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A Online Appendix

A.1 Auxiliary results

Throughout, we make use of the following version of Skorokhod’s representation theorem.

Theorem A.1. [Kallenberg, 1997, Corollary 5.12] Let f and {fn}n≥1 be measurable functions

from a Borel space S to a Polish space T , and let ξ and {ξn}n≥1 be random elements in S

with fn(ξn)
w→ f(ξ). Then there exist some random elements ξ̃

d
= ξ and ξ̃n

d
= ξn defined on a

common probability space with fn(ξ̃n)
a.s.→ f(ξ).

The next lemma contains a result about the asymptotic continuity of the distribution func-

tion of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A.1. With M and V defined in Lemma 1, under Assumptions 1 and 2, let

τ1 :=

∫ 1
0 M(u)dM(u)∫ 1
0 M

2(u)du
and τ2 :=

∫ 1
0 M(u)dM(u)√
V (1)

∫ 1
0 M

2(u)du
.

Then the random cdfs F1(·) := P (τ1 ≤ ·|σ) and F2(·) := P (τ2 ≤ ·|σ) are sample-path continu-

ous a.s.
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Proof of Lemma A.1. We reduce the proof to the following well-known result (a, a, pp.

472–473). Let {X(u)}u∈[0,1] be a Gaussian process with mean zero and a continuous covariance

kernel, let q : [0, 1] → R be a square-integrable function and let α ∈ R be arbitrary. Then the

distribution of
∫ 1
0 (X(u) + αq(u))2du is that of an infinite series of independent non-central χ2

random variables and, as a result, it has a continuous cdf.

The random cdfs F1 and F2 are determined, up to a modification, by the distribution of

(Bz, σ), such that the structure of the probability space on which (Bz, σ) is defined is irrelevant

for the claim of interest. We therefore assume, without loss of generality, that the independent

processes Bz and σ are defined on a product probability space. Let (Ωσ,Fσ, Pσ) be the factor-

space on which σ is defined. Fix A ∈ Fσ with Pσ(A) = 1 such that V (ω, ·) :=
∫ ·
0 σ

2(ω, u)du

is well-defined, continuous and 0 < V (ω, 1) < ∞. Let Γ := {σ(ω, ·) : ω ∈ A} be the set of

trajectories for σ when ω ∈ A. For every γ ∈ Γ, the process Mγ(·) :=
∫ ·
0 γ(u)dBz(u) is a.s.

well-defined and
∫ 1
0 M

2
γ (u)du > 0 a.s. The result in the lemma will follow if the deterministic

cdfs P (τγ1 ≤ ·) and P (τγ2 ≤ ·) are continuous for every γ ∈ Γ:

P (τγ1 = x) = 0, P (τγ2 = x) = 0, ∀(x, γ) ∈ R× Γ, (A.1)

where

τγ1 :=

∫ 1
0 Mγ(u)dMγ(u)∫ 1

0 M
2
γ (u)du

, τγ2 :=

∫ 1
0 Mγ(u)dMγ(u)√
V (1)

∫ 1
0 M

2
γ (u)du

.

In fact, (A.1) implies that F1 and F2 have sample-path continuous modifications, and moreover,

by continuity, F1 and F2 are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed γ ∈ Γ, define the time-changed ‘bridge’

process Xγ by

Xγ(u) := Mγ(u)− Vγ(u)

Vγ(1)
Mγ(1), u ∈ [0, 1].

Then Xγ and Mγ(1) are independent, for they are jointly Gaussian with covariance function

Cov(Xγ(u),Mγ(1)) = Vγ(u)− Vγ(u)

Vγ(1)
Vγ(1) = 0, u ∈ [0, 1].

