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Abstract. In this paper we study intrinsic regular submanifolds of H
n of low codimension

in relation with the regularity of their intrinsic parametrization. We extend some results proved

for H-regular surfaces of codimension 1 to H-regular surfaces of codimension k, with 1 ≤ k ≤ n.

We characterize uniformly intrinsic differentiable functions, φ, acting between two complementary

subgroups of the Heisenberg group H
n, with target space horizontal of dimension k, in terms of

the Euclidean regularity of their components with respect to a family of non linear vector fields

∇φj . Moreover, we show how the area of the intrinsic graph of φ can be computed in terms of the

components of the matrix representing the intrinsic differential of φ.

1. Introduction

Carnot groups are connected, simply connected, nilpotent Lie groups whose Lie
algebra is stratified. A Carnot group, G, is called of step k if it is nilpotent of order k.
In the last years many efforts have been carried out in order to develop a geometric
measure theory in these settings. This interest stems from the possibility of equip-
ping any Carnot group G with a sub-Riemannian homogeneous distance, which can
be defined starting from the horizontal distribution that is the distribution linearly
generated by the vector fields in the first layer of the Lie algebra. Moreover, Carnot
groups can be considered as model spaces for general sub-Riemannian manifolds: the
tangent cone (in the sense of Gromov–Hausdorff convergence) at regular points of a
sub-Riemannian manifold endowed with a Carnot–Carathéodory distance dc associ-
ated to a distribution ∆, turns out to be a Carnot group. R

n is a trivial example
of Carnot group: the horizontal distribution coincides with the whole tangent bun-
dle. The Heisenberg group H

n is the simplest example of a non-commutative Carnot
group: it is nilpotent of step 2 and it can be identified with R

2n+1 with a suitable
polynomial group law.

In this line of research, setting a suitable notion of rectifiable set is an important
goal (see for instance [10, 22, 25]). In the Euclidean setting, these are defined, up
to a negligible set, as countable unions of compact subsets of regular submanifolds.
Here, the word “regular” can be interpreted in various ways, all equivalent to each
other from a metric point of view. One of these viewpoints corresponds to the
possibility of approximating the set with a tangent plane at almost every points
(for more details see [21]). In order to define in an analogous way a suitable notion
of rectifiability in Carnot groups, we first need a good notion of intrinsic regular
submanifold. In R

n, a regular submanifold of arbitrary dimension k can be locally
defined equivalently as graph of a C1 function φ : Rk → R

n−k or as level set of
a C1 function f : Rn → R

n−k with continuous surjective differential. In Carnot
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groups these two approaches are not equivalent anymore even if read through suitable
notions of regularities (see for instance [10, 14, 16, 11]). Nevertheless, a notion of
regular surfaces of low codimension in Carnot groups has been stated through the
very well-fitting notion of Pansu differentiability.

In this work we focus on low codimensional H-regular surfaces i.e. regular sub-
manifolds in Heisenberg groups. A set S ⊂ H

n is a regular surface of codimension k,
with 1 ≤ k ≤ n, if it is locally the zero level set of a Pansu differentiable function f
from H

n to R
k whose differential is both continuous and surjective (for more details

see for instance [20]). In this setting we are able to state a suitable intrinsic notion
of graph. One can split H

n as the product of two complementary subgroups M and
H that are two homogeneous subgroups such that H

n = M ·H and M ∩H = {e}.
Then, given an open set Ω ⊂ M and a function φ : Ω → H, the intrinsic graph of φ
is defined as

graph(φ) = { m · φ(m) | m ∈ Ω}.
The term “intrinsic” is used to highlight the fact that if we translate or dilate an in-
trinsic graph through intrinsic left translations or dilations of the group (i.e. dilations
associated to the stratification of the algebra) we obtain again an intrinsic graph.

Bearing in mind its Euclidean counterpart, a suitable implicit function theorem
is available also in the setting of Heisenberg groups. This has been proved in [15],
whereas for a more general result valid in any Carnot group please refer to [20]. This
implicit function theorem ensures that any H-regular surface of low codimension is
locally the intrinsic graph of a continuous map φ which acts between two comple-
mentary homogeneous subgroups M and H, and it is unique up to the choice of
these subgroups. The theorem implies the continuity of the intrinsic parametrization
φ. To be more precise, the function φ is 1

2
-Hölder continuous, with respect to the

homogeneous distance fixed on the group (restricted to M and H).
In the last years, many different intrinsic notions of regularity have been de-

veloped for functions defined between complementary subgroups, well as notions of
intrinsic Lipschitz continuity, intrinsic differentiability and uniform intrinsic differen-
tiability (see Definitions 2.13, 2.16, 2.19). These have been studied in order to under-
stand if and how the Pansu-type regularity of the function f that locally defines the
regular surface S is reflected on the regularity of its intrinsic parametrization φ (when
it exists). Vice versa, many efforts have also been carried out to figure out which
regularity has to be required (on top of continuity) to a function φ acting between
complementary subgroups, to ensure that its intrinsic graph is a regular surface. This
theme has been developed in various papers (among which [1, 4, 5, 7, 8, 18, 27]), in
particular, many results have been developed for H-regular surfaces of codimension
1.

H-regular surfaces of codimension 1 [1], and successively, regular surfaces of low
codimension in any Carnot groups [9] have been characterized as graphs of uniformly
intrinsic differentiable functions acting between complementary subgroups, with hor-
izontal, and hence commutative, target space (see Theorem 3.5).

Uniform intrinsic differentiability has been characterized in [1] and in [5], for maps
with one dimensional target space, in terms of existence and continuity of suitable
intrinsic partial derivatives. The authors represent the intrinsic differential of an
intrinsic differentiable function φ at a point p by a (2n−1)-dimensional vector, called
the intrinsic gradient of φ at p and we denote it by ∇φφ(p). We stress that ∇φφ only
denotes a vector and not a vector field or a differential operator, since it exists only at
the point p where the function φ is differentiable. The intrinsic regularity of φ turns
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out to be connected with the regularity of φ along 2n−1 vector fields, that we denote
by ∇φ

j , j = 1, . . . , 2n−1. The components of ∇φ
j depend on φ and are continuous; for

instance, in H
1 we only have one vector field, ∇φ

1 = (1, φ). The authors prove that

if φ is continuously Euclidean differentiable, then (∇φ
j )(φ)(p) = (∇φφ(p))j for every

j = 1, . . . , 2n − 1, i.e. the vector field ∇φ
j applied to the function φ equals the j-th

element of the intrinsic gradient of φ and this is valid at every point of the domain
of φ.

Moreover, uniformly intrinsic differentiable functions with one dimensional target
space have been also characterized as uniform limit, on all open sets compactly
contained in the domain, of a sequence of Euclidean regular graphs whose continuous
intrinsic gradients converge uniformly to a continuous function, on the same sets. The
limit function of intrinsic gradients coincides in distributional sense with the vector-
valued function whose components are the weak derivatives ∇φ

j φ, j = 1, . . . , k.
Let H

n = M ·H be the product of two complementary subgroups with H hori-
zontal of dimension k, with 1 ≤ k ≤ n (see equation (15)). Let φ : Ω ⊂ M → H be a
continuous function where Ω is an open set. In the following theorems we will name
again φ the function that acts from an open subset Ω of R2n+1−k, still denoted by Ω,
to R

k. We do so by identifying M with R
2n+1−k and H with R

k, as homogeneous
groups (see (16)). Combining results from [1] and [5] we have the following.

Theorem 1.1. Let Ω ⊂ R
2n be an open set and let φ : Ω → R be a continuous

function. Then the following conditions are equivalent:

• φ is uniformly intrinsic differentiable on Ω;
• there exists w ∈ C0(Ω,R2n−1) such that

(∇φ
1φ, . . . ,∇φ

2n−1φ) = w

in distributional sense on Ω.
• there exists a family of functions {φε}ε>0 ⊂ C1(Ω) such that, for any open set
Ω′ ⋐ Ω, we have φε → φ and ∇φεφε → w uniformly on Ω′ as ε goes to zero.

In [5] and [28], the authors prove two further characterizations.

Theorem 1.2. [28, Theorem 4.95] Let Ω ⊂ R
2n be an open set and let φ : Ω → R

be a function. The following conditions are equivalent:

• φ is uniformly intrinsic differentiable on Ω;
• φ ∈ C0(Ω) and for every a ∈ Ω, for every j ∈ {1, . . . , 2n − 1}, there exists
∂φjφ(a), i.e. a real number such that for every γj : (−δ, δ) → Ω integral curve

of ∇φ
j with γj(0) = a, the limit limt→0

φ(γj(t))−φ(γj (0))
t

exists, it is equal to

∂φjφ(a) and the map ∂φjφ : Ω → R is continuous.
• φ is intrinsic differentiable on Ω and the map ∇φφ : Ω → R

2n−1 is continuous.

In this paper we extend these theorems to H-regular surfaces in H
n of codimen-

sion 1 ≤ k ≤ n. Roughly speaking, these objects correspond to uniformly intrinsic
differentiable graphs of functions φ acting between complementary subgroups with
horizontal target space of dimension k, as in (15). As we said, we can identify φ with
a continuous function acting between R

2n+1−k and R
k. The intrinsic gradient ∇φφ

is replaced by a k × (2n − k) intrinsic Jacobian matrix Jφφ. Its form is related to

a family of 2n − k vector fields W φ
j whose coefficients depend on φ and are at least

continuous. We would also have liked to interpret the action of the vector fields W φ
j ’s

on the components of φ in a distributional way. We didn’t find a distributional form
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analogous to the one in the second item of Theorem 1.1 that would allow to give a
distributional meaning to the writing W φ

j φ (we refer to [5], where this point of view
in codimension 1 has been fully explored).

We prove the following results.

Theorem 1.3. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. Then the following conditions are equivalent:

(i) φ is uniformly intrinsic differentiable on Ω;
(ii) 1there exists a family of maps {φε}ε>0 ⊂ C1(Ω,Rk) and a continuous matrix-

valued function M ∈ C0(Ω,Mk,2n−k(R)) such that for any open set Ω′ ⋐ Ω,

φε → φ, Jφεφε → M

uniformly on Ω′ as ε goes to zero.

Notice that, in retrospect, it is possible to conclude that if (ii) is valid, then for
any point a ∈ Ω, M(a) = Jφφ(a).

The core of the present paper is the following result.

Theorem 1.4. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
function. We define S := graph(φ). Then the following conditions are equivalent:

(i) φ is uniformly intrinsic differentiable on Ω;
(ii) φ ∈ C0(Ω) and for every a ∈ Ω, for every j ∈ {1, . . . , 2n − k}, there ex-

ists a k-dimensional vector of real numbers
(

α1,j . . . αk,j

)

∈ R
k such that

for every γj : (−δ, δ) → Ω integral curve of W φ
j with γj(0) = a, the limit

limt→0
φ(γj(t))−φ(γj (0))

t
exists, it is equal to

(

α1,j . . . αk,j

)

and, if we define

∂φjφ(a) :=
(

α1,j . . . αk,j

)T
, for j = 1, . . . 2n− k, the function

∂φjφ : Ω → R
k

is continuous;
(iii) φ is intrinsic differentiable on Ω and the map Jφφ : Ω → Mk,2n−k(R) is con-

tinuous;
(iv) there are U open set in H

n and f ∈ C1
H
(U,Rk) such that S = {p ∈ U : f(p) =

0}. There exist V1, . . . Vk ∈ hn1 linearly independent such that [Vi, Vj] = 0 for
i, j = 1, . . . , k and det([Vifj ]i,j=1,...,k(q)) 6= 0, for all q ∈ U .

Moreover, from results in [15] and [17], we prove an area formula for the (2n +
2 − k)-centered Hausdorff measure of a H-regular surface of Hn of codimension k
for 1 ≤ k ≤ n, S, parametrized by a uniformly intrinsic differentiable function
φ : Ω ⊂ R

2n+1−k → R
k. For every Borel set O in H

n

(1) C2n+2−k
∞ (S ∩ O) =

ˆ

Φ−1(O)∩Ω

√

√

√

√1 +

k
∑

ℓ=1

∑

I∈Iℓ

AI(p)2 dH2n+1−k
e (p)

where

Iℓ := {(i1, . . . , iℓ, j1, . . . , jℓ)) ∈ N
2ℓ | 1 ≤ i1 < i2 < · · · < iℓ ≤ 2n− k,

1 ≤ j1 < j2 · · · < jℓ ≤ k}
1In fact the statement (ii) of Theorem 1.3 holds only locally as kindly pointed out to us by

G. Antonelli, D. Di Donato, S. Don and E. Le Donne: see [2, Remark 4.14]. We thank them very
much for the observation.
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and

AI(p) := det





[Jφφ]j1,i1 . . . [Jφφ]j1,iℓ
. . . . . . . . .

[Jφφ]jℓ,i1 . . . [Jφφ]jℓ,iℓ



 (p).

The map Φ is the graph map defined in (17).
The plan of the paper is the following. In Section 2 we recall definitions and

known results about Heisenberg groups, we fix some coordinates and we introduce
various notions of intrinsic regularity. In Section 3 we introduce the functions φ
acting between complementary subgroups and we fix some notations. We restate in
this setting notions of graph-distance and intrinsic differentiability. In Section 4 we
build a uniform approximation for a given uniformly intrinsic differentiable function
φ, in such a way that it is approximated along with its intrinsic Jacobian matrix as in
Theorem 1.3. We set the notion of a family of exponential maps and we see that the
existence of a uniform approximation of the function φ, like the one in Theorem 1.3,
implies the existence of a family of exponential maps at any point of the domain of
φ. Moreover, this latter fact implies a 1

2
-Hölder type regularity on the function φ.

Section 5 is devoted to the prove of Theorems 1.3 and 1.4. Finally, in Section 6 we
prove the area formula (1).

2. Some definitions

Let us recall some basic definitions; for more details please refer to [28]. A Carnot
group G is a connected, simply connected, nilpotent Lie group whose Lie algebra, g,
is stratified, i.e. g can be written as the direct sum of linear subspaces gi and it is
generated by the first level of the algebra using brackets:

g = g1 ⊕ g2 ⊕ · · · ⊕ gk

such that
[g1, gi] = gi+1, gk 6= {0}, gi = {0} if i > k,

where [g1, gi] = span{[X, Y ] | X ∈ g1, Y ∈ gi}.
The natural number k is called the step of the group.
The Lie algebra g is isomorphic to the tangent space TpG at every p ∈ G: the

map that associates to any left-invariant vector field V ∈ g the vector V (p) ∈ TpG

is an isomorphism.
The Heisenberg group H

n is the simplest example of a non-commutative Carnot
group. Its Lie algebra, denoted by hn, is stratified of step 2. It is the direct sum of
two linear subspaces

hn = hn1 ⊕ hn2 ,

where hn1 = span{X1, . . . , Xn, Y1, . . . , Yn} and hn2 = span{T} with

(2) [Xj , Yj] = T, [Xi, Xj] = [Yi, Yj] = 0 for i, j = 1, . . . , k and [Xi, Yj] = 0 for i 6= j.

We call such a basis {X1, . . . , Xn, Y1, . . . , Yn, T} of hn a Heisenberg basis.
Vector fields of hn1 are called horizontal vector fields. Since hn is isomorphic to

the tangent space of Hn at e, the horizontal layer of the algebra hn1 is isomorphic to
a linear subspace of TeH

n and we denote it by V . If we move V through the left
translations of Hn

(3) Lp : H
n → H

n, Lp(g) := p · g,
or, precisely, through the differential of Lp for every p ∈ H

n, then the disjoint union of
{(dLp(e)(V ), p)}p∈Hn is a sub-bundle of the tangent bundle. We call it the horizontal
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bundle and we denote it by HH
n. Since we are considering left-invariant vector

fields, it is immediate to see that the fibre of HH
n at p ∈ H

n, that is the vector
space dLp(e)(V ), is generated by the vector fields {X1, . . . , Xn, Y1, . . . , Yn} evaluated
at p:

HH
n
p = span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)}.

