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Abstract: Lightweight bio-inspired structures are extremely interesting in industrial applications 9 
for their known advantages, especially when Additive Manufacturing technologies are used. 10 
Lattices are composed by axial elements called ligaments: several unit cells are repeated in three 11 
directions to form bodies. However, their inherent structure complexity leads to several problems 12 
when lattices need to be designed or numerically simulated. The computational power needed to 13 
capture the overall component is extremely high. For this reason, some alternative methodologies 14 
called homogenization methods were developed in the literature. However, following these 15 
approaches, the designers do not have a local visual overview of the lattice behaviour, especially at 16 
the ligament level. For this reason, an alternative 1D modelling approach, called lattice-to-1D is 17 
proposed in this work. This method approximates the ligament element with its beam axis, uses the 18 
real material characteristics and gives the cross-section information directly to the solver. Several 19 
linear elastic simulations, involving both stretching and bending dominated unit cells, are 20 
performed to compare this approach with other alternatives in literature. The results show a 21 
comparable agreement of the 1D simulations compared to homogenization methods for real 3D 22 
objects, with a dramatic decrease of computational power needed for a 3D analysis of the whole 23 
body. 24 

Keywords: lattice structure; periodic structure; homogenization; voxel; structural analysis. 25 
 26 

1. Introduction 27 

Nowadays, Additive Manufacturing (AM) is considered an important alternative to traditional 28 
processes based on chip removal, casting, milling, and lathing processes where several design 29 
constraints must be respected 1. AM technology reveals several advantages which are highlighted in 30 
the literature, and its use is increasing in aerospace, automotive 2, biomedicine year after year 3 and 31 
even in niche applications such as musical instruments 4. Time drop-in design-to-manufacturing 32 
cycle, design flexibility, ability to generate complex shapes in one piece and capability to imitate 33 
low-weight bio-inspired shapes are the advantages of designs based on AM 5. On the other hand, to 34 
date the main weaknesses of AM technology can be found in: material anisotropic properties for 35 
some AM processes; high surface roughness; limitations of CAD software in the integration of 36 
design, technology, optimization, smoothing processes; limited material portfolio; problems of 37 
inspection and maintenance in complex assemblies made in one piece; high costs and slow 38 
certification process; high structural performances variability due to changes of properties in raw 39 
materials lots, changes (sometimes even small) in machines settings or environmental 40 
characteristics; behaviour of AM structure with fatiguing loads. 41 

Bio-inspired cellular structures, also called hierarchic structures, can be included in AM 42 
components, where lightweight, stiffness and high strength to mass ratios are essential. There are 43 
different types of cellular structures such as foams, which are stochastic, honeycombs and lattices 6 44 
which are periodic and are the object of this research. Periodic lattice structures are composed of 45 



 

 

elongated elements, such as cylindrical beams, called ligaments, beams or struts, connected with 46 
other similar elements to form a unit cell that is repeated thousands of times along the body.  47 

Even if the density is much lower compared to a traditional fully dense part, lattices are 48 
manufactured using metallic materials such as aluminium, titanium or steel to have stiff components 49 
adopting selective laser melting (SLM) 7,8 or electron beam melting (EBM) 9 technologies. Thanks to 50 
their strength/weight ratio and good absorption energy, nowadays lattice structures replace other 51 
cellular materials such as foams used in sandwich structures in aerospace or automotive 52 
applications, due to the capacity to absorb mechanical vibrations and sound waves. The aerospace 53 
industries are interested in these types of components to increase the crashworthiness. Just to 54 
provide the reader with an example, the Boeing Model 360 helicopter is built using some sandwich 55 
structures made of lattices to achieve a lightweight design and to reduce the number of mechanical 56 
joints thus reducing maintenance costs 10. Another interesting application of optimized lattice 57 
structure is contained in 11: an automotive engine mounting bracket has been topologically 58 
optimized and in the following partially filled with lattice structure to reduce the weight of the 59 
component still maintaining sufficient strength and stiffness. Moreover, thanks to the ability to 60 
absorb thermal energy due to a higher surface area for heat exchange, lattice structures are suitable 61 
for application where thermal insulation is important as well. 62 

After listing the advantages of lattices, it is important to discuss the problems arising when 63 
these structures need to be designed and simulated. Common design tools available to the engineer, 64 
such as CAD software, still show large limitations because the boundary representation technology 65 
(B-rep) is used: it is not well suited for lattices where the external surface is extremely complex 12. 66 

Another important problem arises when lattice mechanical behaviour is investigated through 67 
numerical analysis. In literature, several contributions deal with the application of Finite Element 68 
(FE) analysis to periodic structures for different purposes, such as: material characterization of 69 
titanium alloy structures fabricated via EBM 13, prediction of fatigue behaviour applied on porous 70 
metallic biomaterials 14 and non-linear analysis of lattice structures to predict the energy absorption 71 
15. In case of components with a simple shape such as the beams used in the aforementioned 72 
contribution, the 3D FE analysis assures consistent and reliable results. However, to capture the 73 
lattice behaviour, especially when dealing with complex real-life components., due to its high 74 
structure complexity, FE analysis requires a huge amount of computational power to discretize the 75 
structure in billions of meshing elements, The dimension of the mesh is similar or lower than the 76 
diameter of ligaments, which is typically small. This is the reason why alternative methods, such as 77 
homogenization algorithms, have been developed in literature 16.  78 

