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Abstract

This paper discusses disadvantages and limitations of the available inferential
approaches in sequential clinical trials for treatment comparisons managed via
response-adaptive randomization. Then, we propose an inferential methodology for
response-adaptive designs which, by exploiting a variance stabilizing transformation
into a bootstrap framework, is able to overcome the above-mentioned drawbacks,
regardless of the chosen allocation procedure as well as the desired target. We derive the
theoretical properties of the suggested proposal, showing its superiority with respect
to likelihood, randomization and design-based inferential approaches. Several illus-
trative examples and simulation studies are provided in order to confirm the relevance
of our results.
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1 Introduction

While randomized clinical trials are essential for scientific progress and for promoting
the public health at large, there is an uncomfortable ethical dilemma, because in most
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clinical trials half the patients will be randomized to a potentially ineffective or harmful
treatment. This dilemma becomes more acute in the context of grave or emerging novel
infectious diseases. Motivated by the ethical demand of individual care, in the last two
decades there has been an increasing attention in the literature on response-adaptive
(RA) designs.

By using the information provided by earlier responses and past assignments,
RA procedures are sequential rules in which the treatment allocation probabilities
change in order to favour at each step the treatment that appears to be superior
and, asymptotically, to reach a desired treatment allocation proportion—the so-called
target—representing a valid trade-off between ethics and inference (see, e.g., Rosen-
berger et al. (2001) and Baldi Antognini and Giovagnoli (2010)). Indeed, since the
ethical goal of maximizing the subjects’ care often conflicts with the statistical one of
drawing correct inferential conclusions about the identification of the better treatment
and its relative superiority, the targets generally depend on the unknown treatment
effects: although a priori unknown, they can be approached by RA procedures that
estimate sequentially the parameters to progressively converge to the chosen target [see
for a review Atkinson and Biswas (2014), Baldi Antognini and Giovagnoli (2015) and
Rosenberger and Lachin (2015)]. Some examples are the Sequential Maximum Like-
lihood design (Melfi and Page 2000), the Doubly-adaptive Biased Coin design (Eisele
1994) and the Efficient Randomized Adaptive DEsign (ERADE) introduced by Hu
et al. (2009) in order to improve the convergence to the chosen target.

Although the adaptation process induces a complex dependence structure between
the outcomes, several authors provided the conditions under which the classical asymp-
totic likelihood-based inference is still valid for RA procedures [see, e.g., Durham et al.
(1997) and Melfi and Page (2000)]. In particular, let us assume that the observations
relative to either treatment—say A and B—are iid belonging to the exponential family
parameterized in such a way that §; € ® C R denotes the mean effect of treatment
J» while v; = v(8;) > 0 is the corresponding variance (j = A, B). Special cases
of practical relevance in the clinical context for modeling the primary endpoint, that
in what follows will be referred to as statistical models, are binary (with 6; € (0; 1),
v(0;) = 0;(1—0;))and Poisson (6, € R, v(0;) = 0;) distributions for dichotomous
and count data, respectively, while the normal model (with 6; € R and v(6;) = v;
independent from 6;) is also encompassed for continuous responses as well as the
exponential one (6; € Rt v( i) = 9}) for survival outcomes.

The inferential goal usually consists in estimating/testing the superiority of A wrt
B and, therefore, interest lies in the treatment contrast ¥ = 64 — Op, while 0p is
usually regarded as a nuisance parameter, so from now on we take into account the
model re-parameterization (64, 6p) — (9, 6p). Let 1, be the allocation proportion to
A (respectively, 1 — m, to B) after n steps, if the RA design is chosen such that

lim m, = p(9,0p) € (0;1) a.s. with p(-) continuous, (1)
n—oo

then the applicability of standard asymptotic inference is ensured. Generally satisfied
by RA rules proposed in the literature, this crucial condition prescribes that the target
p must be a non-random quantity different from 0 and 1, to avoid possible degeneracy
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of likelihood methods. Moreover, by assuming (without loss of generality) that high
responses are preferable for patients’ care, an additional common assumption is:

o is monotonically increasing in ¥ with p(0,6p) = 1/2. 2)

For example, adopting the Play-the-Winner rule proposed by Zelen (1969) for binary
trials, the allocation proportion of A converges to ppw (¢, 0p) = (1 — 0p)/[2(1 —
0p)—v']. Whereas, other targets proposed in the literature depend only on the treatment
difference: for instance, in the case of normal homoscedastic trials, Bandyopadhyay
and Biswas (2001) and Atkinson and Biswas (2005) suggest oy (9) = @ (9/7T),
while Baldi Antognini et al. (2018a) discuss pz () = {e=?/T + 1}~!, where ®
is the cumulative distribution function of the standard normal and 7 > 0 a tuning
parameter.

For moderate-large samples, namely the most representative framework in the con-
text of phase-III clinical trials, several authors showed (both theoretically and via
simulations) that the likelihood-based approach could present anomalies in terms of
coverage probabilities of confidence intervals, as well as inflated type-I errors or
inconsistency of Wald’s test, especially when the chosen targets exhibit a strong ethi-
cal component (Rosenberger and Hu 1999; Yi and Wang 2011; Atkinson and Biswas
2014; Baldi Antognini et al. 2018a; Novelli and Zagoraiou 2019). To avoid these
drawbacks, Wei (1988) and Rosenberger (1993) suggested to conduct randomization-
based inference for RA trials. Under this framework, the null hypothesis of equality
of the two arms corresponds to an allocation in which the treatment assignments are
unrelated to the responses, so the randomization test is carried out by computing the
distribution of the allocations conditionally on the observed outcomes (that are treated
as deterministic). Since the distribution of the test depends on the adopted RA pro-
cedure, exact results are quite few and, generally, p-values are computed via Monte
Carlo methods. Following a design-based approach, Baldi Antognini et al. (2018b)
recently introduced a test based on the treatment allocation proportion induced by
a suitably chosen RA rule showing that, in some circumstances, this test could be
uniformly more powerful than the Wald test.