We fix an inner product 〈·, ·〉 on hn such that {X1, . . . , Xn, Y1, . . . , Yn, T} ⊂ hn is
an orthonormal basis of hn. Since hn can be identified for any p ∈ H

n with TpH
n,

we denote by 〈·, ·〉p the corresponding inner product on TpH
n.

The exponential map exp : hn → H
n is a global diffeomorphism, hence once fixed

a basis for hn, {V1, V2, . . . , V2n+1}, every p ∈ H
n can be written in an unique way as

(4) p = exp(p1V1 + p2V2 + · · ·+ p2n+1V2n+1) with pi ∈ R,

and then we can identify any point p ∈ H
n with the vector (p1, p2, . . . , p2n+1) ∈ R

2n+1.
Considering the Heisenberg basis {X1, . . . , Xn, Y1, . . . , Yn, T} (or any other Hei-

senberg basis), we identify H
n with R

2n+1 as in (4), so the vector fields of the fixed
basis are then identified with the following vector fields of R

2n+1, that we denote
again by Xj , Yj, T, j = 1, . . . , n: for p ∈ H

n,

Xj(p) = ∂pj −
1

2
pj+n∂p2n+1 , j = 1, . . . , n,

Yj(p) = ∂pn+j
+

1

2
pj∂p2n+1 , j = 1, . . . , n,

T = ∂p2n+1 .

(5)

Again, the unique non-trivial relations are: [Xj , Yj] = T for j = 1, . . . , n.
Through the Baker–Campbell–Hausdorff formula, the group product takes the

following polynomial form: given two points p, q ∈ H
n,

(6) p · q = (p1 + q1, . . . , p2n+1 + q2n+1 +
1

2

n
∑

j=1

(pjqj+n − qjpj+n)).

We observe that the identity element of the group is (0, . . . , 0) and we denote it
by e.

Remark 2.1. We will denote by 〈·, ·〉 also the scalar product that H
n inherits

once it is identified with hn. We can notice the following:

(i) if we fix any Heisenberg basis {V1, . . . , Vn,W1, . . . ,Wn, P} of hn and we iden-
tify H

n with R
2n+1 as in (4), the distance induced by 〈·, ·〉 is identified with

the Euclidean distance on R
2n+1, so we will denote it by | · |;

(ii) (R2n+1, ·) endowed with the Euclidean scalar product represents Hn endowed
with any Heisenberg basis and with the scalar product that makes it orthonor-
mal;

(iii) once a scalar product and a orthonormal Heisenberg basis are fixed, the
change of coordinates to another orthonormal Heisenberg basis is an isometry.

According to the two steps stratification of hn, the algebra, and consequently H
n,

is endowed with a family of intrinsic non-isotropic dilations: for every λ > 0

(7) δλ : H
n → H

n, δλ(p1, . . . , p2n, p2n+1) = (λp1, . . . , λp2n, λ
2p2n+1).

We now recall briefly how sub-Riemannian distances can be introduced in Heisen-
berg groups.

We can introduce a notion of length of the so-called horizontal curves. A horizon-

tal curve is an absolutely continuous curve defined on a real interval, γ : I ⊂ R → H
n,
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whose tangent vector belongs to the fibre HH
n
γ(t) at almost every point t ∈ I

where the tangent vector γ̇(t) exists. Its length can be defined as length(γ) =
´

〈γ′(t), γ′(t)〉1/2γ(t) dt (for alternative equivalent definitions see [23]). Then, one can

define a distance as follows.

Definition 2.2. Given p, q ∈ H
n, the distance dc between p and q is the infimum

of the lengths of horizontal curves joining p and q: dc : H
n ×H

n → [0,∞),

dc(p, q) := inf {length(γ) | γ horizontal curve, γ(0) = p, γ(T ) = q}.
dc is called the Carnot–Carathéodory metric or, shortly, CC-distance.

The distance dc is finite and well defined thanks to the Rashevsky–Chow’s theo-
rem (see [6]).

We collect here some fundamental properties of dc. In particular one should stress
that dc is not, even locally, equivalent to the Euclidean distance.

Proposition 2.3. For every p, q, z ∈ H
n and λ > 0

(i) dc(p, q) = dc(z · p, z · q).
(ii) dc(δλ(p), δλ(q)) = λdc(p, q).
(iii) For each compact set K ⊂ H

n (with respect to the Euclidean topology) there
exists a positive constant CK such that

C−1
K |p− q| ≤ dc(p, q) ≤ CK |p− q| 12 ∀p, q ∈ K.

A metric satisfying (i) and (ii) is said to be a left-invariant homogeneous metric.
All left-invariant homogeneous distances on H

n are equivalent. In order to make the
computations easier, we fix the following homogeneous left-invariant norm:

‖ · ‖∞ : Hn → R, ‖ p ‖∞= max{|(p1, . . . , p2n)|, |p2n+1|1/2},
where | · | denotes both the Euclidean metric on R

2n and the absolute value on R. Of
course the norm ‖ · ‖∞ gives the following corresponding left-invariant homogeneous
distance

d∞ : Hn ×H
n → R, d∞(p, q) :=‖ q−1 · p ‖∞ .

We now set some notations and definitions, for more details see [21]. For any p ∈ H
n,

r > 0, B∞(p, r) := {q ∈ H
n | d∞(p, q) ≤ r} and for every E ⊂ H

n, diam(E) :=
sup{ d∞(p, q) | p, q ∈ E}. Then we can define in (Hn, d∞) the Hausdorff measure
relative to d∞.

Let us define for any m > 0

βm :=
π

m
2

Γ(m
2
+ 1)

2−m ∈ R

where Γ is the Euler function. If A ⊆ H
n, m ∈ [0,∞), δ ∈ (0,∞), we define the

m-dimensional Hausdorff δ-premeasure of A as

Hm
∞,δ(A) := inf

{

∑

i

βm (diam(Ei))
m | A ⊂

⋃

i

Ei, diam(Ei) ≤ δ

}

.

If now we make δ go to zero, we get the m-dimensional Hausdorff measure of A:

Hm
∞(A) := lim

δ→0
Hm

∞,δ(A).

We will instead denote by Hm
e the Euclidean Hausdorff measure in H

n.
We can analogously define a similar Hausdorff measure restricting the class of

sets that we can use to cover the set A.



86 Francesca Corni

If A ⊆ H
n, m ∈ [0,∞), δ ∈ (0,∞), we define the spherical m-dimensional

Hausdorff δ-premeasure of A as

Sm
∞,δ(A) := inf

{

∑

i

βm (diam(B∞,i))
m | B∞,i ball, A ⊂

⋃

i

B∞,i, diam(B∞,i) ≤ δ

}

.

If now we make δ go to zero, we get the spherical m-dimensional Hausdorff measure

of A:
Sm
∞(A) := lim

δ→0
Sm
∞,δ(A).

We also recall a less known Hausdorff measure, introduced for the first time
in [26]. Given m ∈ [0,∞), δ ∈ (0,∞), βm as before, the m-dimensional centered
Hausdorff measure Cm

∞ is defined as

Cm
∞(A) := sup

E⊆A
Cm
∞,0(E)

where Cm
∞,0(E) = limδ→0+ Cm

∞,δ(E), and, in turn, Cm
∞,δ(E) = 0 if E = ∅ and if E 6= ∅,

Cm
∞,δ(E) = inf

{

∑

i

βm(diam(B∞(xi, ri)))
m : E ⊂

⋃

i

B∞(xi, ri), xi ∈ E,

diam(B∞(xi, ri)) ≤ δ

}

.

It holds that
Hm

∞ ≤ Sm
∞ ≤ Cm

∞ ≤ 2mHm
∞.

In particular the three measures are equivalent (see (22) in [28]). Given a set A ⊂ H
n,

we can define its metric dimension as

dimH(A) := sup{s ∈ (0,∞) | Hs
∞(A) = ∞}.

A typical phenomenon that characterizes sub-Riemannian geometry setting it apart
from the Riemannian one is that, often, the metric dimension of a set with respect to
the sub-Riemannian distance does not coincide with its topological dimension. For
example the dimension of H

n seen as topological space is 2n + 1 while its metric
dimension is 2n + 2, since H

n is a (2n + 2)-Ahlfors-regular metric space (see [28,
Theorem 2.26]). One can interpret this fact by imagining that the vertical vector
field T of the basis is weighted with degree 2, while horizontal vector fields have
degree one.

Let us recall some other important definitions.

Definition 2.4. If H is a subgroup of Hn closed with respect to intrinsic dila-
tions, it is a homogeneous subgroup.

Definition 2.5. If H, M are homogeneous subgroups such that H
n = M · H

and H ∩M = {e}, then H and M are called complementary subgroups.

Remark 2.6. Since every point p of H
n can be written in a unique way as

p = m · h, where m ∈ M and h ∈ H, the projections on M and H are well defined:
πM : Hn → M, πM(p) := m and πH : Hn → H, πH(p) := h.

Remark 2.7. Assuming that M is a normal and complemented homogeneous
subgroup is equivalent to assume that its complementary subgroups H are horizontal,
i.e. Lie(H) ⊆ hn1 . By Frobenius theorem, dim(H) has to be less or equal to n.

Next proposition is proved in [3, Proposition 3.2].
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Proposition 2.8. If M, H are complementary subgroups of Hn, there exists a
constant c0 = c0(M,H) > 0 such that for all m ∈ M and h ∈ H the following holds

c0 (‖m‖∞ + ‖h‖∞) ≤ ‖m · h‖∞ ≤ ‖m‖∞ + ‖h‖∞.

With Mn,m(R) we denote the space of all n×m matrix with real entries.

Definition 2.9. Let us consider an open set Ω ⊂ H
n and a function f : Ω → R

k.
We say that f ∈ C1

H
(Ω,Rk) if and only if f is continuous and the matrix-valued

function

JHf : Ω → Mk,2n(R),

p 7→ JHf(p) :=





X1f1 . . . Xnf1 Y1f1 . . . Ynf1
. . . . . . . . . . . . . . . . . .
X1fk . . . Xnfk Y1fk . . . Ynfk



 (p)

has continuous entries. This condition can be expressed more precisely by stating that
we are requiring the distributional derivative Xifj to be represented by a continuous
function on Ω for every i, j. We will denote these continuous functions again by
Xifj. Moreover, for a given p ∈ Ω, the matrix JHf(p) is called the horizontal
Jacobian matrix of f at p. If k = 1, JHf(p) is denoted by ∇Hf(p) and it is called
the horizontal gradient of f at p.

Remark 2.10. This is not usually considered as the first definition of C1
H

func-
tions. The classical one arises from the definition of Pansu differentiability (see [24])
and of continuously Pansu differentiable functions. Nevertheless, in this paper we
will need only this characterization (proved in [19]).

Definition 2.11. Let H
n = M · H be the product of two complementary sub-

groups. Let Ω be an open set in M; let

φ : Ω → H

be a function. We define its intrinsic graph as the set

graph(φ) := {m · φ(m) | m ∈ Ω}.
We also define the graph map of φ as

Φ: Ω → H
n, Φ(m) = m · φ(m).

Remark 2.12. The notion of graph is intrinsic in the sense that if we translate
or dilate the graph of a function φ through intrinsic translations and dilations respec-
tively, we obtain again an intrinsic graph. In particular, if q ∈ H

n, then q ·graph(φ) is
equal to graph(φq) for an appropriate φq and analogously, for any λ > 0, δλ(graph(φ))
is equal to graph(φλ) for some φλ; φq and φλ are well defined (see [3, Propositions 3.5,
3.6]).

The regularity of a graph corresponds to the regularity of its parametrization.
The word intrinsic, as hinted before, means that if we translate or dilate an intrinsic
object, we recover a new object with the same intrinsic properties.

Unless otherwise stated, throughout the paper Ω will denote an open set.
Suppose that H

n is the product of two complementary subgroups M and H.
Given φ : Ω ⊂ M → H a continuous function, we can define

dφ : Ω× Ω → R
+,

dφ(m,m′) :=‖ πM(Φ(m′)−1 · Φ(m)) ‖∞ .
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Definition 2.13. Let H
n = M · H be the product of two complementary sub-

groups. Let φ : Ω ⊂ M → H be a function. We say that φ is intrinsic Lipschitz if
there exists a constant c > 0 such that

(8) ‖ φ(m′)−1 · φ(m) ‖∞≤ c dφ(m,m′) ∀ m,m′ ∈ Ω.

We denote by Lip(φ) the infimum of the constants c for which (8) holds.

Remark 2.14. In literature it is also often used the following symmetrized ver-
sion

Dφ : Ω× Ω → R
+,

Dφ(m,m′) =
1

2
(‖ πM(Φ(m)−1 · Φ(m′)) ‖∞ + ‖ πM(Φ(m′)−1 · Φ(m)) ‖∞).

For our purposes, working with dφ is not restrictive: keeping in mind the notations
in Definition 2.13, we recall that whenever H is horizontal, the followings hold:

• dφ(m,m′) ≤ 2 Dφ(m,m′) for every m,m′ ∈ Ω;
• If there exists a constant d1 > 0 such that ‖ φ(m)−1 ·φ(m′) ‖∞ ≤ d1Dφ(m,m′)

for every m,m′ ∈ Ω, then there exists a constant d2 > 0 such that Dφ(m,m′) ≤
d2 dφ(m,m′) for every m,m′ ∈ Ω

(see for instance [28, Propositions 4.60, 4.76]). This means that, when M is a normal
subgroup, the notion of Lipschitz continuity can be equivalently stated in terms of
the Dφ or in terms of dφ. Clearly the relative Lipschitz constant can change. If φ is
an intrinsic Lipschitz function, Dφ is a quasi-distance (see [8, Proposition 2.6.11].

Definition 2.15. Let Hn = M ·H be the product of complementary subgroups.
A function

L : M → H

is said to be intrinsic linear if its intrinsic graph is a homogeneous subgroup of Hn.

If H is horizontal, this corresponds to assuming that L is a group homomorphism,
homogeneous of degree 1 with respect to the intrinsic dilations of the Carnot group
(see [3, Proposition 3.23 (ii)]).

Definition 2.16. Let Hn = M ·H be the product of complementary subgroups,
let Ω ⊂ M be an open set and take an arbitrary point m̄ ∈ Ω. A function φ : Ω → H

is said intrinsic differentiable at m̄, with p̄ = Φ(m̄), if there exists an intrinsic linear
function

dφm̄ : M → H

such that

lim
‖m‖∞→0

‖ dφm̄(m)−1 · φp̄−1(m) ‖∞
‖ m ‖∞

= 0.

The function dφm̄ is called the intrinsic differential of φ at m̄. The map φ is said to
be intrinsic differentiable on Ω if it is intrinsic differentiable at any point of Ω.

Remark 2.17. When the intrinsic differential exists, it is unique (see [10, The-
orems 3.1.5 and 3.2.8]).

If H is horizontal, then M is normal and this notion has been characterized in
terms of graph-distance dφ.

Proposition 2.18. [28, Remark 4.75] and [3, Proposition 3.25] Given H
n =

M · H with H horizontal, let Ω ⊂ M be an open set and take an arbitrary point
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m̄ ∈ Ω. A function φ : Ω → H is intrinsic differentiable at m̄ if and only if there
exists an intrinsic linear map dφm̄ : M → H such that:

(9) lim
‖φ(m̄)−1·m̄−1·m·φ(m̄)‖∞→0

‖ dφm̄(m̄
−1 ·m)−1 · φ(m̄)−1 · φ(m) ‖∞

‖ φ(m̄)−1 · m̄−1 ·m · φ(m̄) ‖∞
= 0.

