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Abstract
This paper discusses disadvantages and limitations of the available inferential
approaches in sequential clinical trials for treatment comparisons managed via
response-adaptive randomization. Then, we propose an inferential methodology for
response-adaptive designs which, by exploiting a variance stabilizing transformation
into a bootstrap framework, is able to overcome the above-mentioned drawbacks,
regardless of the chosen allocation procedure aswell as the desired target.Wederive the
theoretical properties of the suggested proposal, showing its superiority with respect
to likelihood, randomization and design-based inferential approaches. Several illus-
trative examples and simulation studies are provided in order to confirm the relevance
of our results.

Keywords Confidence intervals · Hypothesis testing · Likelihood Inference ·
Re-randomization test · Variance stabilization
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1 Introduction

While randomized clinical trials are essential for scientific progress and for promoting
the public health at large, there is an uncomfortable ethical dilemma, because in most
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clinical trials half the patientswill be randomized to a potentially ineffective or harmful
treatment. This dilemma becomesmore acute in the context of grave or emerging novel
infectious diseases. Motivated by the ethical demand of individual care, in the last two
decades there has been an increasing attention in the literature on response-adaptive
(RA) designs.

By using the information provided by earlier responses and past assignments,
RA procedures are sequential rules in which the treatment allocation probabilities
change in order to favour at each step the treatment that appears to be superior
and, asymptotically, to reach a desired treatment allocation proportion—the so-called
target—representing a valid trade-off between ethics and inference (see, e.g., Rosen-
berger et al. (2001) and Baldi Antognini and Giovagnoli (2010)). Indeed, since the
ethical goal of maximizing the subjects’ care often conflicts with the statistical one of
drawing correct inferential conclusions about the identification of the better treatment
and its relative superiority, the targets generally depend on the unknown treatment
effects: although a priori unknown, they can be approached by RA procedures that
estimate sequentially the parameters to progressively converge to the chosen target [see
for a review Atkinson and Biswas (2014), Baldi Antognini and Giovagnoli (2015) and
Rosenberger and Lachin (2015)]. Some examples are the Sequential Maximum Like-
lihood design (Melfi and Page 2000), the Doubly-adaptive Biased Coin design (Eisele
1994) and the Efficient Randomized Adaptive DEsign (ERADE) introduced by Hu
et al. (2009) in order to improve the convergence to the chosen target.

Although the adaptation process induces a complex dependence structure between
the outcomes, several authors provided the conditions underwhich the classical asymp-
totic likelihood-based inference is still valid for RAprocedures [see, e.g., Durham et al.
(1997) and Melfi and Page (2000)]. In particular, let us assume that the observations
relative to either treatment—say A and B—are iid belonging to the exponential family
parameterized in such a way that θ j ∈ Θ ⊆ R denotes the mean effect of treatment
j , while v j = v(θ j ) > 0 is the corresponding variance ( j = A, B). Special cases
of practical relevance in the clinical context for modeling the primary endpoint, that
in what follows will be referred to as statistical models, are binary (with θ j ∈ (0; 1),
v(θ j ) = θ j (1−θ j )) and Poisson (θ j ∈ R

+, v(θ j ) = θ j ) distributions for dichotomous
and count data, respectively, while the normal model (with θ j ∈ R and v(θ j ) = v j

independent from θ j ) is also encompassed for continuous responses as well as the
exponential one (θ j ∈ R

+, v(θ j ) = θ2j ) for survival outcomes.
The inferential goal usually consists in estimating/testing the superiority of A wrt

B and, therefore, interest lies in the treatment contrast ϑ = θA − θB , while θB is
usually regarded as a nuisance parameter, so from now on we take into account the
model re-parameterization (θA, θB) → (ϑ, θB). Let πn be the allocation proportion to
A (respectively, 1 − πn to B) after n steps, if the RA design is chosen such that

lim
n→∞ πn = ρ(ϑ, θB) ∈ (0; 1) a.s. with ρ(·) continuous, (1)

then the applicability of standard asymptotic inference is ensured. Generally satisfied
by RA rules proposed in the literature, this crucial condition prescribes that the target
ρ must be a non-random quantity different from 0 and 1, to avoid possible degeneracy
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of likelihood methods. Moreover, by assuming (without loss of generality) that high
responses are preferable for patients’ care, an additional common assumption is:

ρ is monotonically increasing in ϑ with ρ(0, θB) = 1/2. (2)

For example, adopting the Play-the-Winner rule proposed by Zelen (1969) for binary
trials, the allocation proportion of A converges to ρPW (ϑ, θB) = (1 − θB)/[2(1 −
θB)−ϑ].Whereas, other targets proposed in the literature depend only on the treatment
difference: for instance, in the case of normal homoscedastic trials, Bandyopadhyay
and Biswas (2001) and Atkinson and Biswas (2005) suggest ρN (ϑ) = Φ (ϑ/T ),
while Baldi Antognini et al. (2018a) discuss ρL(ϑ) = {e−ϑ/T + 1}−1, where Φ

is the cumulative distribution function of the standard normal and T > 0 a tuning
parameter.

For moderate-large samples, namely the most representative framework in the con-
text of phase-III clinical trials, several authors showed (both theoretically and via
simulations) that the likelihood-based approach could present anomalies in terms of
coverage probabilities of confidence intervals, as well as inflated type-I errors or
inconsistency of Wald’s test, especially when the chosen targets exhibit a strong ethi-
cal component (Rosenberger and Hu 1999; Yi and Wang 2011; Atkinson and Biswas
2014; Baldi Antognini et al. 2018a; Novelli and Zagoraiou 2019). To avoid these
drawbacks, Wei (1988) and Rosenberger (1993) suggested to conduct randomization-
based inference for RA trials. Under this framework, the null hypothesis of equality
of the two arms corresponds to an allocation in which the treatment assignments are
unrelated to the responses, so the randomization test is carried out by computing the
distribution of the allocations conditionally on the observed outcomes (that are treated
as deterministic). Since the distribution of the test depends on the adopted RA pro-
cedure, exact results are quite few and, generally, p-values are computed via Monte
Carlo methods. Following a design-based approach, Baldi Antognini et al. (2018b)
recently introduced a test based on the treatment allocation proportion induced by
a suitably chosen RA rule showing that, in some circumstances, this test could be
uniformly more powerful than the Wald test.

