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Abstract: Vertical deformations of the Earth’s surface result from a host of geophysical and geological
processes. Identification and assessment of the induced signals is key to addressing outstanding
scientific questions, such as those related to the role played by the changing climate on height
variations. This study, focused on the European and Mediterranean area, analyzed the GPS height
time series of 114 well-distributed stations with the aim of identifying spatially coherent signals
likely related to variations of environmental parameters, such as atmospheric surface pressure (SP)
and terrestrial water storage (TWS). Linear trends and seasonality were removed from all the time
series before applying the principal component analysis (PCA) to identify the main patterns of the
space/time interannual variability. Coherent height variations on timescales of about 5 and 10 years
were identified by the first and second mode, respectively. They were explained by invoking loading
of the crust. Single-value decomposition (SVD) was used to study the coupled interannual space/time
variability between the variable pairs GPS height–SP and GPS height–TWS. A decadal timescale was
identified that related height and TWS variations. Features common to the height series and to those
of a few climate indices—namely, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO),
the East Atlantic (EA), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI)—were
also investigated. We found significant correlations only with the MEI. The first height PCA mode of
variability, showing a nearly 5-year fluctuation, was anticorrelated (−0.23) with MEI. The second
mode, characterized by a decadal fluctuation, was well correlated (+0.58) with MEI; the spatial
distribution of the correlation revealed, for Europe and the Mediterranean area, height decrease till
2015, followed by increase, while Scandinavian and Baltic countries showed the opposite behavior.

Keywords: GPS height variability; environmental parameters; principal component analysis (PCA);
singular value decomposition (SVD)

1. Introduction

A multiplicity of processes is responsible for the vertical movements of the land
occurring at different spatial and temporal scales and with different magnitudes. We may
recall solid-Earth tides, the glacial isostatic adjustment (GIA), the loadings, such as the
pressure exerted by the atmosphere, the liquid water and the snow, seismic activity, volcanic
eruptions, sedimentation, landslides, and ground fluid exploitation. Except for tides, these
motions are typically an order of magnitude smaller than the horizontal deformation [1].
Therefore, the identification and description of their distinctive nature has always been
challenging. Today, new observational capabilities allow monitoring, in a global reference
system and with a high degree of accuracy, both horizontal and vertical velocities of stations
located on the Earth’s surface. Space geodetic observations, such as those acquired by GPS
systems (Global Positioning System) and by InSAR imaging (Interferometric Synthetic
Aperture Radar), have enabled significant advances in the description of the processes
influencing vertical surface deformations. In the framework of studies conducted to assess
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the consequences of climate variability/change, the reliable quantification of the vertical
deformation is key to resolving the contribution of the different aspects.

Vertical deformations occur on a wide range of temporal scales from millions of years
to seconds and can be due to global geophysical processes but also to local causes. As
an example, the last glacial maximum occurred about 20 kyr BP; however, the surface of
the Earth still rebounds visco-elastically to the subsequent melting of the ice load. The
vertical movements of the land associated with this process, known as GIA (glacial isostatic
adjustment), are clearly recognizable in different types of records. Rapid deformation,
within seconds, takes place locally in conjunction with earthquakes and volcanic activity. At
annual scale, Blewitt et al. [2] and Blewitt and Lavallée [3,4] showed that the most significant
vertical displacements of the Earth’s crust are driven by environmental mass redistribution
generating changes in the gravitational and surface forces. The stress response in the solid
Earth generated by changes/variations of surface atmospheric pressure (SP), terrestrial
water storage (TWS), and of the oceans is usually accompanied by patterns of surface
deformation [5,6]. Accurate monitoring of the vertical motions of the crust is now possible,
thus contributing to advancing the understanding of the related dynamic processes—
important in the light of the impacts of climate variability/change on our planet, which are
becoming more and more dramatically evident.

It is well recognized that atmospheric pressure loading causes deformations of the
land surface; the induced annual vertical displacements can be as large as 18 mm in mid-to
high- latitudes [7–9]. The TWS is also a significant source of loading on the Earth’s crust. It
is the loading induced by the sum of all waters on the land surface and in the subsurface,
including water stored in the vegetation [10]. TWS can cause vertical displacements
between 9 and 15 mm over most of the continental areas [11]. Earth tides and ocean loading
also play a pivotal role when dealing with vertical crustal displacements. In the case of
ocean loading, the forcing is due to both the tidal and non-tidal component. Deformation
of the sea floor and surface displacements of the adjacent lands up to several centimeters
result from the elastic response of the Earth’s crust to ocean tides (tidal loading) [12]. The
ocean is also responsible for the so-called non-tidal ocean loading [13–15]. These changes
of the ocean bottom pressure are due to different processes—namely, the internal mass
redistribution of the ocean driven by atmospheric circulation, the global water cycle, and
a change in the integrated atmospheric mass over the ocean areas [14]. In general, the
seasonal variability due to the superposition of the environmental loadings described
above is the most prominent short-period feature characterizing the GPS height time series.
Modelling of the environmental loading series made by GFZ (GeoForschungsZentrum,
Potsdam, Germany) and EOST (École and Observatoire des Sciences de la Terre, Strasbourg,
France) indicates average annual amplitudes of 2.7 and 3.1 mm, respectively, explaining
about 40% of the annual amplitude of GPS height time series [16]. Long-period signals of
tectonic nature contribute to the observed height variability, which may also be affected by
the consequences of anthropogenic activities.

In this work, we analyzed the residual heights time series of 114 GPS stations dis-
tributed over Europe and the Mediterranean area. Residuals were the series of the GPS
height estimates after having removed the relevant seasonal signal and the linear trend.
The purpose of the work was to identify, by means of PCA (principal component analysis),
the main modes of interannual variability in the residuals of the GPS heights, SP, and
TWS. The SVD (single-value decomposition) technique was also used with the aim of
studying the coupled variability between the height residuals and those of the SP and TWS.
The correlations between the vertical deformations and the multivariate ENSO (El Niño
Southern Oscillation) index (MEI) were also investigated. The possibility of disentangling
and interpreting the effects of the different geophysical processes is crucial for providing
insights into the evolution of the increasing stress put on the Earth by changing climate.

