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1. Introduction

In the celebrated paper [1], the authors look for solutions to some problems dealing with nonlinear
functionals, in the sense of the variation domain.

More precisely, they find the Euler-Lagrange equations that govern the underlying problem
associated with the considered Bernoulli functional: the so-called homogeneous elliptic two-phase
free boundary problem. The minima to such functional are endowed with few regularity properties
like global Lipschitz continuity coming from an application of the monotonicity formula proved
in [1].

We point out that very recently a new contribution following the mainstream of [1] appeared in
[16]. In addition, we remark that a different approach about the inner regularity, that does not use any
monotonicity formula, has been discussed, in [29] about the p—Laplace case.
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In our opinion the approach described in [1] is highly not trivial and, at the same time, reveals some
interesting details that are particularly useful for further generalizations.

Indeed, the geometric approach that has been developed in studying the regularity of free boundary
problems since [1] and [10], see also [12] for a basic bibliography, is particularly interesting so that we
recall here a brief mention of some of most recent results.

In fact, as a consequence of the ideas contained in the previous seminal papers, there have been
many other achievements about the viscosity solutions of two phase free boundary problems. From
this point of view, about the regularity of the free boundary, we recall [2, 14,21, 24, 34], respectively
dedicated to homogeneous fully nonlinear operators, homogeneous linear operators with variable
coeflicients, homogeneous linear operators with bounded first order terms, homogeneous fully
nonlinear operators with flat boundaries and the homogeneous p—Laplace operator.

Successively, after the fundamental contribution introduced in [17], many other inhomogeneous
cases about two-phase problems have been faced in [18-20].

The technique used in [17] proved particularly flexible and has been extended to other one phase
inhomogeneous cases that are not covered by previously cited papers yet, see the recent progress
contained in [9,30-32] in the variational one phase case.

We like to point out that an important contribution in the nonlinear variational framework may be
found in [7] as well. In that paper the author deals with G—Laplace operators even for two phase
inhomogeneous cases. It is worth to recall that G—Laplace operators generalize the structure of the
p—Laplace one. Indeed, the functionals associated with those operators are described by functions G
depending on the gradient, see [7] for the details.

Other important achievements concerning the viscosity approach to nonlinear degenerate operators,
still adapting the ideas introduced in [17], can be found in [8] and in [32].

In this note, following the ideas described in [1], we would like to formalize the right formulation
of the two phase free boundary problems arising from Bernoulli type functionals when we consider
nonnegative matrices of variable coeflicients or a nonlinear dependence both on the gradient of the
solutions and on the variable x.

This would be a first step before starting to face the one-phase problems governed by degenerate
operators, even possibly defined on non-commutative groups.

We have in mind two concrete examples respectively given by the Kohn-Laplace operator in the
Heisenberg group and the p(x)—Laplace operator.

Since the p—Laplace case has been discussed in [33] as well, so that it results also interesting to

understand the behavior of the p(x)—Laplace operator. We remind that the p—Laplace operator is
defined as

A, = div([V - |P72V),
while the p(x)—Laplace operator is
Apy = div(V - [PO72V),

where the function p satisfies 1 < p(x) < co.
Of course, A, = A, when p(x) is constant and p(x) = p.
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The Kohn-Laplace operator in H' is defined as

u  0u 0u 0’u 0u
— +—+4 —dx— + 4+ y)— 1.1
a2 T Vaa Yavar T T5a (1.D

Agru(x,y, t) =

and even if it is linear, it results to be degenerate elliptic.

In particular, using an intrinsic interpretation of the geometric objects entering in the description of
the non-commutative underlying structure H', it is possible to obtain an intrinsic formulation of the two
phase problem. We recall that the Kohn-Laplace operator is degenerate. Indeed, its lowest eigenvalue
is always zero. As a consequence, it is important to understand what is the right condition to require to
put on the free boundary in case we wish to formulate the problem in a viscosity sense.

The theory of the viscosity solutions has been applied to the study of free boundary problems, like

Au = f, in Q" (u) :={xeQ: ulx) >0},
Au = f, in Q (u) := Int({x € Q : u(x) <0}), (1.2)
(W) — () =1 on F(u) := Q" (u) N Q,

since [10], for homogeneous problems, by Luis Caffarelli. Here Q c R”" is an open set, and f €
C% N L>(Q), while u' formally denotes the normal derivative at the points belonging to F (u), where
n is the unit normal in those points whenever this makes sense, pointing inside Q*(u), as well as u,,
denotes the normal derivative to the set ¥ (#) and n is the unit normal to the set ¥ (u) at the point
x € ¥ (u) pointing inside Q (u).

If, in case F (1) were C', even supposing for simplicity that f = 0, then u would satisfy Au = 0
in Q% (u) U Q7 (u). On the other hand, u € C(Q) is a viscosity solution, so that Au = 0 in Q*(«) and
Au = 0 in Q" (u) in the classic sense and the problem (1.2) may be reduced to two Dirichlet problems.
However the assumption on the level set ¥ (1) := 0Q*(u) N Q can not be formulated in a classical
fashion, because ¥ (1) is an unknown of the problem. In principle, the set # (#) might be very irregular
and the notion of solution would not make sense in the classical meaning, so that has to be weakened.

On the contrary, we suppose exactly that the fact itself of knowing that u satisfies the free boundary
problem should imply that u is endowed with some further regularity properties. Thus, assuming only
that F (u) is Lipschitz, the solution of the Dirichlet problem in a neighborhood of the free boundary
may be a priori no better than a Holder continuous function until the boundary.

Hence, it appears clear that we can not give a pointwise classical formulation of the problem on the
free boundary. For avoiding this loop, in [10] a viscosity notion of solution was introduced. In that
case the boundary condition is supposed to be fulfilled only where a weak normal exists, see [12].

The definition of solution of the problem (1.2) can be stated, in a viscosity sense, see [18] and the
original statement in [10] or in [12] as well, in the following way.

A continuous function u is a solution to (1.2) if:

(1) Au = f in a viscosity sense in Q*(u) and Q™ (u);
(i) let xo € F (u). For every function v € C(B,(xy)), € > 0 such that v € C*(B*(v)) N C*(B~(v)), being
B := B,(x) and F (v) € C?, if v touches u from below (resp. above) at xy € ¥ (v), then

Vr(x0)* = (v, (x0)? < 1 (resp. (v (x0))* = (v, (x0))* = 1).
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Moreover, also the following notion of strict comparison subsolution (supersolution) plays a
fundamental role in the regularity theory of one/two-phase free boundary problems, see [17]: a
function v € C(Q) is a strict comparison subsolution (supersolution) to (1.2) if:
v € C2(Q*(v) N C2(Q~(v)) and

(1) Av > f (resp. Av < f) in a viscosity sense in Q*(v) U Q™ (v);
(ii) for every xo € Q, if xy € ¥ (v) then

Vr(x0))* = (v (xo)* > 1 (resp. (Vi (x0))* = (v, (xo)* < 1, vi(x0) # 0).

As a consequence a strict comparison subsolution v cannot touch a viscosity solution # from below
at any point in ¥ (1) N ¥ (v). Analogously a strict comparison supersolution v cannot touch a viscosity
solution u from above at any point in ¥ (#) N F (v).

When u is a classical solution and the free boundary is sufficiently smooth, previous comparison
property comes from the Hopf maximum principle, whenever the condition on the flux balance on the
free boundary is given by a function G(-, -) defined in [0, c0) X [0, c0) that is also strictly increasing in
the first entrance and strictly decreasing in the second variable.