After discussing drawbacks and limitations of the available inferential approaches,
the aim of this paper is to provide a new inferential methodology for RA clinical trials
by combining a variance stabilizing transformation with a bootstrap method. We derive
the theoretical properties of the suggested proposal, showing that it is more accurate
than the other approaches, regardless of the adopted RA rule as well as the chosen
target. Several illustrative examples are provided for normal, binary, Poisson and
exponential data. Starting from a discussion in Sect. 2 about the existing approaches,
highlighting their inadequacy for RA clinical trials, Sect. 3 deals with the new variance-
stabilized bootstrap procedure and its theoretical properties. An extensive simulation
study is carried out in Sect. 4 to confirm the relevance of our results, also comparing the
performances of the newly introduced approach to those of other inferential methods.
Finally, Sect. 5 deals with some concluding remarks.
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2 Available inferential approaches

2.1 Likelihood-based inference

Although for RA designs the MLEs 9,, = (éAn, éB,,)’ of & = (04,60p) remain
the same as those of the non-sequential setting (i.e., the sample means), this is not
true for their distribution due to the complex dependence structure generated by the
adaptation process. However, the standard asymptotic inference is allowed for RA
designs satisfying (1). Indeed, let M,, = diag(r, /va; [1 — m,]/vp) be the normalized
Flsher information and &, = 4, — Og,, then f(ﬂ — ) — ./\/(0 o ) where
02 =va/p(,08)+vg/[1 — p(?,6p)] and, due to the continuity of the target,

lim oDy, Opn) = p(¥, 0p) a.s. and
n—00
lim M, = M = diag(p(, 0p)/va; [1 — p(&,0p)]/vB) a.s.

n— o0

So, letting Uj,s be consistent estimators of the treatment variances, then 62 =

vA,,/,o(ﬂn, 93n) + 0pn/[1 — ,0(19”, 93,,)] and the (1 — )% asymptotic confidence
interval is CI(9)1—o = (19 +n 1/211 a/ZUn) where z,, is the a-percentile of @.
Moreover, to test Hy : ¥ = 0 against H; : ¢ > 0 (or H; : ¥ # 0), Wald statistic
W, = 4/n 5‘,,8,; !'is usually employed. Under Hy, W, converges to the standard normal
distribution and, due to the consistency of 8,%, the power can be approximated by

@ (ﬁﬁa—l — z]_a> . 9> 0. 3)

Even if condition (1) theoretically guarantees the applicability of likelihood inference,
this approach may present critical drawbacks, in particular for targets characterized
by a high ethical component. Indeed, as shown in Baldi Antognini et al. (2018a) and
Novelli and Zagoraiou (2019), if p tends either to O or 1, the asymptotic variance of
B, tends to diverge. Therefore, the quality of the CLT approximation is compromised,
leading to unreliable confidence intervals and inflated type-I errors. Furthermore, some
targets (like, e.g., py and pr) could induce a consistent loss of inferential precision,
since the Wald test becomes inconsistent and it displays a non-monotonic power.

2.2 Randomization-based inference

Randomization—also known as re-randomization—tests are a class of nonparametric
procedures obtained by recomputing a test statistic D, (as , or other discrepancy
measures between the two arms, like those based on ranks) over permutations of
the data (Rosenberger and Lachin 2015). Taking into account the null hypothesis
(under which the allocations are unrelated to the patients’ outcomes), the procedure
is carried out by considering the set of responses as fixed and deterministic values,
and computing all the possible ways in which the subjects could have been assigned
to the treatments. However, since the computation of all the treatment assignment
permutations and their probabilities is not feasible, even for small or moderate sample
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sizes, in practice randomization tests are computed using Monte Carlo methods. In
particular, the allocation sequence is generated L times and, for each sequence, the
statistic of interest d,ll is computed, obtaining {dfl, I =1,...,L}. Then, a consistent
estimator of the p-value is obtained by calculating the proportion of the generated
sequences that yields a value of the test equal or more extreme than the value d,, of the
test statistic evaluated on the observed data. Then, the p-value can be approximated by
the proportion of sequences where |d.| > |d,|, namely P,gng = L™ Zle I(|d| >
|dn]), where I(+) is the indicator function, so that the test of level « rejects Hy if Prand is
lower than the significance level. Analogously, the power of the randomization test can
be approximated via Monte Carlo methods by repeating H times the above-mentioned
procedure and computing the proportion of rejections (Beran 1986).

One of the main strengths of randomization tests consists in avoiding any parametric
assumption on the population model; this makes them a valid alternative to the standard
likelihood methods, especially when the conventional model assumptions may not
hold or be verified (Rosenberger et al. 2019). However, the behavior of randomization
tests strictly depends on the particular RA procedure that has been adopted and their
applicability may be severely limited by the quite restricted specification of the null
hypothesis being tested. For instance, if the chosen RA design depends only on the
treatment effects, then the null hypothesis of randomization test actually corresponds
to testing the equality of the effects, with an alternative that is naturally two-sided (i.e.,
the allocations depend on the treatment outcomes). Although these procedures have
been also applied for the one-sided alternative H; : ¢ > 0, they are not suitable for
a general hypothesis testing problem. For instance, assuming ppyw for binary trials or
pn for normal outcomes discussed above, a commonly used alternative Hy : ¢ > §
for a prefixed minimum significant difference § cannot be tested via re-randomization.
Moreover, such an approach does not directly allow the construction of confidence
intervals.

