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Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model 

organisms, and the consistency of genomic features found has led to a “textbook description,”  

but a more broad phylogenetic sampling of complete animal mitochondrial genomes has found 

many cases where these features do not exist, and the phylum Mollusca is especially replete 

with these exceptions. The characterization of full mollusc mitogenomes required considerable 

effort involving challenging molecular biology, but has created an enormous catalog of 

surprising deviations from that textbook description, including wide variation in size, radical 

genome rearrangements, gene duplications and losses, introduction of novel genes, and a 

complex system of inheritance dubbed “doubly uniparental inheritance”. Here we review the 

extraordinary variation in architecture, molecular functioning, and intergenerational transmission 

of molluscan mitochondrial genomes. Such features represent a great potential for the discovery 

of biological history, processes, and functions that are novel for animal mitochondrial genomes. 

This provides a model system for studying the evolution and the manifold roles that 

mitochondria play in organismal physiology, and the many ways that the study of mitochondrial 

genomes are useful for phylogeny and population biology.

Keywords
mitochondria, mollusc, genome, evolution, doubly uniparental inheritance

Page 3 of 46

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Introduction
In the 1980s, as DNA sequencing was becoming common, the fledglings of what we now call 

“genomics” were diminutive animal mitochondrial genomes. The first reports were of several 

vertebrates and model organisms, followed quickly by studies of their modes of replication, 

transcription, RNA processing, and other aspects of molecular biology [see 1]. The consistency 

of genomic features found and the expectation that these studies were characteristic of all 

mitochondrial genomes has led to a “textbook description” of mitochondrial genomes that 

includes a consistent size of about 16 kb, strictly maternal inheritance, a content of 37 genes 

(encoding 13 proteins, 2 rRNAs, and 22 tRNAs) compactly organized in a nearly invariant 

arrangement, a single large non-coding “control region” with signals for regulating replication 

and transcription, and transcription of a single polycistron from each strand that is processed by 

enzymatic removal of tRNAs into gene-specific (or, in the cases of nad4L-nad4 and/or atp8-

atp6, bicistronic) mRNAs. Secondary structures were sometimes inferred for regulatory signals 

or to compensate for lack of tRNA genes where necessary for enzymatically separating the 

adjacent gene-specific transcripts.

Clearly, understanding these features is important for interpreting the patterns of 

evolution of these genomes, but this touches also on many other issues, including interactions 

with the products of nuclear genes, energy generation, wide-ranging aspects of metabolism and 

physiology, stress tolerance, susceptibility to oxidative stress, aspects of ecology, patterns of 

inheritance, and population genomics. A more broad phylogenetic sampling of complete 

mitochondrial genomes now belies not only these general genomic features, but also makes 

clear that there is no potential for some of these functional molecular mechanisms.

Among bilaterian animals, the phylum Mollusca is especially replete with such examples. 

Due to their modest size and considerable phylogenetic information content both in gene 

sequences and arrangements, molluscan mitogenomes began to be studied in the early 1990s. 

Then, characterization of full mitogenomes required considerable effort involving challenging 

molecular biology including physical isolation of mtDNA, restriction enzyme mapping, cloning of 

large inserts, subcloning into a large number of separate plasmid vectors, and Sanger 

sequencing by directed primer walking, as evident from the first reports of molluscan 

mitogenomes from Mytilus edulis [Bivalvia: 2], Katharina tunicata [Polyplacophora: 3] and 

several Helicid gastropods [4–6], see Table 1. The revolutions in genome sequencing 

technology since have greatly accelerated these efforts, and we now have available more than 

1000 complete mitochondrial genome sequences from more than 700 species. This, plus a 
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modest amount of work to understand the biology of these genomes, has created an enormous 

catalog of surprising deviations from that textbook description, including wide variation in size, 

radical genome rearrangements, gene duplications and losses, introduction of novel genes, and 

a complex system of inheritance dubbed “doubly uniparental inheritance” (DUI). This creates 

great potential for the discovery of biological history, processes, and functions that are novel for 

animal mitochondrial genomes. Interestingly, expanded non-coding regions, variable repeat 

content, frequent gene rearrangements, and large numbers of ORFans, while uncommon in 

other animal lineages, are frequently observed in plants (Mower et al. 2012).

Genome Architecture
The first mollusc mitochondrial genome [2], sequenced nearly three decades ago with Klenow 

fragment of E. coli DNA polymerase on polyacrylamide gels, documented unprecedented 

genome architectural variation compared to other metazoans and presaged the amazing 

variation in mollusc mtDNA genome architecture that was soon to be discovered. Several major 

patterns of molluscan mitochondrial genome biology were largely present, if not fully 

understood, in that original Mytilus edulis mtDNA. This included, to wit, a dramatic departure in 

gene synteny from other invertebrate mitochondrial genomes, with all genes encoded on one 

strand, the presence of “doubly uniparental inheritance” (DUI), not recognized until 1994 [7,8], 

and the seemingly missing ATP Synthase gene atp8 (and the subsequent question of whether 

bivalves actually have it [9] or not [10]).

Extensive natural variation
Mollusc mitochondrial genomes vary widely in size. The smallest reported so far belong to the 

heterobranch gastropods at ~13.6-14.1 kb [see for example: 4,5,11–15] and the scaphopods 

[16,17]. These are only slightly larger than the smallest animal mitochondrial genomes [18], but 

still contain all 37 genes typical of metazoan mtDNAs, including 13 protein-coding genes, 22 

tRNAs, and two rRNAs, as well as a putative control region [11]. Not unexpectedly, these 

compact mitochondrial genomes feature high levels of overlapping gene boundaries. The 

largest mtDNAs come from the scallop Placopecten magellanicus [up to 42.0 kb, 19] and the 

Arcidae clams, with Scapharca broughtonii ranging [up to ~51.0 kb, 20] and a recent report 
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claiming that the S. kagoshimensis mitochondrial genome is ~56.2 kb in length [21]. The S. 

broughtonii mtDNA (and that of S. kagoshimensis, if verified) represents the largest animal 

mitochondrial genome yet recorded out of ~86,900 mtDNAs from >11,600 species present on 

NCBI. In both scallops and ark shells, the large genome sizes are not primarily a result of 

duplications or longer intergenic regions, but rather of expansion of the largest non-coding 

region [20,22], as is commonly the case for size variation in other mollusc mtDNAs (Figure 1). 

These bivalves are all exceptionally long-lived, especially the Arcidae, raising the question of 

whether long generation times affect the pace of evolutionary change in mitochondrial genome 

size, although other long-lived molluscs (e.g., abalone) do not share similar expansions of their 

mitochondrial genomes [23].

Molluscan mitochondrial genomes have substantial variation in nucleotide composition 

skew asymmetry [i.e., heavy vs. light strand, 24]. Strand asymmetry occurs when there are 

more purines (i.e., adenine and guanine) on one DNA strand than there are pyrimidines. The 

strand with more purines than pyrimidines is heavier and, therefore, moves farther along in 

cesium chloride density gradient centrifugation when separated than the complementary strand 

[25] and is therefore termed the heavy or ‘H’ strand, and the other the light or ‘L’ strand. This 

skew is thought to be caused by the bias in types of spontaneous mutations that occur in single-

stranded DNA ([i.e., heavy vs. light strand, 24]), a condition that occurs for the displaced strand 

during transcription or replication (see a characterization in [26], a process known to be 

unusually slow for mtDNA [27]. The degree of nucleotide skew is particularly large around the 

control region, as this region is found in single-stranded conformation more commonly than the 

rest of the molecule. There have been numerous reversals of strand asymmetry in molluscs 

[28], likely as a result of inversions in the control region, which contains one or both origins of 

replication [29,30].