We are mainly interested in viscosity solution, but the natural definition of two-phase free boundary
problems is usually determined by looking for local minima of functionals like

EW) = f (IV9P + xs0) + 2fv)dx (1.3)
Q

defined on subsets of H'(Q) satisfying some fixed conditions, for instance assumed on the boundary
of Q and on the sign of the functions themselves.

In [1] exactly this approach has been followed for functionals, associated with the Laplace operator
like (1.3), in the homogeneous case. As a consequence, to local minima u of (1.3) (supposing f = 0)
in [1] have been determined the conditions that have to be satisfied on the free boundary, morally the
set{x € Q: u(x)=0}.

Since we are interested in problems governed by other operators with respect to the Euclidean
laplacian, like nonlinear ones and, overall possibly degenerate, we wish, at first, to understand what
is the right condition to put on the free boundary, for the problem in a non-divergence form, in a
degenerate setting.

In fact, the free boundary ¥ () is an unknown of the problem and for this reason we need to start
from the energy functional that describes the problem in the variational setting for obtaining the non-
divergence case.

With this aim, we discuss the notion of domain variation solution assuming that the energy
functionals that we wish to study may be associated with degenerate operators like the p(x)-Laplace
operator Ay, that is a generalization of the most popular p—Laplace operator when the function p(x)
is constant or operators like div(A(x)V), supposing that the matrix A satisfies (A(x)¢&, &) > 0 for every
¢ € R" whenever A is a smooth matrix of coefficients. For the notion of solution in the sense of
variation domain and applications we refer to [38].

At the end of our discussion we conclude that in any Carnot group the two phase problem assumes
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the following nonvariational form:

Agu = f, in Q*(u) :={xeQ: ulx) >0},
Agu = f, in Q (u) := Int({x € Q : u(x) <0}), (1.4)
Voutl?> = |Veu |> = 1, on F(u) := 0Q" (u) N Q,

where Ag is a sublaplacian in a Carnot group G, see Section 3 for the definitions of Carnot groups and
the associated notation, and Section 5 for a little more general presentation of the result.

We remark here, however, that now the condition posed on free boundary is governed by an intrinsic
jump of gradients, see Section 3 and, for the one-phase case, see [25].

Moreover, in the parallel case of the p(x)—Laplacian, the functional becomes

Epo(u) = f(| Vv [P +X>0; + P(X)fV) dx,
Q

so that we obtain:

Apoyut = f, in Q" (u) :={xeQ: ulx) >0},
Apwyut = f, in Q (u) :=Int({x € Q: u(x) <0}, (1.5)
Vur P = [Vur P = L on F(u) 1= 09" () N Q,

see also Section 7 for a slightly more general setting of the problem.

We complete our analysis in Section 8 stating the good notion of viscosity solutions for problems
like (1.4) and (1.5). In the case (1.4) the characteristic points introduce new difficulties in the
application of the approach used in [17].

Regarding the notion of viscosity solution we refer, in any case, to [3,11,15].

In the next section, for describing the meaning of domain variation solution, we deal with the
simplest case in one dimension.

2. The simplest one dimension Euclidean case

Before entering into the details of our subject, we consider the basic heuristic example in the one
dimension for the following functional

1
EW) = f (V% + xpso) + 2fV)dx,
-1

where

|1, xef{v>0}
X{V>O} - O, x € {V S 0}’

andve K={weH'(-1,1): w(=1)=a, w(l) = b} being a, b assigned values to the boundary.
Moreover, we assume, for simplicity, that f € C*¥([-1, 1]).

We are interested in those functions which become minima or critical values for & perturbing the
set of definition in a neighborhood of the points where v vanishes. In mathematical language, for every
function v € K and for every function ¢ € C;°(] — 1, 1[) we consider the function v(x) = Vi(x + gp(x)).
We shall simply write v, := v¢ to avoid the cumbersome notation. It is clear that 7, = I + &g is
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an application that transforms [—1, 1] in itself whenever ¢ is sufficiently small. We say that v is a
variational domain solution whenever

%8(V8)|a=0 =0.
To do this, we consider 1
80 = [ V20 0000+ 2y .
Since 7, is invertible whenever ¢ is small we obtain (7;')'(y) = (t.(x))™!, being x = 7,'(y) and
T(x) =1+ &’ (x),

1

—1\7 _
T @)

This implies that fore — 0
(T ) = 1 - &g (T;' () + o(&).

We perform the change of variable y = 7.(x) so that:

1
E(ve) = f 1 (V@) + X100 (To(0)) + 2 (T0Ie(Te(X)) TU(X)dx
LT (2.2)
= f 1 (V2(@a(0)) + X1050)(Te(0)) + 2f (To(0)ve(T(0))) (1 + &' (x)dx

and, since V'(x) = v(T.(x))7.(x) = Vi(T(x)(1 + g¢’(x)), we get
1
= f V(@)1 + £0" (X)) + X1,50/(Te(X)) + 2f (T ()(D)](1 + £¢(x))dx
-1
1
= f 1 V()1 = £¢'(x) + 0(8))” + X501 (x + £0(x)) + 2 f (T ()] + £¢ (x))dx
i (2.3)
= f V()1 = 269" (xX) + 0(8)) + X1v,50/(x + £0(X)](1 + £¢(x))dx
-1
1
+2 f S@()w(x)(1 + &g’ (x))dx,
-1
that is,
1
=&) + f 1 —&V2 ()@ (x) + [ 1v,50/(x + £0(0))(1 + ¢ (X)) = x (0 (X)]dx
1
+2¢ f (SO0 (x) + [ (x)v(x)p(x))dx + o(e)
-1
| 2.4
=8(v) + f 1 —&v ()¢ (%) + D py,>01(x + £0(X)) — xs0)(X)]dx

1

1
+e f 1 Xiv>0)/(X + £0(X))¢’ (X)dx + 2& f 1 (f()¢'(x) + f(D)e())v(x)dx + o(e).
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Hence, integrating by parts and recalling that ¢ is a compactly supported function, we obtain:

1 1
=&W) + f —&v?(x)¢'(x)dx + € f Xivo>01(x + 80(x))¢’ (x)dx
_ -1

1

1
+2(f(De(Dv(1) - f(-=De(=Dv(-1)) - 2¢ f Fe(x)V' (x)dx + o(e)
-1

) ) (2.5)
=8EW) + f —&v(x)¢’ (x)dx + € f Xv.>0)(x + 80(x))¢’ (x)dx
-1 -1
1
-2¢e f F(X)e(x)V' (x)dx + o(e).
-1
As a consequence, if v is a local minimum for the functional & in K, then
EWv,) — Ev ! , , ! ,
0< )80 _ f V20! (x)dx + f K01 + 560N (Wl
€ ! ! (2.6)

1
- 2f F)e(x)V' (x)dx + o(1).
-1
Moreover, it also results that for every ¢ € C°(] — 1, 1[) we have

. E(v) = EW)
Iim—— =

e—0 E

0.

Hence, if v is a local minimum for € on K, then v is a domain variational solution.
As a consequence, we have obtained that a local minimum has to satisfy the following relationship:

1 1 1
- f V2 (x)@ (x)dx — 2 f 1 F(X)@(x)V (x)dx + f 1 Xivs0) (0@’ (X)dx = 0,

1
for every ¢ € C°(] — 1, 1]).