A direct calculation shows that under these hypotheses

dφ(m, m̄) =‖ φ(m̄)−1 · m̄−1 ·m · φ(m̄) ‖∞ .

Let us give the further notion of uniformly intrinsic differentiable function.

Definition 2.19. Let H
n = M · H be the product of two complementary sub-

groups, with H horizontal, let Ω ⊂ M be an open set and take an arbitrary point
m̄ ∈ Ω. A function φ : Ω → H is said to be uniformly intrinsic differentiable at m̄ if
there exists an intrinsic linear map dφm̄ : M → H such that:

(10) lim
r→0

sup
m′,m∈B∞(m̄,r)∩Ω
0<dφ(m,m′)<r

‖ dφm̄(m
′−1 ·m)−1 · φ(m′)−1 · φ(m) ‖∞

‖ φ(m′)−1 ·m′−1 ·m · φ(m′) ‖∞
= 0.

The map φ is said to be uniformly intrinsic differentiable on Ω if it is uniformly
intrinsic differentiable at any point of Ω.

Remark 2.20. Observe that from results in [11, Lemma 2.13], for every compact
subset K ⊂ Ω there exist two constants C1, C2 > 0, such that for every m,m′ ∈ K

(11) C1 ‖ m′−1 ·m ‖2∞≤ dφ(m,m′) ≤ C2 ‖ m′−1 ·m ‖
1
2
∞ .

Hence condition (9) turns out to be equivalent to the following

(12) lim
m→m̄

‖ dφm̄(m̄
−1 ·m)−1 · φ(m̄)−1 · φ(m) ‖∞

‖ φ(m̄)−1 · m̄−1 ·m · φ(m̄) ‖∞
= 0,

while condition (10) is equivalent to

(13) lim
r→0

sup
m′,m∈B∞(m̄,r)∩Ω
0<‖m′−1·m‖∞<r

‖ dφm̄(m
′−1 ·m)−1 · φ(m′)−1 · φ(m) ‖∞

‖ φ(m′)−1 ·m′−1 ·m · φ(m′) ‖∞
= 0,

and hence to

(14) lim
r→0

sup
m′,m∈B∞(m̄,r)∩Ω

‖ dφm̄(m
′−1 ·m)−1 · φ(m′)−1 · φ(m) ‖∞

‖ φ(m′)−1 ·m′−1 ·m · φ(m′) ‖∞
= 0.

Let us introduce the notion of an intrinsic regular surface of low codimension,
stated for the first time in [14].

Definition 2.21. Let S ⊂ H
n be a set and let be 1 ≤ k ≤ n. We say that

S is a H-regular surface of codimension k if for every p ∈ S there exist an open
neighbourhood U that contains p and a function f ∈ C1

H
(U,Rk) such that

• S ∩ U = {p : f(p) = 0};
• rank(JHf(q)) = k for all q ∈ U.

We now recall a fundamental result in this theory: an implicit function theorem
for H-regular surfaces of low codimension, proved in [15] (and in [20] for general
Carnot groups).

Theorem 2.22. Let us take 1 ≤ k ≤ n, U ⊂ H
n open set, p0 ∈ U and f ∈

C1
H
(U ,Rk) with f(p0) = 0, rank(JHf(p0)) = k. Let us define S := {p ∈ U | f(p) =
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0}. Then there exist V1, . . . , Vk ∈ hn horizontal linear independent vector fields, such
that [Vi, Vj] = 0 for any i, j = 1, . . . , k and det([Vjfi]i,j=1,...k(p0)) 6= 0.

Let us define H := exp(span(V1, . . . , Vk)) and consider M any homogeneous
subgroup of Hn complementary to H. Let be p0 = πM(p0) ·πH(p0). Then, there is an
open set U ′ ⊆ U , with p0 ∈ U ′, such that S∩U ′ is a (2n+1−k)-dimensional continuous
graph over M along H i.e. there exists a relatively open Ω ⊂ M, πM(p0) ∈ Ω and a
unique continuous function φ : Ω → H, with φ(πM(p0)) = πH(p0), such that

S ∩ U ′ = {m · φ(m) | m ∈ Ω}.
Remark 2.23. Observe that without any restriction, we can choose V1, . . . , Vk to

be orthonormal vector fields. Let us consider then Vk+1, . . . , Vn,W1, . . . ,Wn, P ∈ hn

vector fields such that {V1, . . . , Vn,W1, . . . ,Wn, P} is an orthonormal Heisenberg basis
of hn. We could consider M := exp(span(Vk+1, . . . , Vn,W1, . . . ,Wn, P )).

Remark 2.24. Theorem 2.22 turns into a first constraint on the class of func-
tions among which we are searching for the right requirements for a function φ to have
intrinsic graph be a H-regular surface: we have to search for continuous functions
φ. Moreover, many examples in literature show that the function φ needs not to be
Lipschitz, if we consider M and H endowed with the restrictions of the distance d∞.
Indeed, the highest regularity ensured from this point of view is 1

2
-Hölder regularity

(see also (11)). On the other hand, from an intrinsic point of view, it has been proved
that φ is an intrinsic Lipschitz continuous map (see [20]).

3. Graphs in coordinates in Heisenberg groups

We follow the path of [1], where everything is proved for 1-codimensional H-
regular graphs in an arbitrary Heisenberg group H

n, considering now H-regular
graphs of codimension k in H

n, for 1 ≤ k ≤ n.
We consider H

n = M ·H as the product of the two complementary subgroups

(15) M = exp(span(Vk+1, . . . Vn,W1, . . . ,Wn, P )), H = exp(span(V1, . . . , Vk)),

where {V1, . . . , Vn,W1, . . . ,Wn, P} is an orthonormal Heisenberg basis of hn.
For the sake of simplicity we consider Vi = Xi, Wi = Yi for i = 1, . . . , n and

P = T (since we will work in coordinates, this is not restrictive: see Remark 2.1,
(iii)).

We identify H
n with R

2n+1 (see (4)), so M and H can be identified (through
diffeomorphisms) respectively with R

2n+1−k and R
k.

In particular H is horizontal, hence commutative, and so it is isomorphic and
isometric to some R

k where k is the topological dimension of H. We can consider
the diffeomorphism

j : Rk → H, j(v1, . . . , vk) = (v1, . . . , vk, 0, . . . , 0).

The subgroup M is normal since it contains the vertical axis, since Lie(M) contains
the vector field T ; the topological dimension of M is 2n + 1 − k while its metric
dimension is 2n+ 2− k. We can set the following natural diffeomorphism

i : R2n+1−k → M, i(vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ)

= (0, . . . , 0, vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ).

R
2n+1−k inherits in a natural way a homogeneous group structure (R2n+1−k, ⋆, δ⋆λ)

from the group structure of Hn: given a, b ∈ R
2n+1−k, we can set the group product

a ⋆ b := i−1(i(a) · i(b)); and given a ∈ R
2n+1−k, λ > 0 it is natural to set the
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dilation δ⋆λ(a) := i−1(δλ(i(a)))). We call a function L : R2n+1−k → R
k ⋆-linear if it

is a homomorphism with respect to the product ⋆, homogeneous of degree one with
respect to δ⋆λ.

Remark 3.1. It is immediate to show that any ⋆-linear function L : (R2n+1−k, ⋆)
→ (Rk,+) naturally corresponds to an intrinsic linear function with respect to ·, let

us call it L̃,

L̃ : (M, ·) → (H, ·), L̃(i(v)) = exp(L1(v)X1 + · · ·+ Lk(v)Xk) = j(L(v))

for every v ∈ R
2n+1−k (where L1(v), . . . , Lk(v) ∈ R denote the components of L(v)).

We consider a continuous function φ̃ : Ω̃ = i(Ω) ⊂ M → H, where H and M can

be identified with R
k and R

2n+1−k, respectively, as before. The function φ̃ uniquely
corresponds to a function φ : Ω ⊂ R

2n+1−k → R
k defined by

(16) φ(m) = j−1(φ̃(i(m))) ∀m ∈ Ω ⊂ R
2n+1−k.

Hence, instead of φ̃ we can consider the corresponding function φ

φ : Ω ⊂ (R2n+1−k, ⋆) → (Rk,+),

(vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) 7−→ (φ1, , . . . , φk),

where φj = φj(vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) for j = 1, . . . , k, and we can
re-define the graph map as

Φ: Ω ⊂ R
2n+1−k → H

n,(17)

Φ(vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ)

= i(vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ)

· j(φ(vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ)

= (0, . . . , 0, vk+1 . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) · (φ1, . . . , φk, 0, . . . , 0).

We now want to compute dφ on M identified with R
2n+1−k:

(18) dφ(a, b) =‖ πM(Φ(b)−1 · Φ(a)) ‖∞

If

a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1 . . . , wn, τ),

b = (v′k+1, . . . , v
′
n, η

′
1, . . . , η

′
k, w

′
k+1, . . . , w

′
n, τ

′),
(19)

and φi = φi(a), φ′
i = φi(b), if we denote by ξ := (vk+1 − v′k+1, . . . , vn − v′n, η1 −

η′1, . . . , ηk − η′k, wk+1 − w′
k+1, . . . , wn − w′

n), we get

(20) dφ(a, b) = max

{

|ξ|, |τ − τ ′ +
k
∑

j=1

φ′
j(η

′
j − ηj) + σ(v, w, v′, w)| 12

}

,

where σ(v, w, v′, w′) := 1
2

∑n
j=k+1(vjw

′
j − v′jwj)).

Besides transferring the structure of homogeneous group from M to the R
2n+1−k

we are identifying it with, we can also push forward the linear vector fields which
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generate Lie(M) through i−1

X̃j = (i−1)∗(Xj) = ∂vj −
1

2
wj∂τ , j = k + 1, . . . , n,

Ỹj = (i−1)∗(Yj) = ∂wj
+

1

2
vj∂τ , j = k + 1, . . . , n,

T̃ = (i−1)∗(T ) = ∂τ ,

Ỹj = (i−1)∗(Yj) = ∂ηj , j = 1, . . . , k.

(21)

Now, considering Remark 3.1 and (16), we can transfer the definition of intrinsic

differentiability, which was first introduced for a function φ̃ : Ω̃ ⊂ M → H between
two complementary subgroups in Definition 2.16, on the corresponding function φ,
where M and H are identified with R

2n+1−k and R
k respectively. Observe that this

definition turns out to be analogous to the definition of W φ-differentiability stated
in [1].

Let φ : Ω ⊂ R
2n+1−k → R

k be a map defined on an open set Ω, a0 ∈ Ω, then φ is
intrinsic differentiable at a0 if there exists a ⋆-linear function L : R2n+1−k → R

k such
that

(22) lim
a→a0

|φ(a)− φ(a0)− L(a−1
0 ⋆ a)|

dφ(a, a0)
= 0.

Observe that, since H is horizontal, and hence commutative, it is isometric to R
k, in

(22), and ‖ · ‖∞ coincides with the the Euclidean norm on R
k.

The function L is the intrinsic differential of φ at a0 and it is denoted by dφa0 .
Let a ∈ R

2n+1−k be a point and ai be its components, and let us take a positive
constant δ > 0, then we define

Iδ(a) := {p = (p1, . . . , p2n+1−k) ∈ R
2n+1−k | |pi − ai| < δ for i = 1, . . . , 2n+ 1− k}.

We use this notation to re-state in this context the stronger notion of uniform
intrinsic differentiability as well.

Definition 3.2. We say that a function φ : Ω ⊂ R
2n+1−k → R

k is uniformly
intrinsic differentiable at a0 ∈ Ω if there exists a ⋆-linear function L : R2n+1−k → R

k

such that

lim
r→0

sup
a,b∈Ir(a0),

a6=b

{ |φ(b)− φ(a)− L(a−1 ⋆ b)|
dφ(b, a)

}

= 0.

Remark 3.3. For every r > 0, and for every a0 ∈ Ω, if we apply Proposi-
tion 2.3 (iii), the following inclusions hold

Ir(a0) ⊆ i−1(B∞(a0,
√

(2n+ 1− k)r) ∩M), i−1(B∞(a0, r)) ∩M ⊆ Ir(a0).

Hence, considering Remark 2.20, the two notions in Definitions 2.19 and 3.2 are
equivalent in our context.

A ⋆-linear function L : R2n+1−k → R
k (corresponding to a well defined intrinsic

linear function as in Remark 3.1) is then uniquely identified by a k× (2n−k) matrix
ML (see for instance [9, Proposition 3.4]):

L(m) = ML π(m)T

where π is the projection which, up to identification, maps any point of M =
i(R2n+1−k) to the vector containing its horizontal coordinates:

π : R2n+1−k → R
2n−k, π(p1, . . . , p2n+1−k) := (p1, . . . , p2n−k).
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Hence, if we consider a function φ : Ω ⊂ R
2n+1−k → R

k intrinsic differentiable at
every point of Ω, we can also take into consideration the function:

Jφφ : Ω → Mk,2n−k(R)

that associates to every point a ∈ Ω the matrix corresponding to the intrinsic dif-
ferential of φ at a, Jφφ(a) = Mdφa . This matrix will be called the intrinsic Jacobian
matrix of φ at a.

Proposition 3.4. [9, Proposition 3.7] Let Ω be an open set and let φ : Ω ⊂
R

2n+1−k → R
k be a function uniformly intrinsic differentiable on Ω, then the function

Jφφ : Ω → Mk,2n−k(R) is continuous.

We now recall [8, Theorem 3.1.1]. Analogous result has been proved in [3, Theo-
rem 4.2], in the proof of which, nevertheless, it was not explicitly stated relation (23)
that will be used later.

Theorem 3.5. Let Hn be the product of two complementary subgroups

M = exp(span(Xk+1, . . . , Xn, Y1, . . . , Yn, T )) and H = exp(span(X1, . . . , Xk)).

Let Ω̃ be an open set in M, φ̃ : Ω̃ → H be a continuous function and S := graph(φ̃).
Then the following are equivalent:

1. there are U ⊆ H
n open, and f = (f1, . . . , fk) ∈ C1

H
(U ;Rk) such that

S = {p ∈ U : f(p) = 0} and det([Xifj]i,j=1,...,k(p)) 6= 0,

for all p ∈ S.
2. φ̃ is uniformly intrinsic differentiable on Ω̃.

We recall some passages of the proof (for more details see [8, Theorem 3.1.1] or [9,
Theorem 4.1]). We consider an open set U in H

n and a function f ∈ C1
H
(U,Rk) as in

1. By Theorem 2.22, there exists a unique and continuous intrinsic parametrization,
φ̃ : Ω̃ ⊂ M → H that corresponds to a function φ : Ω ⊂ R

2n+1−k → R
k, as in (16).

For any point m ∈ Ω, we consider that the horizontal Jacobian matrix of f at Φ(m),
JHf(Φ(m)), is of maximum rank k and in particular, the following k × k matrix is
invertible

Xf(Φ(m)) :=





X1f1 . . . Xkf1
. . . . . . . . .
X1fk . . . Xkfk



 (Φ(m)).

We introduce also the following k × (2n− k) matrix

Yf(Φ(m)) :=





Xk+1f1 . . . Xnf1 Y1f1 . . . Ynf1
. . . . . . . . . . . . . . . . . .

Xk+1fk . . . Xnfk Y1f1 . . . Ynfk



 (Φ(m)).