Molluscs have experienced many changes in the transcriptional orientations (i.e., 

inversions) of genes, placing them variously on strands of differing nucleotide composition 

skews. For example, some taxa have all genes on one strand, e.g., all marine bivalves [e.g., 

scallops, oysters, and clams: 31,32,33] and all protein-coding genes of caenogastropods [34], 

while others do not, e.g., unionid mussels [35], heterobranchs [14], vetigastropods [36], 

cephalopods [37,38], scaphopods [16], aplacophorans [39, but see 40, in which all sequenced 

genes of the Spathoderm clenchi mtDNA are on the same strand], monoplacophorans [41], and 

polyplacophorans [3]. More generally, changes in genome architectures that alter transcriptional 

patterns across lineages are common and appear to be largely mediated by tRNA transposition 
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and inversion [14], as the secondary structures are hypothesized to form transcriptional barriers 

[42] and RNA cleavage signals [43].

Indeed, changes in the gene order are most common for tRNAs. Even families like 

Haliotidae that exhibit largely conserved synteny of the protein-coding genes exhibit variable 

tRNA locations [36]. Duplication of tRNAs appears to be a major contributor to mitochondrial 

genome rearrangement, as expected for the “duplication-random loss model,” with evidence 

that many molluscs contain extra tRNAs [20,e.g.: 31] beyond the minimal set of the 22 essential 

for accommodating the “super-wobble” of mitochondrial translation. Interpreting this pattern of 

tRNA translocations is complicated by cases of remoulding of tRNA anticodons, which occurs 

sporadically throughout molluscs [44–46] and otherwise [47]. The cases where a single amino 

acid is specified by two different codon families (serine and leucine) are especially susceptible 

to this because a switch of anticodons alone would be sufficient since these tRNAs would each 

have the necessary internal signals for charging with the correct amino acid [48,49]. 

Still, there has been a large number of rearrangements of the genes encoding proteins 

or rRNAs, often via tandem duplication [50–52] or large-scale inversions [e.g, vetigastropods: 

36,vs. caenogastropods: 53]. In contrast to Vertebrata and Arthropoda, in which gene 

arrangements have remained generally very stable, extensive gene order rearrangements have 

been documented in every major lineage within Mollusca, including caenogastropods [54], 

scaphopods [17], cephalopods [37], heterobranchs [55], bivalves [56,57], aplacophorans 

[39,40], polyplacophorans [58] and  monoplacophorans [41]. The extent of this variation has 

understandably added complexity to inferring ancestral gene order, as until recently many 

lineages were too lightly sampled to accurately infer evolutionary paths [see for example 59,vs. 

60,61].

Across animal life, in nearly all lineages, there has been strong selection to maintain the 

minimal set of 37 genes [but see 62]. With the possible exception of atp8 in bivalves [see 9,and 

10], the genes encoding proteins or rRNAs are seldom lost and duplicates are rarely maintained 

for long periods in molluscs [but see: 44,63,64], and molluscan mtDNAs rarely contain fewer 

than the necessary minimal set of 22 tRNAs [but see 65]. There has long been speculation 

about the selection pressures that are responsible for this [66], including suggestions that 

hydrophobic proteins cannot easily move across membranes, that these proteins may be 

destructive in the cytoplasm, or that there is value in regulating mitochondrial function with this 

genome that is a remnant of its prokaryotic ancestor [66–68].
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Additions to the mitochondrial genetic repertoire are uncommon but, here too, molluscs 

provide many of the exceptions. For example, lineage-specific open reading frames have been 

identified in bivalves that exhibit DUI [69], of which the male version in R. philippinarum was 

proposed to be virally derived [70]. Additionally, there is evidence of nuclear-derived genes 

inserting into the mitochondrial genome. For example, a novel ORF was discovered with no 

sequence- or domain-based homology to the rest of the mitochondrial genome of the pearl-lip 

oyster Pinctada maxima but has domain-based homology to the nuclear genome [71]. The 

mitochondrial genome of the Arcidae clam Tegillarca granosa contains 32 novel ORFs, none of 

which have any homology to the rest of the mitochondrial genome, and eight of which are 

predicted to have signal peptides, a hallmark of nuclear but not organellar genes [72].

Early studies of transcription and translation in mitochondrial systems showed cases 

where the adjacent gene pairs atp8-atp6 and nad4L-nad4 were not enzymatically separated as 

mRNAs [see more below and 73] and, instead, were separately translated into proteins by 

initiation on the ribosome sometimes at the beginning of this bicistron and other times at an 

internal codon [74–76]. Perhaps this is due to difficulties with translating the very small mRNAs 

from atp8 and nad4L. Early mitogenome sequencing revealed that these pairs were adjacent 

even in cases of more highly rearranged genes, suggesting this as a universal molecular 

process. But some molluscs do not have atp8-atp6 as adjacent [38,55,77,78] and others do not 

have nad4L-nad4 as adjacent [polyplacophorans: 3, heterobranchs: 14, scaphopods: 16,17, 

unionid mussels: 35,36, cephalopods: 37,38, aplacophorans: 39, monoplacophorans: 41, 

gastropods: 55], indicating that there must be other modes of translation and regulation.

Not only are gene rearrangements rampant in mollusc mitochondrial genomes, but even 

individual genes exhibit remarkable architectural variation. Perhaps most prominent among 

these is the splitting of the large ribosomal rRNA gene (rrnL) into two distinct genes in 

Crassostrea oysters [79]. The resulting transcripts do not appear to be spliced together into a 

single RNA, but the ribosome itself appears to be fully functional [80]. The partially duplicated 

rrnL and rrnS genes of the vermitid snail Thylacodes squamigerus mitochondrial genome bear a 

superficial resemblance to Crassostrea’s split rrnL, but the fragments appear to be 

pseudogenes [49]. 

Evidence for variation in genic architecture also comes from an intriguing case of 

apparently convergent evolution of the male-specific version of cox2 in bivalves exhibiting DUI 

(see more below). In Mytilidae, cox2 is extended at the 3’ end of the transcript [81], but in some 

Veneridae, cox2 has a male-specific insertion in the middle of the gene [78]. It is unclear 
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whether these cox2 modifications share similar functions, although the former was hypothesized 

to have a role in reproduction [82]. Finally, tRNAs are commonly found to have truncated D 

arms, especially in the heterobranchs [83], and there is even a case in which a tRNA has been 

inserted into nad5 [84]. These evident departures from the typical mode of intense purifying 

selection acting on mitochondrial genes likely represent lineage-specific mitochondrial 

adaptations and more work is required to understand their functional importance.

The largest non-coding region, inferred to perform the functions of the “control region” 

varies widely in location also; see, for example, its varying positions in Mytilus [2] versus 

scallops [85], squid [86,87], and caenogastropods [88]. And the content and structure of control 

regions are vastly different across the major molluscan lineages, with high rates of evolutionary 

turnover by novel tandem duplications, often of previously duplicated regions 

[19,37,50,72,89,90], transpositions, especially of tRNAs, into this region [20,31,72,91,92], and 

newly evolved simple sequence repeats such as poly(AT) tracts [93,94]. Together these primary 

sequence features share the ability to produce secondary structures including stem-loop 

[33,95], cloverleaf [55,83,96,97], and cruciform [88] structures in the control region, which in 

other organisms appear to be related to mtDNA replication and transcription [1,55].