On the other hand, for every ¢ € C;°(—1, 1) such that supp(¢) C {v, > 0} or supp(¢) C int{v, < 0} it
follows from the previous relation that v/ = f(x)in ] — 1, I[\{x €] = 1, 1[:  v(x) = 0} because v is a
local minimum for &, (we will proof this property below in a more general case).

As a consequence,

X 1
- lim f VPO ) + 2100 (0 - lim f V2009 (6) + 2f ()e(0V (1)l
- e 2.7

X 1

— lim V209 (x) + 2f (00 (x)dx + f Xiw>0/(0)¢’ (x)dx = 0,

0—0%,e—-0* -1

for every ¢ € Cy (] — 1,1[) and €,6 > 0, we consider the sets {v(x) < —€} and {v(x) > ¢}. Then
integrating by parts we obtain, from (2.7) and keeping in mind that we assumed meas;({v = 0}) = 0,

XS

ali—>%1+ 1 2(v"(x) = f(x) (x)V (x)dx - (Slgg V2 (0)(0)]="
i
+ H%{ f 2(v"(x) = f(x))) p(x)V (x)dx — li%{ [V'z(x)¢(x)]§;lc5 (2.8)
€— 5. e~
i
+ fl Xiv>0y ()¢’ (x)dx = 0,
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where v(x.) = —e and v(x;) = 6.
Thus, from (2.8), we get

1

— lim EIES) lim 2@z, + f Xiv>01 ()¢’ (X)dx = 0, (2.9)
— €— 1
or
1
— lim V2 (r)p(s) + lim v2(r)p(x0) + f ¢'(dx = 0, (2.10)
— e—0* X0

that implies, for every ¢ € C;°, denoting by x, the free boundary, that is v(xy) = 0,

(=(v7)2(x0) + (V") (x0))p(x0) = ¢(x0) = 0.

Hence, it results
G2 x) - (v)*(x) =1, on {v=0}L

In this way, we have obtained the free boundary condition associated with the Euler-Lagrange
equations to local minima of the functional & in the non-homogeneous case, (of course assuming that
the free boundary is a set of measure zero). We also proved that, at least in one dimension, the free
boundary condition does not depend on the non-homogeneous term f.

3. Basic informations about the Heisenberg group and Carnot groups

Let H" be the Heisenberg group of order n. We denote by H" the set R neN,n>1,(xy,1) €
R?"*! endowed with the non-commutative inner law such that for every (x;, y;, ;) € R**!, (x5, y2, 1) €
R2n+1, X; € R", Vi € RY,i=1,2:

(X1, ¥1,11) 0 (X2, ¥2, 1) = (X1 + X, y1 + Y2, 11 + 1o + 2(X2 - Y1 — X1 * Y2)),

and x; - y; denote the usual inner product in R".
Let X; = (¢;,0,2y;) and Y; = (0, ¢;, —2x;),i = 1,...,n, where {e;},<;<, 1s the canonical basis for R".
We use the same symbol to denote the vector fields associated with the previous vectors so that for
i=1,...,n
X; =0, +2y0,

Yl‘ = 6yl. - 2xl‘at.
The commutator between the vector fields is

[Xl" Yl] = _4at’

otherwise is 0. The intrinsic gradient of a smooth function u in a point P is

Venu(P) = Z(Xiu(P)Xi(P) + Yju(P)Yi(P)).

i=1
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There exists a unique metric on HH"(P) = span{Xj,...,X,,Y;, ..., Y,} that makes orthonormal the
set of vectors {Xi,...,X,, Y ..., Y,}. Thus, for every P € H" and for every U, W € HH"(P), U =

2@ Xi(P) + 1Y (P), V = X (ar ;X;(P) + B, Y(P))
U,vy = Z(a/l,ja'z,j + B1,iB2,))-
=

In particular we get a norm associated with the metric on span{Xi,...,X,,Y;,...,Y,} and

Ul = JZ (“ij +'Bij)'

J=1

For example, the norm of the intrinsic gradient of the smooth function « in P is

V(P = J DT (Xu(PY? + (Yu(P))?).
i=1

Moreover, if Vig.u(P) # 0 the norm of
Vanu(P)
|V u(P)|
is equal to one.

If Vinu(P) = 0 then we say that the point P is characteristic for the smooth surface {u = u(P)}.
Hence for every point P € {# = u(P)}, that it is not characteristic, it is well defined the intrinsic normal
to the surface {# = u(P)} as follows:

wp) = JEulP)

[V u(P)|

We introduce in the Heisenbeg group H" the following gauge norm:

dg(x,y,0) = 106y, Dl = V(P + [y + 2.
In particular for every positive number r the gauge ball of radius r centerd in O is
BO,r)={PeH": ||P|| <r}.

In the Heisenberg group a group of dilation is also defined as follows: for every r > 0 and for every
P e H" let
6,(P) = (rx, ry, r’t).

Let (¢,n,0) € H", then

do(&,1,0) = V(R + P)? + 02 = di((¢, 7, 0), (0,0,0)).

In particular, foreveryi=1,...,n,

1 ; 1
Xidg = Z((Ifl2 + P + o) TIAENER + IpPéE + domy) = 4—161'2;3(4(|§|2 + P& + 4omy)
= dg (€ + M€ + ony)

3.1
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and
Yidg = %((I§I2 + )% + ) @UER + P — do€) = dZ(ER + P — o€,
Moreover, forevery i =1,...,n,
Xidg = =3dg (€7 + P& + om)* + dg Q€ + (&1 + nl”) + 2n7)
and
Yidg = =3dg (17 + In)ni — 0&)” + dg 2} + (€7 + Inl’) + 2&7).

Asa consequence,

n n

Vindl? = ) ((Xide) + (Yido)?) = di > (Gl + P& +n}) + o2& + ) a2
i=1 i=1 .

= dg® (€7 + ) + o> (€P + ) = (7 + g,
and
Audg = =3dg ((€F + InP)’ + 2P + In)) + @n + Hdg (EF + )

. (3.3)
= C2n+ D& + InHdg .
Following the above calculations, for every i = 1,...,n, we have
Xidy @ = (2= Q)dg; @ (dg (P + ) + omy)
and
Yidg © = (2 - Q)dg © (dg (el + nPmi — o).
Thus
Audy © = 2= Q)1 - Q)2 Y ((Xide) + (Yido)®) + (2 — Qg © > (XPde + Yidc)
i=1 i=1
=2 - Q)1 -0)d? | Vandg IF +(2 - Q)d}; ® Aswd (3.4)

= 2- Q) ((1 - Qg 2l + InP) + dg”~°@2n + 1)(EP + )

=2 -0Q)d; (e + I (1 - Q+2n+1) =0,
whenever Q = 2n + 2. That is, dé_Q is, up to a constant, the fundamental solution of the sublaplacian
in the Heisenberg group.