In terms of Xγ and Mγ(1), we find

τγ1 =
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 M

2
γ (u)du

=
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

and

τγ2 =
1

2

Mγ(1)2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

,

for qγ(u) := Vγ(u)/Vγ(1). The equality

P (τγi = x) = E [P (τγi = x|Mγ(1))] = 0
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will hold for i = 1, 2 and any x ∈ R iff

P (τγi = x|Mγ(1)) = 0 a.s.

for i = 1, 2 and any x ∈ R. In its turn, using the independence of Xγ(u) and Mγ(1), the latter

will hold if

P

(
1

2

α2 − Vγ(1)∫ 1
0 (Xγ(1) + αqγ(u))2du

= x

)
= 0,

P

1

2

α2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) + αqγ(u))2du

= x

 = 0

hold for all x ∈ R and α 6= ±
√
Vγ(1) (because P (M2

γ (1) = Vγ(1)) = 0), which in its turn will

hold if

P

(∫ 1

0
(Xγ(u) + αqγ(u))2du = x

)
= 0

for any α, x ∈ R. Since Xγ is a zero-mean Gaussian process with a continuous covariance and

qγ is square integrable, the equality in the previous display indeed holds, by o (a, pp. 472–473).

�

The second lemma in this section allows to combine the conditional convergence of a Gaus-

sian bootstrap process with a marginal convergence on the space of the data into a conditional

convergence of a pair.

Lemma A.2. Let the data be Dn = (Mn, Un) and let the bootstrap multipliers be W ∗n =

(w∗1, ..., w
∗
n)′, with Dn independent of W ∗n . Let (M∗n, Xn) be random elements of D [0, 1] × S

for some complete and separable metric space S, such that M∗n and Xn are measurable respec-

tively w.r.t. (Dn,W
∗
n) and Dn. Assume that M∗n is, conditionally on the data, a zero-mean

Gaussian prosess with independent increments and conditional variance function

V ∗n = φ(Dn, Gn) + op(1),

wherereas Xn = ψ(Dn) + op(1) for some continuous functions φ : D3[0, 1] → D [0, 1], ψ :

D2[0, 1] → S and for some Gn ∈ D [0, 1] satisfying Gn → G in D [0, 1] for a continuous G ∈

D [0, 1]. Then under Assumptions 1 and 2 it holds that

(M∗n, Xn)
w∗
→w (M∗, X)|(M,U),

where M∗ conditionally on (M,U) is a zero-mean Gaussian process with independent increments

and conditional variance function φ(M,U,G), whereas X = ψ(M,U).
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Proof of Lemma A.2. It holds that (Dn, V
∗
n )

w→ (M,U, φ(M,U,G)) in D3[0, 1] by Lemma 1

and the CMT. Let υn be measurable functions such that V ∗n = υn(Dn). Based on Theorem A.1,

consider a Skorokhod representation D̃n
d
= Dn and (M̃, Ũ)

d
= (M,U) such that (D̃n, υn(D̃n))

a.s.→

(M̃, Ũ , φ(M̃, Ũ , G)) in D3[0, 1].

On the added factor space of a product extension of the Skorokhod representation space,

define W̃ ∗n
d
= W ∗n ; then W̃ ∗n is independent of D̃n. If µn are measurable functions such that

M∗n = µn(Dn,W
∗
n), define M̃∗n = µn(D̃n, W̃

∗
n). Conditionally on D̃n, the process M̃∗n is a zero-

mean Gaussian process with independent increments and conditional variance function υn(D̃n).

This holds because the conditional distribution of M̃∗n, and the functions υn in particular, are

determined by the distribution of (D̃n, W̃
∗
n)

d
= (Dn,W

∗
n). By construction, the conditional vari-

ance function of M̃∗n satisfies υn(D̃n)
a.s.→ φ(M̃, Ũ , G̃). By fixing the outcomes in an appropriate

measure-one set in the factor space of D̃n, it follows by an outcome-by-outcome argument that

M̃∗n
w→a.s. M̃

∗|(M̃, Ũ), where M̃∗ conditionally on (M̃, Ũ) is a zero-mean Gaussian process with

independent increments and conditional variance function φ(M̃, Ũ , G̃). The convergence facts

D̃n
a.s→ (M̃, Ũ) and M̃∗n

w→a.s. M̃
∗|(M̃, Ũ) jointly imply, by Lemma A.3 of a (a), the convergence

(M̃∗n, D̃n)
w∗
→p (M̃∗, M̃ , Ũ)|(M̃, Ũ) (A.2)

on the Skorokhod representation space (in fact, by the proof of the aforementioned Lemma A.3,

also
w∗
→a.s.).