Some control regions provide especially valuable insight into biology and evolution of 

mitochondrial genome architecture. For example, squid control regions harbour relics of 

tandemly triplicated whole mitochondrial genomes, followed by subsequent loss 

[60,63,86,87,98]. Heterobranchs have extremely short control regions, reflecting their compact 

mitochondrial genomes [11], while caenogastropods have control regions of variable length with 

an inverted repeat interspersed by a simple sequence repeat [53,88]. Control regions of 

mussels exhibiting DUI have lineage-specific, tripartite control regions consisting of two variable 

domains interspersed by a conserved domain [92]. Recombination between the F-type and M-

type control regions in which an F-type mtDNA acquires an M-type control region appears to 

coincide with the masculinization of F-type mtDNAs [91,99,100,101; see DUI section below for 

more details]. Thus, although control regions are often omitted in mitochondrial genome 

assemblies, generally because of technical difficulties in amplifying or sequencing these 

regions, those that have been sequenced provide rich sources of information for understanding 

evolution of mitochondrial genome architecture.
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Moving forward to understand the processes that contribute to 
variation in mitochondrial genome architecture
This rich phenomenological record described above makes for an ideal system in which to 

investigate the underlying molecular, genetic, and evolutionary mechanisms contributing to and 

maintaining variation in genome architecture. Based on this diversity, a few themes have 

emerged that warrant further investigation. First, tRNA-mediated changes in gene order have 

been observed across Metazoa [102]. It is hypothesized that at least part of this pattern results 

from accidental incorporation of tRNAs into the mtDNA when they moonlight as primers for DNA 

replication [47]. This hypothesis is attractive because it would also help explain why control 

regions often feature pseudo-tRNAs [e.g., scallops, oysters, and clams: 31,72,92] and other 

tRNA-like secondary structures [55,83,96,97,103]. Misincorporation of tRNAs might also 

contribute to the high rates of evolutionary turnover in the control region, as new tRNA 

incorporation events push older sequences out of the control region. Complicating our 

understanding of this process is the evolutionary histories of tRNAs, as tRNA remoulding can 

obscure tRNA evolutionary history (see above). Quantifying the extent of tRNA duplication and 

remoulding, as well as rates and patterns of control region turnover in molluscan mitochondrial 

genomes will provide valuable insight into tRNA-mediated genome architectural change.

Second, tandem duplication, which has been implicated in several molluscan genome 

rearrangements [e.g., 19,20,cephalopods: 37], can happen through a variety of mechanisms 

[104,105] including slipped-strand mispairing [106], imprecise termination of replication 

[107,108], dimerization [109], and illegitimate or non-homologous recombination between 

repeats [110,111]. Support for the role of tandem duplication in shaping mitochondrial genomes 

is undermined by the scarcity of animal mitochondrial genomes that harbour duplicated copies 

of protein-coding genes [112]. It may be that duplicates are lost quickly, perhaps responding to 

selection favouring the maintenance of cytonuclear stoichiometry [113]. Evaluating these 

various possibilities will require better population-level sampling, especially with the help of long-

read sequencing technologies like PacBio or Oxford Nanopore, which can help resolve tandem 

duplications [114,115].

Third, inversions are perhaps the most commonly retained form of structural 

rearrangements in molluscan mitochondrial genomes (see above paragraph on changes in 

transcriptional orientation). Inversions can arise via multiple double-stranded breaks or by 

inverted repeats [see 116 for description of inverted repeat mechanisms] in which one repeat is 

deleted, likely via recombination [117]. However, inversions would seem to have immediately 
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deleterious consequences for transcriptional control of mitochondrial genomes. There has been 

speculation of an “evolutionary ratchet,” whereby genes rearranging by inversions to be on a 

single strand would eliminate the selective pressure to maintain transcription of the other strand 

and, once lost, would make any further inversion of any gene immediately non-functional such 

that reversion to a state of genes on both strands would be highly unlikely [112]. Investigating 

mitochondrial transcriptional dynamics in closely related species (or M vs. F-type mtDNAs from 

the same species) that have inversions relative to one another might prove especially useful in 

understanding how inversions are able to persist longer than other types of mitochondrial 

genome rearrangements. How these inversions and subsequent changes in expression affect 

mitochondrial function and fitness will also be of broad interest to the mitochondrial community.

Fourth is the evident selective pressure for genome streamlining, both in terms of gene 

content and genome size. One of the more surprising observations of animal mitochondrial 

genomes is the degree to which genes overlap [95,112,118]. Overlapping mitochondrial ORFs 

often exhibit alternative reading frames [112], such that elongation of a gene via nonstop 

mutations may explain variation in the degree of gene overlap. Once genes do overlap, purifying 

selection is expected to be intense over the region, as mutations occurring in the overlap could 

have consequences for two separate genes. The greater degree of overlap between nad4 and 

nad6 in the M-type genome of Solenaia carinata compared to the F-type [95] raises the 

intriguing question of whether the increased intensity of selection engendered by gene overlap 

might compensate for the reduced efficacy of selection acting on male vs. female transmitted 

mtDNAs [119]. Comparing whether mitochondrial genomes with high vs. low Ne (for example, F-

type vs. M-type mtDNAs) have lesser degrees of genic overlap and reduced rates of deleterious 

mutation accumulation [120] would provide a powerful test of the forces contributing to genome 

streamlining of animal mitochondrial genomes.

Finally, the extent to which gene order can be used as an effective phylogenetic tool for 

molluscs [46,60,121,122] depends upon low-level taxonomic sampling to infer rates and 

patterns of structural evolutionary change. The availability of more than 1000 molluscan 

mitochondrial genomes from over 700 different species as of September 2020 has largely 

solved that problem, especially for the bivalves (456 mtDNAs from 261 species), gastropods 

(452 mtDNAs from 358 species), and cephalopods (142 mtDNAs from 60 species). Such gene 

order analyses should not only take advantage of changes in major gene synteny but also of 

tRNA movements and inversion events. Together, these five avenues for future research 

represent central open questions in the evolution of mitochondrial genome architecture and 
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should provide a framework for understanding how genome architecture contributes to 

mitochondrial function at molecular, cellular, and organismal levels.

Annotation Challenges
Considerable effort is required for annotation of the genes of molluscan mitogenomes. Most 

protein-encoding genes are easily identified with orthologs by sequencing similarity, with 

occasional consideration of hydrophobicity plots for atp8 and nad4L, but there are challenges 

with inferring the correct start codon in cases where there are multiple, closely-spaced 

alternatives. An inference must consider the possibility of overlap with the upstream gene and 

the extent of evolutionary conservation of the open reading frame. This is confounded by the 

fact that molluscs employ the invertebrate mitochondrial genetic code (NCBI Genetic Code 5) 

that allows for alternative start codons in addition to ATG, including ATA, ATY, TTG, and GTG 

(normally encoding for methionine, isoleucine, leucine, and valine, respectively). Each of these 

would provide a match to the second two nucleotides of the trnM anticodon (CAU), which must 

do double duty in most mitochondrial systems as the tRNA for both methionine and, in the case 

of protein initiation, formyl-methionine.