We define the symmetrized horizontal Hessian matrix of the smooth function u at P the following
2n X 2n matrix:

[ X?u(P), X Xu(P), XN Xypy o 05NNy, py
Xo X u(P), L XoXu(P), 2ENRyp) LRI, p)
D2y = | XnXiu(P), L Xou(P), XNy py, | Xluthdey, py
H”u( ) - Y1 X1+X1Y M(P) Y1 X,+X, Y1 M(P) YIZM(P) YlY M(P)
- R 5 5 ceey n
PERRU(P), ..., 2R u(P), VoY u(P), <o VaY,u(P)
| DXLy (p), L RSy (P, Y, Y u(P), coere s Y2u(P) |
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Now we need to the Taylor’s formula adapted to our framework. Let u be a smooth function defined in
an open set Q2 C H" neighborhood of 0. Let &, be a positive small number such that for every 0 < s < 1,
05(P) € Q. In such a way the function

g(s) = u(6,(P)) = u(sx, sy, s°1)

is well defined for every s € [0, 1]. By the classical Taylor’s formula centered at 0, we get

1 1
8(s) = g(0) + &'(0)s + Eg”(o)s2 + gg"'(O)E,

where s € (0, 1). In particular g(0) = u(0), so that
g'(s) = Z(Gxiu(és(P))xi + 0y,u(65(P))yi) + 2510,u(65(P))
i=1

= Z(é‘x,-u(5s(P))xi + 0,,u(65(P))yi + 2x;yi0;u(6,(P)) — 2x;y;0,u(64(P))) + 25t0,u(65(P)) (3.5)
i=1 .

= Z(Xiu(5s(P))xi + Yiu(6,(P))y:) + 2s5t0,u(5,(P))
i=1

= (Veru(65(P)), (x, ) + 2510,u(65(P)),

and

g’(s) = Z (X Xiu(o5(P))xix; + Y Xju(6,(P)x;y; + X;Yiu(6,(P))yix; + Y;Y;u(6,(P))y;y;
=1 j=1

+ 2510, X;u(55(P)) + 8,Y:u(5,(P)))) + 2t0,u(5,(P)) + 4510,,u(5,(P)) (3.6)

= (DEu(5,(P)(x,y), (x,y))
+ 2510, X;u(64(P)) + 0,Y;u(6,(P))) + 2t0,u(6,(P)) + 4s2t6,,u(6s(P)),

and
£"(0) = (Dgu(0)(x,y), (x,y)) + 2t8,u(0).
and by analogous calculation, for ||(x, v, 1)|[* < &, it results:
g (0)3] < Clix, y, DI,

where

G, . Dl = V(x + [yP)? + 2
Hence by taking s = 1 we get,

1
u(x,y 1) = w(0) + (Veu(0). (x.)) + 5 ((DEu(O)x,y), (x.9)) + 210u(0)) + o(llCx. 3. 0IF). (3.7)

If P € H" and
V € g =span(Lie){X;, Y, [X;,Y;]: i,j=1,...,n}
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we set Uy, (s) := exp[sV](P) (s € R), i.e., ¥y, denotes the integral curve of V starting from P and it
turns out to be a I-parameter subgroup of H". The Lie group exponential map is defined by

exp:g+— H", exp(V):=exp[VI(]).
The map exp is an analytic diffeomorphism between g and H". One has
Ywp(s) = Poexp(sV) VYV seR.
In particular we remark that if U € HH"(P), then
Jw.p(t) = Poexp(sU)

1s horizontal.

Indeed, we say that a path ¢ : [-7,7] — H" in the Heisenberg group is horizontal if ¢'(s) €
HH"(¢(s)) for almost all s € [T, 7].

Concerning the natural Sobolev spaces to consider in the Heisenberg group H", we refer to the
literature, see for instance [27]. Here, we only recall that

LYQ) = {feXQ): X,f, Yife*(Q), i=1,...,n)

is a Hilbert space with the norm

flee = ( fg O X + (f ) +1fPdx]

Moreover,

HL(Q) = C=(Q) n £12Q) =@,
H, o(Q) = CR@) .

Of course, on the Sobolev-Poincaré inequalites there exists a wide literature, see e.g., [13,26,28, 35].
However, here we shall recall only the following one in the Heisenberg group for every u € H} no(Br)

flu(x)ldeCrf |Vinu(x)|dx,
B, B,

see also [27] for isoperimetric and Sobolev inequalities in more general situations.

In general, this presentation makes sense also for a larger set of stratificated non-commutative
structures: the Carnot groups. In fact, let (G,o) be a group and there exist {g;}i<j<m, m € N,
m < N € N, vector spaces such that,

91@92@'“@9,":95RNEG

(6,911 =62, [8,9]1=63 ....[00,8u-1] = &n»

and

where
[81,8,] = 0.
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In this case we say that G is a stratified Carnot group of step m.
Moreover, for every

xeG=RY =Rl x .. Rk, Zki:N,

J=1
and for every A > 0 is defined the anisotropic dilation
S(x) = (XD, 2242, ., "™, where  xY) e RN, j=1,...,m
such that, if Z,, ..., Z,, € g are left invariant vector fields and Z;(0) = 6%” e j=1,...,k, then

rank(Lie{Z,,...,Z,})(x) = N, (Hormander condition)

for every x € RN = G. Let us consider the sublaplacian on the stratified Carnot group G given by

ki
AG = Z X]2
=1
In particular there exists a N X k; matrix o~ such that o - o7 is a N X N matrix such that
div(o- 0" V-) = Ag. (3.8)

Moreover,

ki
o'Vu = ZXquj =V, u,
j=1

the so called horizontal gradient of u. Hence
A=o-o’.
The Heisenberg group H' is an example of Carnot group of step 2. In fact
g1 =span{X, Y}, g =span{[X, Y]}, [g1,0]={0}
and the Lie algebra of the Heisenberg group is obtained as
g = span(Lie){X, Y, [X, Y1} = g1 () on.
Exploiting the cited representation of the sublaplacians (3.8), it results that
(AVu, Viygy = {0 - 0" Vu, Viygy = (0" Vu, 0" Vg, = (Vau, Veulgk

where Veu = 0’ Vu = le‘.‘: , X;uX; is the horizontal gradient in the Carnot group G. Thus the definition
by completion of the Sobolev spaces with respect to the norm

llellez, 5@ = \/f(AVu, Vu)rn +j‘u2 = \/I(VGu, Veu)pn +fu2
Q Q Q Q
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is the same.

We spend few words about the Carnot-Charathéodory distance. To do this goal, we recall, see
e.g., [4], that if {X;,... Xy} are vector fields in R", a piecewise regular path  : [0,7] — R” is said
subunit, with respect to the family {Xj, ... Xy}, if for every £ ¢ R”

N
(0,67 < Y (X,0), €7, forae. t€[0,T].

=1
Let us denote by S := S({Xj, ... Xy}) the set of all the subunit paths.

Proposition 3.1 (Chow-Rashevsky). Let G = (R", 0,0,) be a Carnot group with the Lie algebra g and
let {X1, ... XN} be a family of vector fields in R". If

g = Lie{Xy,... Xy},
then for every x,y € R" there exists n € S such that n(0) = x, n(T) = y, moreover
dec(x,y) :=inf{T >0: thereexists n:[0,T] > R", nes8, n0)=x, n(T) =y}

is a distance called the Carnot-Charatheodory distance associated with {X,, ... Xy} and dcc(-,0) is a
homogeneous norm on G.

In the case of the Heisenberg group, there exist positive constants C;, C, > 0 such that for every
PeH"
CillPllen < dec(P,0) < Col|Pllse.

The same equivalence may be extended to Carnot groups, simply by considering the right
homogeneous norm versus the Carnot-Charatheodory distance in the considered group G. In addition,
a strong maximum principle holds, see [5], even if Ag is a degenerate operator.