After discussing drawbacks and limitations of the available inferential approaches,
the aim of this paper is to provide a new inferential methodology for RA clinical trials
by combining a variance stabilizing transformationwith a bootstrapmethod.We derive
the theoretical properties of the suggested proposal, showing that it is more accurate
than the other approaches, regardless of the adopted RA rule as well as the chosen
target. Several illustrative examples are provided for normal, binary, Poisson and
exponential data. Starting from a discussion in Sect. 2 about the existing approaches,
highlighting their inadequacy forRAclinical trials, Sect. 3 dealswith the newvariance-
stabilized bootstrap procedure and its theoretical properties. An extensive simulation
study is carried out in Sect. 4 to confirm the relevance of our results, also comparing the
performances of the newly introduced approach to those of other inferential methods.
Finally, Sect. 5 deals with some concluding remarks.
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2 Available inferential approaches

2.1 Likelihood-based inference

Although for RA designs the MLEs θ̂n = (θ̂An, θ̂Bn)
t of θ = (θA, θB) remain

the same as those of the non-sequential setting (i.e., the sample means), this is not
true for their distribution due to the complex dependence structure generated by the
adaptation process. However, the standard asymptotic inference is allowed for RA
designs satisfying (1). Indeed, letMn = diag(πn/vA; [1−πn]/vB) be the normalized
Fisher information and ϑ̂n = θ̂An − θ̂Bn , then

√
n(ϑ̂n − ϑ) ↪→ N

(
0, σ 2

)
, where

σ 2 = vA/ρ(ϑ, θB) + vB/[1 − ρ(ϑ, θB)] and, due to the continuity of the target,

lim
n→∞ ρ(ϑ̂n, θ̂Bn) = ρ(ϑ, θB) a.s. and

lim
n→∞Mn = M = diag(ρ(ϑ, θB)/vA; [1 − ρ(ϑ, θB)]/vB) a.s.

So, letting v̂ jns be consistent estimators of the treatment variances, then σ̂ 2
n =

v̂An/ρ(ϑ̂n, θ̂Bn) + v̂Bn/[1 − ρ(ϑ̂n, θ̂Bn)] and the (1 − α)% asymptotic confidence
interval is C I (ϑ)1−α = (ϑ̂n ± n−1/2z1−α/2σ̂n), where zα is the α-percentile of Φ.
Moreover, to test H0 : ϑ = 0 against H1 : ϑ > 0 (or H1 : ϑ �= 0), Wald statistic
Wn = √

nϑ̂n σ̂
−1
n is usually employed. Under H0,Wn converges to the standard normal

distribution and, due to the consistency of σ̂ 2
n , the power can be approximated by

Φ
(√

nϑσ−1 − z1−α

)
, ϑ > 0. (3)

Even if condition (1) theoretically guarantees the applicability of likelihood inference,
this approach may present critical drawbacks, in particular for targets characterized
by a high ethical component. Indeed, as shown in Baldi Antognini et al. (2018a) and
Novelli and Zagoraiou (2019), if ρ tends either to 0 or 1, the asymptotic variance of
ϑ̂n tends to diverge. Therefore, the quality of the CLT approximation is compromised,
leading to unreliable confidence intervals and inflated type-I errors. Furthermore, some
targets (like, e.g., ρN and ρL ) could induce a consistent loss of inferential precision,
since the Wald test becomes inconsistent and it displays a non-monotonic power.

2.2 Randomization-based inference

Randomization—also known as re-randomization—tests are a class of nonparametric
procedures obtained by recomputing a test statistic Dn (as ϑ̂n or other discrepancy
measures between the two arms, like those based on ranks) over permutations of
the data (Rosenberger and Lachin 2015). Taking into account the null hypothesis
(under which the allocations are unrelated to the patients’ outcomes), the procedure
is carried out by considering the set of responses as fixed and deterministic values,
and computing all the possible ways in which the subjects could have been assigned
to the treatments. However, since the computation of all the treatment assignment
permutations and their probabilities is not feasible, even for small or moderate sample
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sizes, in practice randomization tests are computed using Monte Carlo methods. In
particular, the allocation sequence is generated L times and, for each sequence, the
statistic of interest dln is computed, obtaining {dln, l = 1, . . . , L}. Then, a consistent
estimator of the p-value is obtained by calculating the proportion of the generated
sequences that yields a value of the test equal or more extreme than the value dn of the
test statistic evaluated on the observed data. Then, the p-value can be approximated by
the proportion of sequences where |dln| ≥ |dn|, namely P̂rand = L−1 ∑L

l=1 I(|dln| ≥
|dn|), where I(·) is the indicator function, so that the test of levelα rejects H0 if P̂rand is
lower than the significance level. Analogously, the power of the randomization test can
be approximated viaMonte Carlo methods by repeating H times the above-mentioned
procedure and computing the proportion of rejections (Beran 1986).

One of themain strengths of randomization tests consists in avoiding any parametric
assumption on the populationmodel; thismakes thema valid alternative to the standard
likelihood methods, especially when the conventional model assumptions may not
hold or be verified (Rosenberger et al. 2019). However, the behavior of randomization
tests strictly depends on the particular RA procedure that has been adopted and their
applicability may be severely limited by the quite restricted specification of the null
hypothesis being tested. For instance, if the chosen RA design depends only on the
treatment effects, then the null hypothesis of randomization test actually corresponds
to testing the equality of the effects, with an alternative that is naturally two-sided (i.e.,
the allocations depend on the treatment outcomes). Although these procedures have
been also applied for the one-sided alternative H1 : ϑ > 0, they are not suitable for
a general hypothesis testing problem. For instance, assuming ρPW for binary trials or
ρN for normal outcomes discussed above, a commonly used alternative H1 : ϑ > δ

for a prefixed minimum significant difference δ cannot be tested via re-randomization.
Moreover, such an approach does not directly allow the construction of confidence
intervals.