Several methods to cope with the time reduction of structural analyses are available in the 79 
literature, a non-inclusive list includes: 80 

• Closed-form expression based on the Euler-Bernoulli beam 17 81 
• Matrix-based techniques based on Bloch’s theory 18 82 
• Micropolar elasticity theory 19 83 
• High-frequency homogenization 20 84 
• Discrete homogenization technique 21 85 
• Asymptotic homogenization (AH) 22, 23 86 
AH shows good results in validation tests for a lot of applications, because determines 87 

accurately stress distributions in the unit cell without limitations on unit cell topology or relative 88 
density (defined as the density of a certain volume of lattice structure over the density of the material 89 
that composes the ligaments) 24. 90 

The AH algorithm aims to speed up the mechanical analysis, and to do that, it replaces a lattice 91 
structure with a fully dense homogenous solid, with equivalent mechanical properties, same 92 
occupied volume, maintaining same loads and point of applications. In this way, the computational 93 
power needed to solve numerically the mechanical behaviour of periodic structures decreases 94 
exponentially. The most important assumption behind AH method is that each field quantity 95 
depends on two different scales: the macroscopic scale and the microscopic one. 96 



 

 

Moreover, each field quantity (i.e. strain, displacement) varies smoothly at the macroscopic 97 
scale, while it is periodic at microscopic one. Therefore, field quantities can be expressed as an 98 
asymptotic expansion based on power series with terms that depend only on macroscopic scale and 99 
terms that describe microscopic perturbations. A detailed description of the mathematical model of 100 
AH is beyond the scope of this paper, but the reader is addressed to the source 25 in Section 2.10 for a 101 
more detailed description. 102 

Thanks to AH, it’s possible to obtain a closed-form expression for the equivalent stiffness matrix 103 
for several unit cell topologies, exploiting the results available in the literature 26,27. Then it is possible 104 
to analyze the fully dense solid, using a finite element method, with same dimensions but with 105 
equivalent mechanical properties compared to the original object, obtaining a mesh with a lower 106 
number of nodes and decreasing the FE problem dimensions. This reflects on the speed-up of the 107 
numerical process, with a confined error on the numerical results. When FE analysis is applied to 108 
components made by isotropic materials, 5% error with experimental data can be expected with a 109 
proper modelling and accurate material properties definition 28. When dealing with orthotropic or 110 
anisotropic materials and complex shapes such as lattice structures, a higher difference between 111 
numerical and experimental tests can be noticed. However, the L1D approach has been developed to 112 
be applied during preliminary and conceptual design phases, where FE assures the capability to 113 
explore many design scenario in short times, and higher errors than what introduced by [28] are 114 
accepted. However, the main drawback of AH algorithm, that is its high computational cost in case of 115 
complex shapes due to a multiscale problem that must handle a lot of variables in case of 116 
non-closed-form results. This is the reason why, in case of complex unit cell topologies, the research 117 
community still has to develop different simplification methods to speed up the material analysis. 118 

Moreover, this kind of procedure moves away from the real object towards a fully dense object 119 
and the designer may lose the geometrical lattice characteristics by using a bulk component instead 120 
of a periodic structure. 121 

The aim of this research is a comparison of three techniques which can be used for FEM 122 
analyses on lattice structures: innovative 1D representation and simulation, 3D analyses of the lattice 123 
structure and asymptotic homogenization. The first method tries to solve this problem by modelling 124 
the tridimensional lattice with 1D elements to decrease the computational effort (nearly 90% less 125 
compared to the full 3D model), with limited estimation error (about 15-20%) together with the 126 
capability of giving to the designer a visual idea of the periodic lattice.  127 

Such an approach hasn’t been yet investigated in detail, but it can offer to the designer several 128 
advantages such as light computation efforts, better lattice geometry understanding in a context of 129 
preliminary design phase where several scenarios have to be investigated in a fast way with 130 
reasonable results and limited estimation error compared to the real 3D lattice behaviour. Using the 131 
terminology of 29, the herein investigated approach is still limited to uniform strut-and-node 132 
arrangement lattices and not for Triply Periodic Minimal Surface (TPMS) structures 30. The 133 
strut-and-node arrangement perfectly fits the approximation, which is at the basis of this work, 134 
where the ligaments are approximated with their beam axis. 135 

A numerical analysis scenario has been implemented to assess the differences in terms of 136 
maximum and mean deformation estimation and understand if this approach can be a valid 137 
alternative to AH and 3D lattice analysis. The performance of the innovative approach has been 138 
tested in terms of maximum and mean deformation and not regarding the comparison of stresses 139 
(e.g. Von Mises criterion for isotropic materials) because in this latter case possible numerical 140 
instabilities can introduce fictitious values of maximum stress for the FE analysis of 3D and 1D 141 
models. This aspect will be better investigated in the further, but it is out of the scope of the present 142 
paper. 143 