During the past two decades at least, many studies have been published describing
the seasonal variability of the GPS-estimated heights in response to the force exerted
by different types of environmental loads. Among others, recent contributions include
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the following [11,15–18]. Long-term signals due to different natural and anthropogenic
processes may also characterize the GPS height time series [1,19]. A recent work by
Springer et al. [20] assessed hydrological loading, even at daily time scale, in GPS height
time series over Europe. Not as many studies are yet available for Europe and the Mediter-
ranean area concerning interannual variations of GPS heights in relation to changing
climate and variability of environmental parameters. Over southern India, Tiwari et al. [21],
comparing deformation derived from GRACE (Gravity Recovery and Climate Experi-
ment) and GPS data, suggest that hydrological variations are the major cause of vertical
deformation measured by GPS at seasonal and interannual time scales. In southwestern
USA, Jin and Zhang [22] found consistency over the six years from 2008 to 2014 between
the interannual TWS changes derived from GPS heights and the pattern of precipitation,
which also included the severe drought in 2012. In the USA, Adusumilli et al. [23] found
positive correlation between TWS anomalies and the El Niño/Southern Oscillation in the
southeastern Texas-Gulf and South Atlantic-Gulf watersheds and an unexpected negative
correlation in the southwest. Accelerating uplift in Iceland resulting from climate change
was found by Compton et al. [24] from the analysis of GPS observations over the period
1995–July 2014. Zerbini et al. [25], using the empirical orthogonal function (EOF), identified
spatially coherent patterns in the GPS height time series of 19 stations located in Europe
and the Mediterranean area over an 11-year period (1999–2009) and in those of SP, TWS,
and GRACE surface mass anomalies.

This study benefited from the global development that occurred during the past
twenty years, which led to the installation of a very many permanent GPS sites and to
the public availability of accurate time series of the coordinates. Over the continental area
object of the study, our analysis identified coherent height variations with timescales of
about 5 and 10 years, which could be related to the space and time variability of the SP,
TWS, and MEI. The observed height variations are explained by crustal loading induced
by mass variations. The entire study area behaved coherently over the 5-year period, while
the spatial pattern of the decadal fluctuation was characterized by a north–south gradient.
This is likely attributable to the strong 2015–2016 El Niño event and to the associated
hydroclimate anomalies that in the European–Mediterranean area are, in general, described
by a north–south path.

The results of the SVD analysis of the height and SP elucidate the different response
to the same SP forces of inland and coastal sites, with the former showing larger effects.
The second SVD mode between height and TWS shows a nearly decadal variation, which
was not found in the SVD results of the pair height and SP, suggesting that the observed
decadal variation of the height was due to the TWS variations rather than to those of SP.

The spatial distribution of the correlation coefficients between height and MEI identi-
fied two coherent regions, the southwest, where height and MEI are anticorrelated, and the
northeast, where they are correlated. The second height time component turned out to be
well correlated with MEI over the decadal time scale.

2. Materials and Methods

There are several parameters of interest for this study. First, we discuss the heights
(Up local coordinate) of the 114 GPS stations identified for this work. These were rather
uniformly distributed in the European and Mediterranean area; Figure 1 shows the location
of the stations. In the second place, we introduce the SP and TWS at the same sites. For
each site, weekly time series of these parameters were created.
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Figure 1. Location of the GPS stations selected for this work.

2.1. GPS Up Time Series

The daily values of the GPS Up coordinate time series were obtained from the Nevada
Geodetic Laboratory (NGL) at their web site (http://geodesy.unr.edu/, accessed on 14 July
2020, ref. [26]). We downloaded the latest release labelled GipsyX-1.0/IGS14/Repro3.0.
A first check of the data series showed that, over the area of interest to the study, many
stations started to acquire data continuously around 2010. The next step was to inspect the
GPS Up data, starting from 2010, to check the completeness of the daily time series using
the following relationship

C = (N/τ)

where N is the number of daily data, and τ is the period of activity in days. The complete-
ness threshold was set to C = 92%. This was an arbitrary choice; however, it represented a
reasonably good compromise between discarding too many stations if the percentage was
set higher, versus accepting many more stations but with a lower percentage of complete-
ness. The selected stations started to acquire data at different epochs; thus, the subsequent
action was to cut the time series over the period of maximum overlap to favor the appli-
cation of the PCA and SVD methodologies. This led to selection of the time span from 9
June 2010 to 5 September 2018. Outliers were removed from the data series using a 3-σ
rejection criterion, which identified as outliers those observations deviating from the mean
by an amount equal or greater than 3 times the standard deviation. Linear trends were then
estimated for each series and removed from the data sets, thus creating residual time series
for each station. The estimated linear trends should have accounted for the long-period
tectonic and anthropic deformation.

The GPS coordinates time series, in particular the Up component, can be characterized
by sudden jumps. These are offsets or discontinuities that it is necessary to account for
and remove because they would have a detrimental effect on the estimate of the stations
position and velocity. A large percentage of offsets, about 66% (http://sopac.ucsd.edu/,
accessed on 14 July 2020, ref. [27]), were due to well-known causes, thus allowing the
identification of the epoch at which the jump took place. The NGL provided, for each
site and for specific causes, the epochs at which discontinuities occurred. The specific
causes were equipment changes, earthquakes, and change of reference frame. For jumps
of undetermined origin, the epoch of occurrence must be properly estimated. In this
work, the epoch and magnitude of the observed discontinuities in the residual Up time
series were estimated by means of the STARS (Sequential t test Analysis of Regime Shifts)
methodology [28].

http://geodesy.unr.edu/
http://sopac.ucsd.edu/
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Once the discontinuities were removed, the residual Up series were deseasonalized
after estimating, by stacking of the daily values, a mean seasonal cycle for each station.
Finally, weekly mean values were computed.