2.3 Design-based inference

Taking into account targets depending only on the treatment difference, namely p =
p (), satisfying (1)—(2) with p () = 1 — p(—?) to treat the two arms symmetrically,
Baldi Antognini et al. (2018b) have recently introduced a design strategy for normally
response trials that overcomes some drawbacks of the Wald test. In particular, under
condition (1), both ,o(&,,) and the treatment allocation proportion 7, are consistent
estimators of p (). Thus, if we further assume

p is twice continuously differentiable with bounded derivatives, 4)

adopting ERADE [or an asymptotically best RA procedure as defined by Zhang
and Rosenberger (2006)], then /n(w, — p(®)) < N(0,1%), where 1> =
(o' ()1 {va/p(¥) + vg/[1 — p()]} is the so-called Rao—Cramer lower bound and
o' is the derivative of p (the asymptotic normality follows from the Delta-method,
provided that p'(9) # 0). Thus, let A2 = [p/(9,)]? [Dan/7n + OBn/(1 — 74)] be a
consistent estimator of A2, then CI(p(9))i1—o = (7, £ zlfa/zf\,,/\/ﬁ) and, due to
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the monotonicity of p, the asymptotic confidence interval for ¥ could be derived by
applying the inverse mapping p~! to the endpoints of CI(p(1%))1_e. Analogously,
testing the equality of the treatment effects is equivalent to testing Hy : p(¢) = 1/2
(against Hy : p(¥) > 1/2 or Hy : p(¥) # 1/2, corresponding to Hy : ¥ > 0 or
H : 9 # 0, respectively). Under Hy, the test statistic Z,, = /n (7, — 1/2) ):;1 con-
verges to the standard normal distribution, while given Hy : p(¢) > 1/2, the power
of the «-level test Z,, can be approximated by

Ja[p®) — 1]

— -« |
!
PO 5 + T

Test Z, is consistent provided that lim;_ 5[1 — PP ]2 > 0, where ¥ =
supy, ce U. Moreover, under some additional conditions on p, power (5) is monoton-
ically increasing in ¥ and Z,, tends to be more powerful than the Wald test. However,
the major drawback of this approach is its strong dependence on the chosen target,
which could significantly affect A% through its ethical skew, leading to possibly inflated
type-I errors. Indeed, by combining (1), (2), (4) and the symmetric structure of the
target,

oy

9 > 0. )

(1) p'(®) = p' (=) > 0 for every ¥, with p’(0) # 0 to guarantee the applicability
of the Delta-method;
(i) p”(¥) = —p" (=) for every ¥, which implies that p”(0) = 0;

(iii) 0 < p’(0) < oo, which clearly limits the choice of the target as well as the values of
the tuning parameter T, if present (A2 is strongly affected by p’, which represents
the ethical improvement of the chosen target, especially when p’(0) tends to grow
quickly).

These are the main reasons why the design-based test could present inflated type-I
errors for several targets and some values of T'. For instance, taking into account normal
response trials, although py and py, are twice differentiable with p}, (0) = p; (0) = 0,
these targets tend to be highly sensitive to small variations in the treatment difference
¥ around O (i.e., under Hp), especially for small values of T'; whereas the target

s

1
ps(B) = m (6)

is not twice differentiable at O; moreover, ,o/S (0) vanishes as T' grows and tends to be
unbounded as T — 0, so damaging the CLT approximation (as we will point out in
Table 1).

Example 1 Figure 1 shows the simulated distributions of the allocation proportion 7,
under Hy : 9 = 0, adopting pgs and p; with T € {0.5, 1, 2}, obtained by simulating
100000 homoscedastic normally distributed trials with n = 250 using ERADE (with
randomization parameter y = 0.5). Adopting pr, for T = 0.5 the resulting distri-
bution tends to be concentrated on the extremes, presenting peaks on 0 and 1, while
for T > 1 the asymptotic normality is preserved. Under pg instead, small values of
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Fig. 1 Simulated distribution of 7, under Hy adopting pgs and py as T varies

T tend to both increase the variability of the distribution of 7, and to accentuate the
departure from normality; this effect is greatly mitigated for 7 > 1.

Test Z, could be naturally extended to a target p (2, 6p) depending on the nuisance
parameter 0 by letting A> = Vp'M~!Vp and to other models belonging to the
exponential family, as we will discuss in Sect. 4 for binary, Poisson and exponential
outcomes.

3 The variance-stabilized bootstrap-t approach

In order to avoid the aforementioned drawbacks of both likelihood-based and design-
based inference, also overcoming the limitations of randomization-based tests, we
now propose a new inferential approach for RA procedures developed through a
variance-stabilized bootstrap-# method (Tibshirani 1988; Efron and Tibshirani 1994).
By mapping the statistic of interest via a variance stabilizing transformation and com-
puting its bootstrap-¢ distribution, this proposal allows us to avoid the problems related
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to the instability of the asymptotic variance as well as the quality of the CLT approx-
imation.

The main idea behind the variance stabilization is the following: let X be a random
variable with expected value u and variance v = v(u), letting g(-) a regular transfor-
mation such that g’(1) = v()~ /2, then the variance of g(X) tends to be first-order
constant, namely it is at least approximately independent on p in a first-order Taylor
expansion. Therefore, given a chosen target p, by applying such a variance stabiliz-
ing transformation to the estimated treatment difference 19,,, we are able to get over
the possible degeneracy of its asymptotic variance 03. In particular, for every fixed
fp € ® (and v € R for normal homoscedastic outcomes), by letting ag = 03(19)
and g(x) = [~ ap_l(t)dt, then /n[(9,) — g()] < N (0, 1) from the Delta-method.
Therefore, by letting

T, = /nlg(Dy) — g(0)], (7

the a-level right-sided test consists in rejecting the null hypothesis Hy : # = 0 when
T, > 71—«- Hence, the power is Pr(ﬁ[g(f?,,) —g(M)] > z1-4 — /nlg(®) — g(O)]),
which can be approximated by @ (v/n[g() — g(0)] — zi—a), for ¥ > 0.