After this initial introduction, the second section presents the methodology based on the 144 
innovative approach. Then, the results of finite element analysis will be shown in section three. In 145 
section four the results are discussed. Finally, section 5 lists conclusions and future developments. 146 

2. Methodology  147 



 

 

In this section, the methodology to generate the 1D model of the lattice structure and to 148 
compare the mechanical behaviour of 3D lattice, 1D lattice and AH approach is described. 149 

To assess the suitability of this alternative approach, which is called L1D (Lattice to 1D) and 150 
described in this work, several numerical analyses are performed using Patran/Nastran software with 151 
a tensile load case, applied on a cantilevered rectangular beam which is filled with uniform lattice 152 
(Figure 1).  153 

 154 

Figure 1. 3D cantilevered beam filled with a uniform lattice; a tensile load is applied on the free end. 155 
Two different unit cells are examined in this work: simple cube unit cell which is bending 156 
dominated; FCC unit cell which is stretching dominated. 157 

These preliminary simulations have been used to assess the capability of the L1D approach and 158 
investigate how some design parameters (unit cell type, cross-section type) may affect the results. 159 
Then, the L1D approach is applied on a real-life object such as an aircraft engine bracket designed with 160 
uniform and periodic lattice. The material chosen for these simulations is the Ti6Al4V ELI-0406 161 
powder for AM applications with high specific strength (strength to weight ratio) which makes it an 162 
ideal choice where weight saving load structures are required 31. The unit cells of the periodic structure 163 
are based on cubic shape. Two different unit cells are used for the scope of this paper in the 164 
cantilevered beam example: the simple cube unit cell and the Face Centered Cubic one (FCC). A 165 
similar approach could be carried out with other lattice structures. 166 

This choice comes from the necessity to investigate the efficiency of the L1D for both bending 167 
(simple cube) and stretching dominated (FCC) lattice unit cells. In this way, it is possible to understand 168 
how this kind of modelling lattice structures influences the approach performances in terms of 169 
accuracy of results and computational time. Stretch-dominated unit cells are characterized by high 170 
stiffness while bending dominated cells have lower stiffness but achieve higher strain values that 171 
make them appropriate for energy-absorbing applications 32. Moreover, for the sake of this research, 172 
the ligaments composing the lattice are modelled using both square and circular beam cross-section to 173 
investigate all the possible settings which may affect the lattice design. For simplicity, only the simple 174 
cube unit cell is used in the engine bracket simulation. 175 

To obtain the mono-dimensional lattice structure, only the periodic uniform lattices were 176 
considered in this research. At first, a dense 3D model of the part in lattice structure is sketched, and 177 
saved in STL format. In the following, an algorithm has been developed to fill the dense part with a 178 
periodic structure which is obtained thanks to a 1D wireframe modelling: the orientation and size of 179 
this 1D modelling are equal to the lattice cell properties. In this way, the 3D dense part is converted 180 
into a 1D lattice using the axis of ligaments through a voxel-based approach; the geometrical 181 
cross-section data and material properties are given to the solver in a second moment inside the 182 
software itself. The resulting geometry is only made by mono-dimensional geometrical entities as lines 183 
connected to different points according to the unit cell geometry. It is worth noting that, thanks to this 184 
methodology, is not necessary to model the complete 3D part with lattice structure, but only a dense 185 
part is sketched. In the following, the designer can do simulations to assess the behaviour as if the 186 



 

 

body was in lattice structure. Different cell size, ligaments shape and dimensions and orientation can 187 
be tested to tune the model depending on the final application. Finally, the body can be automatically 188 
sketched in lattice structure for manufacturing purposes. 189 

2.1. Methodology to get the 1D geometry 190 

To simulate the 3D lattice, an original MATLAB code was written by authors. The code is capable 191 
to read a .STL file describing a fully dense 3D object and get the facet and the coordinates of the 192 
vertices composing the triangle mesh of the external surface. Then, using the ray intersection method 193 
33, a voxelized representation of the original object is achieved and a logical matrix made by 0 and 1 194 
(B/W representation) is available to the user, knowing the voxel resolution the designer want (which 195 
imitates the lattice structure features). The ray intersection method is the more diffused and easy 196 
method to voxelize a 3D object. In particular, the mesh is ray-traced in each of the 𝑥, 𝑦, 𝑧 directions, 197 
with the overall result being a combination of the result from each direction (Figure 2). The 198 
voxelization approach applied for each triangle of the .STL mesh can be divided into these steps: 199 

• Take each edge of the facet in turn 200 
• Find the position of the opposing vertex to that edge 201 
• Find the position of the ray relative to that edge 202 
• Check if the ray is on the same side of the edge as the opposing vertex 203 
• If this is true for all three edges, then the ray passes through the facet. 204 