Finally, if the measurable functions ξn are such that Xn = ξn(Dn), then ξn(D̃n) = ψ(D̃n) +

op(1) because this equality is determined by the joint distribution of (D̃n, X̃n)
d
= (Dn, Xn).

As ψ is continuous and upon conditioning convergence in probability to zero becomes weak

convergence in probability to zero, from (A.2) and Theorem 10 of e (w) it follows that

(M̃∗n, ξn(D̃n))
w∗
→p(M̃

∗, ψ(M̃, Ũ))|(M̃, Ũ).

The distributional equalities (M∗n, Xn, Dn)
d
= (M̃∗n, ξn(D̃n), D̃n) and (M∗, X,M,U)

d
=

(M̃∗, ψ(M̃, Ũ), M̃ , Ũ) complete the proof. �

A.2 Proofs

Proof of Lemma 1. We follow the approach of the proof of Lemma 1 and other intermediate

results in a (a). First, defining et = z2t − 1,

sup
u∈[0,1]

|Un(u)− Vn(u)| = sup
u∈[0,1]

∣∣∣∣∣∣n−1
bnuc∑
t=1

σ2t et

∣∣∣∣∣∣ p→ 0

by Theorem A.1 of v (a), since {et,Ft}t≥1 is an mds by Assumption 1 and σ2bn·c+1 = σ2n(·) w→

σ2(·) by Assumption 2 and the CMT; this proves (8), because convergence in the sup norm
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implies convergence in the Skorokhod metric, i.e., in D [0, 1]. Next, we apply Theorem 2.1 of s

(a) to

Mn(·) =

∫ ·
0
σn(u)dBz,n(u),

noting that Assumption 1 implies supn≥1 n
−1∑n

t=1E(z2t ) = 1, so that using Assumption 2, we

have

(σn(·), Bz,n(·),Mn(·)) w→ (σ(·), Bz(·),M(·)) .

The CMT together with (8) then implies (7), because

∫ u

0
σ2n(s)ds =

1

n

bnuc∑
t=1

σ2t + σ2bnuc+1(u− bnucn
−1), u ∈ [0, 1],

so that Un(·) = Vn(·) + op(1) =
∫ ·
0 σ

2
n(s)ds+ op(1), i.e., Un(·) is a continuous functional of σn(·)

plus an asymptotically negligible term. �

Proof of Theorem 1. The idea of the proof is to construct on a special probability space

random elements distributed like (σn,Mn, Un,M
∗
n, U

∗
n) and such that on this probability space

the convergence asserted in Theorem 1 holds weakly a.s.; on a general probability space it will

then hold
w→w. Throughout, we use repeatedly the fact that for independent random elements

ξ and η and for a measurable real φ such that E(|φ(ξ, η)|) < ∞, it holds that E(φ(ξ, η)|η) =

E(φ(ξ, v))|v=η a.s., with E(φ(ξ, v)) defining a function of a non-random v; see l (u, p. 341).

By Assumption 3, ψnt are Gn0-measurable and hence are measurable functions of σn that

we denote, with a slight abuse of notation, by ψnt(σn). Let

enm(γ) := E
(
v2ntψ

2
nt(γ)I{|vntψnt(γ)|>

√
n/m}

)
,

for m ∈ N and a generic non-random γ; then enm(σn) is a version of the conditional expectation

E
(
z2t I{|zt|>√n/m}|σn

)
because {vnt}nt=1 and σn are independent. Define Bv,n := n−1/2

∑bn·c
t=1 vnt.

