.
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Table 1: Results for Example 5.1: different values of Nh and Nt . Memory allocations for RKSM and LR-
FGMRES+RKSM are given by µmem · (Nh + Nt ).

RKSM LR-FGMRES+RKSM CN
Nh Nt Its µmem rank(Uδ ) Time (s) Its µmem rank(Uδ ) Time (s) Time (s)

41300 100 16 17 10 88.74 4 83 13 143.13 296.16
300 13 14 9 68.86 4 74 10 130.27 871.38
500 13 14 9 65.88 4 75 11 134.73 1468.40

347361 100 16 17 9 3144.02 4 71 10 4793.63 13805.09
300 14 15 9 2673.83 4 78 9 4780.46 41701.10
500 14 15 9 2699.98 4 80 9 4827.13 70044.52

Example 5.2 (The wave equation) We consider the wave problem with A = −∆
on Ω = (0, 1) with homogeneous Dirichlet boundary conditions and I B (0, 1).
Setting f (t, x) := sin(2πx) + 4π2t2 sin(2πx) yields the analytical solution u(t, x) =
t2 sin(2πx). We choose cubic B-Splines for the discretization in space and time. The
discretized problem thus leads to the matrix equation in (8). In Figure 1 we report
some our preliminary results. Note, that our above discretization does not yield an
equivalent time-stepping scheme with which we could do comparisons.

Fig. 1: Example 5.2. Left: Results for different values of Nh and Nt . Right: Relative residual norm history for some
values of Nh and Nt .

GMRES+LYAP backslash
Nh Nt Its.rank(Uδ )Time (s) Time (s)
256 256 16 13 0.21 1.17

512 36 35 1.51 2.39
1024 81 74 20.97 12.61

512 256 26 31 0.61 2.30
512 40 43 2.64 5.09

1024 81 74 20.97 12.61
1024 256 50 59 3.55 4.82

512 68 72 10.12 11.13
1024102 92 54.15 24.28
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The table on the left shows that the performances of our preconditioned scheme
are quite good for small values of Nh and Nt . Indeed, in this case, the preconditioner
manages to drastically reduce the number of iterations needed to converge so that
GMRES+LYAP turns out to be faster than the Matlab solver backslash applied to
the solution of the linear system Bδuδ = fδ , in spite of the 1D nature (in space) of
the problem. However, the effectiveness of the adopted preconditioner worsens by
increasing the number of degrees of freedom. This is due to a dramatic increment in
the condition number of the coefficient matrices (see the discussion at the end of §3)
that causes an abrupt very slowdecrement (almost stagnation) in theGMRES residual
at the level that seems to be related to the conditioning of the involved matrices, see
Fig. 1 (right). As it is, the problem associated with handling this ill-conditioning in
the algebraic equation is crucial for the overall solver performance, and will be the
topic of future works. Alternatively, one may try to directly address the solution of
the multiterm matrix equation (8) as it is done in [12] for certain stochastic PDEs.
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Projection-based solvers may be very well-suited for our framework as the solution
Uδ turns out to be low-rank. However, such an approach needs the design of ad hoc
approximation spaces and we plan to pursue this challenging research direction in
the near future.
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