 205 

Figure 2. Ray intersection method for object’s voxelization: in this picture only the rays in the 206 
x-direction are shown; the algorithm passes sorted rays along the X-axis incrementing Y and Z 207 
coordinates and finds their intersections with the facets. Adapted from 33 208 

The proposed methodology matches the unit cell of the lattice structure with the voxels used to 209 
represent the 3D object, by setting size and orientation. After the unit cell topology is set, the own code 210 
is capable to generate two distinct matrices which describe the uniform and periodic lattice. The first 211 
matrix of dimensions 𝑛 × 3 contains all the coordinates of the vertices of the lattice cells belonging to 212 
active voxels, while the second matrix of dimensions 𝑚 × 2 contains the information regarding the 213 
IDs of two vertices composing a ligament. The final step of the code is to write a .out neutral file. The 214 
neutral file contains the coordinates of the lattice points and the index of vertices linked together, 215 
according to the neutral file format 34 structure. Several types of geometry file formats were 216 
investigated, but the neutral file format of Patran software has been set as the best one due to 217 
importation, geometrical description, and formatting easiness. A flowchart describing the 218 



 

 

methodology developed to get the 1D geometry is shown in Figure 3, in which it is possible to see 219 
different stages of this approach, applied to a model of an aircraft engine bracket in lattice structure. 220 
The conversion from 3D to 1D is performed in MATLAB on a workstation with 32GB RAM and an 221 
Intel Zeon CPU @ 3.50 GHz. The overall time needed for the conversion of the sample part given by 222 
the aircraft engine bracket is listed in Table 1. 223 

 224 
As it can be expected, the more the dimension of the discretization element decreases, the more 225 

the number of active voxels and the computational time increase. However, values of computational 226 
time around seconds or minutes in case of complex shapes suits the scenarios where the L1D approach 227 
is expected to be used: the preliminary and conceptual design stages. 228 

 229 

 
 

 

Figure 3. Flowchart describing the algorithm to get the 1D model in Patran from a 3D object in .STL 230 
file format. The L1D methodology is applied to an aircraft engine bracket: from the .STL mesh of the 231 
dense part, the algorithm obtains a voxelized model of the object; finally, the 1D lattice structure in 232 
Patran is depicted. 233 

2.2. Methodology to compare the 3D, 1D and AH analyses 234 

After importing the mono-dimensional lattice geometry as .out format file in Patran/Nastran, it is 235 
possible to provide the software with the material properties which are the effective ones and not the 236 
equivalent properties coming from AH methods of a hypothetic fully dense object. Moreover, the user 237 
can define in the solver the beams cross-section characteristics inside the Patran “Properties” menu 238 
since the neutral file does not contain this information. For the scope of this work, the “beam” 1D 239 
property was chosen to characterize all the ligaments which make the lattice. A rod option would 240 
neglect the bending effects. The great advantage of Patran software is the capability to show the 241 
resulting structure by selecting the element properties display option: going from the “1D: Line” 242 
option to the “3D: FullSpan” option, the user can understand if the lattice properties are correct 243 



 

 

without increasing the computational power needed to model a 3D structure, as can be seen in Figure 244 
4 where a close to reality 3D lattice structure visualization is obtained without efforts. 245 

 246 

Figure 4. Same 1D lattice with two different displaying options in Patran 247 

In this research, the lattice 3D models of the cantilever beam used for the simulation herein 248 
described were designed using a lattice structure exploiting the LSWM workbench of FreeCAD 35, 249 
developed by authors. On the other hand, the 3D full lattice model of the engine bracket was designed 250 
using the commercial Element software by nTopology 36. This software can be used to obtain a 3D 251 
model based on lattice structures and save it in CAD formats. The geometry is then imported as .step 252 
file in Patran. Other commercial software codes could be used for lattice modelling as well. This to 253 
highlight that nowadays alternative software to design 3D models, filled by lattice structures with 254 
properties set by the user, are available to the community. However, several problems arise when such 255 
complex structures need to be structurally investigated through mechanical simulations, as already 256 
cited in the previous sections.  257 

As last methodology useful to understand the goodness of the L1D approach, AH closed-form 258 
results coming from two different literature contributions 26,27 are used as entries for the stiffness 259 
matrix of the equivalent 3D fully dense homogenized material. In the following, AH results are 260 
compared with 1D analysis. The source 26 uses a multiscale approach to determine the macroscopic 261 
stiffness of different lattice topologies. The results are given as different stiffness matrices depending 262 
on the geometrical unit cell characteristics, as ligament length, cross-sectional dimension, 263 
cross-sectional area and material characteristics as Young's modulus (𝐸) and Poisson ratio (𝜈). These 264 
results can be applied only if a slenderness ratio (ligament length over cross-sectional dimension) of 10 265 
at least is guaranteed to verify the slender beam assumption at the basis of this method. On the other 266 
hand, the research 27 developed a MATLAB code by using a voxel-based approach to analyze different 267 
unit cell lattice topologies, based on the procedure described by Andreassen 37. The code is capable to 268 
return the lattice stiffness matrix knowing the unit cell dimensions, the unit cell topology in terms of 269 



 