Notice that the transformation g(-) depends on the chosen target as well as on the
statistical model through the variance function, and thus it could also depend on 6 and
v; therefore, the estimation of the nuisance parameters is requested for computing the
statistical test and from now on we let 9, be a consistent estimator of v. The following
Corollary presents the transformation g(-) and the corresponding test 7,, for the most
common statistical models and for some selected targets. In particular, a widely used
one is

¥+ 0p

D,0p) = ——,
PR, 0p) 51205

®)

which corresponds to the Neyman allocation for exponential outcomes and to the
E-optimal design for Poisson responses (also considered by Zhang and Rosenberger
(2006) for normal trials with non-negative means and by Baldi Antognini and Gio-
vagnoli (2010) for binary outcomes).

Corollary 1 Let us consider the target pg in (8):
(i) for binary outcomes, 0p € (0; 1), —0p < ¥ < 1 —0p and GSR =1-(1-v -
20p)%;

tfms, g(}?) = —arcsin(1 — ¢ — 20p) and T,, = /n{arcsin(l — Zégn) —arcsin(1 —
Uy — 20}

(ii) for exponential tArials,A 0p > 0 and v > —0p, g(¥) = In(¥ + 20p) and
T, = \/ﬁln(l + 19"/293”);
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(iii) for normal homoscedastic data with 0p > 0 and 9 > —0p, so g(¥) =

20pv~ 2 /T + 0/0p — arctan(/1 + 0/0p)] and therefore

~ ~

N s 1
T, = 20, Al 1 + =% — arctan 1+ = —1+z ;
Un OBn OBn 4

(iv) for Poisson data 6 > 0 and 9 > —0p, g(¥V) = /20 +260p) and T, =
2D, + 405,) /% = 26,/%).

Whereas, for Poisson responses the Neyman allocation reads

NOENT
VO +OB +\/537

hence g(v) =2 {\/15‘ +0p — /0 1n («/93 + VO + 93)} and then

N N N 1 \/l§ —l—ég
Tp = 23/n Y/ On + Opn — /05 In §+#

2 é\Bn

pz(D,0p) = ©))

Adopting py., for normal homoscedastic outcomes 9 € R and g(9) = 2Tv~1/?
arctan(e?/27T), hence

T, =2T {arctan (eﬁ"/zT) — z} s

4

e

which does not depend on 0p.

Notice that for some targets, e.g., ppw, the transformation function g(-) is not avail-
able in closed form and it should be evaluated numerically using standard integration
routines (like, e.g., integrate in R).

Assuming that the outcomes belong to the exponential family discussed in Sect. 1,
the following results hold.

Theorem 1 The variance-stabilized test T, is consistent, and its power function is
monotonically increasing in ¥, regardless of the chosen target.

Proof Due to its definition, the variance stabilizing transformation g(-) is a continuous
and monotonically increasing function and, therefore, the power of 7, is increasing
too. Furthermore, by noticing that lim,_ 5 g(¥) = g(?) > g(0), test 7, is always
consistent. O

Theorem 2 [f the target p is chosen such that
X
/ o, (Hdt = xo, ' (x), Vx>0, (10
0
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the variance-stabilized test T, is uniformly more powerful than Wald'’s test. Further-
more, condition (10) holds if 03(19) is increasing for ¥ > 0.

Proof Condition (10) can be easily derived from the power function of test 7,, com-
bined with (3). Moreover, the last statement follows from the mean value theorem;
indeed, due to the continuity of o,(-), there exists a given ¢ € [0; x] such that
Iy ap’l(t)dt = xcrp’l(c) and therefore, if Ug(x) is increasing in x, then a;] (c) >
Up_l(x) since ¢ < x. O

As an example, let us consider p; for normal homoscedastic data. Condition (10)
simplifies to

2
X/ZT) _ xex/ ! 0

2T arctan(e T 1 >

)

which can be verified by noticing that the left hand side is an increasing function
for every x > 0 and it is equal to O for x = 0. As we will show in the following
Corollary, for normal homoscedastic outcomes test 7,, is uniformly more powerful
than Wald’s test, regardless of the chosen target (see also Table 1). In general, however,
the superiority of 7, depends on the adopted target and the given statistical model.

Corollary 2 For normal homoscedastic outcomes, test T, is uniformly more powerful
than W, regardless of the chosen target. Adopting pr for exponential data, as well as
under pyz for Poisson trials, test T, is uniformly more powerful than W,,.

Proof In the case of normal homoscedastic outcomes, for every p satisfying (2), 03 (©2)
is increasing in ¢ for every ¥ > 0. Indeed,

v
p(@,0p)[1 — p(9,65)]

oy () =

where from (2), forevery 0p € R, the target is increasing in ¥ with p (¢}, 0p) > 1/2 for
¥ > 0. Therefore, for every pair (91, ¥7) with 0 < ¢ < 9>, then 1/2 < p(¥1,0p) <
p (92, 6p) and thus 63 (91) < 0 (2), since p (91, 6p) + p(P2,0p) = 1.

As regards pp for exponential data, condition (10) simplifies to In (1 + ¢/20p) >
(1 +260/9)~", which is trivially verified for any ¥ > 0 and f3 > 0. Analogously,
adopting pz for Poisson trials, o*gz (9) = (/O + 0 + /0 )%, that is increasing in ¢
for every ¥ > 0 and 65 > 0. O

In order to overcome possible problems related to the quality of the CLT approxima-
tion, we apply such a variance stabilizing transformation into a bootstrap framework.
Since standard re-sampling techniques (like the nonparametric bootstrap) may not be
suitable for non-exchangeable/dependent data, we suggest a parametric bootstrap that
makes use of the estimated parameters and generates replicates of both the allocation
sequence derived by the chosen RA rule and the corresponding outcomes, without
re-sampling the observed data. Following the same arguments of Rosenberger and Hu
(1999), who have derived bootstrap confidence intervals for adaptive designs, if the
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RA procedure satisfies condition (1), then the bootstrap method is still first-order con-
sistent. Indeed, in this case the MLEs are consistent and asymptotically normal, so the
first-order consistency of the bootstrap estimators follows directly [see the Appendix of
Rosenberger and Hu (1999)]. Moreover, such a variance-stabilized bootstrap-# method
has been proven to be transformation-respecting, second-order correct and accurate,
providing also good performances in fairly general settings (DiCiccio and Efron 1996;
Hall 2013).