It turns out that the parametrization φ is uniformly intrinsic differentiable at every
m ∈ Ω and

(23) Jφφ(m) = −(Xf(Φ(m)))−1Yf(Φ(m))

that is again a k × (2n− k) matrix.
If, on the other side, we consider a uniformly intrinsic differentiable function

φ̃ : Ω̃ ⊂ M → H,

corresponding as before to a function φ : Ω ⊂ R
2n+1−k → R

k we can find a function
f ∈ C1

H
(U,Rk), with U open set containing Φ(Ω), such that

f ◦ Φ = 0
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on Ω and such that the horizontal Jacobian matrix of f has the following form at
the point Φ(m) of the graph of φ, for every m ∈ Ω

(24) JHf(Φ(m)) = ( Ik | − Jφφ(m) ),

where Ik is the identity matrix of dimension k.
From now on, any φ : Ω ⊂ R

2n+1−k → R
k with Ω open set, is canonically associ-

ated to a φ̃ : i(Ω) ⊂ M → H with M and H as in (15) (see again (16)).

Definition 3.6. Given an open set Ω ⊂ R
2n+1−k and a continuous function

φ : Ω → R
k, let us define the family of 2n− k first order operators:

W φ
j :=











X̃j+k, j = 1, . . . , n− k,

∇φi := ∂ηi + φi∂τ , j = n− k + 1, . . . , n, i = j − (n− k),

Ỹj−(n−k), j = n+ 1, . . . , 2n− k.

We can identify them with vector fields in the usual way. Note that the first and
the last n− k vector fields have smooth coefficients, while the k central vector fields
only have continuous coefficients.

Proposition 3.7. Let Ω ⊂ R
2n+1−k be an open set. If φ : Ω → R

k is a continu-
ously (Euclidean) differentiable function on Ω and m ∈ Ω, then

(25) Jφφ(m) =





W φ
1 φ1 . . . W φ

2n−kφ1

. . . . . . . . .

W φ
1 φk . . . W φ

2n−kφk



 (m).

Proof. Since φ is continuously differentiable in the Euclidean sense, then also the
graph map Φ has the same regularity, since the group product is smooth. Hence, we
can choose a function f ∈ C1

H
defined on an open neighbourhood of Φ(Ω), so that

f(Φ(m)) = 0 and Xf(Φ(m)) is invertible at every point m ∈ Ω. Once we differentiate
the equation f ◦ Φ(m) = 0 at every point m ∈ Ω with respect to all the variables
and then re-organize the equations so obtained, the thesis follows directly by solving
a family of linear systems. �

4. Approximations

4.1. Building approximation. Combining some arguments leading to the
proof of [13, Theorem 2.1] with results in [9] we obtain the following result.

Proposition 4.1. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function uniformly intrinsic differentiable at any a ∈ Ω. Then for every
a ∈ Ω there are δ = δ(a) > 0, ε0 > 0 and a family of functions {φε}0<ε<ε0 ∈
C1(Iδ(a),R

k) such that Iδ(a) ⋐ Ω and

(26) φε → φ uniformly on Iδ(a) as ε → 0

and

(27) Jφεφε → Jφφ uniformly on Iδ(a) as ε → 0

where Jφφ denotes the matrix corresponding to the intrinsic differential of φ.

Proof. Without any loss of generality, one can assume a = 0, Φ(a) = 0. Since
every uniformly intrinsic differentiable function φ locally parametrizes a H-regular
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graph (see Theorem 3.5), we can assume that there exist r > 0 and a function
f ∈ C1

H
(U(0, r),Rk) such that

f ◦ Φ = 0 on Iδ̄(0),

where δ̄ > 0 is taken so that we have the inclusion Φ(Iδ̄(0)) ⊂ U(0, r). Moreover,
again by Theorem 3.5, the horizontal Jacobian matrix of f has rank k and in partic-
ular we can assume that on an open set U(0, r′) (with r′ ≤ r) det(Xf) > 0. We then
consider

f : U(0, r′) → R
k, p 7−→ (f1(p), . . . , fk(p)).

We consider a Euclidean Friedrichs’ mollifier ρε and for every ε > 0 we convolve the
components of the function f with ρε and we set:

fε : U(0, r′) → R
k, p 7−→ (fε,1(p), . . . , fε,k(p)),

where fε,i(p) = fi ∗ ρε for i = 1, . . . , k.
The proof then mirrors the one of [13, Theorem 2.1] (see also [1, Proposi-

tion 2.22]). We report here the scheme for reader’s convenience.
In particular we obtain a family of functions fε ∈ C1 that converge uniformly to

f on the compact subsets of U(0, r′) and whose derivatives Xjfε,i converge uniformly
to Xjfi for every i = 1, . . . , k, j = 1, . . . , 2n−k. One can assume that when ε is small
enough, det(Xfε) > 0 on U(0, r′). Hence, through the Euclidean implicit function
theorem, for every ε > 0 small enough (ε < ε0) one obtains a Euclidean continuously
differentiable function φε : Iδ(0) ⊂ R

2n+1−k → R
k such that fε(graph(φε)) = 0.

Notice that the maps {φε}0<ε<ε0 are defined on a common neighbourhood Iδ(0) of
0. These functions converge uniformly to φ on Iδ(0) as ε goes to zero. According
to the previous convergence statements and to Theorem 3.5, we have that Jφεφε =
−(Xfε(Φε(m)))−1Yfε(Φε(m)) converges to −(Xf(Φ(m)))−1Yf(Φ(m)) uniformly on
Iδ(0) as ε goes to zero. Now it suffices to remember that, according to (23) of the
proof of Theorem 3.5

−(Xf(Φ(m)))−1Yf(Φ(m)) = Jφφ(m). �

4.2. Existence of approximations implies existence of exponential maps.

One needs to give meaning to the action of the vector fields W φ
j on the components

of φ. In order to do so, one could consider the behaviour of φ along the integral
curves of W φ

j . Since φ is only continuous, integral curves of the vector fields W φ
j for

j = n − k + 1, . . . , n are not unique in general. Nevertheless, once we fix an initial
point, the existence of these curves is ensured by Peano–Picard’s theorem. For this
reason, the authors in [1], have introduced the notion of a family of exponential maps.
Here is an analogous definition generalized to our setting.

Definition 4.2. (Family of exponential maps) Let Ω ⊂ R
2n+1−k be an open set

and let φ : Ω → R
k be a continuous function. We assume that for any a ∈ Ω there

exist 0 < δ2 < δ1 such that for each j = 1, . . . , 2n− k there exists a map

γj : [−δ2, δ2]× Iδ2(a) → Iδ1(a), (s, b) 7−→ γj
b(s)

such that

• γj
b := γj(·, b) ∈ C1([−δ2, δ2], Iδ1(a)) for any b ∈ Iδ2(a);

• γ̇j
b (s) = W φ

j (γ
j
b (s)), ∀s ∈ [−δ2, δ2], γ

j
b(0) = b;
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• there exist k × (2n− k) continuous functions ωi,j : Ω → R (i = 1, . . . , k; j =
1, . . . , 2n− k) such that for each s ∈ [−δ2, δ2],

(28) φi(γ
j
b(s))− φi(γ

j
b(0)) =

ˆ s

0

ωi,j(γ
j
b(r)) dr.

From now on γj
b (s) will be denoted as expa(sW

φ
j )(b). {γj}j=1,...,2n−k are called a

family of exponential maps near a.

Remark 4.3. If the function φ is continuously (Euclidean) differentiable, once
we fix an initial point b ∈ Ω, for any j = 1, . . . , 2n−k, there exists a unique maximal
integral curve γj

b (s) of W φ
j starting at b. In this case the role of the function ωi,j is

played by the derivative
d

ds
φi(γ

j
b (s))

for i = 1, . . . , k.

If the continuous function φ : Ω ⊂ R
2n+1−k → R

k along with its intrinsic Jaco-
bian matrix can be uniformly approximated by a family of continuously Euclidean
differentiable functions along with their intrinsic Jacobian matrix respectively, then
for every point a in Ω there exists a family of exponential maps near a.

Proposition 4.4. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. Let us assume that there exists a family of functions {φε} ⊂
C1(Ω,Rk) such that

φε → φ uniformly on every Ω′
⋐ Ω,(29)

Jφεφε → M uniformly on every Ω′
⋐ Ω(30)

as ε → 0, where M ∈ C0(Ω,Mk,2n−k(R)) is a continuous matrix valued function

M : Ω → Mk,2n−k(R), m 7−→ M(m) =





m1,1(m) . . . m1,2n−k(m)
. . . . . . . . .

mk,1(m) . . . mk,2n−k(m)



 .

Then for every a ∈ Ω, there exists 0 < δ2 < δ1 such that for each ℓ = 1, . . . , 2n − k
for all (s, b) ∈ [−δ2, δ2] × Iδ2(a), there exists expa(sW

φ
ℓ )(b) ∈ Iδ1(a) ⋐ Ω, moreover

the continuous functions in Definition 4.2 will be

ωi,ℓ(b) := mi,ℓ(b) =
d

ds
φi(expa(sW

φ
ℓ )(b))

∣

∣

s=0

for i = 1, . . . , k and ℓ = 1, . . . , 2n− k.

Proof. The proof mirrors the one of [1, Lemma 5.6].

For any of the first and last (n − k) vector fields W φ
j (j = 1, . . . , n − k, n +

1, . . . , 2n−k), the exponential map expa(sW
φ
j (b)) coincides with the usual exponential

map. Notice that in this case the curve coincides with the unique integral curve of
the vector field W φε

j . Hence, applying the fundamental theorem of calculus to any

map φε,i(expa(sW
φ
j (b))) (i-th component of φε), for i = 1, . . . , k, the thesis follows

since all the convergences are uniform. In particular the role of the maps ωi,j will be
played by the uniform limit of the functions Xifε,j = [Jφεφε]i,j that corresponds to
the continuous function mi,j.

Let us now consider the vector fields W φ
j , for j = n − k + 1, . . . , n. In this case

we can easily borrow the argument presented in [1]. It is basically an application of
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the Ascoli–Arzelà theorem; in [1] is formulated for the unique vector field they have
in that case, the extension to our case is immediate. �

4.3. Existence of an approximation or continuity of intrinsic derivatives

imply little-Hölder continuity. For j = 1, . . . , n − k, n + 1, . . . , 2n − k, once we
fix an initial point a ∈ Ω, the integral curve of W φ

j starting at a, γj , is unique thanks
to the Cauchy theorem. For j = n − k + 1, . . . , n instead we lose the uniqueness;
the existence is ensured by Peano–Picard’s theorem, since the coefficients of W φ

j are
continuous. Hence, if we only assume that φ is continuous, the value of the limit
(31) depends a priori on the choice of the integral curve. Then, it makes sense to
introduce the following definition.

Definition 4.5. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. Let a be a point in Ω. Given j ∈ {1, . . . , 2n− k}, we say that
φ has ∂φj - derivative at a if and only if there exists a vector in R

k,
(

α1,j . . . αk,j

)

such that for any γj : (−δ, δ) → Ω integral curve of W φ
j such that γj(0) = a, the limit

lims→0
φ(γj (s))−φ(a)

s
exists and is equal to

(

α1,j . . . αk,j

)

. We denote by

∂φjφ(a) =





∂φjφ1

. . .
∂φjφk



 (a) :=





α1,j

. . .
αk,j.



 .

for j = 1, . . . , 2n− k.

Nevertheless, if the function φ is intrinsic differentiable at a point a ∈ Ω, the

limit lims→0
φi(γj(s))−φi(γj (0))

s
does not depend on the choice of the integral curve of

W φ
j , γj , starting at a.

Proposition 4.6. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. Let a ∈ Ω and let φ be intrinsic differentiable at a and let
Jφφ(a) be the k × (2n− k) matrix that identifies the intrinsic differential at a. Let
j ∈ {1, . . . , 2n− k} and let

γj : [−δ, δ] → Ω

be an arbitrary integral curve of the vector field W φ
j , with γj(0) = a. Then for any

i ∈ {1, . . . , k} we have that

(31) lim
s→0

φi(γ
j(s))− φi(γ

j(0))

s
= [Jφφ(a)]ij .

Proof. Let us denote by

a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ).

If j = 1, . . . , n − k, W φ
j = X̃j+k, if j = n + 1, . . . , 2n − k, W φ

j = Ỹj−(n−k). In both

cases the integral curve γj of W φ
j with γj(0) = a is unique; it is immediate to verify

that

dφ(γ
j(s), a) = dφ(γ

j(s), γj(0)) = |s|.
Let us consider for instance j ∈ {1, . . . , n− k}, then

γj(s) =

(

vk+1, . . . , vj + s, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ − 1

2
wjs

)

.
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dφ(γ
j(s), a) = dφ(γ

j(s), γj(0))

= max

{

|s|, |τ − 1

2
wjs− τ + σ((vk+1, . . . , vj + s, . . . , vn),

(wk+1 . . . , wn), (vk+1, . . . , vn), (wk+1 . . . , wn))|
1
2

}

= max

{

|s|, | − 1

2
wjs+

1

2
(vj + s)wj −

1

2
vjwj|

1
2

}

= |s|.

(32)

Given j ∈ {n−k+1, . . . , n}, γj is an integral curve of the vector field ∇φℓ = ∂ηℓ+φℓ∂τ
for ℓ = j−(n−k). As already pointed out, the integral curve γj can fail to be unique.
Nevertheless, it has the following integral form

γj(s) =

(

vk+1, . . . , vn, η1, . . . , ηℓ + s, . . . , ηk, wk+1, . . . , wn, τ +

ˆ s

0

φℓ(γ
j(r)) dr

)

.

On the other hand, φ is intrinsic differentiable at a, hence (see [28, Remark 4.75])

lim
m→a

|φ(m)− φ(a)− Jφφ(a)(π(a−1 ·m)T )|
dφ(m, a)

= 0.

Hence (see for instance [28, Proposition 4.76]) there exist two positive constants C, r
such that

|φ(m)− φ(a)| ≤ Cdφ(m, a) ∀m ∈ B∞(a, r) ∩M.

We can assume, unless we restrict the domain of the curve γj, that γj is defined on
an interval [−δj , δj] such that the previous inequality holds for m = γj(s) for any
s ∈ [−δj , δj]:

|φ(γj(s))− φ(γj(0))| ≤ Cdφ(γ
j(s), a) ∀s ∈ [−δj , δj].

Hence, for every i = 1, . . . , k

|φi(γ
j(s))− φi(γ

j(0))| ≤ |φ(γj(s))− φ(γj(0))| ≤ Cdφ(γ
j(s), a),

∀s ∈ [−δj , δj]. Then we study dφ(γ
j(s), a) for s ∈ [−δj , δj]

dφ(γ
j(s), a) = max

{

|s|,
∣

∣

∣

∣

ˆ s

0

φℓ(γ
j(r)) dr + (φℓ(a))(−s)

∣

∣

∣

∣

1
2

}

≤ max

{

|s|,
∣

∣

∣

∣

ˆ s

0

φℓ(γ
j(r))− φℓ(a) dr

∣

∣

∣

∣

1
2

}

≤ max







|s|, C 1
2 |s| 12

(

sup
s∈[−δj ,δj ]

dφ(γ
j(s), a)

)
1
2







≤ max

{

|s|, C
2
|s|+ 1

2
sup

s∈[−δj ,δj ]

dφ(γ
j(s), a)

}

.