We apply Theorem A.1 with ξn = (σn, Bv,n), ξ = (σ,Bz),

fn(ξn) = (σn, Qψ,n, Qz,n,Ln, Ln) and f(ξ) = (σ,Q,Q, 0∞, 0∞) ,

where Qψ,n = n−1
∑bn·c

t=1 ψ
2
nt, Qz,n = n−1

∑bn·c
t=1 z

2
t , Ln =

{
n−1

∑n
t=1 enm(σn)

}
m∈N ∈ R∞, Ln ={

n−1
∑n

t=1 z
2
t I{|zt|>√n/m}

}
m∈N

∈ R∞, Q(u) = u, u ∈ [0, 1], and 0∞ is the zero sequence in

R∞, the Frechet space. The functions fn and f are defined on subspaces of the Borel space

D2[0, 1] with the Skorokhod metric and the induced Borel σ-algebra, and take values in the

Polish space D3[0, 1] × R∞ × R∞ with the product of the Skorokhod and the Frechet metric.

The assumptions of the lemma imply (Qψ,n, Qz,n)
p→ (Q,Q), because (Qψ,n −Q,Qz,n −Q)

is the partial sum process of n−1(ψ2
nt − 1, z2t − 1), which is an mda with respect to Ft since
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E(ψ2
nt|Ft−1) = E(z2t |Ft−1) = 1 by the tower property; this partial sum converges to the zero

function in probability by the corollary to Theorem 3.3 of n (a). Noting that, by applying

Markov’s conditional inequality, Ln
p→ 0∞ follows from the corresponding result for Ln =

E(Ln|Gn0), the assumptions of the lemma eventually imply fn(ξn)
w→ f(ξ).

Theorem A.1 then implies the existence of ξ̃n = (σ̃n, B̃v,n)
d
= (σn, Bv,n) and ξ̃ = (σ̃, B̃z)

d
=

(σ,Bz), defined on a single probability space and such that(
σ̃n, Q̃ψ,n, Q̃z,n, L̃n, L̃n

)
:= fn(ξ̃n)

a.s.→ f(ξ̃) = (σ̃, Q,Q, 0∞, 0∞) . (A.3)

Finally, we complete the set up by introducing a product extension of the previous probability

space with generic outcomes (ω̃, ω∗) where a sequence {w̃∗t (ω∗)}
d
= {w∗t } and a standard Brow-

nian motion B̃∗z (ω∗) are defined; these are thus independent of {(σ̃n, B̃v,n)}n≥1 and (σ̃, B̃z).

As B̃v,n and σ̃n are independent (because Bv,n and σn are), it holds for any integrable

random variable h(σ̃n, B̃v,n) that E(h(σ̃n, B̃v,n)|σ̃n) = E(h(γ, B̃v,n))|γ=σ̃n . A similar equality

holds for the independent B̃z and σ̃. Therefore, to prove any convergence of the form

E
(
hn(σ̃n, B̃v,n)|σ̃n

)
a.s.→ E

(
h(σ̃, B̃z)|σ

)
, (A.4)

it is sufficient to prove that E(hn(γn, B̃v,n)) → E(h(γ, B̃z)) for all deterministic sequences

{γn}n≥1 in some set Γ ⊂ D∞[0, 1] such that P ({σ̃n}n≥1 ∈ Γ) = 1. We now choose and fix Γ.