More specifically, given a RA design fulfilling conditions (1)—(2), the proposed
strategy is the following:

1. at the end of the trial with n subjects derive 0 "

2. generate B replicates of the RA trial with size n using ) » asunderlying parameters,
obtaining ézl and then 5;’ fori =1,..., By;

3. for each i, generate B, replications of the trial using é:l as underlying parameters
and compute the bootstrap estimate D¥ of the variance of \/ﬁ@‘,’fi over the Bj
replicates, deriving b (i = 1, ..., By);

4. fit a curve to the points {(ﬁﬁ:i, f)j{i } | using a nonlinear regression
i=l1,..., B

technique—such as lowess running smoother (Cleveland 1979)—to estimate v(-)
and compute the variance stabilizing transformation g(x) = f “u(s)"V2ds by
using a numerical integration technique;

5. generate B3 new replicates of the trial using é,, to obtain 9,/ (j = 1,..., B3) and
then compute the (1 —«)-percentile tf‘_a of the studentized distribution 1/n{g (19,’1“) —

g}

Let 7, be the bootstrap version of (7), given Hy : ¥ > 0, the a-level test rejects Hy
when 7% > t_, (the two-tailed alternative can be derived accordingly). Then, denot-

ing by 7, the test statistic calculated for the jth bootstrap replicate (j = 1, ..., B3),
the p-value can be approximated by 13;7(,0; = B; ! Zf; | It > 1Y), where 1} is the
value of 7,* evaluated on the observed data. Finally, the power of test 7, can be approx-
imated via Monte Carlo methods by repeating H times steps 1—5 and computing the
percentage of rejections (Beran 1986). As regards the construction of confidence inter-
vals, by the inverse mapping g~ 1,

CION-a = (g =720y )i ¢V (eB) —n 21501 ).

Remark 1 The use of different sets of bootstrap replicates for the estimation of (i) the
variance transformation g(-) (steps 2-3) and (ii) the percentile tfla (step 5) is intended
to limit the burden of computation required, reducing considerably the calculation wrt
to the usual untransformed bootstrap-¢ method. Indeed, as shown by Tibshirani (1988),
By = 100 and B, = 25 are sufficient to reliably estimate g(-), while atleast B3 = 1000
is needed to derive #_ . It is worth stressing that the implementation of our proposal
is not time consuming: with a regular laptop, it takes about 1 second to perform a
hypothesis test as well as to build a confidence interval.
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Table 1 Simulated power of tests 771*, Zn, Wy and D, for normal homoscedastic responses, under p;, and
ps as T and ¥ vary

T =05 T=1 T=2
s Tr Zy Wy Dy TF Zy Whn Dy TF Zy Whn Dy

PL 0.0 005 0.06 0.05 005 005 0.05 005 005 005 005 005 0.05
0.1 021 021 0.9 019 021 020 019 019 020 020 0.19 0.19

02 048 048 047 043 048 047 046 045 048 047 047 046

03 077 077 075 072 077 076 075 074 077 076 076 0.75

04 094 093 092 091 094 093 093 092 094 093 093 092

05 099 09 099 098 099 099 099 098 099 099 099 0.9

0.6 100 100 100 100 100 100 100 100 1.00 1.00 1.00 1.00

7.5 100 100 005 100 100 100 061 1.00 100 100 1.00 1.00

100 1.00 100 005 1.00 1.00 1.00 0.10 1.00 100 100 100 1.00

pS 0.0 005 0.11 0.05 005 005 0.08 005 005 005 007 005 0.05
0.1 021 032 019 018 021 027 019 019 020 023 0.19 0.19

02 049 062 045 042 048 056 046 046 047 052 047 047

03 076 085 074 070 077 082 075 074 076 080 075 0.74

04 094 09 092 08 094 095 093 092 094 094 093 092

05 099 100 098 097 09 099 099 098 099 099 099 098

0.6 100 100 100 099 100 100 100 100 1.00 1.00 1.00 1.00

4 A comparative simulation study

In this section, we compare the performances of the newly introduced test 7,* with the
ones of Wald’s statistic W,,, the design-based test Z, and the randomization test D,
(using z% as discrepancy measure). In order to do so, we have performed a simulation
study employing ERADE (y = 0.5) with n = 250 and a starting sample of ny = 2 for
each treatment. In the first scenario, the responses are assumed to be homoscedastic
normally distributed with unknown common variance v = 1. Table 1 summarizes the
results adopting targets pr and ps (with 7 = 0.5, 1 and 2), obtained with 100000
Monte Carlo replications of the trial for W,, Z, and D,,, while we set B = 300,
B> = 100 and Bz = 10000 for 7,*.

Because of its strong ethical skew, target p; induces an anomalous behavior of the
power of W,,, which tends to the significance level as ¢ grows (especially as the ethical
skew increases, namely for 7 < 1, when the power function rapidly vanishes); note
that all the remaining tests are consistent. Whereas, adopting ps, the consistency of
the Wald test is preserved, while Z,, exhibits inflated type-I errors. In general, the new
test 7" preserves the nominal type-I error and provides an improvement in inferential
precision wrt to all the competitors. This is particularly true with pg: indeed for T = 0.5
the gain of power of 7, wrt to W,, and D,, is about 4% and 7%, respectively.