Ordinarily, inferring a stop codon for any gene is straightforward but, here too, 

mitochondrial genomes present a challenge. In many cases, mitochondrial genomes are 

transcribed as a single polycistronic RNA from each strand [see 123]. The tRNA genes are then 

removed enzymatically, which liberates gene-specific mRNAs as proposed in the “punctuation 

model” [43]. In the case of overlapping atp8-atp6 and of nad4L-nad4, these have been shown 

for yeast [73], fish [124] and mammals [125] to remain as bicistrons that are translated on 

mitochondrial ribosomes, sometimes from the first codon and sometimes from an internal codon 

that initiates the second gene. In some other cases of adjacent protein-encoding genes without 

an intervening tRNA, there are potential secondary structures that have been speculated to 

serve this function [3, for example]. In many other cases, it remains unknown if these mRNAs 

are separated or not. The specific challenge for gene annotation from genome sequence is that 

after enzymatic processing to produce gene-specific messages, some will not have a complete 

TAG or TAA stop codon, but may terminate on just a TA or T that is completed to a TAA stop 

codon by polyadenylation of the transcript [126]. Additionally, it is important to consider that 

some genes are known to overlap, even when on the same strand, further complicating an 

accurate inference of the correct stop codon from genome data alone.
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Of course, there are some cases where these features can be directly observed through 

the sequencing of expressed sequence tags (ESTs) [13], providing the sequences of the full 

transcripts from which the genomic boundaries can be reliably determined. This has presented 

some surprises. For example, ORF analysis had predicted that nad4 of the gastropod 

Biomphalaria glabrata mitogenome (NC_005439) was unusually long, fully overlapping with 

trnT, in contrast with the reported genes in the gastropods Cepaea nemoralis (NC_001816) and 

Albinaria caerulea  (NC_001761). Independently determined EST data (AA547758) showed the 

cDNA for the C-terminus of nad4 to end before the downstream trnT gene, more consistent with 

those of the other gastropods, and to terminate on a single T nucleotide that was extended by 

polyadenylation to form a TAA stop codon [13].

Based on genome sequence alone, inferring the exact boundaries of rRNA genes is 

especially difficult. In fact, in most cases, there is simply the presumption that the rRNA gene 

extends to the boundary of the flanking genes, with this moderated by the extent of similarity 

matching to homologous genes of other organisms.

The genes for tRNAs diverge in sequence rapidly and are most commonly found by 

identifying potential secondary structures with a set of typical features [127–129]. Some 

lineages are known to have aberrant structures with some of the arms diminished or even 

missing, complicating this inference.

The rise of next-generation sequencing has been a game-changer for the pace of 

generating complete mitogenome sequences. These methods generate an enormous number of 

short sequencing reads, leading to an increased reliance on computational methods for 

automated genome assembly. Among several alternative software packages that aim to 

assemble NGS data into large contigs, MITObim was specially designed for the assembly of 

mitogenomes [129], as well as other tools that were released more recently [130–132]. Using a 

provided mitochondrial genome or even a short (partial) gene sequence as initial reference to 

identify sequence data of likely mitogenome origin, this program applies a strategy of BLAST 

and iterative mapping to select and assemble short reads from a large NGS dataset that 

provides adequate coverage into a linear representation of a mitogenome. Overlapping, 

identical sequence termini indicate that the assembly represents the full circular mitogenome. It 

is worth noting that reliance on computational interpretation of short sequence reads may 

potentially cause problems in assembling repetitive elements, such as the control region and 

unsuspected repetitive elements like tandem duplications or repeat regions, that may be 

resolved only by manual, targeted sequence characterization.  
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With such relative ease to derive the genome sequences, there is a greater demand for 

automated annotation. This need was recognized early on by the implementation of semi-

automated annotation of genomes of organelles from mitochondria (and plant chloroplasts) 

through DOGMA (Dual Organellar GenoMe Annotator) that provided predictions of protein- and 

rRNA-encoding genes through BLAST similarities to previously annotated mitochondrial 

genomes [133] and provided tools for manually refining the beginning and end of each gene. 

The identification of tRNA genes employed secondary structure predictions because 

mitochondrial tRNA sequences share little sequence similarity among animals. Generally, 

computational predictions were further hindered due to the aberrant structure of several 

molluscan tRNAs that do not conform to the canonical cloverleaf of animal tRNAs, and typically 

required manual validation [6]. Current utilities include AGORA [prediction of PCGs in a 

mitogenome assembly based on BLAST similarities to a reference mitogenome; 134], MitoZ 

[130–132] and MITOS [135]. The latter software performs de novo annotation of protein-

encoding genes by sequence similarity and secondary structure predictions of both rRNA and 

tRNA. MITOS reports annotation results in the standardized format that supports the accepted, 

consistent nomenclature of mitochondrial genes. Updates (MITOS2 is available at 

http://mitos2.bioinf.uni-leipzig.de/index.py) have improved the prediction accuracy but the 

results still require manual curation.

Alternative start codons, potential for incomplete stop codons, and molluscan-specific 

tRNA structures continue to challenge automated annotation. Some possible challenges for 

annotation are shown in Figure 2, using atp8 from gastropod mitogenomes as an example. atp8 

is the shortest protein-coding gene in mitogenomes and relatively variable among gastropod 

species, often not detected by BLAST and thus also not recognized by MITOS. Additionally, 

atp8 of several gastropod species employs an alternative start codon, like ATT that normally 

encodes for an I (isoleucine), serving as start codon (specifying formyl-methionine) only at the 

initiation of protein translation. Automated gene finding, and inexperienced annotators may fail 

to recognize ATT as a true start, choosing an upstream M-encoding nucleotide (ATG or ATA), 

even if part of a different gene as an incorrect start codon. As a consequence, annotation of 

atp8 often requires manual inspection and comparison to atp8 from several species (Figure 2).

A recent paper by Fourdrilis et al. [136] provides a powerful set of criteria to integrate 

with automated MITOS prediction for correct annotation of gastropod (molluscan) mitogenomes. 

These criteria include the valid insights into molluscan mitochondrial biology, including the 

punctuation model, as well as alternative start and stop codons. We summarize these criteria 
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below: 1) Protein-encoding genes are assumed to begin at the first eligible in-frame start codon 

in their 5′ end, that is, the start codon nearest to the preceding gene without overlapping with it, 

checking that this start codon is suitable regarding location and gene length by aligning the 

derived amino acid sequence with that of closely related species; 2) Due to transcription of 

mtDNA as polycistronic RNA, it is considered physically impossible to have gene overlap 

between two protein-encoding genes encoded on the same strand and in the same open 

reading frame, but possible if frames are different; 3) Protein-encoding genes are assumed to 

end at the first in-frame full stop codon, or an abbreviated stop codon (TA- or T-- in 

invertebrates) ending immediately before the downstream tRNA. Such an abbreviated codon 

results from the cleavage of the transcript at the 5′ and 3′ ends of tRNAs and tRNA-like 

secondary structures, and is subsequently completed to a TAA stop codon with A residues by 

polyadenylation; 4) Putatively duplicated genes are evaluated based on quality values provided 

in the MITOS analysis; 5) The boundaries of tRNA genes are those predicted by MITOS; 6) The 

boundaries of rRNA genes were those predicted by MITOS and not extended to flanking genes 

to avoid overestimating rRNA gene length.

Despite these software packages for assistance and the attention of the scientific 

community, the entries for mitochondrial genomes at NCBI contain a great number of easily 

recognized annotation errors even in the “Refseq” portion. Despite having this pointed out over 

a decade ago with specific, simple recommendations for systematically eliminating these and 

conducting quality control for new entries [26], a recent study identified a great number of errors 

in a systematic search of complete vertebrate mitochondrial genomes at NCBI [137]. To the 

best of our knowledge, no such systematic study has been made of annotations for complete 

mollusc mitogenomes, but there is no reason to suspect that they are immune from similar 

errors during submission or NCBI review [e.g., 136]. Consistent, accurate, complete annotation 

of these genomes is critical for comparative and phylogenetic studies. We urge NCBI to 

implement these simple quality control measures.