Proposition 3.2. Let u be such that Agu > 0 in Q C G is an open set and G is a group whose Lie
algebra g satisfies the Hormander condition. Then the supremum of u can not be realized in Q unless
u is constant.
4. The Bernoulli functional in the Heisenberg group

In this section, following the scheme of [1] we make some computations in the Heisenberg group

H", but using the same arguments, the final results apply also to Carnot groups. In particular, here we
recall that local minima of our functionals are globally continuous. Let

Jn(v) = f (| Vv P +¢*(x) %) + 2 fv) dx, vek
Q

be the functional that we will study, where ¢*(x) # 0,

A3, if v<O,
AW) = { 2, i v>0, 1)
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and A(v) is lower semicontinuous at v = 0; it is assumed that A > 0 and A = A3 — A3 # 0. Here is

K={ve LiOC(Q) C VevelX(Q), v=u’ on S c Q)

and Q c R" is a domain.
There exists a unique solution to the following Dirichlet problem

Agnvg =0,  Br(0)
VR = U, GBR(O)

If u realises a minimum for Jy», then for every ball B, C Q) we get:
f (I Ve P +q* (0% (u) + 2 fu) dx < f (I Vv P +@*(02%(v,) + 2fv, ) dx.
B,(0) B,(0)
Hence by the Poincaré inequality we obtain
f (I Vi P =1 Vi, P < f (F@L ) = CWPW) + 2, — uydx
B,(0) B,(0)

< C(Ay, A2, Q)2 +2 f(v, — w)dx.
B,(0)

On the other hand,

(Ve (u = v,), Var(u + v,))dx = f | Ve (u = v,) [P +2 (Ver(u = v,), Vanv,y)

B,(0) B, (0)

= f Vi (= v,)I* = 2 fu—v,)dx
B,(0) B (0)

B,(0)

and

(Ve (1t = v,), Ve + v))dlx = f (1Vstd® = [z, ) v

B,(0) B,(0)

Hence

f Vi (st — ) = f (IVeul® = [Vev, ) dx + 2 f(u—v,)dx.
B, (0) B, (0)

B,(0)

That is, by Holder inequality

1/2 g2
f Ve (e = v)I? <C(A1, A2, Q)r2 + 4l fll o, 00 ( f = v)P?) r
B+ (0) B,(0)

and, recalling Sobolev-Poincaré inequality one more time, we get:

, 1/2 ¢
f Ve = v)PF <C(A1, A2, Q)r2 + €| fll o, o) f Ve (u = v)P) 77
B:(0)

B.(0)

4.2)
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Thus, applying Cauchy inequality we get for € > 0

c c'e
f |VH”(M - vr)|2 SC‘(/lla /12’ Q)rQ + _”f”iQ(B_(o))rQ + 0= f |VH"(M - V,»)|2
B,(0) 2e ’ 2 Jso

that implies

c'e
)

(1-

5 [Via(u — v <C(Ay, A2, O, &, ||f||LQ(B,(0)))’”Q,
B (0)

where

_ c
C(A1, A2, O, &, fllLes,0y) := C(A1, 42, Q) + 2_8”](”29(3,(0))'

Thus, by fixing & > 0 such that 1 — 5¢" > we conclude that there exists a constant

C = C(A1, 22, & |If o), Q) such that:

1
2

f |V (u — v,)]> <Cr@.
B(0)

As a consequence, in analogy with the Euclidean case, we can not expect on # more than a modulus of
continuity ruled by the Carnot-Charathéodory distance like, see the argument used by [1,33,37]:

1
lu(x) — u(y)| < Cdee(x, y)|log (m) l,

for every x,y € K, dcc(x,y) < 3.
The existence of a global Lipschitz intrinsic modulus of continuity may be faced having a
monotonicity formula. In H!, see some partial results obtained in [22,23].

5. Variation domains solutions for non-negative matrix

In this section we face the general case with variable coefficients.
Let us consider the functional

Ea(v) = f ((A(x)Vv, vy + M2(v, x) + 2fv) ,
Q
where (A(x)&, &) > 0 for every x € Q, for every £ € R”, and

M(u, x) = g()(A X w0y + A-Xu<0})s

where A, A_ are non-negative numbers and g # 0 is a function.
We define 7.(x) = x + ep(x) where ¢ € C°(€2,R"). Recalling Section 3 we remark that A might be
one of the matrices that are associated with a sublaplacian.

Lemma 5.1. Let u € K be a local minimum of E,. Then u satisfies div(A(x)Vu(x)) = fin Q\ {u = 0}.
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Proof. For every ¢ € C*(Q\ {u = 0}) and for every & > 0 sufficiently small, it results

Ea(u +ep) = f(A(x)Vu, Vu)dx + 2¢ f(A(x)Vu, Ve)dx
Q Q
+& f (A(x)Ve, Vo)dx + f M?(u + &, x)dx + 2 f f(u + ep)dx
Q Q Q
=E4(u) + 2¢ f(A(x)Vu, Vo)dx + 2e f fedx + o(&?).
Q Q

As a consequence,

Ealu + si) — Eau) _» (f(A(x)Vu, Vddx + ffgo) dx + o(g)
o Q

and

lim ST 80) = 8a) 2( f (A(X)Vu, Vo) + f
Q

e—0t E Q

fsodx) =0,

that is div(A(x)Vu(x)) = f in Q \ {u = 0} in the weak sense.

(5.1)

(5.2)

(5.3)

O

Theorem 5.2. Let u be a local minimum of &4 and meas,({u = 0}) = 0. Then u is a domain variation

solution and for every ¢ € Co(€2,R")

0 =1lim (0, VY(M?* — {A(x)Vu*,Vu"))dS + lim (0, vY(M?* — (A(x)Vu~,Vu~))dS.

=0 Jo(—e<u) 020 Jofu<s)

Proof. Denoting by u, the function such that u.(7.x) = u(x) where 7, = x + g¢, ¢ € C7(Q,R") and

assuming that A is smooth, we get:

Jug) = fg ((A0)Vue(3), Vito ) + MPe(3). ) + 2 Ghues(y)) dy

= f (A () Vit (T:00), Vit (To06))) + M*(u(To(x)), To(x)) + 2fu(ro(x)) ) det T ldx.
Q

On the other hand, since
Jr(x)=1+¢&Jp,

then
detJ7, =1 + Tr(Jp) + o(e),

for € —» 0. Moreover,
VM(X) = V(”s(Ts(x)) = Vus(Ts(-x))JTs(x)v

hence
JT(X) ' Vu(x) = Vu(t,(x)).
Keeping in mind that
Jr(x) =1 - eJyp +o(e),
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we conclude that
JT:(x) ' Vu(x) = (I - eJyo +0(&))Vu(x) = Vu(x) — eJoVu(x) + o(e)
and since A is smooth we get
A(to(x)) = A(x) + eJA(x)p + 0(€).
As a consequence,
f (¢(A@) + 8TAX)@ + 0(&)TTo(x)™ Vu(x), JTo(x)™ Vu(x)
Q
+ M (u(x), T,(x)) + 2f(7'8(x))u(x))|detJTS|dx
= f (AT 7o) Vu(x), J7o(x) ™ V() + MP(u(x), 7o(x)) + 2f (o(x)u(x)) [det 7, ldx
Q
+e f (AP + 0(&)T7o(x) ™ Vu(x), J7,(x) ™ Vu(x))) [det 7, |dx
Q
= f (<(A(x)Vu(x), Vu(x)) + M*(u(x), 7,(x)) + 2f (Tg(x))u(X)) detJ7.|dx
Q
—28f(A(x)Vu(x), JoVu(x))|detJr |dx + 8f<JA(x)(qu, Vu)|detJt,|dx.
Q Q

Hence
dJ(u,)
de |e=0

= L ((AX)Vu(x), Vu(x)y + M*(u(x), x) + 2f (x)u(x)))Tr(Jp)dx

-2 fg (AVu, JoVu)dx + fg (JAQVu, Vuydx + fg (VM (u(x), %), @) + AV f(x), @)u) dx

= fg (A Vu(x), Vu(x)y + M*(u(x), ) Tr(J)dx

-2 fQ (AVu, JoVu)dx + fg (JA@Vu, Vu)dx + fQ (V. M2(u(x), x), p)dx — 2 fg F0p, Vuydx
= fg div (((A)Vu(x), Vu(x)dx + M*(u, x)) ¢ = 2, Vu)AVu) dx.