 

point position and relative links, the material properties (𝐸 and 𝜈). However, this method is limited in 270 
terms of cross-sectional topologies and only circular ones are modelled. 271 

For both selected contributions (26,27), the resulting lattice stiffness matrix has a different scheme 272 
concerning common isotropic materials, where the matrix is defined using only two parameters, 273 
namely Young’s modulus and Poisson ratio. For periodic structures, the stiffness matrix 𝐾𝑙𝑎𝑡  can be 274 
written as a function of three parameters 𝛼, 𝛽 and 𝛾 (Eq. 1) 38. These are functions of geometric 275 
characteristics of the unit cell topology and the beam elements. Each unit cell type will have different 276 
eigenvalues that bring to different mechanical characteristics. It’s important to underline that this 277 
method can be applied only if the Euler-Bernoulli beam assumptions are valid, that reflects on a 278 
limited unit cell edge slenderness ratio. Otherwise, some instabilities could arise in case of local 279 
compressive loads, as well described by 39. 280 

𝐾𝑙𝑎𝑡 =    

[
 
 
 
 
 
 
 
 
𝛼 𝛽 𝛽 0 0 0

𝛽 𝛼 𝛽 0 0 0

𝛽 𝛽 𝛼 0 0 0

0 0 0 𝛾 0 0

0 0 0 0 𝛾 0

0 0 0 0 0 𝛾]
 
 
 
 
 
 
 
 

 (1) 

As previously said, the scope of this work is to compare and understand if the L1D approach can 281 
be a valid alternative to AH methodology for lattice structural analysis. To do that a set of simulations 282 
has been carried out in Patran/Nastran MSC software following the layout proposed in Figure 5: the 283 
maximum and mean displacement, the mesh size, the meshing time, and the solving time are 284 
compared for three cases (AH, 1D, 3D). 285 

 286 

Figure 5. Methodology layout used to compare and estimate in terms of accuracy the performances 287 
of the alternative 1D modelling for uniform periodic structures along with a detailed view of 288 
meshing elements of 3D full model, 1D model and 3D homogenized model. 289 

2.3. Case studies: geometry, load material definition 290 

The first part used to assess the L1D methodology capabilities is a cantilevered beam with a 291 
rectangular cross-section with a 500N axial load to the free extremity applied on the overall surface 292 
(Figure 1). The beam dimensions are 30mm (thickness), 40mm (height) and 200mm (length): this 293 
slenderness has been set to comply with the hypothesis of the classic beam theory 40. The applied 294 
load is at first modelled as a set of nodal forces distributed on the structure nodes of the free end. 295 
Additional simulations have been performed by applying nodal forces in the mesh nodes instead of 296 



 

 

structure ones to detect possible differences in terms of structural deformation. As an alternative, 297 
kinematic link (e.g. RBE2 or RBE3) could have been used to distribute loads within the model in a 298 
similar manner to what suggested in 41.  299 

As previously said, two different unit cell topologies are investigated to understand if both 300 
stretching (FCC) and bending dominated (simple cube) lattices are well modelled by the L1D 301 
approach. For each unit cell type, both squared and circular cross-section are modelled; in this way, 302 
even the cross-section variable is investigated for the scope of the research. On the one hand, the unit 303 
cell characteristics are chosen to guarantee a slenderness ratio of 10 to comply with the 304 
Euler-Bernoulli assumption. On the other hand, the size is set to limit the computational power 305 
needed to design and model the 3D lattice structure. In fact, by increasing the ligament length, the 306 
meshing procedure can take longer time or evenly fail or return a low-quality discretization. For the 307 
above-mentioned reasons, the unit cell topology characteristics set for the cantilever beam case study 308 
can be summarized as: 309 

• Ligament length: 10mm 310 

• Cross-section dimension:  311 

o squared: edge of 1mm;  312 

o circular: radius of 0.5mm 313 

The average mesh size for the full 3D model is 0.5mm, while for the homogenized one is 1mm 314 
made by Tet10 elements. The 1D models have a mesh average size of 2.5mm, made of Bar2 elements. 315 
The 3D homogenized component is modelled as a dense part with an orthotropic material according 316 
to eq.1 with matrix entries coming from 26,27 references. An isotropic material using the bulk 317 
characteristics is employed to model the full 3D lattice and the 1D wireframe. 318 

The L1D approach is applied in the following also on a real component, namely an aircraft 319 
engine bracket. This bracket has been designed with uniform and periodic lattice in other to 320 
understand the L1D performances in a significant industrial engineering context. The investigated 321 
component is a bracket sketched for a famous challenge organized by General Electric and Grabcad 322 
42. About FE analysis, for sake of simplicity, the constraints applied on the bracket consist of four 323 
holes on a base, fully constrained for all the 6 degrees of freedom. In the opposite part of the bracket, 324 
there are two vertical holes where a tensile load is applied in the form of nodal force distributed on 325 
the cylindrical hole surface. The simulated load is composed of a vertical component of 200N and a 326 
horizontal one of the same amount (Figure 6). 327 