Consider the outcomes ω̃ such that convergence (A.3) holds at ω̃ and, moreover, (
∫ ·
0 γdB̃

∗
z )|γ=σ̃(ω̃)

= (
∫ ·
0 σ̃dB̃

∗
z )(ω̃, ω∗) up to indistinguishability w.r.t. the measure of B̃∗z ; here

∫ ·
0 γdB̃

∗
z is a Wiener

integral defined on the factor space of B̃∗z with square-integrable γ ∈ D [0, 1], whereas
∫ ·
0 σ̃dB̃

∗
z is

an Itô integral defined on the product space. A measure-one set of such outcomes ω̃ exists; see

e.g. Lemma 3.2 of k (a). Define Γ ⊂ D∞[0, 1] as the set of sequences {σ̃n(ω̃)}n≥1 corresponding

to ω̃ in such a set, then P ({σ̃n}n≥1 ∈ Γ) = 1 as required.

As noted in Remark 4.4, we may recover (Mn, Un) (and hence the original data Dn)

from (σn, Bv,n) as some measurable transformation, say mn(σn, Bv,n). Define accordingly

(M̃n, Ũn) := mn(σ̃n, B̃v,n) (and analogously D̃n). With z̃nt := ψ̃ntṽnt, where ψ̃nt = ψnt(σ̃n)

and

ṽnt := n1/2
(
B̃v,n(t/n)− B̃v,n((t− 1)/n)

)
,

define also the process B̃z,n := n−1/2
∑bn·c

t=1 z̃nt =: mz,n(σ̃n, B̃v,n), such that

(σ̃n, B̃z,n, M̃n, Ũn)
d
= (σn, Bz,n,Mn, Un).

We proceed to the convergence of (M̃n, Ũn) conditional on σ̃n and prove that

E
(
g(B̃z,n, M̃n, Ũn)

∣∣∣ σ̃n) a.s.→ E
(
g(B̃z, M̃ , Ṽ )

∣∣∣ σ̃) (A.5)
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for continuous bounded real g of matching domain; this convergence is of the form (A.4) with

hn = g ◦ (mz,n,mn). In so doing, for any random element Z = φ(σ̃n, B̃v,n) we write Z(γn)

for φ(γn, B̃v,n); e.g., B̃z,n(γn) = mz,n(γn, B̃v,n). By the discussion in the previous paragraph,

(A.5) will follow from the standard weak convergence of (B̃z,n(γn), M̃n(γn), Ũn(γn)), for all

{γn}n≥1 ∈ Γ, that we establish next.

For {σ̃n}n∈N replaced by a fixed {γn}n≥1 ∈ Γ, z̃nt(γn) = ψnt(γn)ṽnt is an mda satisfying

the conditions of w (r)’s functional central limit theorem. First, E(ψnt(γn)ṽnt|{ṽni}t−1i=1) =

ψnt(γn)E
(
ṽnt|{ṽni}t−1i=1

)
= 0 because the mda property of ṽnt is inherited from the origi-

nal probability space as {ṽni}ni=1
d
= {vni}ni=1. Second, n−1

∑bn·c
t=1 E(ψ2

nt(γn)ṽ2nt
∣∣ {ṽni}t−1i=1) =

n−1
∑bn·c

t=1 ψ
2
nt(γn) = Q̃ψ,n(γn)→ Q, where the first equality is again inherited from the original

probability space, and the convergence by the definition of Γ. Third, as L̃n(γn)→ 0∞ again by

the choice of Γ, it holds that n−1
∑n

t=1 enm(γn)→ 0 for all m ∈ N, which is equivalent to

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
n/m}

)
→ 0, m ∈ N,

by the definition of enm and implies the Lindeberg condition in its usual form

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
nε}

)
→ 0

for all ε > 0. Therefore,

B̃z,n (γn)
w→ B̃∗z ,

in the sense that E(g(B̃z,n(γn))) → E(g(B̃∗z )) for continuous bounded real g with matching

domain. For the same fixed γn, this in turn implies that

M̃n(γn) =

∫ ·
0
γn(u)dB̃z,n(u, γn)

w→
∫ ·
0
γ(u)dB̃∗z (u),

where γ = lim γn exists in D [0, 1] by the choice of γn. More precisely, by Theorem 2.1 of s (a), as