2.2. Atmospheric Pressure Time Series

The atmospheric pressure data consisted of surface pressure (SP) time series of the
NCEP Daily Global Reanalyses over the period 2010–2019 on a 2.5◦ × 2.5◦ grid covering the
latitudinal range 25◦N–70◦N and the longitudinal range 30◦W–60◦E. The daily SP values
are given in hPa. Data were provided by the NOAA/OAR/ESRL PSL, Boulder, CO, USA,
from their Web site at https://psl.noaa.gov/ (accessed on 14 July 2020) [29]. We recall here
that a reanalysis is a systematic approach to produce data sets for climate monitoring and
research. It uses an unchanging data assimilation scheme and model ingesting all available
observations every 6–12 h, thus providing a dynamically consistent estimate of the climate
state at each time step.

We interpolated the SP data in order to obtain pressure values at the locations of the
114 GPS sites shown in Figure 1. The resulting time series were detrended and deseasonal-
ized. Finally, weekly means were computed.

2.3. Terrestrial Water Storage Time Series

The TWS represents the summation of all water on the land surface and in the sub-
surface. It includes surface soil moisture, root zone soil moisture, groundwater, snow, ice,
water stored in the vegetation, and river and lake water [10].

The TWS data set used in this work was the M2T1NXLND which was one of the
products of Modern-Era Retrospective analysis for Research and Applications version 2
(MERRA-2), i.e., the project that places the NASA Earth Observation System (EOS) suite
of observations in a climate context [30]. These data are available on the NASA Goddard
Earth Sciences (GES) Data and Information Services Center (DISC) Web site at https:
//disc.gsfc.nasa.gov/ (accessed on 14 July 2020). We downloaded a data series of daily
means with spatial resolution 0.5◦ × 0.625◦ spanning the period 2010–2019. The daily time
series were detrended and deseasonalized, and weekly mean time series were estimated.
These data were then interpolated in order to obtain values of the TWS at the GPS locations.

2.4. Climate Indexes

We investigated possible correlations between height variations and climate indexes,
such as MEI, Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and the East
Atlantic Pattern (EA).

The MEI combines both oceanic and atmospheric variables in a single index to provide
an assessment of the ENSO (El Niño Southern Oscillation). This is a periodic fluctuation
(2-to-7 years), across the equatorial Pacific Ocean, of the sea surface temperature (SST)
and the air pressure of the overlying atmosphere. The ENSO consists of the alternation
of two phases: a warm phase called El Niño and a cold phase called La Niña. It is
the time series of the leading combined EOF of five different variables—namely, the sea
level pressure, the sea surface temperature, the zonal and meridional components of
the surface wind, and the outgoing longwave radiation over the tropical Pacific basin (
https://www.psl.noaa.gov/enso/mei/, accessed on 14 July 2020).

The AO, NAO, and EA indexes describe major modes of variability of the atmospheric
pressure field. In particular, AO accounts for the Northern Hemisphere field, and NAO
and EA more specifically for the North Atlantic pressure field.

2.5. PCA and SVD Methodologies

The methodologies adopted to derive the main patterns of the space-time variability
and co-variability of the various parameters were PCA and the SVD.

PCA is a statistical method used for the analysis of the spatial and temporal variability
of an individual dataset, and it is widely used in the geophysical environment. The basic

https://psl.noaa.gov/
https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
https://www.psl.noaa.gov/enso/mei/
https://www.psl.noaa.gov/enso/mei/
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concept on which the technique works is to reduce the dimensionality of a dataset by
providing a compact description of the temporal and spatial variability of the dataset of a
single variable in terms of orthogonal components (statistical modes), while preserving as
much statistical information as possible. A review and recent developments on this subject
are provided by Joliffe and Cadima [31].

In principle, PCA requires complete data sets; that is, all the time series should be
defined at the same epochs. Considering that the great majority, if not all, the GPS series
were characterized by missing data, this would have led to a massive loss of information
and would have reduced the ability to detect common patterns. Therefore, in order
minimize the data loss, we decided to fill the data gaps.

The simplest approach to perform this task is to provide values derived by the time
averaging of the series. Other methods are based on iterative algorithms, for example,
those of Papoulis and Gerchberg [32,33] and the expectation maximization algorithm [34],
which are among the most used approaches. However, the iterative characteristics of these
methods, with the relevant computational burden, and the low convergence rates preclude
their use in several applications. Among the available GPS Up time series [26] for the area
of interest of this study, we selected those in which the longest data gap was two months.
The missing weekly means were estimated by using an adjacent averaging procedure.
The time window was, of course, an arbitrary choice, and we believe that it was quite
appropriate for our work since we were looking for interannual variability common to the
time series. However, we point out that only three time series were characterized by data
gaps longer than 1 month.

The variables analyzed using the PCA approach were the residual series of the GPS
Up, the SP, and TWS.

The SVD method, which has the same mathematical basis of PCA [35], allows the cou-
pling of different fields to be explored by identifying significant correlations between pairs
of variables. The approach enables extracting orthogonal components that are common
to both variables, therefore representing modes of coupled variability. We compared the
interannual variations observed in the residual series of the Up coordinate of the 114 GPS
stations with those present in the residual time series of the SP and TWS.

We shall remark that PCA and SVD are mathematical tools providing common modes
and statistical correlations between pairs of parameters, respectively. Therefore, these
methodologies do not allow direct inference of the physical mechanisms responsible for
the observed behaviors, which should be unraveled by means of appropriate modelling.

3. Results of the PCA Analysis

In this section we present the results of the PCA analysis, performed on the resid-
uals series of the GPS Up coordinate, SP, and TWS. The three data sets were organized
in three matrices where each column was a detrended, deseasonalized and standard-
ized time series of weekly values. The analysis allowed the spatial pattern coefficients
(Figures 2, 4 and 6) and the time components (Figures 3, 5, and 7) to be obtained. The
maps of the spatial pattern coefficients of the three data sets were created by assigning
the PCA-derived value to the station points on the map. For display purposes, the spatial
pattern coefficients were multiplied by 100 because they were always smaller than the unit.
The series of the time components were smoothed by means of a 4 weekly data points
(1 month) running mean.