Inheritance: DUI in bivalves
Mitochondrial genomes follow a non-Mendelian inheritance pattern of being transmitted 

uniparentally in most eukaryotes; in animals, mitochondrial inheritance is usually strictly 

maternal (from now on: strictly maternal inheritance, SMI) [138,139]. Perhaps the most striking 

feature of mollusc mitochondrial biology is the Doubly Uniparental Inheritance (DUI), a unique 
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inheritance pattern so far reported in 100+ species of bivalves [140]. In species showing DUI, 

two sex-linked mitochondrial lineages exist: one is inherited through eggs (F-type) the other 

through sperm (M-type). Differently from the cases of paternal mtDNA leakage reported in 

several organisms [141], in DUI the sperm transmission route is stable across evolutionary time, 

so the F- and M-type coexist as segregated lineages for millions of years accumulating a 

remarkable sequence divergence. The F-M nucleotide p-distance ranges from 0.08 to 0.449, 

and the amino acid p-distance of mitochondrial protein-coding genes can reach 0.534 [140].

The dynamics and distribution of F- and M-type in embryos and tissues were firstly 

investigated in bivalves of the Mytilus species complex, in which DUI was observed for the first 

time [reviewed in 142]. Particularly interesting was the finding that in early embryos (2-8 

blastomeres) sperm mitochondria stained with MitoTracker Green showed two different 

distribution patterns: dispersed vs. aggregate. The authors were also able to show a strong link 

between the pattern and the sex of the progeny: females were associated with the dispersed 

pattern, males with the aggregated one [143,144]. These observations, together with the results 

of several molecular works, were used to build a first description of the mitochondrial dynamics 

in DUI, summarized below. Gametes are homoplasmic for the sex-specific type (F-type in eggs, 

M-type in spermatozoa), so upon fertilization the zygote is heteroplasmic and the fate of sperm 

mitochondria is tightly linked with sex. If the embryo develops into a female, the M-type 

mitochondria are dispersed and actively degraded as happens in some species showing SMI 

[145], and the animal will be homoplasmic for the F-type. Otherwise, if the embryo develops into 

a male, sperm mitochondria stay aggregated, as they already are in the midpiece of sperm 

cells, and are transported into the blastomere 4d, the precursor of the germline, and survive 

degradation; males are thus heteroplasmic, containing M-type in the germline and F-type in the 

somatic tissues.

The main points of this model are: 1) homoplasmy of females due to degradation of M-

type; 2) heteroplasmy of males with retention of M-type due to the active segregation of sperm 

mitochondria aggregated in gonad precursors, but not in somatic tissues. A replicative 

advantage of M-type in males was also hypothesized, to explain its proliferation in 

spermatogenic tissues [144]. This is still the most commonly used description of the DUI 

mechanism, but some revisions have become necessary. The existence of the two patterns was 

confirmed in a distantly related species (divergence time 400+ Mya), the venerid clam 

Ruditapes philippinarum [146], but as new data were gathered and new species analyzed, 

evidence of deviations from the mechanism as described above started emerging. The 
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presence of M-type in male somatic tissues is now known to occur in R. philippinarum [147], 

Venustaconcha ellipsiformis and Utterbackia peninsularis [148], and in Mytilus galloprovincialis 

[149,150]. 

These works showed also that heteroplasmy is more common than previously thought in 

both males and females of DUI species, and that the presence, abundance, and distribution of 

the F- and M-types is quite variable across species, sexes, and tissues. Such differences should 

be expected when dealing with a quantitative phenomenon like mitochondrial inheritance [138], 

especially across large evolutionary distances. Recently, immunohistochemistry and microscopy 

(both confocal and electronic) investigations on R. philippinarum showed the presence of 

heteroplasmy at the organelle level (both types present in the same mitochondrion) in male 

soma and, quite surprisingly, in undifferentiated germ cells of both sexes, while homoplasmy in 

both female and male gametes was confirmed [151]. According to these observations, the strict 

segregation of F-and M-type in gametes would be achieved during gametogenesis—thus much 

later in development than hypothesized before—and it was suggested that DUI is based on a 

mechanism of meiotic drive involving selfish genetic elements associated with mitochondria 

[151,152].

DUI molecular mechanism

Hybrid and triploid DUI mussels have been shown to revert to SMI [153] and the taxonomic 

distribution of DUI species is scattered across bivalve phylogeny, so DUI must have evolved by 

the modification of a mechanism of SMI, but which one? There are several different 

mechanisms by which SMI can be achieved [145,154], but that operating in bivalves is still 

unknown. Similarly to what happens in mammals, it was hypothesized that ubiquitination could 

be involved [155] and the results of some investigations seem to be consistent with such 

supposition [156–159]. A possible approach to understand which molecular mechanism is 

involved in DUI is to look at the differences between F- and M-type genomes, and numerous 

works have investigated this issue in the last 25 years. The main findings can be summarized 

as follows. 

First, bivalve mtDNA shows an abundance of intergenic regions—or at least regions not 

containing known genes—and the largest are rich in genetic elements such as repeats, motifs, 

and DNA/RNA secondary structures which differ between conspecific F and M genomes in DUI 

species [see for example: 92,160–163]. A strong clue supporting a role of control region 
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elements in DUI comes from observations in the Mytilus complex. Several analyses on F- and 

M-type mtDNAs in Mytilus edulis, M. galloprovincialis, and M. trossulus revealed the presence in 

male gonads of genomes having their coding sequences almost identical to those of the F 

genome (2-3% divergence). It was hypothesized that these genomes originated from F 

genomes that invaded the male germline and started to be transmitted through sperm, replacing 

the M-type and accumulating sequence divergence (which is initially reset to zero when the F-

type replaces the M-type). This phenomenon was named “role-reversal” or “masculinization” 

[reviewed thoroughly in 142], and the aberrant F genomes transmitted through sperm have 

been defined as “masculinized”. Following studies found that the control regions of masculinized 

genomes contained parts of both the typical F- and M-type mtDNAs, being actually F/M 

chimaeras. Role-reversal has been observed, so far, only in the Mytilus complex. These findings 

strongly suggest that some elements located in the control region or its proximity have a role in 

the inheritance mechanism. The identity and the nature of these elements are still unknown and 

several candidates have been proposed, including DNA and/or RNA secondary structures 

[161,164], specific sequences/motifs [165], or peptides encoded by open reading frames 

(ORFs) located near the control region (see second point below).

The second feature that differentiates F and M genomes is the presence of lineage-

specific ORFs showing no sequence similarity with known genes, and thus defined “ORFans” 

[69,70,140,152,164,166–169]. In some cases, a protein product of these ORFans has been 

detected and localized [70,151,170], but their function remains unknown despite extensive in 

silico analyses [70,152,167–169]. Such bioinformatics work has shown that despite high 

evolutionary rates and large sequence divergences, all the analyzed ORFans have similar 

predicted structural features, supporting a similar function. The involvement of the ORFans in 

the DUI mechanism is still a hypothesis and their mechanism of action is an object of 

speculation, but it is clear that these elements are maintained in bivalve genomes and some 

surely produce a novel mitochondrial protein. It would be surprising if these elements will turn 

out to be nonfunctional.

Third, the cytochrome c oxidase subunit 2 gene (cox2) shows curious features in 

bivalves, and in several DUI species, there are important differences between the F-type and M-

type cox2 gene (see also the Genome Architecture section above). The cox2 gene is duplicated 

in the F-type of R. philippinarum [164] and the M-type of Musculista senhousia [160], with 

paralogous copies showing different length. In some other cases, cox2 has a different length in 

the two mtDNAs, due either to 3’ coding extensions (550 bp) or big in-frame insertions (up to 3.5 
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Kb) [140]. It is still not clear if such modifications of cox2 are linked to DUI for some functional 

reason, or are a more general feature of bivalve mtDNAs, maybe due to modifications in 

Complex IV of oxidative phosphorylation.