 328 
Figure 6. Schematic view of loads and constraints applied on the aircraft engine bracket 329 
 330 
The bracket is filled with uniform and non-conformal lattice, using for simplicity only the 331 

simple cube unit cell topology. To verify the slenderness ratio imposed by the investigated AH 332 
methodologies, the unit cell characteristics are: 333 

• Ligament length: 4mm 334 



 

 

• Cross-section dimension:  335 

o squared: edge of 0.4mm;  336 

o circular: radius of 0.2mm 337 

The average mesh size for the homogenized models is 2mm made by Tet10 elements, while the 338 
meshing procedure failed for the full 3D model. On the other hand, the 1D models have a mesh 339 
average size of 2mm, made of Bar2 elements. In this case study, the 3D homogenized component is 340 
modelled with an orthotropic material according to 26,27; an isotropic material using the bulk 341 
characteristics is employed to model the 1D wireframe material as well. 342 

Such unit cell dimension has been set to have at least two layers of lattice cells in the support 343 
region where the tensile load is applied: a trade-off has been carried out using a voxel size which is 344 
not highly demanding for the computational power available to us. As for the cantilevered beam, the 345 
material used for these simulations is Ti6Al4V ELI-0406 powder for AM applications with a Young’s 346 
Modulus of 126 GPa and a Poisson ratio of 0.3. 347 

The unit cell size changes in the two case studies due to computational power burden 348 
limitation. In the cantilever beam example, the unit cell size has been set to limit the computational 349 
power as much as possible, thus limiting the number of unit cells, also satisfying the imposed 350 
limitations in the lattice geometry in terms of slenderness ratio. 351 

The lattice dimension used to fill the bracket has been set to limit the computational power, thus 352 
limiting the overall number of unit cells, and satisfying at the same time two conditions: the 353 
geometry limitations to the slenderness ratio, and to guarantee at least two layers of unit cells in the 354 
region where the load is applied. 355 

3. Results 356 

In this section, the features of the mechanical simulations and the results are collected, leaving 357 
Sec. 4 for its discussion. The linear elastic numerical simulations have been performed in 358 
Patran/Nastran on a workstation with 32GB RAM and an Intel Zeon CPU @ 3.50 GHz. 359 

3.1. Cantilever beam 360 

Simple cube unit cell. In this paragraph, all the simulation results are collected. Starting from the 361 
simple cube unit cell topology, two distinct simulations are completed to analyze the periodic 362 
structure modelled with the complete 3D geometry for the circular (Figure 7a) and square 363 
cross-sections (Figure 7b).  364 

 365 

 
(a) 

 
(b) 

Figure 7. View of strain field of 3D period structure with simple cube unit cells: (a) zoom view for the 366 
circular cross-section; (b) detailed view for the square cross-section 367 

Before doing that, a complete mesh size convergence study was performed to optimize the 368 
minimum element size of the discretization process on a simplified (less lattice unit cells) version of 369 
the 3D full model, which is the more critical one in terms of computational requirements (Figure 8). 370 



 

 

 371 
Figure 8. Mesh size convergence study on a simplified version of the full 3D lattice model of the cantilever 372 
beam with simple cube and square cross-section geometry 373 

 374 
In particular, reducing the average mesh size from 4mm to 0.125mm, it was found out that an 375 

average mesh size of 0.5mm is detailed enough to capture the mechanical behaviour of the 376 
component with confined computational costs (less than 0.5% of error and 89% of saved time 377 
compared to 0.125mm average mesh size). The simulation of the 3D complete model is the most 378 
critical since it gives benchmarking results to compare alternative approaches to study periodic 379 
structures. 380 

The same is done for the 1D model of the periodic structure (i.e. circular cross-section type 381 
shown in Figure 9a) and for the 3D fully dense equivalent model (see as example Figure 9b for the 382 
case with circular cross-section using closed-form results coming from 26). Two distinct simulations 383 
of the 1D model with the same geometry are performed to assess the behaviour of the L1D approach 384 
in case of nodal forces applied on FE nodes or structure ones, as previously described. 385 

 386 
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(b) 

Figure 9. View of strain field of period structure with simple cube unit cells: (a) detailed view for 387 
circular cross-section for the 1D lattice model; (b) zoom view for the 3D equivalent fully dense 388 
material using AH method from 26 389 

It is important to pinpoint that 27 does not provide closed-form results in terms of stiffness 390 
matrix when the square beam section is used so that only one simulation is performed using the 391 
closed-form entries for the stiffness matrix coming from this contribution. 392 

To have a comprehensive view of all the results, Table 2 and Table 3, respectively for circular 393 
and square cross-section, contain the results coming from the simulations performed using the 394 
simple cube unit cell for the periodic structure under investigation. The 3D analysis of lattice 395 
structure has been considered the reference benchmark for other techniques. 396 



 

 