supn≥1
∑n

t=1E(z̃2nt(γn)) = supn≥1 Q̃ψ,n(1, γn) <∞, the previous convergence holds jointly with

that of B̃z,n, such that E(g(B̃z,n(γn), M̃n(γn))) → E(g(B̃∗z ,
∫ ·
0 γdB̃

∗
z )) for continuous bounded

real g. Furthermore, using

Ũn = n−1
bn·c∑
t=1

σ̃2t ψ̃
2
nt + n−1

bn·c∑
t=1

σ̃2t

(
z̃2nt − ψ̃2

nt

)

=

∫ ·
0
σ̃2n(u)dQ̃ψ,n(u) + n−1

bn·c∑
t=1

σ̃2t

(
z̃2nt − ψ̃2

nt

)
+ o(1)

uniformly, it follows that Ũn(γn)
p→
∫ ·
0 γ

2(u)du by Theorem A.1 of v (a), since z̃2nt(γn)− ψ̃2
nt(γn)

is an mda. As convergence in probability to a constant is joint with any weak convergence of
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random elements defined on the same probability space, the convergence

E
[
g(B̃z,n(γn), M̃n(γn), Ũn(γn))

]
→ E

[
g

(
B̃∗z ,

∫ ·
0
γdB̃∗z ,

∫ ·
0
γ2
)]

is true for continuous bounded real g and {γn}n≥1 ∈ Γ, with limn→∞ γn = γ. Recall that, by

the choice of Γ, for ω̃ in a set of probability one it holds that {σ̃n(ω̃)}n≥1 ∈ Γ, σ̃n(ω̃) → σ̃(ω̃)

and (
B̃∗z (ω∗),

(∫ ·
0
γdB̃∗z

)
(ω∗),

∫ ·
0
γ2
)∣∣∣∣

γ=σ̃(ω̃)

=

(
B̃∗z (ω∗),

(∫ ·
0
σ̃dB̃∗z

)
(ω̃, ω∗),

∫ ·
0
σ̃2(ω̃)

)
up to B̃∗z -indistinguishability. Since B̃∗z is independent of σ̃, the two previous displays jointly

imply

E
[
g(B̃z,n, M̃n, Ũn)

∣∣∣ σ̃n] a.s.→ E

[
g

(
B̃∗z ,

∫ ·
0
σ̃dB̃∗z , Ṽ

)∣∣∣∣ σ̃] .
The proof of (A.5) is completed by using the distributional equality (B̃z, M̃ , Ṽ )

d
= (B̃∗z ,

∫ ·
0 σ̃dB̃

∗
z , Ṽ ).

We turn to the bootstrap processes. Define

B̃∗z,n := n−1/2
bn·c∑
t=1

z̃ntw̃
∗
t , M̃∗n := n−1/2

bn·c∑
t=1

σ̃tz̃ntw̃
∗
t , Ũ∗n := n−1

bn·c∑
t=1

σ̃2t z̃
2
ntw̃
∗2
t .

Here we show that

E
(
g(B̃∗z,n, M̃

∗
n, Ũ

∗
n)
∣∣∣ σ̃n, B̃v,n) a.s.→ E

(
g(B̃∗z , M̃

∗, Ṽ )
∣∣∣ σ̃)

for continuous bounded real g, where B̃∗z is a standard Brownian motion independent of (σ̃, B̃z),

and M̃∗ :=
∫ ·
0 σ̃dB̃

∗
z . Given that {w̃∗t } and (σ̃, B̃z) are independent, as in the proof of (A.5), we

could proceed by fixing {(γn, bn)}n≥1 ∈ ΓB, where ΓB is an appropriate set with P ((σ̃n, B̃v,n)n≥1

∈ ΓB) = 1, and then discuss the standard weak convergence of (B̃∗z,n, M̃
∗
n, Ũ

∗
n) as a transforma-

tion of (γn, bn, {w̃∗t }) instead of (σ̃, B̃z, {w̃∗t }). Since now (σ̃n, B̃v,n) and {w̃∗t } are defined on a

product space, we implement this equivalently by fixing outcomes ω̃ in the component space

of (σ̃n, B̃v,n) and letting the outcome in the component space of {w̃∗t } be the only source of

randomness. In what follows, fix an ω̃ in a probability-one set where convergence (A.3) holds.