The second scenario deals with binary trials: Table 2 describes the performance of
the four tests adopting ppw and pg as 6p varies. While preserving the nominal type-I
error, 7, shows the highest power in all the scenarios, with an improvement of about
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Table 2 Simulated power of tests 7,*, Z,, W, and Dy, for binary trials adopting ppw and pg, with
0p =0.1,0.4 and 0.7

PPW PR
9 ¥ Zn W D TF Zn W D
0p = 0.1 000 005 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.05 0.34 0.30 0.30 0.29 0.35 0.30 0.32 0.27
0.10 0.74 0.70 0.70 0.68 0.73 0.68 0.70 0.65
0.15 0.94 0.92 0.92 0.92 0.94 0.92 0.92 0.91
0.20 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0p =0.4 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.21 0.19 0.19 0.19 0.21 0.20 0.20 0.18
0.10 0.47 0.46 0.46 0.45 0.48 0.46 0.47 0.44
0.15 0.77 0.76 0.76 0.74 0.77 0.75 0.76 0.74
0.20 0.94 0.93 0.93 0.92 0.94 0.93 0.93 0.92
0.25 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98
0.59 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
0p =0.7 0.00 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.22 0.23 0.21 0.20 0.21 0.21 0.21 0.20
0.10 0.56 0.58 0.55 0.54 0.55 0.55 0.55 0.54
0.15 0.88 0.89 0.87 0.86 0.87 0.87 0.87 0.86
0.20 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.29 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00

8% wrt to D, and up to 4% — 5% wrt Z,, and W,,, respectively. Test Z,, shows a slight
inflation of type-I error for ppw and O = 0.7. It is worth stressing that 7%, Z,, and
D,, confirm their consistency with all the adopted targets, while this is not true for
Wald’s test under ppw.

Table 3 describes the simulation results obtained with exponential and Poisson
data adopting pg and pz, respectively. Under these scenarios, 7, confirms the good
results in terms of power, with a gain up to 4% wrt D, and up to 2—3% wrt Z,, and W,,,
respectively. Tests Z, and W, tend to perform quite similarly, while the randomization
test D, exhibits the lowest inferential precision.

Taking now into account Cls, Table 4 compares the simulated C 1 (1) 95 obtained
in the case of normal homoscedastic trials (with v = 1) adopting p; and pg with
ERADE (y = 0.5) and n = 250, as ¥ and T vary. Here, Lower (L) and Upper (U)
bounds are obtained by averaging the endpoints of the simulated trials. Under py,
for T = 2, all the considered approaches perform quite similarly, with an empirical
coverage that increases as the empirical evidence increases. Although for ¢ < 1.5
the endpoints obtained through the bootstrap procedure are close to the asymptotic
likelihood-based ones, as ¥ grows the likelihood-based CIs tend to degenerate, while
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Table 3 Simulated power of tests ’T,Z*, Zn, Wy and Dy, for exponential and Poisson outcomes, adopting
pr and pz, withfg =1, 5 and 10

Exponential with pg Poisson with pz
s 7;,* Zy Wy Dy s 7:1* Zy W Dy,
Op =1 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05

0.10 0.20 0.19 0.19 0.18 0.10 0.20 0.19 0.19 0.18
0.20 0.43 0.43 0.42 0.41 0.20 0.46 0.44 0.44 0.43
0.30 0.67 0.67 0.66 0.64 0.30 0.72 0.71 0.71 0.69
0.40 0.85 0.84 0.84 0.82 0.40 0.90 0.89 0.89 0.88
0.50 0.94 0.94 0.94 0.92 0.50 0.97 0.97 0.97 0.96
0.60 0.98 0.98 0.98 0.97 0.60 1.00 0.99 0.99 0.99
0.70 1.00 0.99 1.00 0.99 0.70 1.00 1.00 1.00 0.99
Op =5 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05
0.50 0.20 0.19 0.19 0.18 0.20 0.18 0.17 0.17 0.17
1.00 0.44 0.43 0.42 0.40 0.40 0.40 0.40 0.40 0.39
1.50 0.69 0.67 0.66 0.65 0.60 0.66 0.66 0.66 0.64
2.00 0.86 0.85 0.84 0.83 0.80 0.86 0.86 0.85 0.84
2.50 0.95 0.94 0.94 0.92 1.00 0.96 0.96 0.95 0.94
3.00 0.99 0.98 0.98 0.97 1.20 0.99 0.99 0.99 0.98
3.50 1.00 1.00 1.00 0.99 1.40 1.00 1.00 1.00 1.00
0p =10 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05
1.00 0.21 0.19 0.19 0.18 0.30 0.18 0.19 0.18 0.17
2.00 0.45 0.43 0.42 0.41 0.60 0.44 0.43 0.43 0.42
3.00 0.69 0.67 0.67 0.65 0.90 0.72 0.71 0.70 0.68
4.00 0.86 0.85 0.84 0.83 1.20 0.90 0.90 0.90 0.89
5.00 0.95 0.94 0.94 0.93 1.50 0.98 0.98 0.98 0.97
6.00 0.99 0.98 0.98 0.97 1.80 1.00 1.00 1.00 0.99
7.00 1.00 1.00 1.00 0.99 2.10 1.00 1.00 1.00 1.00

the bootstrap ones maintain their reliability with only a slight increase in their widths.
Note that, due to the inverse-mapping, the applicability of the design-based ClIs is
severely limited: when the chosen target approaches 1 (i.e., for small values of T or
when ¢ grows), the Cls for p often contain values outside (0; 1) and therefore the
inverse-mapping cannot be properly applied (for this reason, we use the symbol — in
Tables 4 and 5). This is particularly evidentfor 7 < 1 or ¢ > 1.5. Adopting ps instead,
design-based ClIs do not diverge but strongly undercover when ¢ = 0. Likelihood-
based and bootstrap-based ClIs perform fairly well, with the latter displaying slightly
asymmetric right endpoints.