2.3 Design-based inference

Taking into account targets depending only on the treatment difference, namely ρ =
ρ(ϑ), satisfying (1)–(2) with ρ(ϑ) = 1−ρ(−ϑ) to treat the two arms symmetrically,
Baldi Antognini et al. (2018b) have recently introduced a design strategy for normally
response trials that overcomes some drawbacks of the Wald test. In particular, under
condition (1), both ρ(ϑ̂n) and the treatment allocation proportion πn are consistent
estimators of ρ(ϑ). Thus, if we further assume

ρ is twice continuously differentiable with bounded derivatives, (4)

adopting ERADE [or an asymptotically best RA procedure as defined by Zhang
and Rosenberger (2006)], then

√
n(πn − ρ(ϑ)) ↪→ N (0, λ2), where λ2 =

[ρ′(ϑ)]2 {vA/ρ(ϑ) + vB/[1 − ρ(ϑ)]} is the so-called Rao–Cramer lower bound and
ρ′ is the derivative of ρ (the asymptotic normality follows from the Delta-method,
provided that ρ′(ϑ) �= 0). Thus, let λ̂2n = [ρ′(ϑ̂n)]2

[
v̂An/πn + v̂Bn/(1 − πn)

]
be a

consistent estimator of λ2, then C I (ρ(ϑ))1−α = (πn ± z1−α/2λ̂n/
√
n) and, due to
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the monotonicity of ρ, the asymptotic confidence interval for ϑ could be derived by
applying the inverse mapping ρ−1 to the endpoints of C I (ρ(ϑ))1−α . Analogously,
testing the equality of the treatment effects is equivalent to testing H0 : ρ(ϑ) = 1/2
(against H1 : ρ(ϑ) > 1/2 or H1 : ρ(ϑ) �= 1/2, corresponding to H1 : ϑ > 0 or
H1 : ϑ �= 0, respectively). Under H0, the test statistic Zn = √

n (πn − 1/2) λ̂−1
n con-

verges to the standard normal distribution, while given H1 : ρ(ϑ) > 1/2, the power
of the α-level test Zn can be approximated by

Φ

⎛

⎝
√
n

[
ρ(ϑ) − 1

2

]

ρ′(ϑ)
√

vA
ρ(ϑ)

+ vB
1−ρ(ϑ)

− z1−α

⎞

⎠ , ϑ > 0. (5)

Test Zn is consistent provided that limϑ→ϑ [1 − ρ(ϑ)][ρ′(ϑ)]−2 > 0, where ϑ =
supθA∈Θ ϑ . Moreover, under some additional conditions on ρ, power (5) is monoton-
ically increasing in ϑ and Zn tends to be more powerful than the Wald test. However,
the major drawback of this approach is its strong dependence on the chosen target,
which could significantly affect λ2 through its ethical skew, leading to possibly inflated
type-I errors. Indeed, by combining (1), (2), (4) and the symmetric structure of the
target,

(i) ρ′(ϑ) = ρ′(−ϑ) ≥ 0 for every ϑ , with ρ′(0) �= 0 to guarantee the applicability
of the Delta-method;

(ii) ρ′′(ϑ) = −ρ′′(−ϑ) for every ϑ , which implies that ρ′′(0) = 0;
(iii) 0 < ρ′(0) < ∞, which clearly limits the choice of the target aswell as the values of

the tuning parameter T , if present (λ2 is strongly affected by ρ′, which represents
the ethical improvement of the chosen target, especially when ρ′(0) tends to grow
quickly).

These are the main reasons why the design-based test could present inflated type-I
errors for several targets and somevalues of T . For instance, taking into account normal
response trials, although ρN and ρL are twice differentiable with ρ′′

N (0) = ρ′′
L(0) = 0,

these targets tend to be highly sensitive to small variations in the treatment difference
ϑ around 0 (i.e., under H0), especially for small values of T ; whereas the target

ρS(ϑ) = 1

2
+ ϑ

2(|ϑ | + T )
(6)

is not twice differentiable at 0; moreover, ρ′
S(0) vanishes as T grows and tends to be

unbounded as T → 0, so damaging the CLT approximation (as we will point out in
Table 1).

Example 1 Figure 1 shows the simulated distributions of the allocation proportion πn

under H0 : ϑ = 0, adopting ρS and ρL with T ∈ {0.5, 1, 2}, obtained by simulating
100000 homoscedastic normally distributed trials with n = 250 using ERADE (with
randomization parameter γ = 0.5). Adopting ρL , for T = 0.5 the resulting distri-
bution tends to be concentrated on the extremes, presenting peaks on 0 and 1, while
for T ≥ 1 the asymptotic normality is preserved. Under ρS instead, small values of
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Fig. 1 Simulated distribution of πn under H0 adopting ρS and ρL as T varies

T tend to both increase the variability of the distribution of πn and to accentuate the
departure from normality; this effect is greatly mitigated for T > 1.

Test Zn could be naturally extended to a target ρ(ϑ, θB) depending on the nuisance
parameter θB by letting λ2 = ∇ρtM−1∇ρ and to other models belonging to the
exponential family, as we will discuss in Sect. 4 for binary, Poisson and exponential
outcomes.

3 The variance-stabilized bootstrap-t approach

In order to avoid the aforementioned drawbacks of both likelihood-based and design-
based inference, also overcoming the limitations of randomization-based tests, we
now propose a new inferential approach for RA procedures developed through a
variance-stabilized bootstrap-t method (Tibshirani 1988; Efron and Tibshirani 1994).
By mapping the statistic of interest via a variance stabilizing transformation and com-
puting its bootstrap-t distribution, this proposal allows us to avoid the problems related
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to the instability of the asymptotic variance as well as the quality of the CLT approx-
imation.

The main idea behind the variance stabilization is the following: let X be a random
variable with expected value μ and variance ν = ν(μ), letting g(·) a regular transfor-
mation such that g′(μ) = ν(μ)−1/2, then the variance of g(X) tends to be first-order
constant, namely it is at least approximately independent on μ in a first-order Taylor
expansion. Therefore, given a chosen target ρ, by applying such a variance stabiliz-
ing transformation to the estimated treatment difference ϑ̂n , we are able to get over
the possible degeneracy of its asymptotic variance σ 2

ρ . In particular, for every fixed
θB ∈ Θ (and v ∈ R

+ for normal homoscedastic outcomes), by letting σ 2
ρ = σ 2

ρ (ϑ)

and g(x) = ∫ x
σ−1

ρ (t)dt , then
√
n[(ϑ̂n)− g(ϑ)] ↪→ N (0, 1) from the Delta-method.

Therefore, by letting

Tn = √
n[g(ϑ̂n) − g(0)], (7)

the α-level right-sided test consists in rejecting the null hypothesis H0 : ϑ = 0 when
Tn > z1−α . Hence, the power is Pr(

√
n[g(ϑ̂n) − g(ϑ)] > z1−α − √

n[g(ϑ) − g(0)]),
which can be approximated by Φ

(√
n[g(ϑ) − g(0)] − z1−α

)
, for ϑ > 0.

Notice that the transformation g(·) depends on the chosen target as well as on the
statistical model through the variance function, and thus it could also depend on θB and
v; therefore, the estimation of the nuisance parameters is requested for computing the
statistical test and from now on we let v̂n be a consistent estimator of v. The following
Corollary presents the transformation g(·) and the corresponding test Tn for the most
common statistical models and for some selected targets. In particular, a widely used
one is

ρR(ϑ, θB) = ϑ + θB

ϑ + 2θB
, (8)

which corresponds to the Neyman allocation for exponential outcomes and to the
E-optimal design for Poisson responses (also considered by Zhang and Rosenberger
(2006) for normal trials with non-negative means and by Baldi Antognini and Gio-
vagnoli (2010) for binary outcomes).