Then

n−1/2
bn·c∑
t=1

z̃nt(ω̃)w̃∗t
w→ B∗z ,

because n−1
∑bn·c

t=1 E[z̃2nt(ω̃)(w̃∗t )
2] = n−1

∑bn·c
t=1 z̃

2
nt(ω̃) = Qz,n(ω̃)→ Q and

Ln(ω̃) =
{
n−1

∑n

t=1
z̃2nt(ω̃)I(|z̃nt(ω̃)| >

√
n/m)

}
m∈N

→ 0∞

by the choice of ω̃, such that the following Lindeberg condition holds for every m ∈ N:

n−1
∑n

t=1
E[z̃2nt(ω̃)(w̃∗t )

2I(|z̃nt(ω̃)w̃∗t | >
√
n/m)]
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≤ n−1
∑n

t=1
E[z̃2nt(ω̃)(w̃∗t )

2I(|z̃nt(ω̃)w̃∗t | >
√
n/m, |w̃∗t | ≤ K)]

+ n−1
∑n

t=1
E[z̃2nt(ω̃)(w̃∗t )

2I(|z̃nt(ω̃)w̃∗t | >
√
n/m, |w̃∗t | > K)]

≤ n−1
∑n

t=1
z̃2nt(ω̃)I(|z̃nt(ω̃)| >

√
n/(mK))

+ E[(w̃∗1)2I(|w̃∗1| > K)] · n−1
∑n

t=1
z̃2nt(ω̃)

−→
n→∞

E{(w̃∗1)2I(|w̃∗1| > K)} −→
K→∞

0.

It follows that M̃∗n(ω̃) = n−1/2
∑bn·c

t=1 σ̃t(ω̃)z̃nt(ω̃)w̃∗t
w→
∫ ·
0 σ̃(ω̃)dB̃∗z . Further,

Ũ∗n(ω̃) = n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)w̃∗2t

= Ũn(ω̃) + n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)(w̃∗2t − 1)
p→ Ṽ (ω̃),

using Theorem A.1 of v (a). Since Ṽ (ω̃) is non-random, the last two convergence facts are joint:

E
[
g
(
M̃∗n(ω̃), Ũ∗n(ω̃)

)]
→ E

[
g
(
M̃∗(ω̃), Ṽ (ω̃)

)]
for continuous and bounded real g. As in the first part of the proof, by the product structure

of the probability space and since the set of considered outcomes ω̃ has probability one, the

previous convergence implies that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃∗, Ṽ )|σ̃

)
,

and eventually, as (M̃∗, Ṽ , σ̃)
d
= (M̃, Ṽ , σ̃), that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃, Ṽ )|σ̃

)
.

Notice that conditioning on (σ̃n, B̃v,n) can be replaced by conditioning on D̃n because (M̃∗n, Ũ
∗
n)

is a measurable function of (σ̃n, B̃v,n) and {w̃∗t }.