(33)

Therefore

(34) dφ(γ
j(s), a) ≤ C2|s|,

where C2 = max{1, C}.
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Hence

∣

∣

∣

∣

∣

∣





φ1(γ
j(s))− φ1(a)− [Jφφ(a)]1js

. . . . . . . . .
φk(γ

j(s))− φk(a)− [Jφφ(a)]kjs





∣

∣

∣

∣

∣

∣

|s|

=

∣

∣φ(γj(s))− φ(γj(0))− Jφφ(a) sen−k+j

∣

∣

|s|

=
|φ(γj(s))− φ(γj(0))− Jφφ(a)(π(a−1 · γj(s))T )|

|s|

≤ C2
|φ(γj(s))− φ(γj(0))− Jφφ(a)(π(a−1 · γj(s))T )|

dφ(γj(s), a)
.

(35)

where en−k+j ∈ M2n−k,1(R) is the (n − k + j)-th element of the canonical basis of
R

2n−k.
Now, thanks to the intrinsic differentiability of φ at a, (35) goes to zero as s tends

to zero and we get the thesis. �

Combining Remark 4.3 and Proposition 4.6, it is not difficult to conclude the
following.

Corollary 4.7. Given Ω an open set in R
2n+1−k and a continuously (Euclidean)

differentiable function φ : Ω → R
k, for every p ∈ Ω

(36) Jφφ(p) =





ω1,1(p) . . . ω1,2n−k(p)
. . . . . . . . .

ωk,1(p) . . . ωk,2n−k(p)





where ωi,j are the functions defined by ωi,j(p) =
d
dt
(φi(exp(tW

φ
j )(p))

∣

∣

t=0
.

Corollary 4.8. Let Ω be an open set and φ : Ω ⊂ R
2n+1−k → R

k be a continuous
function. Let be a ∈ Ω and assume that φ is intrinsic differentiable at a. Hence for
every j = 1, . . . , 2n− k, there exists ∂φjφ(a) and

∂φjφ(a) =





∂φjφ1(a)
. . .

∂φjφk(a)



 =





[Jφφ]1,j
. . .

[Jφφ]k,j.





From the following theorem follows that the existence of an uniform approxima-
tion of the function φ through a sequence of continuously Euclidean differentiable
functions as in (ii) of Proposition 4.4, implies a further regularity in every direction,
and, in particular, gives a control in the vertical direction (this follows arguing as in
the second part of the proof of [1, Theorem 5.1]).

Proposition 4.9. Let I ⊂ R
2n+1−k be a rectangle, and φ ∈ C1(I,Rk). By

Proposition 3.7 and Corollary 4.7, we can write Jφφ ∈ C0(I,Mk,2n−k(R)) as

Jφφ(p) =





ω1,1 . . . ω1,2n−k

. . . . . . . . .
ωk,1 . . . ωk,2n−k



 (p),
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where, for any i = 1, . . . k,

ωi,ℓ(p) =











X̃l+kφi, ℓ = 1, . . . , n− k,

∇φjφi(p) = ∂ηjφi(p) + φj(p)∂τφi(p), ℓ = n−k+1, . . . , n, j = l−(n−k),

Ỹl−(n−k)φi, ℓ = n+ 1, . . . , 2n− k.

Given rectangles I ′ and I ′′ such that I ′ ⋐ I ′′ ⋐ I, then there exists a function

α : (0,∞) → [0,∞)

depending on k, on {‖ φj ‖L∞(I′′)}j=1,...,k, on ‖ Jφφ ‖L∞(I′′) and on the modulus of
continuity of {ωj,j+(n−k)}j=1,...,k on I ′′, such that, for r sufficiently small:

• sup
{

|φ(a)−φ(b)|

|a−b|1/2
: a, b ∈ I ′, 0 < |a− b| ≤ r

}

≤ α(r);

• lim
r→0

α(r) = 0.

Proof. The proof is a generalization of [1, Proposition 5.8].
We consider first the ℓ-th column of the matrix, for ℓ = n− k + 1, . . . , n. We set

j = ℓ− (n− k), so that j ∈ {1, . . . , k}. We call K = supa∈I′′ |a|, Mj :=‖ φj ‖L∞(I′′)

and N :=‖ Jφφ ‖L∞(I′′). βj is the modulus of continuity of ωj,j+(n−k), on I ′′ i.e. it
is a continuous increasing function βj : (0,∞) → [0,∞) such that |ωj,j+(n−k)(a) −
ωj,j+(n−k)(b)| ≤ βj(|a− b|) for all a, b ∈ I ′′, with limr→0 βj(r) = 0.

We introduce some rectangles such that I ′ ⋐ J1 ⋐ J2 · · · ⋐ Jk+1 ⋐ I ′′. We
denote I ′ = J0, and, for any a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) ∈ Ji (for
i = 0, . . . , k − 1), for j ∈ {1, . . . , k}, we consider the integral curves

(37)

{

γ̇j
a(t) = ( ∂

∂ηj
+ φj(γ

j
a(t))

∂
∂τ
)(γj

a(t)) = ∇φj(γj
a(t)),

γj
a(ηj) = a.

Thanks to the Cauchy–Lipschitz theorem, these are well defined and γj
a ∈ C1([ηj −

εi+1,j, ηj + εi+1,j]) for a certain constant εi,j that depends on Ji and Ji+1. We can
choose εi+1,j such that γj

a(t)([ηj−εi+1,j, ηj+εi+1,j]) ⊂ Ji+1 for every a ∈ Ji and all j =
1, . . . , k (the choice is uniform in a). If a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ)
we get, for t ∈ [ηj − εi,j, ηj + εi,j]

γj
a(t)

=

(

vk+1, . . . , vn, η1, . . . , ηj + (t−ηj), . . . , ηk, wk+1, . . . , wn, τ+

ˆ t

ηj

φj(γ
j
a(s)) ds

)

.
(38)

Denoting τ ja(t) = τ +
´ t

ηj
φj(γ

j
a(s)) ds we also have that

τ̇ ja(t) = φj
a(γ

j
a(t)),

d2

d2t
τ ja(t) =

d

dt
φj
a(γ

j
a(t)) = ωj,j+(n−k)(γ

j
a(t)).

Let us now set

δj(r) := max

{

r1/4, 2
√

2kβj(r + 4kMjr1/4)

}

.

We will prove that

θ(r) : = sup

{ |φ(a)− φ(b)|
|a− b|1/2 : a, b ∈ I ′, 0 < |a− b| ≤ r

}

≤
(

k
∑

j=1

δj(r)

)

+

√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj(r)

)

+ kNr1/2
(39)
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for r sufficiently small. The thesis will follow directly from this inequality.
In order to prove (39), we proceed by contradiction.
Let us first assume a and b as below. Later on, the result will be extended to a

and b in I ′ of generic coordinates. Set

a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) ∈ I ′,

b = (vk+1, . . . , vn, η
′
1, . . . , η

′
k, wk+1, . . . , wn, τ

′) ∈ I ′
(40)

such that |a− b| is sufficiently small and

(41)
|φ(a)− φ(b)|
|a− b|1/2 >

k
∑

j=1

δj +

√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

+ k2Nr1/2

where δj = δj(|a− b|). Notice that the functions δj are monotonically increasing.
For j = 1, . . . , k, we call δ′j = δj(|τ ′ − τ |) ≤ δj. We have that, thanks to the

definition of δj ,

βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/2/δj)
δ2j

≤ βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/2/δ′j)
δ′2j

≤ βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/4)
δ′2j

≤ δ′2j
8k

1

δ′2j
=

1

8k
.

(42)

We now consider

c = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ
′) ∈ I ′.

Notice that a and c differ only for the vertical coordinate and c and b for the horizontal
ones. In particular,

|a− c|1/2 = |τ − τ ′|1/2,
|c− b|1/2 = |(η1 − η′1, . . . , ηk − η′k)|1/2.

(43)

Since we are proceeding by contradiction let us continue from (41)

k
∑

j=1

δj +

√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

+ kNr1/2 <
|φ(a)− φ(b)|
|a− b|1/2

≤ |φ(a)− φ(c)|
|a− b|1/2 +

|φ(c)− φ(b)|
|a− b|1/2

≤ |φ(a)− φ(c)|
|τ − τ ′|1/2 +

|φ(c)− φ(b)|
|(η1 − η′1, . . . , ηk − η′k)|1/2

≤
∑k

j=1 |φj(a)− φj(c)|
|τ − τ ′|1/2 +

∑k
j=1 |φj(c)− φj(b)|

|(η1 − η′1, . . . , ηk − η′k)|1/2
:= R1 +R2.

(44)

We reach a contradiction by showing

(i) R1 ≤
∑k

j=1 δj ;

(ii) R2 ≤
√

∑k
j=1Mj

(

∑k
j=1 δj

)

+ kNr1/2.
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Let us prove (i). We show (i) for any a, c ∈ Jk (hence in particular, for a, c ∈ I ′),

when a and c differ only for the vertical coordinate, R1 ≤ ∑k
j=1 δj. We prove in

particular that for any j the following holds,

|φj(a)− φj(c)|
|τ − τ ′|1/2 ≤ δj.

Let us consider a, c ∈ Jk as before and let us assume τ > τ ′. We assume by
contradiction that

(45)
|φj(a)− φj(c)|

|τ − τ ′| 12
> δj.

Consider γj
a and γj

c . For any t ∈ [ηj − εk+1,j, ηj + εk+1,j] we can use the fundamental
theorem of calculus as follows

τ ja(t)− τ jc (t)

= τ − τ ′ +

ˆ t

ηj

[

τ̇ ja(ηj)− τ̇ jc (ηj) +

ˆ s

ηj

[τ̈ ja(r)− τ̈ jc (r)] dr

]

ds

= τ − τ ′ + (t− ηj)(φj(a)− φj(c))

+

ˆ t

ηj

ˆ s

ηj

[ωj,j+(n−k)(γ
j
a(r))− ωj,j+(n−k)(γ

j
c (r)) dr ds

≤ τ − τ ′ + (t− ηj)(φj(a)− φj(c)) + (t− ηj)
2 sup
r∈[η1,t]

βj(|γj
a(r)− γj

c(r)|)

≤ τ − τ ′ + (t− ηj)(φj(a)− φj(c)) + (t− ηj)
2βj(|τ − τ ′|+ 2Mj|t− ηj |)

(46)

since by fundamental theorem of calculus and the triangle inequality the following
holds

|γj
a(r)− γj

c(r)| ≤ |γj
a(ηj)− γj

c(ηj)|+ |r − ηj|(‖ τ̇ ja ‖∞ + ‖ τ̇ jc ‖∞)

≤ |τ − τ ′|+ 2Mj|t− ηj |.
(47)

Now, if (φj(a)− φj(c)) > 0, we set

(48) t := ηj − 2k
(τ − τ ′)1/2

δj

or otherwise

(49) t := ηj + 2k
(τ − τ ′)1/2

δj
.

We can take a and b close enough so that 2k(τ − τ ′)1/4 ≤ εk+1,j, since, according
to the definition of δj , we have

2k(τ − τ ′)1/4 ≥ 2k
(τ − τ ′)1/2

δj
= |t− ηj |.(50)

Hence, for r small enough, we follow the reasoning in (48) so that the last terms in
(46) equals

τ − τ ′ +

(

−2k
(τ − τ ′)1/2

δj

)

(φj(a)− φj(c))

+

(

−2k
(τ − τ ′)1/2

δj

)2

βj

(

|τ − τ ′|+ 2Mj

∣

∣

∣

∣

−2k
(τ − τ ′)1/2

δj

∣

∣

∣

∣

)

.

(51)
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By contradiction we had assumed (45) to be true, which implies
|φj(a)−φj (c)|

|τ−τ ′|1/2
> δj .

Then (51) can be estimated from above by

τ − τ ′ + (−2k((τ − τ ′)1/2)
|τ − τ ′|1/2

(φj(a)− φj(c))
(φj(a)− φj(c))

+ 4k2 (τ − τ ′)

δ2j
βj

(

|τ − τ ′|+ 2Mj

∣

∣

∣

∣

−2k
(τ − τ ′)1/2

δj

∣

∣

∣

∣

)

= τ − τ ′ + (−2k((τ − τ ′)1/2)(τ − τ ′)1/2

+ 4k2(τ − τ ′)
βj

(

|τ − τ ′|+ 4kMj
(τ−τ ′)1/2

δj

)

δ2j

≤ τ − τ ′ − 2k(τ − τ ′) +

(

4k2 (τ − τ ′)

8k

)

= τ − τ ′ − 2k(τ − τ ′) +
1

2
k(τ − τ ′)

=
2− 3k

2
(τ − τ ′) < 0

(52)

since k ≥ 1. This is not possible since it would imply that the two integral curves of
∇φj starting at a and c meet at some point on the plane (ηj, τ). (The study of the
case (49) for (φj(a) − φj(c)) < 0 gives an identical result). Hence, for our a and c,

R1 ≤
∑k

j=1 δj.

Let us now prove (ii). By contradiction we assume

(53) R2 >

√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

+ kNr1/2.

First of all we define for j = 2, . . . , k

d1 := γ1
b (η1), dj := γj

dj−1
(ηj).(54)

(remember that γj
b (η

′
j) = b). The points b, d1, . . . , dk are vertices of a piecewise regular

“polygonal” curve connecting b and dk. The segments of this curve are built following
the integral curves of the vector fields ∇φj for time η′j − ηj , for j = 1, . . . , k. It turns
out that dk = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ

′′) for a certain well defined τ ′′.
If, for every j, |η′j−ηj | is sufficiently small, we have that dk is well defined and belongs
to Jk. We can compute for every i = 1, . . . , k,

|φi(b)− φi(dk)|
≤ |φi(b)− φi(d1)|+ |φi(d1)− φi(d2)|+ · · ·+ |φi(dk−1)− φi(dk)|

=

∣

∣

∣

∣

∣

ˆ η1

η′1

ωi,1(γ
1
b (t)) dt

∣

∣

∣

∣

∣

+ · · ·+
∣

∣

∣

∣

∣

ˆ ηk

η′k

ωi,k(γ
k
dk−1

(t)) dt

∣

∣

∣

∣

∣

≤ N |η1 − η′1|+ · · ·+N |ηk − η′k|
≤ kN |(η1 − η′1, . . . , ηk − η′k)|.

(55)
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Let us set now b = d0 and compute now

|τ ′ − τ ′′| =
∣

∣

∣

∣

∣

τ ′ − τ −
k
∑

j=1

ˆ ηj

η′j

φj(γ
j
dj−1

(t)) dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

j=1

ˆ ηj

η′j

φj(γ
j
dj−1

(t))

∣

∣

∣

∣

∣

≤
k
∑

j=1

Mj |ηj − η′j |

≤
(

k
∑

j=1

Mj

)

|(η1 − η′1, . . . , ηk − η′k)|.

(56)

Now, by (53) we get

k
∑

i=1

|φi(c)− φi(dk)| ≥
k
∑

i=1

|φi(c)− φi(b)| − |φi(b)− φi(dk)|

>





√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

+ kNr1/2



 |(η′1 − η1, . . . , η
′
k − ηk)|1/2

− kN |(η′1 − η1, . . . , η
′
k − ηk)|

≥





√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

+ kNr1/2 − kN |(η′1 − η1, . . . , η
′
k − ηk)|1/2





|(η′1 − η1, . . . , η
′
k − ηk)|1/2.

(57)

If |(η′1 − η1, . . . , η
′
k − ηk)|1/2 ≤ |a− b| 12 ≤ r1/2 , we have that the last term in (57)

can be estimated from below by

(58)

√

√

√

√

k
∑

j=1

Mj

(

k
∑

j=1

δj

)

|(η′1 − η1, . . . , η
′
k − ηk)|1/2 ≥ |τ ′ − τ ′′|1/2

(

k
∑

j=1

δj

)

.