Corollary 1 Let us consider the target ρR in (8):

(i) for binary outcomes, θB ∈ (0; 1), −θB < ϑ < 1 − θB and σ 2
ρR

= 1 − (1 − ϑ −
2θB)2;
thus, g(ϑ) = − arcsin(1−ϑ −2θB) and Tn = √

n{arcsin(1−2θ̂Bn)− arcsin(1−
ϑ̂n − 2θ̂Bn)};

(ii) for exponential trials, θB > 0 and ϑ > −θB, g(ϑ) = ln(ϑ + 2θB) and
Tn = √

n ln(1 + ϑ̂n/2θ̂Bn);
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(iii) for normal homoscedastic data with θB > 0 and ϑ > −θB, so g(ϑ) =
2θBv−1/2[√1 + ϑ/θB − arctan(

√
1 + ϑ/θB)] and therefore

Tn = 2θ̂Bn

√
n

v̂n

⎧
⎨

⎩

√

1 + ϑ̂n

θ̂Bn
− arctan

⎛

⎝

√

1 + ϑ̂n

θ̂Bn

⎞

⎠ − 1 + π

4

⎫
⎬

⎭
;

(iv) for Poisson data θB > 0 and ϑ > −θB, g(ϑ) = √
2(ϑ + 2θB) and Tn =√

n{(2ϑ̂n + 4θ̂Bn)1/2 − 2θ̂1/2Bn }.
Whereas, for Poisson responses the Neyman allocation reads

ρZ (ϑ, θB) =
√

ϑ + θB√
ϑ + θB + √

θ B
, (9)

hence g(ϑ) = 2
{√

ϑ + θB − √
θB ln

(√
θB + √

ϑ + θB
)}

and then

Tn = 2
√
n

⎧
⎨

⎩

√
ϑ̂n + θ̂Bn −

√
θ̂Bn ln

⎛

⎝1

2
+

√
ϑ̂n + θ̂Bn

2
√

θ̂Bn

⎞

⎠

⎫
⎬

⎭
.

Adopting ρL , for normal homoscedastic outcomes ϑ ∈ R and g(ϑ) = 2T v−1/2

arctan(eϑ/2T ), hence

Tn = 2T

√
n

v̂n

{
arctan

(
eϑ̂n/2T

)
− π

4

}
,

which does not depend on θB.

Notice that for some targets, e.g., ρPW , the transformation function g(·) is not avail-
able in closed form and it should be evaluated numerically using standard integration
routines (like, e.g., integrate in R).

Assuming that the outcomes belong to the exponential family discussed in Sect. 1,
the following results hold.

Theorem 1 The variance-stabilized test Tn is consistent, and its power function is
monotonically increasing in ϑ , regardless of the chosen target.

Proof Due to its definition, the variance stabilizing transformation g(·) is a continuous
and monotonically increasing function and, therefore, the power of Tn is increasing
too. Furthermore, by noticing that limϑ→ϑ g(ϑ) = g(ϑ) > g(0), test Tn is always
consistent. ��
Theorem 2 If the target ρ is chosen such that

∫ x

0
σ−1

ρ (t)dt ≥ xσ−1
ρ (x), ∀x > 0, (10)
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the variance-stabilized test Tn is uniformly more powerful than Wald’s test. Further-
more, condition (10) holds if σ 2

ρ (ϑ) is increasing for ϑ > 0.

Proof Condition (10) can be easily derived from the power function of test Tn com-
bined with (3). Moreover, the last statement follows from the mean value theorem;
indeed, due to the continuity of σρ(·), there exists a given c ∈ [0; x] such that∫ x
0 σ−1

ρ (t)dt = xσ−1
ρ (c) and therefore, if σ 2

ρ (x) is increasing in x , then σ−1
ρ (c) ≥

σ−1
ρ (x) since c ≤ x . ��

As an example, let us consider ρL for normal homoscedastic data. Condition (10)
simplifies to

2T arctan(ex/2T ) − xex/2T

ex/T + 1
≥ 0,

which can be verified by noticing that the left hand side is an increasing function
for every x > 0 and it is equal to 0 for x = 0. As we will show in the following
Corollary, for normal homoscedastic outcomes test Tn is uniformly more powerful
thanWald’s test, regardless of the chosen target (see also Table 1). In general, however,
the superiority of Tn depends on the adopted target and the given statistical model.

Corollary 2 For normal homoscedastic outcomes, test Tn is uniformly more powerful
than Wn regardless of the chosen target. Adopting ρR for exponential data, as well as
under ρZ for Poisson trials, test Tn is uniformly more powerful than Wn.

Proof In the case of normal homoscedastic outcomes, for every ρ satisfying (2), σ 2
ρ (ϑ)

is increasing in ϑ for every ϑ > 0. Indeed,

σ 2
ρ (ϑ) = v

ρ(ϑ, θB)[1 − ρ(ϑ, θB)] ,

where from (2), for every θB ∈ R, the target is increasing in ϑ with ρ(ϑ, θB) ≥ 1/2 for
ϑ > 0. Therefore, for every pair (ϑ1, ϑ2) with 0 < ϑ1 < ϑ2, then 1/2 ≤ ρ(ϑ1, θB) ≤
ρ(ϑ2, θB) and thus σ 2

ρ (ϑ1) ≤ σ 2
ρ (ϑ2), since ρ(ϑ1, θB) + ρ(ϑ2, θB) ≥ 1.

As regards ρR for exponential data, condition (10) simplifies to ln (1 + ϑ/2θB) ≥
(1 + 2θB/ϑ)−1, which is trivially verified for any ϑ > 0 and θB > 0. Analogously,
adopting ρZ for Poisson trials, σ 2

ρZ
(ϑ) = (

√
ϑ + θB + √

θ B)2, that is increasing in ϑ

for every ϑ > 0 and θB > 0. ��
In order to overcome possible problems related to the quality of the CLT approxima-
tion, we apply such a variance stabilizing transformation into a bootstrap framework.
Since standard re-sampling techniques (like the nonparametric bootstrap) may not be
suitable for non-exchangeable/dependent data, we suggest a parametric bootstrap that
makes use of the estimated parameters and generates replicates of both the allocation
sequence derived by the chosen RA rule and the corresponding outcomes, without
re-sampling the observed data. Following the same arguments of Rosenberger and Hu
(1999), who have derived bootstrap confidence intervals for adaptive designs, if the
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RA procedure satisfies condition (1), then the bootstrap method is still first-order con-
sistent. Indeed, in this case the MLEs are consistent and asymptotically normal, so the
first-order consistency of the bootstrap estimators follows directly [see theAppendix of
Rosenberger andHu (1999)].Moreover, such a variance-stabilized bootstrap-t method
has been proven to be transformation-respecting, second-order correct and accurate,
providing also good performances in fairly general settings (DiCiccio and Efron 1996;
Hall 2013).