3.1. Spatial Patterns and Time Components of the GPS Up Residuals

The first four modes explain 54% of the total variance, they are listed in Table 1. Figure 2a,b,
presents the spatial behavior of the first two modes of the residuals of the GPS Up compo-
nent. The first spatial pattern, presented in Figure 2a, shows a coherent behavior of Europe,
Scandinavia, and the Mediterranean area (coefficients of the same sign). On the Atlantic
side, the Azores Islands and Iceland show coefficients close to zero. Figure 3a presents the
first time component describing the main interannual variations of the GPS Up coordinate
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residuals. These are characterized by large oscillations that may be interpreted in terms of
loading variations on the Earth’s crust occurring in connection with variations of essential
climate variables (ECV), such as surface pressure, temperature, precipitation, and land
groundwater [36]. The first mode of variability explains about 33% of the total variance
(Table 1) which is a significant amount, if one considers the large number of stations (114).

Table 1. Percentage of variance explained by the first four modes of variability of the GPS Up
coordinate residuals.

Modes Variance (%)

1 32.77
2 11.55
3 5.58
4 4.13

Figure 2. First (a) and second (b) spatial pattern of the weekly GPS Up coordinate residuals.

Figure 3. First (a) and second (b) time component of the weekly GPS Up coordinate residuals.

In the following, for a few variables, we highlight main anomalies observed during
the years of this study in the effort to recognize fingerprints of these anomalies in the
residual series of the Up time component. The year 2011 was a generally warm year
all over Europe, the British Isles, Scandinavia, and the Mediterranean area. The year
had a warm start and finish, with above-average temperatures in January and February
and during the months of September, November, and December [37]. During February–
April 2011 there was also a significant rain deficit over large parts of Europe, and similar
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conditions occurred in autumn. In 2011, the first time component of the Up residuals
is characterized by a clear oscillation showing an Up increase since the start of the year,
likely associated with unloading of the crust. In December 2011, drought conditions were
confined to the Mediterranean area; however, from January to March 2012, the drought
period first spread to Western Europe and then on to Central and Southeastern Europe
where it peaked in March [38]. The Up residuals show a steep increase till about the
second half to April. Although the year 2013 was also anomalously warm over Europe,
it was characterized during spring by extreme precipitation in the Alpine region and in
Austria, Czech Republic, Germany, Poland, and Switzerland. Great Britain experienced
the coldest spring since 1962, and Spain had the wettest March since 1947 [39]. The Up
residuals do not exhibit any clear behavior during the whole year. The year 2014 was the
warmest year on record in 19 European countries. France, Spain, and Portugal experienced
above-average temperatures in January, and all over Europe, February and March were
characterized by exceptionally warm and wet conditions. Annual rainfall was above
average for several countries in Europe and in the Balkans [40]. This might explain the
large oscillation observed at the beginning of 2014, with a noticeable increase of the Up
component (crustal unloading) till the second half of February, followed by a sharp decrease
(crustal loading) due to excess of precipitation and related increase of groundwater storage.
During 2015, heatwaves affected Central and Eastern Europe from May through September.
The months of November and December were also unusually warm [41]. During summer,
large portions of continental Europe were affected by one of the most severe droughts
since 2003 [42]. The Up residuals display a clear oscillation, peaking during summer, likely
associated with unloading of the crust. Western and Central Europe were again affected
by a record-breaking drought from July 2016 to June 2017 [43], as well as many parts of
the Mediterranean region [44]. The winter of 2017 was the second driest winter in the
ERA-Interim record in terms of precipitation [45]. Additionally, during 2018 large parts
of Europe were affected by exceptional heat and drought through the late spring and
summer [46], with a significant increase of the Up residuals till the second half of March.
However, by examining all together the nine-year period 2010–2019 of the Up residuals
shown in Figure 3a, we can observe both variations related to significant weather and
climate events of a particular year, as described above, and also a nearly 5-year oscillation
that might be associated with the sequence of severe droughts that affected the study
area. In fact, the GPS Up residuals show a marked increase during the three-year period
2010–2012 (crustal unloading, droughts 2010, 2011, and 2012), followed by a period of two
years (2013 and 2014) during which an Up decrease is apparent and again a steep increase
starting from 2015 (crustal unloading, droughts 2015, 2016, 2017, and 2018).

Figure 2b presents the second spatial pattern, characterized by a south (negative
coefficients)–north (positive coefficients) gradient. This mode explains almost 12% of
the total variance (Table 1), which is about one-third of the first one. The second time
component shown in Figure 3b is characterized by a nearly decadal oscillation, with change
of slope in 2015 and superimposed shorter-period variations. The behavior of this time
component might be related to decadal impacts of the ENSO phenomenon. Although clear
associations of European hydroclimate anomalies with extreme El Niños are still a subject
of debate [47], there are studies showing that, in Europe, the ENSO climate impacts are
generally characterized by a north–south path [48]. In particular, concerning precipitation,
El Niño is connected to negative anomaly in Scandinavia and positive anomaly in Southern
Europe. For La Niña events, these relationships are close to symmetric. During the period
of our study, the time series of the MEI shows a strong La Niña event in 2010–2011 (positive
precipitation anomaly in Scandinavia and negative anomaly in Southern Europe), followed
by a moderate event in 2011–2012 gradually weakening till the onset, at the beginning
of 2015, of a strong El Niño lasting for about two years (negative precipitation anomaly
in Scandinavia and positive anomaly in Southern Europe). The pattern exhibited by the
second Up time component in Figure 3b is compatible in terms of loading/unloading effects
on the crust with this scenario. Southern Europe and the Mediterranean are characterized,
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in fact, by negative coefficients, as illustrated by Figure 2b, indicating decrease of the Up
from 2010 till 2015 (weakening of La Niña), followed by an Up increase (unloading) in the
remaining period related to the strong El Niño event. Figure 2b indicates that Scandinavia,
or more generally, the northeast (positive coefficients) shows increasing Up (weakening of
La Niña), followed by a decrease after 2015.