Face centred cubic unit cell. The same procedure was followed to investigate the periodic 397 
structure behaviour when a stretching dominated unit cell is chosen to fill the component. Same 398 
boundary conditions and same scheme of numerical simulations are used: 2 distinct simulations for 399 
the 3D complete model (one for circular cross-section and one for the square type), 2 simulations 400 
using the 1D model coming from the L1D approach (respectively for circular cross-section and 401 
square) and 3 simulations with the 3D fully dense beam (two simulations using the results coming 402 
from 26 for circular and square topologies and one using the results from 27 for the circular 403 
cross-section). Also in this case, two distinct simulations of the 1D model are performed depending 404 
on the nodal forces point of application. All the results are collected in Table 4 and Table 5. 405 

3.2. G.E. Aircraft engine bracket 406 

The same approach to compare the L1D methodology against AH methods and 3D full model 407 
has been followed in the case study represented by the GE bracket. However, at this step, we 408 
encountered some issues to numerically simulate the 3D full model of the engine bracket filled with 409 
uniform lattice. The resulting lattice structure is made by 28712 ligaments and using a discretization 410 
with a minimum element size of half of the lattice cross-section dimension, the computational power 411 
at our disposal was not enough and at the end, the meshing procedure failed. This is exactly the 412 
context where alternative methods need to be used to simulate the mechanical behaviour of a 413 
complex lattice structure because of limited computational power. Knowing the number of nodes, 414 
elements and the meshing time applied to a single 3D ligament, it was possible to estimate the 415 
number of elements and the meshing time of the entire lattice structure. Thanks to this evaluation, 416 
assuming a linear trend, we were able to estimate about 30 million of elements in the mesh and 4 417 
hours of meshing time for the 3D full model with squared cross-section ligaments. 418 

Since the results coming from the 3D full model were not available, the AH methodologies were 419 
used as a benchmark to evaluate the L1D capabilities applied on a real-life object. AH methods 26 and 420 
27 are used with the same scheme to simulate the engine bracket using the simple cube unit cell with 421 
both circular and squared cross-section (Figure 10a). L1D method is applied to the 1D model of the 422 
same object (Figure 10b). 423 

 424 

 
(a) 

 
(b) 

Figure 10. View of strain field of engine bracket filled with period structure with simple cube unit 425 
cells: (a) view for the 3D equivalent fully dense material using AH method from 26, (b) view for 426 
circular cross-section for the 1D lattice model. 427 

Using the values of the relative errors found with the cantilevered beam example, for simplicity 428 
it was assumed a linear trend for the displacement estimation error, just to have a numeric reference 429 
for the 3D model. In this way, it was possible to estimate the maximum displacement of the 3D full 430 
model, knowing the maximum displacements of the AH models of both 26 and 27, according to Eq. 2: 431 

𝑈𝑚𝑎𝑥3𝐷

1
=

𝑈𝑚𝑎𝑥[25]

1 − 𝑒𝑟𝑟[25]
=

𝑈𝑚𝑎𝑥[26]

1 − 𝑒𝑟𝑟[26]
 (2) 

 432 



 

 

To have a complete overview of all the results, Table 6 and Table 7, respectively for circular and 433 
square cross-section, contain the results coming from the simulations performed using the simple 434 
cube unit cell for the aircraft engine bracket under investigation. 435 

 436 

4. Discussion 437 

In this section, we will refer to the results reported in the previous Tables. The reader can 438 
immediately notice that both 1D modelling and AH approaches decrease more than 90% the time 439 
needed for meshing and more than 80% time needed to the solver to converge to a solution whatever 440 
is the unit cell or the cross-section type for both cantilevered beam and engine bracket. This result is 441 
extremely important in the context of conceptual/preliminary design when several scenarios need to 442 
be investigated in a fast way. Along with time reduction, also the number of elements needed to 443 
discretize the geometry decreases dramatically. However, this computational power reduction must 444 
be combined with good accuracy of the numerical results to provide consistent data. 445 

Focusing on the simple cube unit cell topology applied to cantilevered beam and engine 446 
bracket, the AH method proposed by 26 estimates with more accuracy the lattice deformations (from 447 
3 to 6% of error for both maximum and mean displacement), but the L1D approach shows good 448 
results too. Depending on the application of the nodal forces on the 1D simulations, the L1D 449 
estimates the structure maximum and mean displacement with sufficient accuracy. In particular, 450 
when the forces are applied on the structure nodes, the ligament bending is lower, decreasing the 451 
overall maximum displacement of some percentage points, while estimating the mean displacement 452 
with higher accuracy compared to 1D simulations with nodal forces applied on mesh nodes 453 
(respectively 9% and 23% error compared to 3D full model). The main advantage of the L1D 454 
approach is that the designer can have a good overview of the structure geometry and behaviour in 455 
terms of single beam element, which is not possible with AH methodologies (See Figures 9 and 10). 456 
The AH approach proposed in 27 overestimates the structural behaviour of about 13%, which is a 457 
figure still acceptable in the case of conceptual/preliminary design. In case of objects with complex 458 
geometry, such as the GE engine bracket, simplification methods such as AH or L1D must be used to 459 
decrease the computational time and power needed for mechanical simulations. On the one hand, 460 
the 3D full lattice model was so complex and computationally demanding that led to the simulation 461 
failure. On the other hand, both AH and L1D approaches decrease up to 99% the time for meshing 462 
and the number of elements, while maintaining a satisfactory degree of accuracy which is extremely 463 
important in a context of conceptual/preliminary design.  464 