More specifically, given a RA design fulfilling conditions (1)–(2), the proposed
strategy is the following:

1. at the end of the trial with n subjects derive θ̂n ;
2. generate B1 replicates of the RA trial with size n using θ̂n as underlying parameters,

obtaining θ̂
∗i
n and then ϑ̂∗i

n , for i = 1, . . . , B1;

3. for each i , generate B2 replications of the trial using θ̂
∗i
n as underlying parameters

and compute the bootstrap estimate ν̂∗i
n of the variance of

√
nϑ̂∗i

n over the B2
replicates, deriving ν̂∗i

n (i = 1, . . . , B1);

4. fit a curve to the points
{
(
√
nϑ̂∗i

n , ν̂∗i
n )

}

i=1,...,B1
using a nonlinear regression

technique—such as lowess running smoother (Cleveland 1979)—to estimate ν(·)
and compute the variance stabilizing transformation g(x) = ∫ x

ν(s)−1/2ds by
using a numerical integration technique;

5. generate B3 new replicates of the trial using θ̂n to obtain ϑ̂
∗ j
n ( j = 1, . . . , B3) and

then compute the (1−α)-percentile t∗1−α of the studentized distribution
√
n{g(ϑ̂∗

n )−
g(ϑ̂n)}.

Let T ∗
n be the bootstrap version of (7), given H1 : ϑ > 0, the α-level test rejects H0

when T ∗
n > t∗1−α (the two-tailed alternative can be derived accordingly). Then, denot-

ing by t∗ jn the test statistic calculated for the j th bootstrap replicate ( j = 1, . . . , B3),
the p-value can be approximated by P̂boot = B−1

3

∑B3
j=1 I(t

∗ j
n ≥ t∗n ), where t∗n is the

value ofT ∗
n evaluated on the observed data. Finally, the power of testT ∗

n can be approx-
imated via Monte Carlo methods by repeating H times steps 1−5 and computing the
percentage of rejections (Beran 1986). As regards the construction of confidence inter-
vals, by the inverse mapping g(−1),

C I (ϑ)1−α =
(
g(−1){g(ϑ̂n) − n−1/2t∗1−α/2}; g(−1){g(ϑ̂n) − n−1/2t∗α/2}

)
.

Remark 1 The use of different sets of bootstrap replicates for the estimation of (i) the
variance transformation g(·) (steps 2–3) and (ii) the percentile t∗1−α (step 5) is intended
to limit the burden of computation required, reducing considerably the calculation wrt
to the usual untransformed bootstrap-t method. Indeed, as shown by Tibshirani (1988),
B1 = 100 and B2 = 25 are sufficient to reliably estimate g(·), while at least B3 = 1000
is needed to derive t∗1−α . It is worth stressing that the implementation of our proposal
is not time consuming: with a regular laptop, it takes about 1 second to perform a
hypothesis test as well as to build a confidence interval.
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Table 1 Simulated power of tests T ∗
n , Zn ,Wn and Dn , for normal homoscedastic responses, under ρL and

ρS as T and ϑ vary

T = 0.5 T = 1 T = 2
ϑ T ∗

n Zn Wn Dn T ∗
n Zn Wn Dn T ∗

n Zn Wn Dn

ρL 0.0 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1 0.21 0.21 0.19 0.19 0.21 0.20 0.19 0.19 0.20 0.20 0.19 0.19

0.2 0.48 0.48 0.47 0.43 0.48 0.47 0.46 0.45 0.48 0.47 0.47 0.46

0.3 0.77 0.77 0.75 0.72 0.77 0.76 0.75 0.74 0.77 0.76 0.76 0.75

0.4 0.94 0.93 0.92 0.91 0.94 0.93 0.93 0.92 0.94 0.93 0.93 0.92

0.5 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99

0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7.5 1.00 1.00 0.05 1.00 1.00 1.00 0.61 1.00 1.00 1.00 1.00 1.00

10.0 1.00 1.00 0.05 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 1.00

ρS 0.0 0.05 0.11 0.05 0.05 0.05 0.08 0.05 0.05 0.05 0.07 0.05 0.05

0.1 0.21 0.32 0.19 0.18 0.21 0.27 0.19 0.19 0.20 0.23 0.19 0.19

0.2 0.49 0.62 0.45 0.42 0.48 0.56 0.46 0.46 0.47 0.52 0.47 0.47

0.3 0.76 0.85 0.74 0.70 0.77 0.82 0.75 0.74 0.76 0.80 0.75 0.74

0.4 0.94 0.96 0.92 0.89 0.94 0.95 0.93 0.92 0.94 0.94 0.93 0.92

0.5 0.99 1.00 0.98 0.97 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98

0.6 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 A comparative simulation study

In this section, we compare the performances of the newly introduced test T ∗
n with the

ones of Wald’s statistic Wn , the design-based test Zn and the randomization test Dn

(using ϑ̂n as discrepancy measure). In order to do so, we have performed a simulation
study employing ERADE (γ = 0.5) with n = 250 and a starting sample of n0 = 2 for
each treatment. In the first scenario, the responses are assumed to be homoscedastic
normally distributed with unknown common variance v = 1. Table 1 summarizes the
results adopting targets ρL and ρS (with T = 0.5, 1 and 2), obtained with 100000
Monte Carlo replications of the trial for Wn , Zn and Dn , while we set B1 = 300,
B2 = 100 and B3 = 10000 for T ∗

n .
Because of its strong ethical skew, target ρL induces an anomalous behavior of the

power ofWn , which tends to the significance level as ϑ grows (especially as the ethical
skew increases, namely for T ≤ 1, when the power function rapidly vanishes); note
that all the remaining tests are consistent. Whereas, adopting ρS , the consistency of
the Wald test is preserved, while Zn exhibits inflated type-I errors. In general, the new
test T ∗

n preserves the nominal type-I error and provides an improvement in inferential
precisionwrt to all the competitors. This is particularly truewithρS : indeed forT = 0.5
the gain of power of T ∗

n wrt to Wn and Dn is about 4% and 7%, respectively.
The second scenario deals with binary trials: Table 2 describes the performance of

the four tests adopting ρPW and ρR as θB varies. While preserving the nominal type-I
error, T ∗

n shows the highest power in all the scenarios, with an improvement of about
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Table 2 Simulated power of tests T ∗
n , Zn , Wn and Dn , for binary trials adopting ρPW and ρR , with