In brief, the Up coordinate and hydrology appear to be connected to a significant
extent. The first mode of the Up variability is related to local hydrological changes on
seasonal to interannual time scales. The second mode appears to be related to hydrological
variations modulated by the ENSO.

3.2. Spatial Patterns and Time Components of the SP Residuals

Table 2 lists the first four modes of the SP residuals, which explain about 90% of the
data variability; the first mode alone contributes 50%. Before being analyzed with the PCA
methodology, the SP time series were detrended, deseasonalized, and finally standardized.

Table 2. Percentage of variance explained by the first four modes of variability of the surface pressure
(SP) residuals.

Modes Variance (%)

1 46.54
2 22.22
3 11.82
4 5.64

Figure 4a,b and Figure 5a,b present the spatial patterns and the time components of
the first two modes, respectively. Figure 4a illustrates the map of the first spatial pattern
coefficients, showing over the Atlantic side the meridional pressure difference between
the Icelandic Low (positive coefficients) and the Azores anticyclone (slightly negative
coefficients). These correspond to the two poles of the NAO. The north–south pressure
gradient is also clearly identified by two coherent areas, one including the British Isles,
Central Europe, the Mediterranean, the Balkans, and southern Scandinavia characterized by
negative coefficients, and a second one with Iceland and central and northern Scandinavia
characterized by slightly positive coefficients. Figure 4b shows the presence of a southwest–
northeast gradient related to opposite pressure variations between the Mediterranean
regions and Scandinavia.

Figure 4. First (a) and second (b) spatial pattern of the weekly SP residuals.
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Figure 5. First (a) and second (b) time component of the weekly SP residuals.

Figure 5a,b shows the SP residuals time components, which were smoothed by means
of a 4 weekly data points (1 month) running mean. They are characterized mainly by short
period fluctuations and winter peaks. The first spatial pattern, presented in Figure 5a,
shows a discontinuity around March 2016, which may be associated with the rapid reversal
of a pressure gradient across the Alpine range that took place in mid-March 2016 [49]. The
positive peak at the beginning of the 2018 might be related to the anomalous cold weather
conditions all over Europe and the Mediterranean area that characterized the month of
February and early March 2018 [46].

3.3. Spatial Patterns and Time Components of the TWS Residuals

Table 3 lists the first four spatial patterns of the TWS residuals, explaining 60% of the
variance of the data set. Figure 6a presents a map of the coefficients of the first spatial
pattern; it shows that the coefficients are positive all over Europe. In particular, the stations
in Central Europe are characterized by a larger magnitude of the coefficients. Figure 7
shows the first two time components of the TWS residuals. Both time series were smoothed
by means of a 4 weekly data points (1 month) running mean.

Table 3. Percentage of variance explained by the first four modes of variability of the terrestrial water
storage (TWS) residuals. Before being analyzed with the PCA methodology, the TWS time series
were detrended, deseasonalized, and finally standardized.

Modes Variance (%)

1 29.67
2 12.08
3 10.39
4 7.78

The first time component, Figure 7a, explains almost 30% of the variance (Table 3);
it is characterized by large oscillations with period of about 2 years. A peak value can
be recognized at the end of 2010, followed by a minimum during the first few months of
the 2011. The year 2010 was a very wet year in large parts of Central and Southeastern
Europe and adjacent areas of Asia, with parts of the region experiencing rainfall 50% or
more above normal [50]. The maximum occurred after a period of heavy rainfalls that
started in July 2010 and ended in December 2010. The spring of 2011 was particularly dry
in the western part of Europe, many areas of which received less than 40% of usual annual
precipitation [38]. In December 2011, drought conditions were basically confined to the
Mediterranean area. During spring 2012, much of Europe was characterized by unusual
warmth and dry weather peaking in March, i.e., when the minimum occurs in the first time
component of the TWS residuals as shown in Figure 7a. However, a marked difference
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between Northern and Southern Europe was observed during 2012, with most of Northern
Europe experiencing above-average precipitation, while Southern Europe experienced
below-average precipitation [51]. The year 2013 was the sixth warmest on record across
Europe, and many regions were warmer than average already at the start of the year [39].
Figure 7a shows loss of TWS during the whole year except for a short and small fluctuation
at the end. The beginning of 2014 till March was also exceptionally warm in Europe, as
evidenced by the yearly minimum of the first time component, but most of the year in
Europe was characterized by rainfall above average [40]. During 2016, precipitation was
close to average over most of Central and Western Europe, with a very wet first half of
the year contrasting with a dry second half. December was also extremely dry, with many
areas having less than 20% of normal precipitation [52]. Finally, the figure shows, for
the year 2017, a rapid decrease until about March in conjunction with temperatures well
above average throughout the year but with the strongest anomalies early in the year,
from January to March. A marked increase then follows, likely because the most extensive
area with annual rainfall above the 90th percentile in 2017 was in Northeastern Europe,
extending as far west as Northern Germany and Southern Norway [44].

Figure 6. First (a) and second (b) spatial pattern of the weekly TWS residuals.

Figure 7. First (a) and second (b) time component of the weekly TWS residuals.

Figure 6b presents the second spatial pattern, showing a coherent behavior of Central
Europe (negative coefficients). The second time component exhibits a decadal period
indicative of an increase of the TWS residuals during 2012–2013 and until February/March
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2014 (winter months exceptionally warm and wet over Europe), followed by a general
decrease.

4. Results of the SVD Analysis

In this section, the interannual variations observed in the residual time series of the
GPS Up coordinate of the 114 stations are compared, by means of the SVD approach,
with those present in the residual time series of the SP and TWS. The SVD approach
allows recognition of significant correlations between pairs of variables; more specifically,
the SVD analysis of two data fields identifies only those modes representing coupled
variability. Each mode is described by two spatial patterns: one for each variable and two
time components. In the following, we describe the results of the analysis for the pairs
Up–SP and Up–TWS.