Following the same setting of the previous tables, Table 5 summarizes the simulated
C1(¥)0.95 obtained for binary trials with ppw and pg as ¢ and 6p vary. Bootstrap-
based and likelihood-based Cls confirm their good performances with quite similar
empirical coverage; bootstrap intervals are on average slightly less wider and right
shifted. As previously discussed, the design-based CIs show an extremely unstable
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Table 4 Simulated C () 95 for normal homoscedastic responses adopting py, and pg as T and ¢ vary

s
0 1.5 5
T Interval L U EC L U EC L U EC
oL 2 VSB —024 026 095 120 1.84 097 432 5.98 1

DB —-025 025 095 1.18 1.84 098 434 6.00 1
LB —-025 025 095 1.17 183 098 4.23 5.82 1

1 VSB —025 025 095 117 195 097 4.02 6.54 0.98
DB —-025 025 095 118 195 097 -— — -
LB —-025 025 095 114 191 09 3.19 7.04 1

0.5 VSB —-024 025 095 090 252 097 3.60 6.56 0.96
DB — — — — — — — — —
LB -025 025 095 087 253 098 —2137 3239 1

ps 2 VSB —024 026 094 1.18 1.87 098 4.33 5.76 1

DB —-026 026 092 120 187 098 4.35 5.81 1
LB —025 025 095 1.17 1.84 098 4.28 5.72 1

1 VSB —-024 026 094 1.17 1.89 097 429 5.82 0.99
DB —0.28 028 0.89 1.19 193 097 432 5.90 1
LB —-025 025 095 114 187 098 423 5.78 1

0.5 VSB —-0.25 027 094 114 197 097 422 5.91 0.99
DB —-035 035 084 1.17 205 097 426 6.06 1
LB —-025 025 095 1.09 194 097 4.14 5.89 1

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB: variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

behavior, in particular when the targets approach 1 (i.e., as 6p grows for ppw or as
0p tends to O for pg), also due to their dependence on the nuisance parameter. While
the EC for the CIs of p is always close to its nominal value, the inverse-mapping
transformation can cause either an undercoverage for ppy or an overcoverage for pr
for the CIs of 9.

Table 6 displays the simulated CI(¥).95 obtained for exponential and Poisson
outcomes adopting pg and pz as ¥ and 6p vary. Bootstrap-based and likelihood-
based CIs perform fairly well, while the design-based CIs are, on average, slightly
wider.

Finally, it is worth highlighting that our proposal exhibits good inferential perfor-
mances also for small/medium sample sizes. In the same setting of the previous tables,
Tables 7 and 8 summarize the results about the simulated power and CI(¥)g.95 for
n = 100, adopting pr. We set p = 0.1 for binary data, while for homoscedastic
normal, exponential and Poisson responses fp = 1. Note that now the sample size
is reduced to the 40% of that of the previous tables, this clearly translates into lower
power and wider confidence intervals. Nevertheless, 7, confirms its consistency, also
preserving at the same time the type-I error, for all the considered models; moreover,
the bootstrap-based CIs maintain their reliability in terms of both empirical coverage
and interval width.
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Table 5 Simulated C (1) 95 for binary trials adopting ppw and pg as 6p and ¥ vary

s
0 0.15 0.25
Op Interval L U EC L U EC L U EC
ppw 0.1 VSB —-0.07 007 09 006 024 095 015 034 0095

DB —-0.08 0.07 09 005 023 094 015 033 0093
LB —0.08 008 093 005 024 095 0.14 035 096

04 VSB —0.12 0.12 095 0.02 026 095 0.12 036 094
DB —0.13  0.11 095 003 025 091 0.14 033 0.86
LB -0.12  0.12 095 0.02 027 095 0.12 037 095

0.7 VSB —0.12  0.11 095 003 027 095 0.14 045 092
DB -0.14 0.10 094 0.07 022 079 - - -
LB —-0.12 0.12 095 0.04 027 095 012 044 0095

PR 0.1 VSB —-0.07 007 092 006 024 094 015 034 0095

DB —-0.05 0.13 0.95 - - - - - -
LB —0.07 007 093 005 024 095 0.14 035 096

04 VSB —-0.11  0.12 095 0.03 028 095 0.13 038 0095
DB —0.10 0.15 095 0.02 034 099 0.10 047 099
LB -0.12  0.12 095 0.03 027 095 0.2 037 095

0.7 VSB -0.10 0.12 095 0.06 026 095 0.17 036 0095
DB —0.11 0.12 095 004 028 098 0.13 039 098
LB —0.11 0.11 095 004 025 095 0.15 035 095

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB, variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

5 Discussion

In this paper, we propose a new inferential strategy for response-adaptive clinical
trials based on the variance-stabilized bootstrap-t method. This is motivated by the
fact that the available inferential approaches present several drawbacks, such as (i)
inconsistency of Wald’s test, local decreasing power and unreliable CIs for likelihood
inference, (ii) reduction in the empirical coverage of CIs and inflated type-I errors
for the design-based approach, (iii) unsuitability of randomized-based inference for
general hypothesis testing problems.

We derive the theoretical properties of the suggested methodology, showing that
the degeneracy of the Fisher information is avoided, guaranteeing at the same time
the consistency of the test as well as a monotonically increasing power function. In
general, this proposal preserves the nominal type-I error, attenuates the dependence
on the nuisance parameters and is more efficient than the other methods, regardless
of the chosen RA rule as well as the adopted target and its ethical skew. By means
of an extensive simulation study, we show that the new inferential strategy has very
good performances in terms of power compared to the above-mentioned inferential
approaches. In addition, the suggested bootstrap approach turns out to provide reliable
confidence intervals in terms of both empirical coverage and interval width, avoiding
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Table 6 Simulated C (1) 95 for exponential and Poisson outcomes adopting pg and pz, respectively, as