Therefore, we have proved that for c, dk ∈ Jk,

∑k
i=1 |φi(c)− φi(dk)|

|τ ′ − τ ′′|1/2 >
k
∑

j=1

δj

which it is not possible (for what we proved before) for any a, c ∈ Jk.
Let us now consider the more general case where a = (vk+1, . . . , vn, η1, . . . , ηk,

wk+1, . . . , wn, τ), b = (v′k+1, . . . , v
′
n, η

′
1, . . . , η

′
k, w

′
k+1, . . . , w

′
n, τ

′) ∈ I ′. We want to ex-
ploit what we have proved before. In order to do this we move along the integral
curves of the vector fields X̃j, Ỹj for j = k + 1, . . . , n in order to make the variables
vj:s and wj:s coincide. We then define

a∗ := exp

(

n
∑

j=k+1

((v′j − vj)W
φ
j−k + (w′

j − wj)W
φ
j+(n−k))

)

(a).

Hence

a∗ = (v′k+1, . . . , v
′
n, η1, . . . , ηk, w

′
k+1, . . . , w

′
n, τ + σ(v, w, v′ − v, w′ − w)).
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|φi(a)− φi(a
∗)| =

∣

∣

∣

∣

ˆ 1

0

n
∑

j=k+1

((v′j − vj)ωi,j−k(exp(tW
φ
j−k)(a))

+ (w′
j − wj)ωi,j+(n−k)(exp(tW

φ
j+(n−k))(a)) dt

∣

∣

∣

∣

≤ N(n− k)(|v′ − v|+ |w′ − w|)
≤ 2N(n− k)|a− b|.

(59)

Hence

|φ(a)− φ(a∗)| ≤
k
∑

i=1

|φi(a)− φi(a
∗)| ≤ 2k(n− k)N |a− b|,(60)

where |v′ − v|, |w′ − w| are the n− k vectors containing the vs and ws components
respectively . If we consider |σ(v, w, v′−v, w′−w)| = |1

2

∑n
j=k+1((v

′
j−vj)wj−vj(w

′
j−

wj)))| ≤ K(n− k)|a− b|. Since it is controlled by the norm |a− b|, we can assume r
sufficiently small, and hence a, b sufficiently close, such that a∗ ∈ I ′. We then get

|a∗ − b| ≤ |(η′1 − η1, . . . , η
′
k − ηk)|+ |τ ′ − τ |+ |σ(v, w, v′ − v, w′ − w)|

≤ 2|a− b|+K(n− k)|a− b| = (2 +K(n− k))|a− b|.(61)

Now

|φ(a)− φ(b)|
|a− b|1/2 ≤ |φ(a)− φ(a∗)|

|a− b|1/2 +
|φ(a∗)− φ(b)|
|a− b|1/2

≤ 2(n− k)kN |a− b|
|a− b|1/2 +

(

1

2 +K(n− k)

) |φ(a∗)− φ(b)|
|a∗ − b|1/2

(62)

so we are in the particular case we had at the beginning. The last term of (62) can
then be estimated from above by

2(n− k)kN |a− b|1/2 +
(

1

2 +K(n− k)

)

α′(|a∗ − b|1/2)

≤ 2(n− k)kN |a− b|1/2 +
(

1

2 +K(n− k)

)

α′((2 +K(n− k))|a− b|1/2)
(63)

which goes to zero when b goes to a. This concludes our proof. �

Let us weaken the hypotheses of Proposition 4.9.

Proposition 4.10. Let I ⊂ R
2n+1−k be a rectangle. Let φ : I → R

k be a
continuous function such that there are k×(2n−k) continuous functions wi,ℓ : I → R

(for i, . . . , k, ℓ = 1, . . . , 2n− k) such that for every γℓ : [−δ, δ] → I integral curve of

the vector field W φ
ℓ (ℓ = 1, . . . , 2n− k), the following holds: for every t ∈ [−δ, δ]

(64)
d

dt
φi(γ

ℓ(t)) = wi,ℓ(γ
ℓ(t)).

Given a fixed rectangle I ′ ⋐ I, for any other rectangle I ′′ such that I ′ ⋐ I ′′ ⋐ I there
exists a function

α : (0,∞) → [0,∞)

which depends on I ′′, on k, on {‖ φj ‖L∞(I′′)}j=1,...,k, on ‖ [ωi,j]i,j ‖L∞(I′′) and on the
modulus of continuity of {ωj,j+(n−k)}j=1,...,k, on I ′′, such that, for r sufficiently small:

• sup
{

|φ(a)−φ(b)|

|a−b|1/2
: a, b ∈ I ′, 0 < |a− b| ≤ r

}

≤ α(r);
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• lim
r→0

α(r) = 0.

Proof. The proof is analogous to the one of Proposition 4.9, so we keep the same
notations. Unique change is that we take N :=‖ [ωi,j]i,j ‖L∞(I′′). In this setting

we lose the uniqueness of the integral curves of ∇φ
j for j = 1, . . . , k. This lack of

uniqueness is replaced by requiring condition (64) on the curves: here, we still denote
by γj

a an arbitrarily chosen integral curve of ∇φj (j = ℓ − (n − k)) of initial point
a = (vk+1, . . . , wn, η1, . . . , ηk, wk+1, . . . , wn, τ) ∈ Ji such that γj

a(ηj) = a. We assume
that it is defined on [ηj − εi+1,j, ηj + εi+1,j] ⊂ Ji+1. Moreover, this loss of uniqueness
implies that two curves could indeed meet each other, so the previous contradiction
(52) would no longer hold in this case. We will therefore have to replace it with a
different contradiction. This is inspired by results in [5].

Suppose for the sake of simplicity that j = 1.
As in the proof of Proposition 4.9, in order to obtain (52), we fix a, c ∈ Jk

and we assume that they only differ for their vertical coordinate (we have fixed
τa = τ > τ ′ = τc). We already proved that, if φ1(a) − φ1(c) < 0, there exists
t̄ ∈ [η1, η1 + εk+1,j] ( or t̄ ∈ [η1 − εk+1,j, η1] if φ1(a)− φ1(c) > 0) such that

τ 1a (t̄)− τ 1c (t̄) < 0,

while τ 1a (η1) = τ > τ ′ = τ 1c (η1). We can then define

t∗ := sup{t ∈ [η1, η1 + εk+1,1] | t ≤ t̄, τ 1a (t) > τ 1c (t)}.
We have 0 < t∗ < t̄ ≤ η1 + εk+1,1 and, by continuity, that τ 1a (t

∗) = τ 1c (t
∗), hence

γ1
a(t

∗) = γ1
c (t

∗).

Let us prove that φ1(γ
1
a(t

∗)) 6= φ1(γ
1
c (t

∗)), which will bring a contradiction. Then
the proof will mirror the one in Proposition 4.9. Obviously second order derivatives
of τ ja and τ jc are replaced by ωj,j+(n−k). Remember that if φ1(a) − φ1(c) < 0, we

assume (45), i.e. φ1(a)− φ1(c) < −δ1
√
τ − τ ′, so that

φ1(γ
1
a(t

∗))− φ1(γ
1
c (t

∗))

= φ1(a)− φ1(c) +

ˆ t∗

η1

ω1,n−k+1(γ
1
a(s))− ω1,n−k+1(γ

1
c (s)) ds

≤ φ1(a)− φ1(c) + (t∗ − η1)β1(|τ − τ ′|+ 2M1|t∗ − η1|)
≤ φ1(a)− φ1(c) + (t̄− η1)β1(|τ − τ ′|+ 2M1|t̄− η1|)

keeping in mind (45) and (49),

< −δ1
√
τ − τ ′ + 2k

β1(|τ − τ ′|+ 2M1|t̄− η1|)
δ1

√
τ − τ ′

≤ −δ1
√
τ − τ ′ + 2k

β1(|τ − τ ′|+ 4kM1

√

|τ − τ ′|/δ1)
δ1

√
τ − τ ′

(65)

if δ1 < 1, (and we can choose r small enough such that δj < 1 for any j = 1, . . . , k)

= 2δ1
√
τ − τ ′

(

−1

2
+ k

β1(|τ − τ ′|+ 4kM1

√

|τ − τ ′|/δ1(r))
δ21

)

< 2δ1
√
τ − τ ′

(

−1

2
+

k

8k

)

< 0.

(66)
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This proof, after small modification, also works for the case when φ1(a)− φ1(c) > 0,
starting from φ1(γ

1
c (t

∗))− φ1(γ
1
a(t

∗)) and using hypotheses (45), and (48); of course
it works also for the curves γj

a and γj
c , for j = 2, . . . , k, so that

∑k
j=1 |φj(a)− φj(c)|

|τ − τ ′| 12
≤

k
∑

j=1

δj .

Hence (ii) has to be valid, and we can resume verbatim the proof of Proposition 4.9
from (53). �

A compactness argument yields the following result.

Proposition 4.11. Let Ω be an open set of R2n+1−k and let φ : Ω → R
k be a

continuous function such that there are k×(2n−k) continuous functions ωi,j : Ω → R

(for i = 1, . . . , k, j = 1, . . . , 2n−k) such that for every γj : [−δ, δ] → Ω integral curve

of the vector field W φ
j (j = 1, . . . , 2n− k), the following holds:

d

dt
φi(γ

j(t)) = wi,j(γ
j(t)),

for any t ∈ [−δ, δ]. Then, if we fix an open set Ω′
⋐ Ω, we have that for any open Ω′′

such that Ω′ ⋐ Ω′′ ⋐ Ω there exists a function

α : (0,∞) → [0,∞)

which depends on Ω′′, on k, {‖ φj ‖L∞(Ω′′)}j=1,...,2n−k, on ‖ Jφφ ‖L∞(Ω′′) and on the
modulus of continuity of {ωj,j+(n−k)}j=1,...,k on Ω′′, such that, for r sufficiently small:

• sup
{

|φ(a)−φ(b)|

|a−b|1/2
: a, b ∈ Ω′, 0 < |a− b| ≤ r

}

≤ α(r);

• lim
r→0

α(r) = 0.

Proof. From a compactness argument, if we have Ω′ ⋐ Ω, then for every a ∈ Ω′,
by Proposition 4.10, we can find a neighbourhood Ira(a) such that Ira(a) ⋐ Ω′′ where
the thesis holds. These sets {Ira(a) | a ∈ Ω′} cover Ω′ that is compact, we can extract
a finite sub-covering such that Ω′ ⊆ ∪i=1,...,kIrai (ai). If we now consider b ∈ Ω′, surely
b ∈ Iraj for some j ∈ {1, . . . , k}. If r is small enough, any point b′ belonging to the

Euclidean ball Be(b, r) will be contained in Iraj . �

5. Equivalences

Proposition 5.1. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function and a, b ∈ Ω be the points

a = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ),

b = (v′k+1, . . . , v
′
n, η

′
1, . . . , η

′
k, w

′
k+1, . . . , w

′
n, τ

′).

Let us consider the following function, ρφ, analogous of the one considered in [1]. Set

ξ := (vk+1 − v′k+1, . . . , vn − v′n, η1 − η′1, . . . , ηk − η′k, wk+1 − w′
k+1, . . . , wn − w′

n),

(67) ρφ(a, b) := max{ |ξ|, |τ − τ ′ +
1

2

k
∑

j=1

(φ′
j + φj)(η

′
j − ηj) + σ(v, w, v′, w)| 12},

where σ(v, w, v′, w′) := 1
2

∑n
j=k+1(vjw

′
j − v′jwj), φj := φj(a) and φ′

j := φj(b) for
j = 1, . . . , k. If there exists a constant c > 0 such that

|φ(a)− φ(b)| ≤ c ρφ(a, b)
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for every a, b ∈ Ω, then φ is intrinsic Lipschitz.

Proof. If |φ(a)− φ(b)| ≤ c|(vk+1 − v′k+1, . . . , vn − v′n, η1 − η′1, . . . , ηk − η′k, wk+1 −
w′

k+1, . . . , wn − w′
n)| the thesis is valid.

Let us then consider the case

|φ(a)− φ(b)| ≤ c

∣

∣

∣

∣

∣

τ − τ ′ +
1

2

k
∑

j=1

(φ′
j + φj)(η

′
j − ηj) + σ(v, w, v′, w)

∣

∣

∣

∣

∣

1
2

= c

∣

∣

∣

∣

∣

τ − τ ′ +
k
∑

j=1

φ′
j(η

′
j − ηj) +

1

2

k
∑

j=1

(φj − φ′
j)(η

′
j − ηj) + σ(v, w, v′, w)

∣

∣

∣

∣

∣

1
2

for any ε > 0

≤ c

(

dφ(a, b) +
1

2

k
∑

j=1

∣

∣

∣

∣

(φj − φ′
j) ε

(

η′j − ηj

ε

)∣

∣

∣

∣

1
2

)

≤ c

(

dφ(a, b) +
k
∑

j=1

(

1

4
ε |φj − φ′

j|+
1

4

|η′j − ηj |
ε

)

)

≤ c

(

dφ(a, b) + k
1

4
ε |φ(a)− φ(b)|+ k

1

4

dφ(a, b)

ε

)

.

If we now fix ε = 2
ck

, we finally get

|φ(a)− φ(b)| ≤ 2

(

c+
k2c2

4

)

dφ(a, b). �

Proposition 5.2. Let Ω be an open set in R
2n+1−k. Given an intrinsic Lipschitz

function φ : Ω → R
k, there exists a constant c > 0 such that

ρφ(a, b) ≤ c dφ(a, b)

for every a, b ∈ Ω

Proof. By direct computations and by Proposition 2.8, we have

ρφ(a, b) ≤ d∞(Φ(a),Φ(b)) =‖ Φ(b)−1 · Φ(a) ‖∞
= ‖ (i(b) · j(φ(b)))−1 · i(a) · j(φ(a)) ‖∞
≤ ‖ j(φ(b))−1 · i(b)−1 · i(a) · j(φ(b)) ‖∞ + ‖ j(φ(b))−1 · j(φ(a)) ‖∞(68)

= dφ(a, b) + |φ(a)− φ(b)| ≤ (1 + Lip(φ)) dφ(a, b). �

Theorem 5.3. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. If, for a certain a ∈ Ω and for ℓ = 1, . . . , 2n− k, we have that
there exist 0 < δ2 < δ1 and a family of exponential maps near a

expa(sW
φ
ℓ )(b) : [−δ2, δ2]× Iδ2(a) → Iδ1(a)

and if for any Ω′ ⋐ Ω

(69) lim
r→0+

sup

{ |φ(b)− φ(b′)|
|b′ − b|1/2

∣

∣

∣

∣

b, b′ ∈ Ω′, 0 < |b′ − b| ≤ r

}

= 0,
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then φ is uniformly intrinsic differentiable at a and therefore the (i, ℓ)-th component
of the matrix that represents the intrinsic Jacobian at a, [Jφφ]i,ℓ equals

d

ds
φi(expa(sW

φ
ℓ )(a))

∣

∣

s=0
.

Proof. We set

a = (v̄k+1, . . . , v̄n, η̄1, . . . , η̄k, w̄k+1, . . . , w̄m, τ̄) ∈ Ω,

b = (vk+1, . . . , vn, η1, . . . , ηk, wk+1, . . . , wn, τ) ∈ Iδ0(a),

b′ = (v′k+1, . . . , v
′
n, η

′
1, . . . , η

′
k, w

′
k+1, . . . , w

′
n, τ

′) ∈ Iδ0(a)

(70)

for δ0 small; we get

|(v′k+1 − vk+1, . . . , v
′
n − vn, η

′
1 − η1, . . . , η

′
k − ηk, w

′
k+1 − wk+1, . . . , w

′
n − wn)|

≤ 2(2n− k)δ0.
(71)

Just to simplify the computation we assume η′i ≥ ηi, for i = 1, . . . , k.
Let us define the vector field

X̄ :=

n
∑

j=k+1

(v′j − vj)W
φ
j−k + (w′

j − wj)W
φ
j+(n−k).