4.1. Spatial Patterns and Time Components of the Residuals of the Up–SP Pair

The first four modes of the pair SP and GPS Up coordinate account for 84.5% of the
total covariance. The first mode alone of the coupled variability explains 52% of the total
covariance (Table 4).

Table 4. Percentage of squared covariance explained by the first four modes of variability of the
residuals of the pair Up–SP.

Modes Squared Covariance (%)

1 52.03
2 19.43
3 8.70
4 4.33

Figure 8, panel (a), shows the first SVD spatial pattern of the SP residuals, while
that of the GPS Up coordinate residuals is presented in panel (b). Both spatial patterns
are coherent over the study area, with SP characterized by negative coefficients and the
Up coordinate by positive coefficients. This mode identifies anticorrelation between the
SP and the Up time series, representative of the vertical crustal deformation induced by
atmospheric loading. In particular, in Central Europe, Figure 8b shows larger positive
values of the coefficients than those of the coastal areas. This can be explained by the
different response of coastal and inland sites to the same pressure forcing. Larger effects
of SP loading are expected in continental interiors [53,54]. Figure 9 presents the first SVD
time components, where a 5-year oscillation can be recognized. A similar feature is also
identifiable in the first time component resulting from the PCA analysis of the Up residuals,
as shown in Figure 3a.

Figure 8. Spatial pattern coefficients describing the first single-value decomposition (SVD) of the residuals of the SP and of
those of the Up coordinate. (a) SP spatial pattern; (b) Up spatial pattern.
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Figure 9. Time components of the first SVD of the residuals of the variable pair (monthly values) SP
(magenta line) and Up coordinate (green line).

The second coupled mode of variability explains 19.43% of the total covariance.
Figure 10 illustrates the second SVD spatial patterns of the SP (panel a) and GPS Up
(panel b) residuals, respectively. Both spatial patterns show a clear south–north gradi-
ent, likely due to the SP difference between southern and warmer regions (high SP) and
northern and cooler areas (low SP). The two fields are anticorrelated, thus supporting the
response mechanism of the Earth’s crust to loadings. Figure 11 presents the second SVD
time components, which are mostly characterized by short-period variability.

Figure 10. Spatial pattern coefficients describing the second SVD of the residuals of the SP and those of the Up coordinate.
(a) SP spatial pattern; (b) Up spatial pattern.

4.2. Spatial Patterns and Time Components of the Residuals of the Up–TWS Pair

Table 5 lists the first four SVD modes of the coupled variability of the pair TWS and
GPS Up residuals. They account for 51% of the total covariance. The first mode explains
20% of the total covariance.
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Figure 11. Time components of the second SVD of the residuals of the variable pair (monthly values)
SP (magenta line) and Up coordinate (green line).

Table 5. Percentage of squared covariance explained by the first four modes of variability of the
residuals of the pair Up–TWS.

Modes Squared Covariance (%)

1 20.20
2 14.98
3 9.35
4 6.30

Figure 12a presents the first SVD spatial pattern of the TWS, characterized by negative
coefficients all over Western and Central Europe, the Mediterranean, and the Balkans, while
Scandinavia, Baltic countries, and Western Russia show positive coefficients. Figure 12b
describes the first coupled mode of the GPS Up, which exhibits opposite behavior with
respect to that of the TWS. The observed anticorrelation suggests that this mode is likely
representative of the vertical deformation induced by the TWS loading on the Earth’s crust.

Figure 12. Spatial pattern coefficients describing the first SVD of the residuals of the TWS and those of the Up coordinate.
(a) TWS spatial pattern; (b) Up spatial pattern.

Figure 13 displays the first SVD time components, showing a 5-year period oscillation
on which shorter-period variability is superimposed. We recall the detailed description of
the climate-related effects provided in Section 3.1 concerning the Up, and Section 3.3 for
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the TWS. These effects can be recognized in this context as well. It is interesting to note
that during 2014 and 2015 there is a phase shift between the relevant maxima and minima,
while in the previous and following years this shift does not appear. During 2014, the Up
increase anticipates by about two months the TWS decrease, while in 2015, the Up decrease
follows the TWS increase by about three months.

Figure 13. Time components of the first SVD of the residuals of the variable pair (monthly values)
TWS (magenta line) and Up coordinate (green line).

The second coupled mode of variability explains 15% of total covariance. Figure 14a
features the second spatial pattern of the TWS residuals, characterized by negative values
in Eastern Europe, Baltic countries, Western Russia, and central-northern Scandinavia.
Elsewhere, the coefficients are mostly slightly positive. Figure 14b shows the second spatial
pattern of the Up coordinate exhibiting an opposite behavior with respect to that of the
TWS, thus further supporting the idea of the loading effect on the Earth’s crust exerted
by variations of the TWS. Figure 15 presents the second SVD time components, which are
characterized by a parabolic variation (decadal period), with superimposed interannual
fluctuations. Additionally, quite noticeable is the large fluctuation during the years 2016,
2017, and 2018, when climate warming caused record Northern Hemisphere average
temperatures [55], and the European–Mediterranean area was affected by severe droughts.
A long-period oscillation of similar shape does not appear in the SVD time components of
the Up–SP pair, suggesting that the observed behavior is mostly due to the impact of the
TWS.

Figure 14. Spatial pattern coefficients describing the second SVD of the residuals of the TWS and those of the Up coordinate.
(a) TWS spatial pattern; (b) Up spatial pattern.
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Figure 15. Time components of the second SVD of the residuals of the variable pair (monthly values)
TWS (magenta line) and Up coordinate (green line).

5. GPS Up and Climate Indexes

Because in our study no significant correlations were found between the Up compo-
nent and the AO, NAO, and EA indexes, in this section we only describe the correlation
with the MEI.

We analyzed the correlation of the GPS Up residuals with the MEI because numer-
ous studies have shed light on the association between precipitation in the European–
Mediterranean region and the ENSO [56]. In order to reduce the potential effect of local
anomalies, the GPS Up residuals were represented using the first two modes of variability,
identified in Section 3.1. Since MEI is provided as a series of monthly values, monthly Up
residuals were also estimated.