θB = 0.1, 0.4 and 0.7

ρPW ρR
ϑ T ∗

n Zn Wn Dn T ∗
n Zn Wn Dn

θB = 0.1 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.05 0.34 0.30 0.30 0.29 0.35 0.30 0.32 0.27

0.10 0.74 0.70 0.70 0.68 0.73 0.68 0.70 0.65

0.15 0.94 0.92 0.92 0.92 0.94 0.92 0.92 0.91

0.20 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

θB = 0.4 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.05 0.21 0.19 0.19 0.19 0.21 0.20 0.20 0.18

0.10 0.47 0.46 0.46 0.45 0.48 0.46 0.47 0.44

0.15 0.77 0.76 0.76 0.74 0.77 0.75 0.76 0.74

0.20 0.94 0.93 0.93 0.92 0.94 0.93 0.93 0.92

0.25 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98

0.59 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

θB = 0.7 0.00 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

0.05 0.22 0.23 0.21 0.20 0.21 0.21 0.21 0.20

0.10 0.56 0.58 0.55 0.54 0.55 0.55 0.55 0.54

0.15 0.88 0.89 0.87 0.86 0.87 0.87 0.87 0.86

0.20 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.29 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00

8% wrt to Dn and up to 4%− 5% wrt Zn andWn , respectively. Test Zn shows a slight
inflation of type-I error for ρPW and θB = 0.7. It is worth stressing that T ∗

n , Zn and
Dn confirm their consistency with all the adopted targets, while this is not true for
Wald’s test under ρPW .

Table 3 describes the simulation results obtained with exponential and Poisson
data adopting ρR and ρZ , respectively. Under these scenarios, T ∗

n confirms the good
results in terms of power, with a gain up to 4%wrt Dn and up to 2−3%wrt Zn andWn ,
respectively. Tests Zn andWn tend to perform quite similarly, while the randomization
test Dn exhibits the lowest inferential precision.

Taking now into account CIs, Table 4 compares the simulated C I (ϑ)0.95 obtained
in the case of normal homoscedastic trials (with v = 1) adopting ρL and ρS with
ERADE (γ = 0.5) and n = 250, as ϑ and T vary. Here, Lower (L) and Upper (U)
bounds are obtained by averaging the endpoints of the simulated trials. Under ρL ,
for T = 2, all the considered approaches perform quite similarly, with an empirical
coverage that increases as the empirical evidence increases. Although for ϑ ≤ 1.5
the endpoints obtained through the bootstrap procedure are close to the asymptotic
likelihood-based ones, as ϑ grows the likelihood-based CIs tend to degenerate, while
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Table 3 Simulated power of tests T ∗
n , Zn , Wn and Dn , for exponential and Poisson outcomes, adopting

ρR and ρZ , with θB = 1, 5 and 10

Exponential with ρR Poisson with ρZ
ϑ T ∗

n Zn Wn Dn ϑ T ∗
n Zn Wn Dn

θB = 1 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05

0.10 0.20 0.19 0.19 0.18 0.10 0.20 0.19 0.19 0.18

0.20 0.43 0.43 0.42 0.41 0.20 0.46 0.44 0.44 0.43

0.30 0.67 0.67 0.66 0.64 0.30 0.72 0.71 0.71 0.69

0.40 0.85 0.84 0.84 0.82 0.40 0.90 0.89 0.89 0.88

0.50 0.94 0.94 0.94 0.92 0.50 0.97 0.97 0.97 0.96

0.60 0.98 0.98 0.98 0.97 0.60 1.00 0.99 0.99 0.99

0.70 1.00 0.99 1.00 0.99 0.70 1.00 1.00 1.00 0.99

θB = 5 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05

0.50 0.20 0.19 0.19 0.18 0.20 0.18 0.17 0.17 0.17

1.00 0.44 0.43 0.42 0.40 0.40 0.40 0.40 0.40 0.39

1.50 0.69 0.67 0.66 0.65 0.60 0.66 0.66 0.66 0.64

2.00 0.86 0.85 0.84 0.83 0.80 0.86 0.86 0.85 0.84

2.50 0.95 0.94 0.94 0.92 1.00 0.96 0.96 0.95 0.94

3.00 0.99 0.98 0.98 0.97 1.20 0.99 0.99 0.99 0.98

3.50 1.00 1.00 1.00 0.99 1.40 1.00 1.00 1.00 1.00

θB = 10 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05

1.00 0.21 0.19 0.19 0.18 0.30 0.18 0.19 0.18 0.17

2.00 0.45 0.43 0.42 0.41 0.60 0.44 0.43 0.43 0.42

3.00 0.69 0.67 0.67 0.65 0.90 0.72 0.71 0.70 0.68

4.00 0.86 0.85 0.84 0.83 1.20 0.90 0.90 0.90 0.89

5.00 0.95 0.94 0.94 0.93 1.50 0.98 0.98 0.98 0.97

6.00 0.99 0.98 0.98 0.97 1.80 1.00 1.00 1.00 0.99

7.00 1.00 1.00 1.00 0.99 2.10 1.00 1.00 1.00 1.00

the bootstrap ones maintain their reliability with only a slight increase in their widths.
Note that, due to the inverse-mapping, the applicability of the design-based CIs is
severely limited: when the chosen target approaches 1 (i.e., for small values of T or
when ϑ grows), the CIs for ρ often contain values outside (0; 1) and therefore the
inverse-mapping cannot be properly applied (for this reason, we use the symbol − in
Tables 4 and 5). This is particularly evident for T < 1 orϑ > 1.5.AdoptingρS instead,
design-based CIs do not diverge but strongly undercover when ϑ = 0. Likelihood-
based and bootstrap-based CIs perform fairly well, with the latter displaying slightly
asymmetric right endpoints.