The fourth and last feature characterizing the differences between the two mitochondrial 

lineages concerns small non-coding RNAs (sncRNAs). Pozzi et al. [171] sequenced sncRNA 

libraries from gonads of R. philippinarum, and found miRNA-like sequences transcribed by 

intergenic regions for which a stable hairpin structure was predicted. In silico analyses showed 

that F and M genomes produce different mitochondrial sncRNAs with different nuclear targets. 

The authors hypothesized that such sncRNAs might affect nuclear gene expression through 

RNA interference and might influence gonad formation. More recently Passamonti et al. [172] 

reported in vivo clues of the activity of two sncRNAs in R. philippinarum. Small mitochondrial 

RNAs have been so far predicted in silico also in several species of amniotes [173], and in 

Drosophila melanogaster, Danio rerio, and Mus musculus [172].

MtDNA evolutionary patterns in DUI

It is still unclear how DUI emerged and why it has been maintained for hundreds of millions of 

years. Traits that last so long in evolution are usually maintained by natural selection because 

they have a function that affects organismal fitness. For this reason, and given the tight link 

between mitochondrial inheritance pattern and sex in DUI species, it was hypothesized that DUI 

has a role in sex determination and/or gonad differentiation [142,152,156,158,170,174–177].

Studies on the patterns of molecular evolution of mitochondrial proteins in DUI bivalves 

clearly show that M-type evolves faster than F-type and both mtDNAs evolve faster than the 

mitochondrial genomes of other metazoans [142,174]. The reasons behind this pattern are the 

subject of debate. Relaxed selection is one possible explanation; Stewart et al. [178] suggested 

that F- and M-type mtDNAs evolve under different degrees of selective constraints as a 

consequence of different “selective arenas”. Supposing that F-type mtDNA is functional in all 

somatic tissues and female germline, while M-type functions only in the male germline, F-type 

would be subject to more stringent constraints, hence the faster sequence evolution of M-type. 

However, the more recent findings about F- and M-type distribution across tissues (discussed 

above), and the findings of M-type transcriptional activity in the soma [148,179], may suggest 

that the above-mentioned arenas of function are not that distinct. Moreover, even if M-type 

mitochondria are functional only in the male germline, they have a crucial function of providing 
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energy for sperm swimming. This is a fundamental function, especially in a broadcast spawning 

animal, and the relaxation of natural selection on such a trait could have long term 

consequences on DUI species. Many DUI species are quite successful; for example, Ruditapes 

philippinarum is highly invasive, and Arctica islandica [in which DUI was reported, see 180] is 

the longest-living non-colonial animal known (maximum reported lifespan ~507 years), so it 

seems that DUI is not manifestly disadvantageous.

A high-throughput analysis of mtDNA SNPs in F- and M-type of R. philippinarum [164] 

revealed a similar amount of polymorphism in the two genomes, but a different distribution of 

allele frequencies (probably due to different bottleneck sizes), and the M-type having a lower 

proportion of SNPs with a predicted deleterious effect. According to these data, the faster 

evolution of M-type is likely due to the roles of mitochondria in spermatogenesis and sperm 

motility, the latter being especially important in the intense sperm competition of an animal using 

broadcast fertilization. Indeed, one interesting feature of DUI is that mtDNA is under selection 

also for male functions, differently from what happens in all the SMI organisms, in which 

mitochondria are an evolutionary dead-end in males. This opens a series of interesting 

consequences and deserves thorough investigations. Recently, two comparative analyses of 

OXPHOS activity in gametes and somatic tissues of SMI and DUI bivalves reported a metabolic 

remodeling in M-type mitochondria that suggests an adaptive value of mtDNA variation, and a 

link between male-energetic adaptation, fertilization success, and the preservation of paternally-

inherited mitochondria [181,182].

DUI is generally unknown or considered just a “freak of nature”, but it represents a 

unique and precious model to study mitochondrial biology and evolution. Thanks to its unusual 

features, it can be used as a tool to better understand mitochondrial heteroplasmy, inheritance, 

recombination, and the role of mitochondria in germline formation, meiosis, gametogenesis, and 

fertilization, in some cases providing the exceptions that address general phenomena in other 

animal groups. Up to now, DUI has not been found outside bivalves, but, to the best of our 

knowledge, it has been specifically investigated in just five gastropod species [183].
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The utility and limitations of mitochondrial genomes 
for phylogeny
During the last three decades, mitochondrial markers, either individually, combined, or as a 

whole, have been commonly used for phylogenetic reconstruction within Metazoa [97,184–186]. 

This preference is due to several features that make mitochondrial sequences a well-suited and 

reliable molecular marker for phylogenetic assessment. Firstly, all Metazoa [except some 

Loricifera, see 187] possess a mitochondrial genome that can be obtained with relative ease 

compared with any particular genome region of similar size due to its high abundance and copy 

numbers within animal cells [97,184]. Secondly, gene orthology, essential for a successful 

phylogenetic assessment, is expected in the mitogenome, since genes from eventual 

duplication events, shown to occur in molluscan mtDNA, are rarely retained, and quickly lost or 

pseudogenized [97,184,186]. Furthermore, uniparental inheritance (see exception in bivalves in 

the DUI section above) and a general lack of recombination [188] greatly favour the reliable 

inference of population structure. The variable substitution rates within the different 

genes/regions of the mitogenome grant a range of phylogenetic signals that might potentially be 

useful for accessing shallow and deep relationships [97,184,186]. Mitogenomes also possess 

several structural features that, when thoroughly studied, can be phylogenetically informative, 

such as genome size, gene arrangement, and content [121], as well as the presence and 

composition of non-coding regions and repetitive sequences and even RNA secondary 

structures [184,186]. 

Despite the overall unarguable utility of mitogenomes for phylogenetic assessments, 

several limitations may affect their reliability for the same purposes. By being an “independent 

genetic unity”, that is usually uniparentally inherited with very little recombination, the 

mitogenome as a whole is itself a single locus that reflects the evolutionary history of the 

mitochondria, which for several reasons may not be the same as the species evolutionary 

history [e.g., due to introgression and gender-biased reproductive dispersal: 186]. Furthermore, 

the presence of non-functional nuclear copies of mitochondrial sequences (numts) may lead to 

a false interpretation of phylogenetic relationships [186], particularly when single genes are 

amplified by PCR, and the highly variable substitution rates and base composition between taxa 

can make direct comparisons difficult [97,186]. Inversions can also complicate phylogenetic 

analysis using mtDNA gene sequences, as it is likely that genes equilibrate in nucleotide 

composition to their strand skew, even to the point of having convergent amino acid 
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substitutions within physio-chemically similar groups that have arisen independently in different 

lineages [189]. 

Despite these drawbacks, overall, mitogenomes represent a complete and “isolated” 

genomic feature, easily available from a wide range of taxa, whose genetic information is 

comparable and compact enough to be both phylogenetic informative and investigated with low 

computational effort and therefore a logical choice for a comprehensive phylogenetic study. 

Consequently, mitochondrial DNA has been used, with a variable range of success, to assess 

phylogenetic relationships at several taxonomic levels ranging from shallow population-level 

relationships [e.g., 190], up to phyla [Mollusca: 185,e.g., Annelida: 191,Platyhelminthes: 

192,Rotifera: 193] and even Metazoa as a whole [97].

Although mitophylogenetics have been successfully used to infer deeper evolutionary 

relationships within other metazoan taxa, the same success has not been achieved for the 

Mollusca. The reconstruction of the molluscan deep-level relationships has been extremely 

challenging, and consistently recovering the monophyly of the Mollusca, or even of the eight 

molluscan classes, both presumed to be correct based on other data, has not been possible 

using mitochondrial markers alone [39,97,Mollusca: 185,194,195]. Moreover, only recently and 

through the application of phylogenomic approaches relying on several nuclear loci, consistent 

monophyletic Mollusca and monophyletic molluscan classes started to be recovered [196–199]. 