Since u is a local minimum, then

CdJux+ep(x)  _dJu) 0
de =0 de =0

that is u is a domain variation solution. Hence, for every ¢ € Ccl)(Q, R™) we have:
dJ(u.)

dg |g:0

=0= f((A(x)Vu(x), Vu(x)) + M*(u(x), x)))divedx — 2 f(AVu, JoVuydx
Q Q

+ f (JAQVu, Vu)dx + f (V M*(u(x), x), @)dx — 2 f F(x) e, Vuddx.
Q Q Q
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Now, let us considernow Q ={x € Q: u<—-€U{xeQ: u>6}U{xeQ: —e < u<d}, where
€,0 > 0. Then, integrating by parts and denoting Q. s(u) = {x € Q: —e < u < 6} as well as

Res = f ((A(X)Vu(x), Vu(x)) + M*(u(x), x)Ndivedx — Zf (AVu, JpVu)dx
Qe s(u) Q

e.s(1t)

+ f (JAQVu, Vu)dx + f (V M*(u(x), x), @)dx — 2 F(x)p, Vuydx,
Qe,()'(u) Qe,()'(u)

QE,(S (u)

we get:
0=- fg e }<V<(A(X)Vu(x), Vu(x)y + M*(u(x), x))), @)dx
+ fa{ AV, TuCo) + M2(u(x), x)p, v)do
- fQ m{M}<V<(z‘\(x)VM(X), Vu(x)y + M*(u(x), x))), @)dx
+ f (AX)Vu(x), Vu(x)) + M*u(x), x)(, v)do -2 f (AVu, J¢Vuydx
olu>s) ON(u61Ulu<—e)

+ f (JA@Vu, Vuydx + f (VM (u(x), x), @)dx
QN({u>6}U{u<—e)) QN({u>8)U{u<—e})

-2 f J(x){p, Vu)dx + R 5.
QN{u>6}u{u<—e})

Thus, by recalling that u satisfies div(AVu) = f(x) in Q \ {u = 0} we get, denoting u™ := sup{u, 0} and
u~ = sup{-u,0},

0 =lim (@, VY{AX)Vu", Vu™y + M*)dS + lirnf (@, VY{AX)Vu~, Vu~) + M*)dS
€20 Jo(—e<u} 00 Jafu<s)
5.4
—2(lim f (@, v{A(X)Vu", Vu")dS + lim f (@, V{A(x)Vu ", Vu)dS),
=0 Jo(—e<u) 00 Jofu<s)
because by hypothesis meas,({# = 0}) = 0 so that lim, 5o R.s = 0.
Finally (5.4) leads to
0 =lim (@, VY(M?* — (A(X)Vu", Vu™)dS + gir% (@, VY(M?* — (A(X)Vu~, Vu))dS.
€2 Ja{—e<u) =Y Jd{u<s)
O
In conclusion we have obtained, whenever meas,{u = 0} = 0, that
div(A(x)Vu) = f inQ"(u) :={xeQ: ulx) >0}
div(A(x)Vu) = f in Q (u) :=Int({x € Q: u(x) <0}) (5.5)

(AVu*, Vu®y —=(AVu Vu~) = g(x)A on F (u) := 0Q" (1) N Q.
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where A := A2 — A%. In the case of the Heisenberg group this reads as follows (see Section 6 for the
details and further generalizations):

Agou = f in Q" (u) :={xeQ: ulkx) >0}
Agnu = f in Q (u) ;= Int({x € Q: u(x) <0} (5.6)
Vet )? — [Vieu > = g(x)A  on F(u) := 0Q* (u) N Q.

6. Some comments about the Heisenberg group and Carnot groups

We compute (A(x)Vu, Vu) assuming that

1, O, 2y
A=10, 1, —2x
2y, —2x, , 4(x% + y2)
Then
Xu
(AVu,Vuy =| Yu -Vu

2y%—2x‘;—’y‘+4%(x2+y2)
ou ou ou ou_Ou ou
= Xu— + Yu— + Qy— — 2x—)— + 4(— )2 (2 +
Uz + “ay+(yax xay)at+(at)(x +y)

Ou

ot
2 +y%) = (Xu)* + (Yu)?

= (Xu)® - 2yXu% + (Yu)? + 2xYu

ou ou_ou ou
2y— = 2x—)— + 4(—
T T2 TG
= |Vaul? = (Veu, Vi .
Notice that
div(A(X)Vu(x)) = X?u + Y?u = Agiu = divg (Viiu) = X(Xu) + Y(Yu).

It is possible to give another example for the Engel group. In this case we have:

81 @gz@&,

g1 = span{X1, X5}, g» = span{X;}, g3 = span{Xy},

where

(X1, Xo] = X3,  [Xi1, X3] = Xy,

0 0 0 0 0 0
Xi=——X—-x— Xy=—, Xz=—, X4=-—
! 8x1 = 6)(3 3 8)(4 ’ 2 8)(2 ’ 3 6)(3 ’ 4 6)(4 ’

1
Xy = (X + Y1, X2 + Y2, X3 + Y3 — YiXa, Xg + Y4 + SVIX2 — Y1X3).

2
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Moreover,
1 . 0 1 . 0, —X7, —X3
0, 1 1, 0, =x, —x3 | _ |0, 1, 0, 0
—x3, 0 0, 1, 0, 0 T =x, O, x%, X2 X3
-x3, 0 -x3, 0, xpx3, x%

In this case,
2 2

We can generalize this remark. Indeed, see Section 1.5-(A3) in [4], it is well known that every
sublaplacian Ag = )}, Z? on a group G can be written in divergence form as

As = div(A(X)V),

where
A =o0(x)o"(x) (6.1)

and o is the n X n; matrix whose columns are given by the coefficients of the vector fields Z;, ..., Z,,.
We conclude that the two-phase problems for Carnot sublaplacians have to satisfy, whenever
measg({u = 0}) = 0, the following condition on the free boundary

0 =lim (B, V(M= | Vou™ P)dS + lim (B, V(M= | Veu~ P)dS,

€2V J—e<u} {(u<6}

where | Vou [*= X! (Zu)*. Then

Agu = f, inQ*"(u) :={xeQ: ulx) >0},
Agu = f, in Q (u) := Int({x € Q : u(x) <0}), (6.2)
[Vou? — |Veu > = g(x)(A2 = 2%) := g(x)A on F(u) := 0Q (u) N Q,

where, whatever the function u is sufficiently smooth, it results:
IVeul* = (A(x)Vu, Vuy = (0" Vu, o Vuygn

and
Vou(x) := o’ (x)Vu(x) = Z Ziu(x)Zi(x).
k=1

In the case of H!, the functions like a(ax + by)* — B(ax + by)~, where a®> + b*> > 0, a, b € R are fixed,
aswell as @, 8 € R, a, B > 0, satisfy the two-phase homogeneous problem

Agiu = 0, in Q" (u) :={xeQ: ulx) >0},
Agiu =0, in Q™ (u) :=Int({x € Q: u(x) <0}), (6.3)
Veut? — |[Vu > = (@ + b*)(a® - 57) on F (u) := 0Q"(u) N Q.