We start moving from b to b∗0 := expa(X̄)(b), then we move for a time η′1−η1 along

the exponential map of W φ
n−k+1 = ∇φ1 with initial point b∗0. We arrive at a point b∗1

and then we move for time η′2− η2 along the exponential map of W φ
n−k+2 = ∇φ2 with

initial point b∗1. We denote by b∗2 the endpoint of this piecewise integral curve and we
iterate the process to get

b∗j+1 := expa((η
′
j+1 − ηj+1)W

φ
(n−k)+j+1(b

∗
j ) = expa((η

′
j+1 − ηj+1)∇φj+1)(b∗j ),

j = 0, . . . , k − 1. The coordinates of b∗k equal those of b′, except for the vertical one
that will be denoted by τ ∗k :

(72) τ ∗k = τ +

k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1)) dr + σ(v, w, v′, w′).

The point b∗k belongs to a cube ICδ0+Dδ20
(a) for some positive constant C and D.

In fact

|τ ∗k − τ̄ | = |τ +
k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj)(b∗j−1))dr + σ(v, w, v′, w′)− τ̄ |

≤ |τ − τ̄ |+
k
∑

i=1

(η′i − ηi)max
Iδ1(a)

|φi|+
1

2
|

n
∑

i=k+1

(vi(w
′
i − wi)− wi(v

′
i − vi))|

≤ |τ − τ̄ |+
k
∑

i=1

(η′i − ηi)max
Iδ1(a)

|φi|

+
1

2
|

n
∑

i=k+1

((vi − v̄i + v̄i)(w
′
i − wi)− (wi − w̄i + w̄i)(v

′
i − vi))|
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≤ |τ − τ̄ |+
k
∑

i=1

|η′i − ηi|max
Iδ1(a)

|φi|

+
1

2

n
∑

i=k+1

(|vi − v̄i|+ |v̄i|)|w′
i − wi|+ (|wi − w̄i|+ |w̄i|)|v′i − vi|

≤ |τ − τ̄ |+
k
∑

i=1

(η′i − ηi)max
Iδ1(a)

|φi|

+
1

2

n
∑

i=k+1

((|v̄i|+ δ0)(|w′
i − w̄i|+ |wi − w̄i|) + (|w̄i|+ δ0)(|v′i − v̄i|+ |vi − v̄i|))

≤ δ0 +
k
∑

i=1

δ0max
Iδ1(a)

|φi|+
1

2

n
∑

i=k+1

((|v̄i|+ δ0)(2δ0) + (|w̄i|+ δ0)(2δ0))

< Cδ0 +Dδ20.

We can now consider

φ(b′)− φ(b) = φ(b′)− φ(b∗k) +

k
∑

i=1

(φ(b∗i )− φ(b∗i−1)) + φ(b∗0)− φ(b)

= φ(b′)− φ(b∗k)

+

k
∑

i=1

(φ(expa((η
′
i − ηi)∇φi)(b∗i−1))− φ(b∗i−1)) + φ(b∗0)− φ(b)

= φ(b′)− φ(b∗k) +
k
∑

j=1







´ η′j−ηj
0 ω1,j+(n−k)(expa(r∇φj)(b∗j−1)) dr

. . .
´ η′j−ηj
0 ωk,j+(n−k)(expa(r∇φj )(b∗j−1)) dr







+
n
∑

j=k+1





´ 1

0
(v′j − vj)ω1,j−k(expa(rX̄)(b)) dr

. . .
´ 1

0
(v′j − vj)ωk,j−k(expa(rX̄)(b)) dr





+

n
∑

j=k+1





´ 1

0
(w′

j − wj)ω1,j+(n−k)(expa(rX̄)(b)) dr
. . .

´ 1

0
(w′

j − wj)ωk,j+(n−k)(expa(rX̄)(b)) dr



 .

(73)

Claim 1. For any i = 1, . . . , k, for ℓ = n − k + 1, . . . , n, j = ℓ − (n − k) so
j = 1, . . . , k
ˆ η′j−ηj

0

ωi,ℓ(expa(r∇φj )(b∗j−1)) dr = ωi,ℓ(a)(η
′
j − ηj) + o(|η′j − ηj |) as δ0 → 0.

Proof. Fix i ∈ {1, . . . , k} and consider for every j
ˆ η′j−ηj

0

ωi,ℓ(expa(r∇φj )(b∗j−1))− ωi,ℓ(a) dr + ωi,ℓ(a)(η
′
j − ηj).

We want to prove that

lim
δ0→0

1

η′j − ηj

ˆ η′j−ηj

0

ωi,ℓ(expa(r∇φj)(b∗j−1))− ωi,ℓ(a) dr = 0.
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Let us first show that

|ωi,ℓ(b
∗
0)− ωi,ℓ(a)| = o(1) as δ0 → 0.

In fact,

|ωi,ℓ(b
∗
0)− ωi,ℓ(a)| ≤ |ωi,ℓ(b

∗
0)− ωi,ℓ(b)|+ |ωi,ℓ(b)− ωi,ℓ(a)|

≤ βi,ℓ(|b∗0 − b|) + βi,ℓ(|b− a|),

where βiℓ is the modulus of continuity of ωi,ℓ. Let us now observe that the two terms
go to zero. Indeed, ωi,ℓ is continuous by hypothesis. Since (71) holds, we have that
|(v′, w′)− (v, w)| → 0 as δ0 → 0, and we can then find a real number δ̄ > 0 such that
|(v′, w′)− (v, w)| ≤ cδ0 < δ for δ0 < δ̄. Hence

lim
δ0→0

|ωi,ℓ(b
∗
0)− ωi,ℓ(b)| = 0.

Moreover, when δ0 goes to zero, b and b′ get closer and closer to a, so when δ0
goes to zero, |b− a| goes to zero too.

Once we fix p > 0, we get

1

η′p − ηp

ˆ η′p−ηp

0

ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,n−k+p(a) dr

=
1

η′p − ηp

ˆ η′p−ηp

0

ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,n−k+p(b
∗
p−1) dr

+

p
∑

i=2

(ωi,n−k+p(b
∗
k−1)− ωi,n−k+p(b

∗
k−2))) + ωi,n−k+p(b

∗
0)− ωi,n−k+p(a)

≤ sup
r∈[0,η′p−ηp]

|ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,p(b
∗
p−1)|

+

p
∑

i=2

|(ωi,n−k+p(b
∗
k−1)− ωi,n−k+p(b

∗
k−2)))|+ |ωi,n−k+p(b

∗
0)− ωi,n−k+p(a)|,

which goes to zero as δ0 tends to zero, by what we have already proved and by
the fact that if δ0 goes to zero, then |η′j − ηj | goes to zero for j = 1, . . . , p, hence
|ωi,n−k+p(b

∗
k−1) − ωi,n−k+p(b

∗
k−2)| ≤ βi,n−k+p(|b∗k−1 − b∗k−2|) goes to zero. We finally

reach the conclusion from the absolute continuity of ωi,n−k+p(expa(r∇φ1)(b∗p−1)) on
[0, η′p − ηp]. �

Since Claim 1 holds, we can rewrite (73) as

φ(b′)− φ(b∗k) +
k
∑

j=1





ω1,j+(n−k)(a)(η
′
j − ηj) + o(|η′j − ηj |)
. . .

ωk,j+(n−k)(a)(η
′
j − ηj) + o(|η′j − ηj|)





+
n
∑

j=k+1





ω1,j−k(a)(v
′
j − vj) + o(|v′j − vj|)

. . .
ωk,j−k(a)(v

′
j − vj) + o(|v′j − vj |)
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+
n
∑

j=k+1





ω1,j+(n−k)(a)(w
′
j − wj) + o(|w′

j − wj|)
. . .

ωk,j+(n−k)(a)(w
′
j − wj) + o(|w′

j − wj|)





= φ(b′)− φ(b∗k) +















ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)









































v′k+1 − vk+1

. . .
v′n − vn
η′1 − η1
. . .

η′k − ηk
w′

k+1 − wk+1

. . .
w′

n − wn



























+





∑n
j=k+1 o(|v′j − vj |) + o(|w′

j − wj |) +
∑k

j=1 o(|η′j − ηj|)
. . .

∑n
j=k+1 o(|v′j − vj |) + o(|w′

j − wj |) +
∑k

j=1 o(|η′j − ηj|)





= φ(b′)− φ(b∗k) +















ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)









































v′k+1 − vk+1

. . .
v′n − vn
η′1 − η1
. . .

η′k − ηk
w′

k+1 − wk+1

. . .
w′

n − wn



























+





o(dφ(b, b
′))

. . .
o(dφ(b, b

′))





as δ0 goes to zero, since |v′j − vj | ≤ dφ(b, b
′), |w′

j −wj | ≤ dφ(b, b
′), |η′j − ηj | ≤ dφ(b, b

′).

The same argument yields that

φ(b′)− φ(b) ≤ φ(b′)− φ(b∗k) +















ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)









































v′k+1 − vk+1

. . .
v′n − vn
η′1 − η1
. . .

η′k − ηk
w′

k+1 − wk+1

. . .
w′

n − wn



























+





o(ρφ(b, b
′))

. . .
o(ρφ(b, b

′))



 .(74)

In order to get the thesis, we are left to prove that

(75) |φ(b′)− φ(b∗k)| = o(dφ(b, b
′)) as δ0 → 0.
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To prove this, it is enough to show that

(76) |φ(b′)− φ(b∗k)| = o(ρφ(b, b
′)) as δ0 → 0.

In fact, if (76) holds, we can apply (74) to get that

(77) lim
δ0→0

sup
b,b′∈Iδ0 (a),b6=b′

{ |φ(b′)− φ(b)−M(a)π(b−1 · b′)t|
ρφ(b′, b)

}

= 0,

where M(a) is the k × (2n − k) matrix [M(a)]i,j = ωi,j(a) for i = 1, . . . , k, j =
1, . . . , 2n− k.

Now, this implies (see for instance [3, Proposition 3.17]) that for every b, b′ ∈
Iδ0(a), there exists a constant c > 0 such that

(78) |φ(b)− φ(b′)| ≤ c ρφ(b, b
′).

By Propositions 5.1 and 5.2, this inequality implies that there exists a constant
c2 > 0 such that for every b, b′ ∈ Iδ0(a), ρφ(b, b

′) ≤ c2dφ(b, b
′), and therefore for every

b, b′ ∈ Iδ0(a),

0 ≤ 1

c2

|φ(b)− φ(b∗k)|
dφ(b, b′)

≤ |φ(b)− φ(b∗k)|
ρφ(b, b′)

.

This means that if we prove (76), (75) will follow.

Let us start by adapting an argument from [1, Theorem 5.7]:

|φ(b′)− φ(b∗k)|
ρφ(b, b′)

=
|φ(b′)− φ(b∗k)|
|τ ′ − τ ∗k |1/2

|τ ′ − τ ∗k |1/2
ρφ(b, b′)

=
|φ(b′)− φ(b∗k)|
|b′ − b∗k|1/2

|τ ′ − τ ∗k |1/2
ρφ(b, b′)

≤ υφ(Cδ0 +Dδ20)
|τ ′ − τ ∗k |1/2
ρφ(b, b′)

,

where the function

(79) υφ(δ) := sup

{ |φ(a′)− φ(a′′)|
|a′ − a′′|1/2

∣

∣

∣
a′ 6= a′′, a′, a′′ ∈ Iδ(a)

}

goes to zero if δ → 0 by the second hypothesis, (69).

In order to achieve the proof of (76), we need to show that
|τ ′−τ∗k |

1/2

ρφ(b,b′)
is bounded

close to a. By (72) and (67),

|τ − τ ∗k | =
∣

∣

∣

∣

τ ′ − τ − σ(v, w, v′, w′)−
k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1)) dr

∣

∣

∣

∣

=

∣

∣

∣

∣

τ ′ − τ − σ(v, w, v′, w′)−
k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1)) dr

+
1

2

k
∑

j=1

(φj(b
′) + φj(b))(η

′
j − ηj)−

1

2

k
∑

j=1

(φj(b
′) + φj(b))(η

′
j − ηj)

∣

∣

∣

∣
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≤ ρφ(b, b
′)2 +

∣

∣

∣

∣

−
k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj)(b∗j−1)) dr

+
1

2

k
∑

j=1

(φj(b
′) + φj(b))(η

′
j − ηj)

∣

∣

∣

∣

= ρφ(b, b
′)2 +

∣

∣

∣

∣

−
k
∑

j=1

ˆ η′j−ηj

0

φj(expa(r∇φj)(b∗j−1)) dr

+
1

2

( k
∑

j=1

(φj(b
′)− φj(b

∗
j ) + φj(b

∗
j ) + φj(b

∗
j−1)− φj(b

∗
j−1) + φj(b)

)

(η′j − ηj)

∣

∣

∣

∣

≤ ρφ(b, b
′)2

+

∣

∣

∣

∣

−
k
∑

j=1

(
ˆ η′j−ηj

0

φj(expa(r∇φj)(b∗j−1)) dr +
1

2
(φj(b

∗
j ) + φj(b

∗
j−1)

)

(η′j − ηj))

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2

( k
∑

j=1

(φj(b
′)− φj(b

∗
j ) + φj(b)− φj(b

∗
j−1)

)

(η′j − ηj)

∣

∣

∣

∣

.

(80)

For any j, by Claim 1 we have that, at least for δ0 small enough,
∣

∣

∣

∣

−
ˆ η′j−ηj

0

φj(expa(r∇φj)(b∗j−1)) dr +
1

2
(φj(b

∗
j ) + φj(b

∗
j−1))(η

′
j − ηj))

∣

∣

∣

∣

=

∣

∣

∣

∣

−
ˆ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))− φj(b
∗
j−1) dr +

1

2
(φj(b

∗
j)− φj(b

∗
j−1))(η

′
j − ηj))

∣

∣

∣

∣

=

∣

∣

∣

∣

−
ˆ η′j−ηj

0

ˆ r

0

ωj,j+(n−k)(expa(s∇φj)(b∗j−1)) ds dr

+
1

2
(η′j − ηj)

ˆ η′j−ηj

0

ωj,j+(n−k)(expa(r∇φj)(b∗j−1)) dr

∣

∣

∣

∣

= O(|η′j − ηj|2) = O(ρφ(b, b
′))2

Hence we can estimate the last line of (80) from above by

ρφ(b, b
′)2 + Cρφ(b, b

′)2 +

∣

∣

∣

∣

1

2
(

k
∑

j=1

(φj(b
′)− φj(b

∗
j ) + φj(b)− φj(b

∗
j−1))(η

′
j − ηj)

∣

∣

∣

∣

.

We are left to estimate
∣

∣

∣

∣

1

2
(

k
∑

j=1

(φj(b
′)− φj(b

∗
j) + φj(b)− φj(b

∗
j−1))(η

′
j − ηj)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2

k
∑

j=1

{(φj(b
′)− φj(b

∗
k)) +

k−1
∑

i=j

(φj(b
∗
i+1)− φj(b

∗
i ))

+ (φj(b)− φj(b
∗
0)) +

j−2
∑

i=0

(φj(b
∗
i )− φj(b

∗
i+1))}(η′j − ηj)

∣

∣

∣

∣

(81)
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≤ 1

2

k
∑

j=1

{|φj(b
′)− φj(b

∗
k)|+

k−1
∑

i=j

|φj(b
∗
i+1)− φj(b

∗
i )|

+ |φj(b)− φj(b
∗
0)|+

j−2
∑

i=0

|φj(b
∗
i )− φj(b

∗
i+1)|}(η′j − ηj).