Following the same setting of the previous tables, Table 5 summarizes the simulated
C I (ϑ)0.95 obtained for binary trials with ρPW and ρR as ϑ and θB vary. Bootstrap-
based and likelihood-based CIs confirm their good performances with quite similar
empirical coverage; bootstrap intervals are on average slightly less wider and right
shifted. As previously discussed, the design-based CIs show an extremely unstable
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Table 4 Simulated C I (ϑ)0.95 for normal homoscedastic responses adopting ρL and ρS as T and ϑ vary

ϑ

0 1.5 5
T Interval L U EC L U EC L U EC

ρL 2 VSB − 0.24 0.26 0.95 1.20 1.84 0.97 4.32 5.98 1

DB − 0.25 0.25 0.95 1.18 1.84 0.98 4.34 6.00 1

LB − 0.25 0.25 0.95 1.17 1.83 0.98 4.23 5.82 1

1 VSB − 0.25 0.25 0.95 1.17 1.95 0.97 4.02 6.54 0.98

DB − 0.25 0.25 0.95 1.18 1.95 0.97 − − −
LB − 0.25 0.25 0.95 1.14 1.91 0.96 3.19 7.04 1

0.5 VSB − 0.24 0.25 0.95 0.90 2.52 0.97 3.60 6.56 0.96

DB − − − − − − − − −
LB − 0.25 0.25 0.95 0.87 2.53 0.98 − 21.37 32.39 1

ρS 2 VSB − 0.24 0.26 0.94 1.18 1.87 0.98 4.33 5.76 1

DB − 0.26 0.26 0.92 1.20 1.87 0.98 4.35 5.81 1

LB − 0.25 0.25 0.95 1.17 1.84 0.98 4.28 5.72 1

1 VSB − 0.24 0.26 0.94 1.17 1.89 0.97 4.29 5.82 0.99

DB − 0.28 0.28 0.89 1.19 1.93 0.97 4.32 5.90 1

LB − 0.25 0.25 0.95 1.14 1.87 0.98 4.23 5.78 1

0.5 VSB − 0.25 0.27 0.94 1.14 1.97 0.97 4.22 5.91 0.99

DB − 0.35 0.35 0.84 1.17 2.05 0.97 4.26 6.06 1

LB − 0.25 0.25 0.95 1.09 1.94 0.97 4.14 5.89 1

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB: variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

behavior, in particular when the targets approach 1 (i.e., as θB grows for ρPW or as
θB tends to 0 for ρR), also due to their dependence on the nuisance parameter. While
the EC for the CIs of ρ is always close to its nominal value, the inverse-mapping
transformation can cause either an undercoverage for ρPW or an overcoverage for ρR

for the CIs of ϑ .
Table 6 displays the simulated C I (ϑ)0.95 obtained for exponential and Poisson

outcomes adopting ρR and ρZ as ϑ and θB vary. Bootstrap-based and likelihood-
based CIs perform fairly well, while the design-based CIs are, on average, slightly
wider.

Finally, it is worth highlighting that our proposal exhibits good inferential perfor-
mances also for small/medium sample sizes. In the same setting of the previous tables,
Tables 7 and 8 summarize the results about the simulated power and C I (ϑ)0.95 for
n = 100, adopting ρR . We set θB = 0.1 for binary data, while for homoscedastic
normal, exponential and Poisson responses θB = 1. Note that now the sample size
is reduced to the 40% of that of the previous tables, this clearly translates into lower
power and wider confidence intervals. Nevertheless, T ∗

n confirms its consistency, also
preserving at the same time the type-I error, for all the considered models; moreover,
the bootstrap-based CIs maintain their reliability in terms of both empirical coverage
and interval width.
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Table 5 Simulated C I (ϑ)0.95 for binary trials adopting ρPW and ρR as θB and ϑ vary

ϑ

0 0.15 0.25
θB Interval L U EC L U EC L U EC

ρPW 0.1 VSB − 0.07 0.07 0.96 0.06 0.24 0.95 0.15 0.34 0.95

DB − 0.08 0.07 0.96 0.05 0.23 0.94 0.15 0.33 0.93

LB − 0.08 0.08 0.93 0.05 0.24 0.95 0.14 0.35 0.96

0.4 VSB − 0.12 0.12 0.95 0.02 0.26 0.95 0.12 0.36 0.94

DB − 0.13 0.11 0.95 0.03 0.25 0.91 0.14 0.33 0.86

LB − 0.12 0.12 0.95 0.02 0.27 0.95 0.12 0.37 0.95

0.7 VSB − 0.12 0.11 0.95 0.03 0.27 0.95 0.14 0.45 0.92

DB − 0.14 0.10 0.94 0.07 0.22 0.79 − − −
LB − 0.12 0.12 0.95 0.04 0.27 0.95 0.12 0.44 0.95

ρR 0.1 VSB − 0.07 0.07 0.92 0.06 0.24 0.94 0.15 0.34 0.95

DB − 0.05 0.13 0.95 − − − − − −
LB − 0.07 0.07 0.93 0.05 0.24 0.95 0.14 0.35 0.96

0.4 VSB − 0.11 0.12 0.95 0.03 0.28 0.95 0.13 0.38 0.95

DB − 0.10 0.15 0.95 0.02 0.34 0.99 0.10 0.47 0.99

LB − 0.12 0.12 0.95 0.03 0.27 0.95 0.12 0.37 0.95

0.7 VSB − 0.10 0.12 0.95 0.06 0.26 0.95 0.17 0.36 0.95

DB − 0.11 0.12 0.95 0.04 0.28 0.98 0.13 0.39 0.98

LB − 0.11 0.11 0.95 0.04 0.25 0.95 0.15 0.35 0.95

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB, variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

5 Discussion

In this paper, we propose a new inferential strategy for response-adaptive clinical
trials based on the variance-stabilized bootstrap-t method. This is motivated by the
fact that the available inferential approaches present several drawbacks, such as (i)
inconsistency of Wald’s test, local decreasing power and unreliable CIs for likelihood
inference, (ii) reduction in the empirical coverage of CIs and inflated type-I errors
for the design-based approach, (iii) unsuitability of randomized-based inference for
general hypothesis testing problems.