Concerning the FCC topology implemented only in the cantilevered beam, the reader can 465 
immediately conclude that a complex structure leads to higher computational power and time when 466 
the real 3D object is analyzed. This is again a context where approximation methods are extremely 467 
important. For example, by using the AH methodology or the 1D modelling, the computational 468 
power reduces almost 96%, along with the reduction of the number of elements of the mesh. Even 469 
for FCC unit cell type, L1D approach seems a valid alternative because the deformations are 470 
overestimated with a limited error for both types of nodal force application points (18%) with 471 
respect both AH methodologies in which the maximum deformations are underestimated (50% of 472 
error). Even in FCC topology, using the L1D approach the mean displacement is estimated with high 473 
accuracy in case the nodal forces are applied on the structure points instead of mesh nodes 474 
(respectively 9% and 13% of error). 475 

To summarize, the 1D approach can estimate the maximum and mean deformations with a 476 
limited error, low computational power, but still giving to the designer an overview of the lattice 477 
geometry and behaviour, even at the ligament level for both stretching and bending dominated unit 478 
cells, while AH approaches are more precise for bending dominated topologies compared to 479 
stretching ones. Moreover, comparing both AH methods, [26] has outstanding estimation 480 
performances compared to [27] in all the studied contexts. 481 

Both AH and 1D methodologies have similar computational requirements both for meshing 482 
and results in convergence if compared to the 3D object.  483 



 

 

From this study, it is also possible to understand that the cross-section topology does not affect 484 
the computational costs and the results accuracy for both AH and 1D approaches, confirming the 485 
results obtained in 43. The only main difference is that when the square cross-section is used 486 
(whatever is the unit cell type), the computational cost increases for the 3D model. 487 

Moreover, from the above results coming especially from the GE engine bracket simulations, it 488 
is clear that a simplification method, such as the L1D approach described in this work, is compulsory 489 
nowadays in case of mechanical investigation through numerical analysis of 3D lattice structures: 490 
this kind of analyses are usually carried out when designing lightweight structures for industrial 491 
applications such as aerospace, automotive and automatic machines. 492 

The analysis of the results of the simulations carried out in this research, confirms that the L1D 493 
approach is a good alternative to homogenization approaches because comparable performances 494 
can be achieved, or even better, still giving to the designer the quasi-real geometry view. However, 495 
the developed approach still shows some limitations because only node-strut arrangement lattices 496 
can be modelled. In the future, it could be of interest comparing the 3 methods explained in this 497 
work varying the slenderness ratio of the lattice structure and using different loading conditions. 498 
Moreover, only uniform and non-conformal periodic structures can be analyzed. 499 

5. Conclusions 500 

This paper aimed to investigate alternative methods for numerical simulations of periodic 501 
structures. In literature, several contributions use the asymptotic homogenization approach by 502 
substituting the lattice with a fully dense material with equivalent mechanical characteristics. 503 
However, this approach does not give an overview of the structure behaviour in terms of 504 
deformation at ligament levels since a bulk material is used.  505 

To fill the gap, this research focused on a 1D modelling for uniform periodic lattices which can 506 
give to the designer a good idea of how is behaving the structure in case of static loads. Several linear 507 
elastic simulations were performed to compare the maximum deformation of the 1D modelling with 508 
the complete 3D model of the lattice structure, which was taken as a benchmark, and two valid AH 509 
methods available in the literature. Two different unit cell topologies and two different cross-section 510 
types were investigated to understand how these variables influence the performance of the 511 
alternative 1D approach. Results show good agreement with the 3D complete model, but with a 512 
drastic decrease of the time and computational power required, with comparable or even better 513 
performance compared to AH approaches here analyzed. The benefits of the 1D modelling are 514 
amplified in case of complex unit cells, while the results show that the cross-section does not 515 
influence the accuracy of the methodology herein investigated. 516 

However, this approach still shows some limitations because it can model only uniform, 517 
non-conformal periodic structures with a strut-and-node arrangement. Moreover, only the tensile 518 
load case was investigated; other load scenarios and other slenderness ratios of the lattice structure 519 
must be investigated in the future to declare this alternative approach mature for periodic structure 520 
analysis. Finally, the conversion from the 3D model to the 1D is based on the voxelization procedure, 521 
which is an approximation of the real geometry. For this reason, a certain % of error in terms of 522 
maximum displacement can be attributed to the L1D methodology.   523 

It is worth noting that the development of methodologies to compute periodic structures in 524 
complex geometries is tightly connected to the evolution of computational power which can open 525 
new possibilities in coming years. However, nowadays it is not feasible the analysis of complex 526 
lattice structures using 3D meshing, using standard computational devices such as a PC. In this 527 
research, a solution to address the structural analysis of lattice structures in a typical industrial 528 
environment where large PC clusters are not available to each designer is proposed.  529 
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