Figure 16 presents the monthly MEI time series made available by NOAA.

Figure 16. Time series of the multivariate El Niño Southern Oscillation (ENSO) index (MEI)v2. The
red color represents the warm phase (El Niño) while the blue color indicates the cold phase (La Niña).
Image downloaded from https://psl.noaa.gov/enso/mei/, accessed on 20 January 2021.

Figure 17 presents the standardized series of the MEI and those of the first (panel a)
and second (panel b) PCA time components of the Up coordinate. The Up time components
presented in this context were derived by a PCA analysis of the monthly Up time series.
We observed significant (confidence level p < 0.05) correlations between the monthly time
series of the MEI and those of the first and second time components of the GPS Up time
series.

https://psl.noaa.gov/enso/mei/
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Figure 17. Standardized monthly time series of the MEI (purple line) and of the first (a) and second (b) PCA time components
of the Up coordinate.

Over the whole period, MEI and the first time component are significantly anticorre-
lated (−0.23). However, if we account solely for the first four years (2010–2014), the two
curves are positively correlated (+0.66). During this period, a strong La Niña event was
active in 2010–2011, followed by a moderate event in 2011–2012, with decreasing strength
until 2014. The following five years show a clear anticorrelation pattern. One of the most
powerful El Niño events of the last few decades developed at the end of 2014; it lasted
through middle 2016, followed by the warmest five-year period on record (2016–2020). The
pattern described by the first time component suggests a fluctuation of about 5 years. A
large deviation starting at the beginning of 2014 is noticeable when the transition from
La Niña to a very strong El Niño event occurs. The second Up time component is well
correlated (+0.58) with the MEI over an approximately decadal period.

Figure 18 shows the spatial distribution of the correlation coefficients between the
MEI time series and those of the Up coordinate. The Up time series were reconstructed
by means of the first two modes of variability (accounting for about 44% of total variance,
see Table 1) of the PCA with the aim of avoiding possible disturbing signals induced by
local effects. The grey dots identify those stations whose time series are not significantly
correlated (p > 0.05) with MEI. The correlation map identifies two areas, one including
Iberia, the Mediterranean, and Central and Northern Europe, where anticorrelation is
clearly identifiable, and a second zone encompassing Scandinavia, Western Russia, and
Baltic states, characterized by positive correlation.

Figure 18. Spatial distribution of the correlation coefficients between the MEI and the Up coordinate
time series. The Up time series were generated by using the first two components of the PCA. The
grey dots represent those stations whose time series are not significantly correlated with the MEI.
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6. Discussion
6.1. Interannual Vertical Deformations and Variations of SP and TWS

The Earth’s crust undergoes deformations of different nature. Recent studies have
proposed methods to extract common mode components from GPS coordinates time series
with the aim of identifying spatial and temporal patterns of certain signals [54,57]. Of
increasing interest are signals related to climate variations/changes. Hence, it is important
to identify interannual variations and examine their possible attribution. Vertical displace-
ments induced by loading of the crust are explained for environmental parameters, such
as the SP and TWS. Using a PCA approach and eight years of data (2010–2018) from a
network of 114 GPS stations, we investigated the interannual variability of the vertical
deformation over the European continent, including the Mediterranean area, in relation
to fluctuations of the SP and TWS. Main modes of variability of the vertical component
were identified through the PCA analysis, with the first two modes explaining 44.3% of the
total (Table 1). The first mode shows a homogenous spatial behavior of Europe and the
Mediterranean, with larger magnitudes of the coefficients around central-northern Europe
and the Balkans. The behavior of the first time component, characterized by a 5-year period
oscillation with maxima in 2012 and 2018 and minimum in 2015, can be explained in terms
of loading variations, likely attributable to TWS. Evidence of this process is also provided
by the result of the first SVD between the GPS Up and the TWS, which identifies two
different spatially coherent behaviors—namely, that of Europe and the Mediterranean area
in the center-south and Scandinavia, Baltic countries, and Western Russia in the north. The
second time component reveals a decadal period suggesting Up decrease till about 2015,
followed by increase in the south west of Europe, while the northeast shows an opposite
pattern. The second SVD between the Up and the TWS substantiates this finding.

The SP loading effect on the crust is also noticeable. The first SVD space and time
components between the GPS Up and the SP clearly indicate an opposite behavior of the
two fields over the entire study area. The second SVD spatial pattern confirms the opposite
behavior of Southern Europe and the Mediterranean with respect to the north.

The footprint of hydrological loading in GPS time series has been recognized. An-
other example is a study focusing on the Eastern Tibetan Plateau [58], which has shown
interannual nonlinear signals in the common mode components of the GPS time series,
predominantly related to hydrological loading.