In this case the free boundary ¥ () is the set {(x,y,7) € H! : ax + by = 0} that does not have

characteristic points.
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7. Nonlinear case: p(x)—Laplace operator

We now argue considering the following functional

J() = f (a( Vu |, x) + M*(u, x) + p(x) f(x)u) dx,
Q

where
M(u, x) = g(xX)(A X w0y + A-X <o)

and a is a function that we shall introduce in a while.

We define 7,(x) = x + e¢(x) where ¢ € C7(€2,R"). Then, denoting by u, the function such that

u(tox) = u(x), we get
J(up) = fg (al Vi) 1y) + MP(w:(3),y) + pO)f0)ue()) dy

= fQ (a(l Vito(7o(0) | 7o) + MP(u(ro(0)). T(0)) + pFE(0)u(r(x))) [det 7 ldx.

On the other hand, following the same notation of the case described in Section 5 we obtain:
J(u,) = f (all J7o(0) " Vu(x) 1 7o(0)) + MA@, 7)) + pf(Ta(x)u(x)) Idet/ T ldx
Q

= f (a(l Vu(x) — eJdpVu(x) + o(e) |, 7o(x)) + Mz(u(x), T.(x)) + pf(Tg(x))u(x))IdetJTgldx.
Q
In the case when a(b, ¢) = b*, denoting

Epn@) = [ (1Tl 40 w2) + p(0 )
Q

we get from the Taylor expansion:
a(| Vu(x) — eJopVu(x) + o(e) |, 7o(x) |=| Vu(x) — eJpVu(x) + o(g) [P
| Viu(x) — eJ¢Vu(x) + og) [PRHTPOg) o)
=| Vu(x) — eJpVu(x) + o(€) [P™) Vu(x) — eJpVu(x) + o(g) |*VPDwt+ole)
so that
= (| Vu(x)|* — 2e(JpVu(x), Vu(x) + o(1)) + o(s))@ | Vu(x) — eJ¢pVu(x) + o(g) [FVPD#0rto@
= (I VUl = £p(x)J¢Vu(x), Vu())Vux)I"™2 + o(z))
x exp{e({Vp(x), ¢(x)) + o(1)) log(| Vu(x) — eJ¢pVu(x) + o(e) )}
= (| Vil — ep(e)(I$Vu(x), Vu() Va2 + ofe))
X exp (e((Vp(x), p(x)) + o(1)) (log(| Vu(x) |) + log(1 — e(JpVu(x), Vu(x)) + 0(¢)))) ,
that is
= (I Vuol"® = ep(x)J¢Vu(x), Vu())Vu(x)I" 7 + o(z))
X (1 + &(Vp(x), Ve(x)) log | Vu(x) | +o(€)))

=| Vu()l"™ + & (I Vu()"*(Vp(x), p(x)) log | Vuu(x)| = p(x){J¢Vu(x), Vu(x))|Vu()l” (x)_z) + 0(8).

(7.1)
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Asa consequence

Ep(o(Ue) = L ( | V()" + 8( | Vu(x)["(V p(x), Vep(x)) log [Vu(x)|
— p()(JPVu(x), Vu(x)Vu(x)l’ (x)_z) +0(¢))
+ M2 (u(x), 7o(x)) + (p(x) + &V p(x), §) + 0(€))f (Tg(X))M(X))IdetJTsldx,

so that
= f ( | Vu(x)l”(") + Mz(u(x), Xx) + p(x)f(x)u(x))(l + eTr(J¢) + 0(8))dx
Q

ve [ (19T pla. oy log | Tuto)

— p(x){JPVu(x), Vu(x)Vu(x)P= + u(x)(Vp(x), ¢} f (X))
x (1 + £Tr(J¢) + o(e))dx

+e f (PGXV £ (), pyu(x) + (VM (u(x), ), §)) (1 + £Tr(J¢) + 0(e) )dx + o(),
Q

from which follows,
= E (W) + 8] fg (1 V(™ + MP(u(x), x) + pOo) f(u(x)) Tr(J¢)dx

+ js; (IVM(X)I" DV p(x), p(x0)) log | Vu(x)l = p(){J$Vu(x), Vi) Vu(x)" 2

+ (Vp(x), pu(x) f(x) + pu(x)VF(x), ) + (VM (u(x), x), $))dx} + 0(&).
Thus, recalling that u# is a minimum, we can conclude that

lim 8p(x)(ua) - ap(x)(u) _

e—0 &

Thus we deduce, recalling Tr(J¢) = div(¢), that

0.

0={ f (1 VuP® + M*(u(x), x) + p(o) f(D)u(x))div(g)dx
Q

+ fg ( | Vu(x)P(V p(x), ¢(x)) log | Vu(x)] — p(x){J$Vu(x), Vu(x))[Vu(x)[P O~
+ (V (), o)) £(x) + pux)(Vf (1), §) + (VM (u(x), x), ¢) )dx),
that is also

0= f (1 Vu@P™ + M?(u(x), x))div($)dx
Q

+ fg (|Vbt(x)lp(")WzD(JC),¢(J€)>10g|Vbt(x)l—117(JC)<J¢VM(3€),Vu()f))qu(JC)l”(”)_2

+ (VM (u(x), x), ¢) = F()p(x)(Vut, §))dx].

(7.2)

(7.3)
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Hence, integrating by parts, recalling that div(] Vu [P®=2 Vu) = f in Q \ F(u), considering Q =
xeQ: u<-€eUfxeQ: u>6lU{xe Q: —e < u <o}, where €,6 > 0, recalling that
Qcs(u) ={x € Q: —e < u <4} and denoting by,

Res:= f (1 Vu@)IP™ + M*(u(x), x))dive - f PO(VIPVu(x), Vu(x))
Qe 5(u) Q

€,0 ()

+ L ()IVM(X)I” WV p(x), p(x)) log | Vu(x)| + L (VM (u(x), ), @)

es(u)

- f p(x) f(x){p, Vuy,
Qe s5(u)

we get:

0= lim { fa{ }(n,q&}((l— Pp() | Vu(lP® + M*(u(x), x))dS

€—0,0—0

(7.4)
b [ = o (1 TP+ M. 0)aS + Rl
Nu>6}
This result that implies
0:e£$${l;égm¢XG—pu»|vme”+Aﬂwuxwws s

ﬁL}mMuwmnwwm+wwmmﬁL
u>d

because we assumed that meas,{u = 0} = 0, so that lim¢_,¢ 50 Res = 0.
As a consequence the natural pointwise condition on the free boundary {u = 0} is

(p(x) = 1) | Vu* P2 ~(p(x) = 1) | Vu~ "Y'= g()(A2 = 22).

Usually, previous condition is written as well as

22 -2
)P — (u)’? = g(x)——=,
p(x)—1

where u; and u, denote the normal derivatives, computed considering n pointing inside to Q*(«) and
Q7 (u) respectively, at the points of the set {u = 0}, of course whenever this fact makes sense. In fact
for every x € {u = 0}, and such that Vu(x) # 0, we have:

Vu(x)

un(x) = (Vu(x), m) = [Vu(x)l.