These studies, by contradicting the generally accepted morphocladistic Testaria hypothesis, 

have resulted in a fundamental reinterpretation of the phylogenetic history of Mollusca. The 

Testaria hypothesis placed worm-like Aplacophora (Solenogastres and Caudofoveata) as a 

paraphyletic basal group of the Mollusca and thus postulated a progressive evolution of body 

complexity, with a true shell occurring only once [199]. Conversely, all the recent phylogenomic 

studies unambiguously support a basal dichotomy that splits the Mollusca into two major 

groups, the Aculifera (including the Polyplacophora and the reciprocally monophyletic 

Aplacophora) and the Conchifera (including the Monoplacophora, Cephalopoda, Scaphopoda, 

Gastropoda and Bivalvia), thus postulating that the worm-like body plan of Aplacophora was 

acquired secondarily and has derived from a more complex-bodied ancestor [197,200]. 

However, the relationships within Conchifera are more controversial, with conflicting results 

regarding the positioning of Monoplacophora as either basal to all other Conchifera [200] or 

sister taxa to Cephalopoda [197,200], as well as the positioning of Scaphopoda as sister to 

Gastropoda [197,198,200] or sister to a clade composed of Gastropoda and Bivalvia 

[196,197,200]. Nevertheless, phylogenomic studies have been fundamental to understanding 

Page 22 of 46

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://paperpile.com/c/3U7BbX/fnLKs
https://paperpile.com/c/3U7BbX/fVUck/?prefix=e.g.%2C
https://paperpile.com/c/3U7BbX/eNax1+vTToE+S0hwI+07faX/?prefix=e.g.%2C%20Annelida%3A,Mollusca%3A,Platyhelminthes%3A,Rotifera%3A
https://paperpile.com/c/3U7BbX/eNax1+vTToE+S0hwI+07faX/?prefix=e.g.%2C%20Annelida%3A,Mollusca%3A,Platyhelminthes%3A,Rotifera%3A
https://paperpile.com/c/3U7BbX/Xu00f
https://paperpile.com/c/3U7BbX/qaM0S+Xu00f+vTToE+3tyvx+pU3p0/?prefix=,,Mollusca%3A,,
https://paperpile.com/c/3U7BbX/il5Jy+Wq0M1+Ja8NK+aB9rs
https://paperpile.com/c/3U7BbX/aB9rs
https://paperpile.com/c/3U7BbX/Wq0M1+oJ1G9
https://paperpile.com/c/3U7BbX/oJ1G9
https://paperpile.com/c/3U7BbX/Wq0M1+oJ1G9
https://paperpile.com/c/3U7BbX/Wq0M1+Ja8NK+oJ1G9
https://paperpile.com/c/3U7BbX/il5Jy+Wq0M1+oJ1G9


For Review Only

early molluscan evolution and although whole genome-scale resources are now easier to 

obtain, the taxon sampling is still considerably reduced when compared with the mitogenomic 

data already available [reviewed in 201].

The effectiveness of mtDNA markers to infer deep Molluscan phylogeny has been a 

thoroughly discussed subject in recent studies [39,Mollusca: 185,195], describing several 

factors that may lead to the lack of phylogenetic signal and conflicting tree topologies. 

Phylogenies often show long-branch attraction artifacts (LBA), with molluscan mitogenomes 

revealing high differentiation in nucleotide abundance and strand bias. All of these features are 

a probable consequence of highly frequent gene order rearrangements observed in Molluscan 

mitogenomes, resulting in heterogeneous substitutions rates and generating systematic 

analytical errors [see 97,Mollusca: 185,195,202 and references within]. Furthermore, ancient 

(Cambrian) incomplete lineage sorting and uneven taxon sampling may also play a role in the 

inconsistency of the inferred phylogenetic relationships [195]. These authors also explored the 

phylogenetic utility of other molluscan specific mitogenome features, such as mitogenome size 

variation, the highly variable (sometimes absent) protein-coding gene atp8, and even the 

coupling behaviour of particular genes (such as atp8-atp6 and nad4L-nad4) [195]. However, a 

clear phylogenetic signal is once again hindered, probably by homoplasy of these features.

Within the molluscan classes, deeper relationships based only on mitochondrial markers 

have also been showing a variable range of success. Recent studies on the Aculifera have 

expressed promising results using phylomitogenomics, supporting the usefulness of both whole 

mitogenome sequences and structural features [40,58,203]. For instance, new phylogenetic 

informative mitogenome rearrangements were detected within Polyplacophora, and 

Caudofoveata, which along with the only Solenogastres published mitogenome, revealed a 

conserved protein-coding gene order likely consistent to the ancestral molluscan gene order 

[40,58,203]. However, mitogenome availability is still scarce for groups within the Aculifera 

clade. For example, mitogenome sequences for all the main lineages of the best sampled 

Aplacophora group, Polyplacophora (n=18), only recently became available [203] (Figure 3). 

Similarly, Scaphopoda, for which several phylogenetic and systematics doubts persist within its 

major groups, is very poorly represented regarding mitogenome availability [204]. Furthermore, 

although phylogenetic analysis using complete mitogenomes revealed promising results for the 

phylogenetic assessment within the Scaphopoda, using cox1 alone did not, and therefore, a 

more comprehensive and intensive whole mitogenome sequencing within the group is urgently 

needed [204].
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Monoplacophoran mitogenomes have been recently sequenced to test their positioning 

within the Mollusca. However, consistent with the low resolution of mitochondrial markers for 

deep molluscan classes (see above) the results were inconclusive [41]. Nevertheless, once 

again unique structural features (e.g., gene arrangement and presence of large intergenic 

regions) that may be phylogenetically informative were detected and further sampling of the 

group is needed [41].

Of the three most economically important molluscan classes, Cephalopoda is the best-

represented in terms of mitogenome availability, which nonetheless represents only 5.5% of the 

total species of the group. Unlike in other molluscan classes, mitochondrial markers have shown 

to be informative regarding the deeper Cephalopoda phylogenetic relationships, revealing their 

potential to resolve long-lasting phylogenetic questions within the group [60,Mollusca: 185].

As for the two most speciose classes of Mollusca (i.e., Bivalvia and the megadiverse 

Gastropoda), deep level phylomitogenomics have been constantly inefficient. Both bivalves and 

gastropods have very unusual mitochondrial evolutionary patterns at both nucleotide and 

structural level, which render them prone to analytical inconsistencies (e.g., LBA) and hampers 

a consistent phylogenetic inference [Mollusca: 185,202,205]. Inevitably, only through the 

application of large scale genomic approaches, the interrelationships within both classes are 

starting to be clarified [205–208]. 