6.2. MEI and Vertical Deformations

Several studies have underpinned the association between precipitation in the Mediter-
ranean region and the ENSO. Shaman and Tziperman [56] have shown that interannual
variability of fall and early winter (September–December) precipitation over Southwestern
Europe (Iberia, Southern France, and Italy) is linked to ENSO variability in the eastern
Pacific via an eastward-propagating stationary Rossby wave train. It has been docu-
mented [59] that, when El Niño is active, precipitation increases during late summer,
autumn, and early winter in Western Europe and the Mediterranean region; however,
during late winter and spring, the correlation is negative. The study also found spatially
coherent patterns in Central and Eastern Europe, where the correlation is negative in
autumn and positive during winter and spring. The outcomes of these studies corroborate
our findings. In fact, the first time component of the TWS presented in Figure 7a shows
precipitation increase in late summer, autumn, and early winter of 2014 and 2015. We recall
that 2014 was characterized by the onset of a very strong El Niño that fully developed
during 2015 and terminated in middle 2016. In Figure 17a, during the strong El Niño
conditions, we observe anticorrelation between the MEI and the Up first time component
during late summer and autumn of 2014 and early winter 2014–2015, while positive cor-
relation is found during late winter and spring 2015. A similar pattern is recognizable
during 2015–2016. This behavior can be explained with the loading/unloading process
of the Earth’s crust exerted by the increase/absence of precipitation. The outcomes of
the SVD analysis of the TWS and the GPS Up, described in Section 4.2, agree with these
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results, which is expected since precipitation is among the main contributors to TWS. The
pattern of the first time component of the vertical deformation shows a nearly 5-year
oscillation, with a well-recognizable change at the beginning of 2014, when switching
from a period of about 4 years of strong first and then moderate La Niña to a very strong
El Niño. Figure 7b illustrates an approximately decadal fluctuation of the second time
component of the vertical deformation peaking in middle March 2015, about six months
before El Niño reaches its maximum strength in middle October 2015. Timescales like
the ones observed in this study were identified by Cheng and Ries [60] when analyzing
four decades of significant variations in the Earth’s dynamical oblateness (J2) derived from
satellite laser ranging data. They explain a timescale of ~2~6 years by the mass redistri-
bution in the atmosphere and ocean associated with the ENSO events during the period
from 1998 to 2016. The significant oscillation they find at ~10.4 timescale can be described
by existing models of atmosphere, ocean, and surface water changes only up to the level
of ~18%. However, they suggest that the observed decadal variation is a consequence of
mass redistribution within atmosphere–ocean-hydrosphere associated with ENSO events
since the observed variation is well correlated with a 5-year running mean of the ENSO
index. Additionally, Chao et al. [61] investigated the variation of the Earth’s oblateness
J2 on interannual-to-decadal timescales. They indicate contributions from the Antarctic
Oscillation (AAO) and the AO for time scale shorter than 5 years and from the Pacific
Decadal Oscillation (PDO) for timescale longer than 5 years. According to their findings,
contributions from ENSO and the Atlantic Multidecadal Oscillation (AMO) are absent. For
the 10.5-year signal, they suggest a non-climatic origin—namely, the solar cycle, although
this apparent correlation is presently uncertain.

7. Conclusions

The time series of the vertical movements of the Earth’s crust contain signals due to the
evolution of geophysical and climatic processes. This study shows evidence, over Europe
and the Mediterranean area, of interannual and longer period variability of GPS-derived
vertical deformations and of their relationship with the spatial and temporal variability of
environmental parameters, such as TWS, SP, and the MEI climate index. The GPS heights
and the environmental parameters data series were analyzed using a PCA approach, further
correlated by means of the SVD technique. The first two modes of variability of the height
were also correlated with the MEI index.

The first and second time component of the height residuals, responsible for more
than 44% of the observed variance, show a 5-year and a decadal variation (9 years is the
time frame of this study), respectively. Both curves exhibit superimposed shorter period
variability. Over the 5-year timescale, the whole of Europe and the Mediterranean behave
coherently, with Central Europe and the Balkans denoted by larger coefficients. The spatial
pattern of the decadal fluctuation presents a north–south gradient. The observed height
variations are explained in terms of loading variations on the Earth’s crust, likely associated
for the 5-year periodicity with the transition from a few years of strong and moderate La
Niña to a very strong El Niño and to a sequence of severe droughts that affected the study
area during 2010–2012 and again during 2015–2018. The decadal timescale can be related
to the occurrence of the strong ENSO event and the associated hydroclimate anomalies
that are generally characterized, in the European–Mediterranean area, by a north–south
path. The retrieved pattern is compatible, in fact, with positive precipitation anomaly in
Scandinavia and negative anomaly in Southern Europe related to a strong La Niña event
(2010–2011), followed by a moderate event (2011–2012) weakening until the beginning of
2015 when a strong El Niño started lasting about one and one-half years. This last period
was characterized by negative precipitation anomaly in Scandinavia and positive anomaly
in Southern Europe. The short-period variations superimposed to both the 5-year and to
the decadal period are related to specific weather and climate events.

The spatial patterns found for the SP and the TWS time series are in good agreement
with those of the height by showing for the first mode a coherent behavior of the study
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area and a north–south gradient for the second mode, which is particularly clear for the SP
series. As for the TWS, coefficients of larger magnitude are present in Central Europe. A
periodicity of about 2 years can be recognized in the first time component, while a decadal
timescale shows up in the second.

The SVD analysis between height and SP has clearly identified the anticorrelation
between these two parameters, which is explained by the loading response of the crust
to SP variations. The results also elucidate the different response, to the same SP forcing,
of inland and coastal sites, with the former showing larger effects. A 5-year timescale is
present in the SVD first time component. We observe a north–south gradient in the second
spatial component; however, the relevant time behavior does not present any identifiable
long-period feature.

The coupled variability of height and TWS shows clear anticorrelation, explained by
the loading mechanism. The study area is not coherent since an opposite behavior between
north and south is observed. A 5-year oscillation can be recognized in the first SVD mode.
The second mode of coupled variability, also showing anticorrelation, exhibits a nearly
decadal variation which was not found in the SVD results of the pair height and SP. This
suggests that the observed decadal variation of the height is due to the TWS variations
rather than to those of SP.

The comparison between the MEI index and the stations’ height, represented by the
first two modes of a monthly PCA analysis, shows quite a coherent pattern of anticor-
relation in the large area encompassing Iberia, the Mediterranean, and central-northern
Europe. Instead, more to the north, the region comprising Scandinavia, Baltic countries,
and Western Russia is positively correlated. The comparison between the first and second
time components and MEI sheds light on the height interannual variability due to climatic
fluctuations—namely, those that may be associated with the ENSO phenomenon. The
5-year fluctuation present in the first time component is likely modulated by the sequence
of a strong and a moderate La Niña, followed by the strongest El Niño of the last two
decades. The large oscillations that characterize the years 2016, 2017, and 2018 are real-
istically due to the severe droughts that affected the study area. The decadal oscillation
shaping the second height time component is well correlated with the MEI index behavior.
The correlation is significant, p < 0.05, with a value of +0.58. Iberia, central-northern Europe,
and the Mediterranean area experience height decrease till about the onset of the strong
2015–2016 El Niño event, followed by increase during the subsequent four years. The
opposite behavior characterizes Scandinavia, the Baltic countries, and Western Russia.
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