In conclusion the two phase problem can be formulated in viscosity sense as:
Apyut = f, in Q" (u) :={xeQ: ulx) >0},
Apyu = f, in Q (u) :=Int({x € Q: u(x) <0}, (7.6)

[Vut P9 — |Vy~ [P = q(x)p(g_l, on F(u) := 0Q" (u) N Q,

being A := 22 — 22,
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8. Conclusions

Starting from the condition on the free boundary that we have obtained, in Carnot groups for the two
phase problems, we ask ourselves if a comparison result may work in this framework. Following the
mentioned viscosity approach introduced in [17-20], the first thing to prove seems to be the existence
of a comparison result. From this point of view, it is natural to recall the properties arising from the
Hopf maximum principle. About this subject in Carnot groups, we cite [6], for a detailed study, for a
discussion in the Heisenberg group, and [36] for a generalization to the Carnot groups. In fact in [6],
see Lemma 2.1, the authors remark that if a set Q satisfies the inner intrinsic ball property, namely if
Py € 6Q is such that there exists a Koranyi ball Bgl (Q) € Q, such that Py = B (Q) N 9Q, u satisfies
Agiu(P) > 0 and u(P) > u(Py) for every P € BEI (Py) N Q, then

I Jf(Po) — f(Py — th)
im <

h—7*0 t

0,

where h denotes any exterior direction to dQ at Py; moreover, in case if % exists, then % <0.In

this order of ideas the right definition of a viscosity solution for (1.4) may be the following one.
Unfortunately, if the contact point between the set and the ball is realized in a characteristic point,
then g—{: = 0 at the characteristic points along all the horizontal admissible directions 7 € HH", that is
Vi f = 0 at the characteristic points.
We denote by v the intrinsic normal to # (v) at xo € ¥ (v) and, as usual, v;(xg), v, (xo) represent
the horizontal derivatives with respect to the inner intrinsic normal v to Q*(v) and to Q™ (v) respectively.
We are in position to state the definition of solution of a two-phase free boundary problem in a
simpler case like (1.4) as follows:

Definition 8.1. We say that u € C(Q) is a solution to (1.4) if:

(i) Agu = f in a viscosity sense in Q*(x) and Q™ (u);

(i) let xo € F (u). For every function v € C(B,(xy)), € > 0 such that v € C*(B*(v)) N C*(B~(v)), being
B := B,(xy) and F(v) € C?, if v touches u from below (resp. above) at x, € F(v), and X, is not
characteristic for  (v), then

VE(x0)? = (v (x0))> < 1 (resp.  (Vi(x0))* — (v (x0))* = 1).

Moreover, the following notion of strict comparison subsolution (supersolution) plays a
fundamental role, at least in the Euclidean setting, see [17, 18]. Here below we state it in the
framework of Carnot groups.

Definition 8.2. We say that a function v € C(Q) is a strict comparison subsolution (supersolution) to
(1.4) if: v € C*(Q+(v)) N C*(Q~(v)) and

(1) Agv > f (resp. Agv < f) in a viscosity sense in Q*(v) U Q™ (v);
(i1) for every xo € F(v), if x( is not characteristic for ¥ (v), then

vy (x0)* = (v, (x0))* > 1 (resp. (v (x0))* = (v, (x0))* < 1.

As a consequence, we obtain the following result.
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Theorem 8.3. None strict viscosity subsolution v of (1.4) can touch a solution u from below at none
point in F(u) N F(v) that is noncharacteristic for F(v). Analogously, none strict comparison
supersolution v of (1.4) can touch a viscosity solution u from above at points belonging to
F (u) N F (v) that are noncharacteristic for ¥ (v).

Proof. 1t follows by the definitions of solution and strict sub/super-solution in G. m|

Corollary 8.4. Let v and u be respectively a strict subsolution and a solution of (1.4) in G. If v < u in
Q and F (v) is a noncharacteristic set then v < u in Q.

Let w and u be respectively a strict supersolution and a solution of (1.4) in G. If w > u in Q and
F (w) is a noncharacteristic set, then w > u in .

Proof. Suppose that strict subsolution of (1.2) such that v < u. Then such point x, can not be inside
Q*(u) U Q™ (u) because, on the contrary, from

Agyv —Agu > f(x)— f(x) =0

in Q"(u) U Q (1) and v — u realizing a maximum at x, we would introduce a contradiction with the
maximum principle. Then this contact point x, € ¥ (u) N F(v), and, by the definition of strict
subsolution, this fact can not happen. O

As a consequence it might exist solutions u, v of (1.4) such that v < u, u # v but u, v might touch
in a characteristic point xo € ¥ (u) N F (v). In fact it is well known that a Hopf maximum principle in
the Heisenberg group formulated simply substituting to the normal derivative at a boundary point the
intrinsic (horizontal) normal derivative fails, since they may exist characteristic points on a C' surface.
For instance, sets with genus 0 (without holes) having smooth boundary have always characteristic
points belonging to the boundary. As a consequence, there can not exist solutions of (1.2) satisfying
flux condition pointwise on the free boundary, when ¥ () is the boundary of a set of genus 0.

Here we give some examples of solutions in H'. Let u be a solution of a two phase problem (1.2)
in a set A C R? satisfying the same condition |[Vu"|* — |Vu~|> = 1 (in the Euclidean setting) on F (u) :=
A N OA(u). Then ii(x, u,t) = u(x,y) is a solution of (1.4) in the cylinder Q = A X (a, b), when G = H'.

In the case of the p(x)—Laplace operator characteristic points do not exist. So that the definition
of solution of the simpler problem (1.5), in the viscosity sense, is the following one, keeping in mind
that we denote by n the normal to #(v) at xo € F(v) and, by v} (xy), Vv, (xo) we denote the normal
derivatives with respect to the inner normal n to Q*(v) and to Q™ (v) respectively.

Definition 8.5. Let u € C(€2). We say that u is a solution to (1.5) if:

(i) Apu = f in a viscosity sense in Q" (1) and Q™ (u);

(i1) for every xy € ¥ (u) and for every function v € C(B.(xp)), € > 0 such that v € CZ(B+—(V)) N
C%(B~(v)), being B := B,(xy) and F (v) € C? and Vv(x,) # 0,
if v touches u from below (resp. above) at xy, € F (v), then

(Vy (x0)* = (v (x0)* < 1 (resp. (v, (x0))* = (v (x0))* = 1).

In this case, even if we consider only non-degenerate points where Vv # 0 on ¥ (u), the Hopf
maximum principle holds in the classical sense, so that, we introduce the following strict comparison
notion of subsolution/supersolution.
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Definition 8.6. v € C(Q) is a strict comparison subsolution (supersolution) to (1.5) if: v € C(Q*(v)) N
C*(Q(v)) and

(1) Apyv > f (resp. Ay < f) in a viscosity sense in QF(v) U Q™ (v);
(ii) for every xo € F(v), if Vv(xp) # 0, then

Vi(x0))* = (v, (x0))* > 1 (resp.  (vi(x0))* — (v, (x0))* < 1.

As a consequence we obtain the following result.

Theorem 8.7. None strict viscosity subsolution v of (1.5) can touch a solution u from below.
Analogously, none strict comparison supersolution v of (1.5) can touch a viscosity solution u from
above.

Proof. The proof immediately follows applying the definitions (8.5), (8.6), because of inner maximum
principle and via the Hopf maximum principle since, in the last case, the gradient on that contact
boundary points can not be 0. O
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