Contrary to these difficulties in resolution of deeper, older evolutionary relationships, 

mitochondrial genes and genomes have been much more useful in resolving more recent, 

intrafamilial phylogenies [209,210]. Most shallow phylogeny, phylogeographic, and populations 

genetics studies on molluscs have relied so far on one or two mitochondrial gene fragments 

sometimes coupled with the same number of nuclear counterparts [211–213]. However, use of 

these gene fragments alone may lead to biased results and fail to reveal the mitochondrial 

evolutionary history of species. Furthermore, obtaining a complete mitogenome is not always a 

possibility, either due to the higher cost of sequencing (when compared with Sanger sequencing 

of a single gene) or due to logistic limitations (e.g. lack of computational resources). It is 

therefore important to identify the genes or regions of the mitogenome that better correspond 

and may be used as surrogates of the whole mitogenome evolutionary history. A study on 41 

unionid bivalves statistically evaluated the coherence of the individual mitochondrial gene trees 

and the whole mitogenome tree, indicating that the trees using nad5 sequences were the most 

similar to whole mtDNA trees [214]. The results of the gene fragments more widely used in 

molecular studies within this bivalve taxon, (i.e., cox1, rrnL, and nad1) were less robust). This 

Page 24 of 46

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://paperpile.com/c/3U7BbX/I9AwT
https://paperpile.com/c/3U7BbX/I9AwT
https://paperpile.com/c/3U7BbX/vTToE+A0WMQ/?prefix=Mollusca%3A,
https://paperpile.com/c/3U7BbX/vTToE+8QjUb+NzUbl/?prefix=Mollusca%3A,,
https://paperpile.com/c/3U7BbX/HwOwN+QRFbD+8QjUb+5iX2e
https://paperpile.com/c/3U7BbX/Ou9H0+QmNRH
https://paperpile.com/c/3U7BbX/hMpCG+shyEb+0eV0p
https://paperpile.com/c/3U7BbX/aqZkL


For Review Only

study also tested pairs of these widely used gene markers with much higher success, indicating 

that the trees constructed with the large ribosomal subunit rrnL concatenated with cox1 or nad1 

are highly coherent with the whole mitogenome trees [214]. Another study within the 

cephalopod Octopodidae family comparing the whole mitogenome with the individual gene tree 

topologies, also showed that the nad5 trees best represented the whole mitogenome topologies 

[215,216].  However, these results were obtained in specific groups of molluscs and should be 

tested across the Mollusca to evaluate the usefulness of individual and pairs of gene fragments 

in representing the whole mitochondrial genome phylogenies.

Comparisons of mitochondrial genes have great potential for revealing hidden cryptic 

diversity aiding in species delimitation and identification [216,217] in understanding molluscan 

species phylogeographical patterns and population genetic structure, since they have already 

been used successfully for these purposes in other taxa [218,219]. However, to our knowledge, 

no comprehensive phylogeographic or population genetics study on mollusc species has used 

this type of marker. 

In summary, studies with phylogenetic analyses of whole mitochondrial sequences and 

structural features of molluscs, have been increasing steadily over the last decade. These 

studies have shown limited success in representing deeper evolutionary patterns within the 

Mollusca and molluscan classes. However, below the family level, robust phylogenies 

consistent with results of other genomic and morphological studies have been obtained. Given 

the high potential of whole mitogenomes for barcoding, revealing cryptic diversity, and obtaining 

robust shallow phylogenetic relationships, it is expected that an increasing number of 

phylogeographic and population genetics studies using whole mitogenomes will be published 

shortly.

Summary and Conclusion
Despite widespread misunderstanding based on early studies that animal mitochondrial 

genomes are consistent in structure, function, and inheritance patterns, there is actually 

enormous diversity among these diminutive genomes across animal life. The phylum Mollusca, 

in particular, is replete with examples of extraordinary variation in genome architecture, 

molecular functioning, and intergenerational transmission. This provides a model system for 

studying the evolution of these features in concert with the diverse and manifold roles of 
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mitochondria in organismal physiology and the many ways that the study of mitochondrial 

genomes are useful for phylogeny and population biology.
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Figure Legends
Figure 1 – Relationship between the length of (a) non-coding and (b) coding regions on 
total mtDNA length in molluscan classes. Variation in non-coding length explains a greater 

proportion of variation in total mtDNA length compared to variation in coding length. Each circle 

represents a single species. When multiple mtDNAs were available for a single species, the 

mean across all individual records was taken as the species value. Colors represent different 

molluscan classes and are indicated by the key in panel (a).

Figure 2 – In mitogenomes of planobid gastropods, the atp8 gene is bracketed by trnN(aac) 

and trnL2(tta). Shaded boxes: tRNA genes, white boxes: protein coding genes; arrowheads 
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indicate directionality; *: stop codon. ORF analyses of the mitogenome sequences that ignore 

the concept of tRNA gene excision from polycistronic mitogenomic transcripts frequently yield 

incorrect prediction of protein-encoding sequence intervals. Whereas the start codon is correctly 

indicated, the ORF for atp8 from Biomphalaria glabrata (underlined in both nucleotide and 

predicted amino acid sequences, NC_005439) falls short, despite an effort to accommodate an 

incomplete stop codon (T--) Another issue impacts the ORF selected from the Planorbella duryi 

mitogenome (KY514384). It comprises a (correct) start codon and TAA stop codon but overlaps 

with trnL2 and yields an unusually long protein sequence. For both snail species, considering 

the boundaries of the (MITOS predicted) tRNA genes, the ATA is the first possible start codon 

downstream from trnN. At the 3’ end, a single T nucleotide remains after excision of trnL2, 

completed by polyadenylation to a TAA (underlined) stop codon. Such peculiarities challenge 

prediction of multiple genes from molluscan mitochondrial sequences, as is evidenced in 

several GenBank entries, despite the purported curation of submissions by this NCBI database. 

Re-evaluation and, if appropriate, updates by contributors of previous GenBank accessions will 

greatly benefit correct annotation.

Figure 3 – TOP: Graphic showing the number of complete (dark colours) and partial (Light 

colours: min. size 10,000 bp) mitogenomes available in GenBank; MIDDLE: mean, minimum 

and maximum size (bp) of complete mitogenomes per Mollusca class; BOTTOM: graphic 

showing the percentage of total species with complete mitogenomes published in GenBank. 

Asterisk superscripts refer to unverified size values, due to assembly challenges, critical 

evaluation of these publicly available mitogenome sizes and sequence content is highly 

recommended.
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Table 1. Number of molluscan mitogenome sequences in Genbank over time. 

The GenBank (GB) search was structured as follows: (("Mollusca"[Organism]) AND 

(biomol_genomic[PROP] AND mitochondrion[filter] AND ("8000"[SLEN] : "100000"[SLEN]) AND 

("1900/01/01"[PDAT] : "1999/12/31"[PDAT])). The term "Mollusca" was replaced for family level 

searches with "Gastropoda; Bivalvia; Scaphopoda; Cephalopoda; Polyplacophora; 

Monoplacophora; Aplacophora" and the years were adjusted for specific time intervals. Number 

in brackets refers to sequences characterized in a time interval prior to deposited in GenBank. 

RefSeq genomes (restricted to one per species) are described by NCBI as copies of selected 

assembled genomes available in GenBank, generated by several processes including manual 

curation.

Taxon GB/RefSeq -2000 2000-
2004

2005-
2009

2010-
2014

2015-
2020

Gastropoda 625/233 1(3) 10 19 104 491
Bivalvia 451/186 0 4 45 130 272
Scaphopoda 3/2 1 1 0 0 1
Cephalopoda 126/50 0 1 7 53 65
Polyplacophora 23/13 1 0 0 2 20
Monoplacophora 3/2 0 0 0 0 3
Aplacophora 8/5 0 0 0 2 6
Mollusca 1239/491 3(3) 16 71 291 858
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Figure 3 – TOP: Graphic showing the number of complete (dark colours) and partial (Light colours: min. size 
10,000 bp) mitogenomes available in GenBank; MIDDLE: mean, minimum and maximum size (bp) of 

complete mitogenomes per Mollusca class; BOTTOM: graphic showing the percentage of total species with 
complete mitogenomes published in GenBank. Asterisk superscripts refer to unverified size values, due to 
assembly challenges, critical evaluation of these publicly available mitogenome sizes and sequence content 

is highly recommended. 
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