Let us then estimate the different components of (81).

• First of all for a fixed j,

∣

∣

∣

∣

1

2
(φj(b

′)− φj(b
∗
k))(η

′
j − ηj)

∣

∣

∣

∣

=
1

2

|φj(b
′)− φj(b

∗
k)|

|τ ′ − τ ∗k |1/2
|τ ′ − τ ∗k |1/2|η′j − ηj |

≤ 1

2
υφj

(Cδ0 +Dδ20)|τ ′ − τ ∗k |1/2|η′j − ηj |.
(82)

Of course the function υφj
(δ) goes to 0 when δ goes to 0 again by the second

hypothesis.
We can estimate the last line of (82) from above by

(83)
1

4
(υφj

(δ)2|τ ′ − τ ∗k |+ |η′j − ηj |2).

If b and b′ become sufficiently close, then also b, b′, a become sufficiently close,
as well as b, b∗k. In other words, for every ε > 0, there exists δε,j > 0 such
that if δ ∈ (0, δε,j] , υφj

(δ)2 ≤ ε, then, when δ0 < δε,j is small enough, we can
estimate (83) from above by

1

4
(ε|τ ′ − τ ∗k |+ |η′j − ηj |2) ≤

1

4
ε|τ ′ − τ ∗k |+ const (ρφ(b, b

′))2.

For instance, we can fix ε = 2, and if we take δ small enough, we can carry
this contribute to the left hand side of (81).

• We can now consider for any fixed j

1

2
|(φj(b)− φj(b

∗
0))(η

′
j − ηj)| =

1

2
|η′j − ηj||φj(b)− φj(b

∗
0)|

=
1

2
|η′j − ηj|

n
∑

j=k+1

(|v′j − vj |(ωi,j(a) + o(1))

+ |w′
j − wj|(ωi,n+j(a) + o(1)))

≤ 1

2
c2|η′j − ηj||(v′ − v, w′ − w)|

≤ 1

2
c2|η′ − η||(v′ − v, w′ − w)|

≤ 1

4
c2|η′ − η|2 + 1

4
|(v′ − v, , w′ − w)|2

≤ C2(ρφ(b, b
′))2.
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• Let us now fix j ∈ {k + 1, . . . , n} and i ∈ {0, . . . , j − 1, j + 1, . . . , k − 1} and
we want to estimate

∣

∣

∣

∣

1

2
(φj(b

∗
i+1)− φj(b

∗
i ))(η

′
j − ηj)

∣

∣

∣

∣

=
1

2
|φj(expa((η

′
i+1 − ηi+1)∇φi+1)(b∗i ))− φj(b

∗
i )||η′j − ηj |

=
1

2

∣

∣

∣

∣

ˆ η′i+1−ηi+1

0

ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i )) dr

∣

∣

∣

∣

|η′j − ηj |

≤ 1

2

∣

∣

∣

∣

ˆ η′i+1−ηn+1

0

ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i ) dr

∣

∣

∣

∣

|η′j − ηj|

+ |ωj,i+1+(n−k)(b
∗
i )||η′i+1 − ηi+1||η′j − ηj |

≤ 1

2

(

sup
s∈[0,η′i+1−ηi+1]

|ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i )|

+ |ωj,i+1+(n−k)(b
∗
i )|
)

|η′i+1 − ηi+1||η′j − ηj |

≤ 1

4

(

|η′i+1 − ηi+1|2 + |η′j − ηj |2
)

·
(

sup
s∈[0,η′i+1−ηi+1]

|ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i )|

+ |ωj,i+1+(n−k)(b
∗
i )|
)

≤ C3(ρφ(b, b
′))2(o(1) + ωj,i+1+(n−k)(b

∗
i )) as δ0 → 0.

Combining the three estimates we obtained with equation (81), we finally get
(76) and so the thesis. �

We are now ready to prove the first equivalence. About (ii) of the following
proposition, one has to refer to the remark we made about (ii) of Theorem 1.3 in the
introduction.

Proposition 5.4. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
continuous function. Then the following statements are equivalent:

(i) φ is uniformly intrinsic differentiable on Ω;
(ii) there exists a family {φε}0<ε<ε0 ⊂ C1(Ω,Rk) and a continuous matrix valued

function M ∈ C0(Ω,Mk,2n−k(R)) such that for any open set Ω′ ⋐ Ω,

φε → φ, Jφεφε → M

uniformly on Ω′ as ε goes to zero.

Proof. Since Propositions 4.1, 4.4 and 4.9 and Theorem 5.3 hold, the proof is
identical to the one of [1, Theorem 5.1]. �

Theorem 5.5. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
function. We define S := graph(φ). Then the following are equivalent:

(i) φ is uniformly intrinsic differentiable on Ω;



Intrinsic regular surfaces of low codimension in Heisenberg groups 117

(ii) φ ∈ C0(Ω) and for every a ∈ Ω there exist ∂φjφ(a) for j = 1, . . . 2n − k, the
functions

∂φjφ : Ω → R
k,

are continuous, and ∀ Ω′ ⋐ Ω,

(84) lim
r→0+

sup

{ |φ(b)− φ(b′)|
|b− b′|1/2 : b, b′ ∈ Ω′, 0 < |b′ − b| ≤ r

}

= 0

(iii) φ is intrinsic differentiable on Ω, the map Jφφ : Ω → Mk,2n−k(R) is continuous
and ∀ Ω′

⋐ Ω

lim
r→0+

sup

{ |φ(b)− φ(b′)|
|b− b′|1/2 : b, b′ ∈ Ω′, 0 < |b′ − b| ≤ r

}

= 0.

(iv) there are U open in H
n and f ∈ C1

H
(U ;Rk) such that S = {p ∈ U : f(p) = 0},

det([Xifj]i,j=1,...,k(p)) 6= 0, for all p ∈ S.

Proof. (i) ⇐⇒ (iv) Is exactly the content of Theorem 3.5.
(i) =⇒ (iii) Follows by Proposition 3.4 and by Propositions 4.9 and 5.4 combined

through a compactness argument.
(iii) =⇒ (ii) The map φ is continuous since it is intrinsic differentiable (see [10,

Proposition 3.2.3]). The condition on all the curves follows by Proposition 4.6. In
particular, the fact that φ is intrinsic differentiable at any a ∈ Ω implies that there
exists the derivative of φ evaluated on every curve of W φ

j with initial point a (more

precisely, the derivatives of the component φi along the integral curve of W φ
j ). This

derivative is the same for every curve and it equals the j-th column of the matrix
of the intrinsic Jacobian matrix Jφφ(a) (see Proposition 4.6 and Corollary 4.8). Its
continuity follows from the fact that we assumed Jφφ to be continuous with respect
to a.

(ii) =⇒ (i) Is a very simple adaptation of the proof of Theorem 5.3. Basically
for any point b in any neighbourhood Iδ(a) ⋐ Ω of a ∈ Ω, there exists at least one

integral curve of the vector field W φ
j , j ∈ {1, . . . , 2n − k} starting at b on which

we can use the chain rule (28). In fact, since we can do this on all the curves by
hypothesis, we can choose, for every starting point b, an arbitrary curve that will
play the role of the expa( ·W φ

j )(b) (j = 1, . . . , 2n − k) and use it in order to apply
Theorem 5.3. In particular, since Ω is open, once we fix a ∈ Ω, we can find δ1 > 0
such that Iδ1(a) ⋐ Ω. Hence one can choose 0 < δ3 < 1

2
δ1 such that for every point

b ∈ Iδ2(a), the integral curves starting at b ∈ Iδ3(a) exist on a common interval of
time [−δ2, δ2] for δ2 > 0 appropriately small (how much small will depends on δ3,
surely δ2 ≤ δ3). Hence, any integral curve starting at b ∈ Iδ2(a) exists at least for an
interval of time [−δ2, δ2]. �

Remark 5.6. The equivalence (iv) ⇐⇒ ((ii) + (iii)) has already been proved
by Kozhevnikov in his PhD thesis (see [18, Theorem 4.3.1]), in the more general
context of low codimensional regular surfaces in a generic Carnot group. We have
inserted here our proof which is more direct. In this work, we also prove that (ii)
and (iii) are independentely equivalent for surfaces in H

n. Moreover, taking into
account Di Donato’s results, we manage to explicitely relate results in [18], to the
notions of intrinsic differentiability and uniform intrinsic differentiability, on which
many authors have worked (as examples [1, 7, 10, 12, 16]).

Moreover, by applying Proposition 4.11, we obtain a stronger result.
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Theorem 5.7. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
function. We define S := graph(φ). Then the following are equivalent:

(i) φ is uniformly intrinsic differentiable on Ω;
(ii) φ ∈ C0(Ω), for every a ∈ Ω there exist ∂φjφ(a) for j = 1, . . . 2n − k and the

functions

∂φjφ : Ω → R
k,

are continuous.
(iii) φ is intrinsic differentiable on Ω and the map Jφφ : Ω → Mk,2n−k(R) is con-

tinuous.
(iv) There are U ⊆ H

n open and f = (f1, · · · , fk) ∈ C1
H
(U ;Rk) such that S =

{p ∈ U : f(p) = 0}, det([Xifj ]i,j=1,...,k(p)) 6= 0, for all p ∈ S.

Proof. The proof is analogous to the one of Theorem 5.5: by taking into account
Proposition 4.11 we can simplify the hypothesis. In particular, if φ is uniformly
intrinsic differentiable, φ is intrinsic differentiable and its intrinsic Jacobian matrix
is a continuous function. Hence, φ is differentiable on every integral curve γj of W φ

j ,

and for every i = 1, . . . , k, j = 1, . . . , 2n− k, d
dt
φi(γ

j(t)) equals [Jφφ]ij(γ
j(t)), which

is continuous; hence φ ◦ γj is C1, then Proposition 4.11 tells us that φ satisfies the
condition of 1

2
-little-Hölder continuity in (84) so we can finally conclude by applying

Theorem 5.3. �

6. Area formula

It is possible to compute the area of H-regular surfaces of codimension 1 ≤ k ≤ n
in H

n in terms of intrinsic derivatives of their parametrizations.
We fix a setting that is not restrictive, in fact there is no loss of generality by

Theorem 3.5, Remark 2.23 and Remark 2.1. Let us consider again

M := exp(span(Xk+1, . . . , Xn, Y1, . . . , Yn, T )), H := exp(span(X1, . . . , Xk)).

Consider any H-regular surface of codimension k, 1 ≤ k ≤ n; by Theorem 2.22,
it can be locally parametrized by a unique uniformly intrinsic differentiable function

φ : Ω ⊂ R
2n+1−k → R

k

(see also Remark 2.23).
We can then focus on computing the area of the intrinsic graph of φ

S = graph(φ) = {m · φ(m) | m ∈ Ω} = {Φ(m) | m ∈ Ω}.
In fact, if we are able to do this, by an elementary covering argument we will be able
to compute the area of any low codimensional H-regular surface.

According to Theorem 3.5, we know that there exist an open set U of Hn, with
Φ(Ω) ⊂ U , and a function f ∈ C1

H
(U,Rk) such that S = {p ∈ U : f(p) = 0}

and such that det(([Xifj]i,j=1,...,k(p)) 6= 0 for all p ∈ S. Let us introduce ∆(p) :=
| det([Xjfi]i,j=1,...,k(p))| > 0 for all point p in S. Moreover, from the proof of Theo-
rem 3.5 we can choose f such that

(85) f ◦ Φ = 0 on Ω and JHf(Φ(m)) =
(

Ik | −Jφφ
)

(m) ∀m ∈ Ω

(for more details see also the proof of [9, Theorem 4.1]). Hence, by the choice of f in
(85), and by results in Theorem 5.7, it turns out that the horizontal Jacobian matrix
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of f for every m ∈ Ω is given by

(86) JHf(Φ(m)) =





1 . . . 0 −∂φ1φ1 . . . −∂φ2n−kφ1

. . . . . . . . . . . . . . . . . .
0 . . . 1 −∂φ1φk . . . −∂φ2n−kφk



 (m).

From the form of the matrix it is clear that ∆(Φ(m)) = 1 for every m ∈ Ω.
We recall a result proved combining Theorem 4.1 from [15] and results in [17]

(for the precise statement see [28, Theorem 4.50]).
Let Ω ⊂ R

2n+1−k be an open set and let φ : Ω → R
k be a uniformly intrinsic

differentiable function and consider its intrinsic graph S = {m·φ(m) |m ∈ Ω}. Let us
consider U ⊂ H

n an open set and f ∈ C1
H
(U,Rk) such that S = {p ∈ U | f(p) = 0}

and det([Xifj ]i,j=1,...,k)(p) 6= 0 for every p ∈ S. Then, the (2n + 2 − k)-centered
Hausdorff measure of the graph can be computed as

(87) C2n+2−k
∞ xS = Φ♯

( |∇Hf1 ∧ ∇Hf2 ∧ · · · ∧ ∇Hfk|
∆

◦ Φ
)

H2n+1−k
e xR

2n+1−k,

where Φ: Ω → H
n is the usual graph map. Hence, combining (85) with (87), it is

not difficult to convince ourself of the validity of the following result.

Theorem 6.1. Let Ω ⊂ R
2n+1−k be an open set and let φ : Ω → R

k be a
uniformly intrinsic differentiable function on Ω. If we call S := graph(φ), then for
every Borel set O ⊂ H

n,

(88) C2n+2−k
∞ (S ∩ O) =

ˆ

Ω∩Φ−1(O)

√

√

√

√1 +
k
∑

ℓ=1

∑

I∈Iℓ

AI(p)2 dH2n+1−k
e (p)

where

Iℓ := {(i1, . . . , iℓ, j1, . . . , jℓ)) ∈ N
2l | 1 ≤ i1 < i2 < · · · < iℓ ≤ 2n− k,

1 ≤ j1 < j2 · · · < jℓ ≤ k}
and

AI(p) = det





[Jφφ]j1,i1 . . . [Jφφ]j1,iℓ
. . . . . . . . .

[Jφφ]jℓ,i1 . . . [Jφφ]jℓ,iℓ



 (p) = det





∂φi1φj1 . . . ∂φiℓφj1

. . . . . . . . .
∂φi1φjℓ . . . ∂φiℓφjℓ



 (p).

Proof. We know by Theorem 5.7 that, since φ is a uniformly intrinsic differ-
entiable function, Jφφ is a continuous matrix-valued function on Ω, hence it makes
sense to integrate its components that coincide with the elements [Jφφ]ij = ∂φjφi.
By Theorem 3.5 we know that, given the uniformly intrinsic differentiable func-
tion φ, its intrinsic graph S is the zero-level set of a function f ∈ C1

H
such that

det([Xifj ](p)i,j=1,...,k) 6= 0 for p ∈ S, and we know that f can be chosen as in (85).
Now, the thesis can be directly obtained by computing the wedge product of the

horizontal sections corresponding to the rows of the matrix JHf(Φ(m)), by computing
the norm of our result and finally by rewriting equation (87). The result we obtain
is (88). The constant 1 in equation (88) stands for the determinant of the identity
matrix Ik (i.e. the coefficient of the k-vector X1∧ . . . ,∧Xk). Let us now focus on the
second addend in the square root of (88). The index ℓ in equation (88) highlights the
fact that we are computing the minor of a k×k sub-matrix of JHf(Φ(m)) composed
by choosing k−ℓ of the first k columns of JHf(Φ(m)) (the ones whose index does not
belong to {j1, . . . , jk}) while the other ℓ are chosen among the 2n − k last columns
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of JHf(Φ(m)). In this choice, we make sure that ℓ > 1. By the relationship between
JHf(Φ(m)) and Jφφ(m), given in (86), we obtain the result. �
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