We can conclude from (A.5) and this result that(
E
[
h(M̃n, Ũn)

∣∣∣ σ̃n] , E [g(M̃∗n, Ũ
∗
n)
∣∣∣ D̃n

])
a.s.→
(
E
[
h(M̃, Ṽ )

∣∣∣ σ̃] , E [g(M̃, Ṽ )
∣∣∣ σ̃])

for all continuous and bounded real h, g, whereas on a general probability space

(E [h(Mn, Un)|σn] , E [g(M∗n, U
∗
n)|Dn])

w→ (E [h(M,V )|σ] , E [g(M,V )|σ]) , (A.6)

because (σ̃n, M̃n, Ũn, D̃n, M̃
∗
n, Ũ

∗
n)

d
= (σn,Mn, Un, Dn,M

∗
n, U

∗
n). This is precisely the definition

of the joint
w→w convergence in the theorem. �

Proof of Corollary 1. From (A.6) with h = g = τ , if the random cdf P (τ(M,V ) ≤ ·|σ)

a.s. has continuous sample paths, conditional validity of the bootstrap as in Corollary 1 follows

from Corollary 3.2 of v (a). �
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Proof of Lemma 1. For any K ∈ R, consider the continuous function gK : R → [0, 1]

defined by gK(x) = I(−∞,K](x) + (K + 1− x)I(K,K+1]. Then I(−∞,K] ≤ gK ≤ I(−∞,K+1] and the

convergence τ∗n
w∗
→w τ

∗|σ implies that

F ∗n(K) ≤ E∗(gK(τ∗n))
w→ E(gK(τ)|σ) ≤ F ∗(K + 1),

where F ∗(K + 1) = P (τ∗ ≤ K + 1|σ). Therefore, for all q ∈ (0, 1),

lim inf
n→∞

P (F ∗n(K) ≤ q) ≥ P (F ∗(K + 1) ≤ q).

As a result,

lim inf
n→∞

P (F ∗n(τn) ≤ q) ≥ lim inf
n→∞

P (F ∗n(τn) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q)− lim
n→∞

P (τn > K)

≥ P (F ∗(K + 1) ≤ q),

since τn
p→ −∞ means that limn→∞ P (τn > K) = 0 for all K ∈ R. By Markov’s inequality,

P (F ∗(K + 1) ≤ q) ≥ 1− q−1E(F ∗(K + 1)) = 1− q−1P (τ∗ ≤ K + 1),

and the proof is completed by letting K → −∞. �

Proof of eq. (23). Notice that

Ûn(·) = n−1
bn·c∑
t=1

(
t−1∑
i=0

ψiεt−i

)2

= n−1
bn·c∑
t=1

t−1∑
i=0

ψ2
i ε

2
t−i + 2n−1

bn·c∑
t=1

t−1∑
i=0

i−1∑
j=0

ψiψjεt−iεt−j

=: a1n(·) + a2n(·),

with a1n(·) and a2n(·) implicitly defined. First, a2n(·) = op (1) uniformly in · ∈ [0, 1], similarly

to Lemma A.7 in a (a). Second,

a1n(·) = n−1
bn·c∑
t=1

ε2t

bn·c−t∑
i=0

ψ2
i

 =

( ∞∑
i=0

ψ2
i

)
Un(·) + bn(·),

with

bn(·) := n−1
bn·c∑
t=1

ε2t

 ∞∑
i=bn·c−t+1

ψ2
i

 .
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Since the ψi’s are exponentially decaying, there exist constants C and ρ ∈ (0, 1) such that∑∞
i=bn·c−t+1 ψ

2
i ≤ Cρbn·c−t+1. Using the facts that maxt=1,...,n σ

2
t = Op(1) by Assumption 2 and

E(z2t ) = 1 by Assumption 1, it holds that

sup
u∈[0,1]

bn(u) ≤ Cn−1 sup
u∈[0,1]

bnuc∑
t=1

σ2t z
2
t ρ
bn·c−t+1

≤ C

(
max
t=1,...,n

σ2t

)(
n−1 max

t=1,...,n
z2t

)
sup
u∈[0,1]

bn·c∑
t=1

ρbn·c−t+1


= Op(1)op(1)

n∑
t=1

ρt = op(1).

Hence, Ûn(·) = (
∑∞

i=0 ψ
2
i )Un(·) + op (1) . �
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