6p and ¥ vary

Exponential with pg

v
0 1 2.5
Op Interval L U EC L U EC L U EC
1 VSB —-0.25 0.24 0.95 0.63 1.37 0.95 1.95 3.06 0.95
DB —0.22 0.28 0.94 0.55 1.64 0.94 1.66 3.89 0.94
LB —-0.25 0.25 0.95 0.63 1.37 0.95 1.95 3.07 0.95
5 VSB —1.26 1.22 0.95 —-0.37 2.35 0.95 0.95 4.04 0.95
DB —1.10 1.41 0.94 —0.31 2.73 0.94 0.87 4.75 0.94
LB —1.23 1.24 0.95 —-0.35 2.36 0.95 0.97 4.06 0.95
10 VSB —2.52 2.44 0.95 —1.63 3.56 0.95 —-0.33 5.26 0.95
DB —2.20 2.83 0.94 —1.41 4.14 0.94 —-0.22 6.13 0.94
LB —2.46 2.47 0.95 —1.59 3.60 0.95 —0.26 5.29 0.94
Poisson with pz
0
0 1 2.5
Op Interval L U EC L U EC L U EC
1 VSB —0.25 0.24 0.95 0.69 1.29 0.95 2.12 2.83 0.95
DB —-0.22 0.28 0.94 0.59 1.50 0.95 1.78 3.39 0.94
LB —0.25 0.25 0.95 0.69 1.29 0.95 2.12 2.83 0.95
5 VSB —0.55 0.55 0.95 0.41 1.57 0.95 1.86 3.07 0.95
DB —-0.52 0.58 0.95 0.39 1.66 0.95 1.75 3.29 0.95
LB —0.55 0.55 0.95 0.42 1.57 0.95 1.86 3.09 0.95
10 VSB —-0.78 0.78 0.95 0.19 1.78 0.95 1.65 3.29 0.95
DB —0.75 0.81 0.95 0.19 1.86 0.95 1.59 3.45 0.95
LB —-0.78 0.78 0.95 0.19 1.79 0.95 1.65 3.30 0.95

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB, variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

Table 7 Simulated power of test

T, adopting pg for binary (with 9

6p = 0.1), homoscedastic

7, adopting pg

normal, exponential and Poisson o)
(with 6g = 1) data, for n = 100

Normal Binary Exponential Poisson

0.05 0.05 0.05 0.05
0.10 0.16 0.40 0.12 0.12
0.20 0.30 0.80 0.22 0.23
0.30 0.50 0.97 0.36 0.39
0.40 0.68 1.00 0.51 0.55
0.50 0.82 1.00 0.65 0.71
0.60 0.92 1.00 0.76 0.82
0.70 0.97 1.00 0.84 0.90
0.80 1.00 1.00 0.90 0.95
0.89 1.00 1.00 0.96 1.00
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Table 8 C1(¥9)(.95 for binary (with 6 = 0.1), homoscedastic normal, exponential and Poisson (with
6p = 1) data, for n = 100

¥ =0 =15 =5
Model L U EC L U EC L U EC
Normal —0.35 0.37 0.94 1.05 2.03 0.96 4.01 6.14 0.98
9 =0 ¥ =0.15 ¥ =0.25
L U EC L U EC L U EC
Binary —0.11 0.11 0.95 0.00 0.27 0.95 0.09 0.37 0.94
9 =0 =1 Y =25
L U EC L U EC L U EC
Exponential —0.40 0.39 0.94 0.41 1.60 0.94 1.63 343 0.95
Poisson —0.41 0.39 0.95 0.48 1.48 0.94 1.88 3.11 0.95

L, U, average lower and upper simulated bounds; EC, empirical coverage

then the possible degeneracies and instability of the likelihood-based and the design-
based approach, respectively. Moreover, our proposal exhibits good performances in
terms of inferential accuracy even for small/medium sample sizes.

Although in actual practice, the large majority of phase-III trials are planned for
comparing K = 2 treatments, the case of K > 2 could be also of interest and now
we briefly discuss a possible extension of the proposed methodology. Even if for two
treatments the variance stabilizing transformation g is guaranteed (whose closed-form
expression could or could not be available on the basis of the variance function and
the chosen target), for several treatments this transformation does not exist in general.

Let® = (61,...,0k) and v = (vy, ..., vg)' be the vectors of treatment effects and
variances, respectively, while p(8) = (01(9), ..., px(0))" now denotes the target,
namely pr (@) is the target allocation of the kth treatment group (k = 1, ..., K) with

I’K p(0) = 1 (where 1k is the K —dim vector of ones). In this setting, the inferential
focus is on the contrasts # = A’ where, considering without loss of generality the first
treatment as the reference one, A’ = [1x_1| —Ix_1] (here Ix_; is the (K — 1)—dim
identity matrix). After n steps, letting én = (én1, ,én x)! be the MLE of 0, if
condition (1) holds for every treatment group, then 0, is strongly consistent and asymp-

totically normal with /i (9n —0) i> N0k, M), where 0k is the K -dim vector of
zeros and M = diag (ox(0)/vi);—; - Therefore, the MLE #, = A8, is strongly

consistent and asymptotically normal with \/5(13,, - ) 4N 0x_1, A'TM~1A).
From the multi-dimensional Delta-method, the problem now consists in finding a
proper covariance stabilizing transformation, namely a function G : RK~1 — RX-!

stabilizing A'M~'A, i.e., such that \/E(G({},,) — G()) i) N@Og_1,Ix—1). By
letting J = (0G/0x)|lx=¢ be the Jacobian matrix of the partial derivatives of G
evaluated at #, then G is a covariance stabilizing transformation if and only if
J'J = (A'M~'A)~!. Essentially, this corresponds to J = (A'M~'A)~1/2 namely a
mapping G whose Jacobian is equal to a square root of the symmetric and positive
definite matrix (A’‘M~!A)~! should be identified. Unfortunately, this transformation

.....
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may not exist and it should be checked for any chosen model and target by applying
standard matrix differential equations; however, the computational complexity grows
extremely fast as K increases, leading to a very complicated programming except for
K = 3, as discussed in Holland (1973).
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