We derive the theoretical properties of the suggested methodology, showing that
the degeneracy of the Fisher information is avoided, guaranteeing at the same time
the consistency of the test as well as a monotonically increasing power function. In
general, this proposal preserves the nominal type-I error, attenuates the dependence
on the nuisance parameters and is more efficient than the other methods, regardless
of the chosen RA rule as well as the adopted target and its ethical skew. By means
of an extensive simulation study, we show that the new inferential strategy has very
good performances in terms of power compared to the above-mentioned inferential
approaches. In addition, the suggested bootstrap approach turns out to provide reliable
confidence intervals in terms of both empirical coverage and interval width, avoiding
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Table 6 Simulated C I (ϑ)0.95 for exponential and Poisson outcomes adopting ρR and ρZ , respectively, as
θB and ϑ vary

Exponential with ρR
ϑ

0 1 2.5
θB Interval L U EC L U EC L U EC

1 VSB − 0.25 0.24 0.95 0.63 1.37 0.95 1.95 3.06 0.95

DB − 0.22 0.28 0.94 0.55 1.64 0.94 1.66 3.89 0.94

LB − 0.25 0.25 0.95 0.63 1.37 0.95 1.95 3.07 0.95

5 VSB − 1.26 1.22 0.95 − 0.37 2.35 0.95 0.95 4.04 0.95

DB − 1.10 1.41 0.94 − 0.31 2.73 0.94 0.87 4.75 0.94

LB − 1.23 1.24 0.95 − 0.35 2.36 0.95 0.97 4.06 0.95

10 VSB − 2.52 2.44 0.95 − 1.63 3.56 0.95 − 0.33 5.26 0.95

DB − 2.20 2.83 0.94 − 1.41 4.14 0.94 − 0.22 6.13 0.94

LB − 2.46 2.47 0.95 − 1.59 3.60 0.95 − 0.26 5.29 0.94

Poisson with ρZ
ϑ

0 1 2.5
θB Interval L U EC L U EC L U EC

1 VSB − 0.25 0.24 0.95 0.69 1.29 0.95 2.12 2.83 0.95

DB − 0.22 0.28 0.94 0.59 1.50 0.95 1.78 3.39 0.94

LB − 0.25 0.25 0.95 0.69 1.29 0.95 2.12 2.83 0.95

5 VSB − 0.55 0.55 0.95 0.41 1.57 0.95 1.86 3.07 0.95

DB − 0.52 0.58 0.95 0.39 1.66 0.95 1.75 3.29 0.95

LB − 0.55 0.55 0.95 0.42 1.57 0.95 1.86 3.09 0.95

10 VSB − 0.78 0.78 0.95 0.19 1.78 0.95 1.65 3.29 0.95

DB − 0.75 0.81 0.95 0.19 1.86 0.95 1.59 3.45 0.95

LB − 0.78 0.78 0.95 0.19 1.79 0.95 1.65 3.30 0.95

L, U, average lower and upper simulated bounds; EC, empirical coverage; VSB, variance stabilizing boot-
strap; DB, design-based; LB, likelihood-based

Table 7 Simulated power of test
T ∗
n adopting ρR for binary (with

θB = 0.1), homoscedastic
normal, exponential and Poisson
(with θB = 1) data, for n = 100

T ∗
n adopting ρR

ϑ Normal Binary Exponential Poisson

0.00 0.05 0.05 0.05 0.05

0.10 0.16 0.40 0.12 0.12

0.20 0.30 0.80 0.22 0.23

0.30 0.50 0.97 0.36 0.39

0.40 0.68 1.00 0.51 0.55

0.50 0.82 1.00 0.65 0.71

0.60 0.92 1.00 0.76 0.82

0.70 0.97 1.00 0.84 0.90

0.80 1.00 1.00 0.90 0.95

0.89 1.00 1.00 0.96 1.00
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Table 8 C I (ϑ)0.95 for binary (with θB = 0.1), homoscedastic normal, exponential and Poisson (with
θB = 1) data, for n = 100

ϑ = 0 ϑ = 1.5 ϑ = 5
Model L U EC L U EC L U EC

Normal − 0.35 0.37 0.94 1.05 2.03 0.96 4.01 6.14 0.98

ϑ = 0 ϑ = 0.15 ϑ = 0.25
L U EC L U EC L U EC

Binary − 0.11 0.11 0.95 0.00 0.27 0.95 0.09 0.37 0.94

ϑ = 0 ϑ = 1 ϑ = 2.5
L U EC L U EC L U EC

Exponential − 0.40 0.39 0.94 0.41 1.60 0.94 1.63 3.43 0.95

Poisson − 0.41 0.39 0.95 0.48 1.48 0.94 1.88 3.11 0.95

L, U, average lower and upper simulated bounds; EC, empirical coverage

then the possible degeneracies and instability of the likelihood-based and the design-
based approach, respectively. Moreover, our proposal exhibits good performances in
terms of inferential accuracy even for small/medium sample sizes.

Although in actual practice, the large majority of phase-III trials are planned for
comparing K = 2 treatments, the case of K > 2 could be also of interest and now
we briefly discuss a possible extension of the proposed methodology. Even if for two
treatments the variance stabilizing transformation g is guaranteed (whose closed-form
expression could or could not be available on the basis of the variance function and
the chosen target), for several treatments this transformation does not exist in general.
Let θ = (θ1, . . . , θK )t and v = (v1, . . . , vK )t be the vectors of treatment effects and
variances, respectively, while ρ(θ) = (ρ1(θ), . . . , ρK (θ))t now denotes the target,
namely ρk(θ) is the target allocation of the kth treatment group (k = 1, . . . , K ) with
1tKρ(θ) = 1 (where 1K is the K−dim vector of ones). In this setting, the inferential
focus is on the contrastsϑ = Atθ where, consideringwithout loss of generality the first
treatment as the reference one, At = [1K−1| − IK−1] (here IK−1 is the (K − 1)−dim
identity matrix). After n steps, letting θ̂n = (θ̂n1, . . . , θ̂nK )t be the MLE of θ , if
condition (1) holds for every treatment group, then θ̂n is strongly consistent and asymp-

totically normal with
√
n(θ̂n −θ)

d−→ N(0K ,M−1), where 0K is the K -dim vector of
zeros and M = diag (ρk(θ)/vk)k=1,...,K . Therefore, the MLE ϑ̂n = At θ̂n is strongly

consistent and asymptotically normal with
√
n(ϑ̂n − ϑ)

d−→ N(0K−1,AtM−1A).
From the multi-dimensional Delta-method, the problem now consists in finding a
proper covariance stabilizing transformation, namely a function G : RK−1 → RK−1

stabilizing AtM−1A, i.e., such that
√
n(G(ϑ̂n) − G(ϑ))

d−→ N(0K−1, IK−1). By
letting J = (∂G/∂x)‖x=ϑ be the Jacobian matrix of the partial derivatives of G
evaluated at ϑ , then G is a covariance stabilizing transformation if and only if
JtJ = (AtM−1A)−1. Essentially, this corresponds to J = (AtM−1A)−1/2, namely a
mapping G whose Jacobian is equal to a square root of the symmetric and positive
definite matrix (AtM−1A)−1 should be identified. Unfortunately, this transformation
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may not exist and it should be checked for any chosen model and target by applying
standard matrix differential equations; however, the computational complexity grows
extremely fast as K increases, leading to a very complicated programming except for
K = 3, as discussed in Holland (1973).
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