Bootstrapping non-stationary stochastic volatility

H. Peter Boswijk ${ }^{\text {a }}$, Giuseppe Cavaliere ${ }^{\mathrm{b}, \mathrm{c}, *}$, Iliyan Georgiev ${ }^{\mathrm{b}, \mathrm{d}}$, Anders Rahbek ${ }^{\text {e }}$
${ }^{a}$ Amsterdam School of Economics and Tinbergen Institute, University of Amsterdam, 1018 WB Amsterdam, The Netherlands
${ }^{\text {b }}$ Department of Economics, University of Bologna, 40126 Bologna, Italy
${ }^{\text {c Department of Economics, Exeter Business School, Exeter EX4 4PU, UK }}$
${ }^{\text {d}}$ Institut d'Anàlisi Econòmica (CSIC), Barcelona, Spain
${ }^{e}$ Department of Economics, University of Copenhagen, 1353 Copenhagen K, Denmark

A Online Appendix

A. 1 Auxiliary results

Throughout, we make use of the following version of Skorokhod's representation theorem.
Theorem A.1. [Kallenberg, 1997, Corollary 5.12] Let f and $\left\{f_{n}\right\}_{n \geq 1}$ be measurable functions from a Borel space \mathcal{S} to a Polish space \mathcal{T}, and let ξ and $\left\{\xi_{n}\right\}_{n \geq 1}$ be random elements in \mathcal{S} with $f_{n}\left(\xi_{n}\right) \xrightarrow{w} f(\xi)$. Then there exist some random elements $\tilde{\xi} \stackrel{d}{=} \xi$ and $\tilde{\xi}_{n} \stackrel{d}{=} \xi_{n}$ defined on a common probability space with $f_{n}\left(\tilde{\xi}_{n}\right) \xrightarrow{\text { a.s. }} f(\xi)$.

The next lemma contains a result about the asymptotic continuity of the distribution function of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A.1. With M and V defined in Lemma 1, under Assumptions 1 and 2, let

$$
\tau_{1}:=\frac{\int_{0}^{1} M(u) \mathrm{d} M(u)}{\int_{0}^{1} M^{2}(u) \mathrm{d} u} \quad \text { and } \quad \tau_{2}:=\frac{\int_{0}^{1} M(u) \mathrm{d} M(u)}{\sqrt{V(1) \int_{0}^{1} M^{2}(u) \mathrm{d} u}}
$$

Then the random cdfs $F_{1}(\cdot):=P\left(\tau_{1} \leq \cdot \mid \sigma\right)$ and $F_{2}(\cdot):=P\left(\tau_{2} \leq \cdot \mid \sigma\right)$ are sample-path continuous a.s.

[^0]Proof of Lemma A.1. We reduce the proof to the following well-known result (a, a, pp. 472-473). Let $\{X(u)\}_{u \in[0,1]}$ be a Gaussian process with mean zero and a continuous covariance kernel, let $q:[0,1] \rightarrow \mathbb{R}$ be a square-integrable function and let $\alpha \in \mathbb{R}$ be arbitrary. Then the distribution of $\int_{0}^{1}(X(u)+\alpha q(u))^{2} \mathrm{~d} u$ is that of an infinite series of independent non-central χ^{2} random variables and, as a result, it has a continuous cdf.

The random cdfs F_{1} and F_{2} are determined, up to a modification, by the distribution of $\left(B_{z}, \sigma\right)$, such that the structure of the probability space on which $\left(B_{z}, \sigma\right)$ is defined is irrelevant for the claim of interest. We therefore assume, without loss of generality, that the independent processes B_{z} and σ are defined on a product probability space. Let $\left(\Omega_{\sigma}, \mathcal{F}_{\sigma}, P_{\sigma}\right)$ be the factorspace on which σ is defined. Fix $A \in \mathcal{F}_{\sigma}$ with $P_{\sigma}(A)=1$ such that $V(\omega, \cdot):=\int_{0} \sigma^{2}(\omega, u) \mathrm{d} u$ is well-defined, continuous and $0<V(\omega, 1)<\infty$. Let $\Gamma:=\{\sigma(\omega, \cdot): \omega \in A\}$ be the set of trajectories for σ when $\omega \in A$. For every $\gamma \in \Gamma$, the process $M_{\gamma}(\cdot):=\int_{0}^{*} \gamma(u) \mathrm{d} B_{z}(u)$ is a.s. well-defined and $\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u>0$ a.s. The result in the lemma will follow if the deterministic cdfs $P\left(\tau_{\gamma 1} \leq \cdot\right)$ and $P\left(\tau_{\gamma 2} \leq \cdot\right)$ are continuous for every $\gamma \in \Gamma$:

$$
\begin{equation*}
P\left(\tau_{\gamma 1}=x\right)=0, \quad P\left(\tau_{\gamma 2}=x\right)=0, \quad \forall(x, \gamma) \in \mathbb{R} \times \Gamma \tag{A.1}
\end{equation*}
$$

where

$$
\tau_{\gamma 1}:=\frac{\int_{0}^{1} M_{\gamma}(u) \mathrm{d} M_{\gamma}(u)}{\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}, \quad \tau_{\gamma 2}:=\frac{\int_{0}^{1} M_{\gamma}(u) \mathrm{d} M_{\gamma}(u)}{\sqrt{V(1) \int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}}
$$

In fact, (A.1) implies that F_{1} and F_{2} have sample-path continuous modifications, and moreover, by continuity, F_{1} and F_{2} are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed $\gamma \in \Gamma$, define the time-changed 'bridge' process X_{γ} by

$$
X_{\gamma}(u):=M_{\gamma}(u)-\frac{V_{\gamma}(u)}{V_{\gamma}(1)} M_{\gamma}(1), \quad u \in[0,1]
$$

Then X_{γ} and $M_{\gamma}(1)$ are independent, for they are jointly Gaussian with covariance function

$$
\operatorname{Cov}\left(X_{\gamma}(u), M_{\gamma}(1)\right)=V_{\gamma}(u)-\frac{V_{\gamma}(u)}{V_{\gamma}(1)} V_{\gamma}(1)=0, \quad u \in[0,1]
$$

In terms of X_{γ} and $M_{\gamma}(1)$, we find

$$
\tau_{\gamma 1}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\int_{0}^{1}\left(X_{\gamma}(u)+M_{\gamma}(1) q_{\gamma}(u)\right)^{2} \mathrm{~d} u}
$$

and

$$
\tau_{\gamma 2}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\sqrt{V_{\gamma}(1) \int_{0}^{1}\left(X_{\gamma}(u)+M_{\gamma}(1) q_{\gamma}(u)\right)^{2} \mathrm{~d} u}}
$$

for $q_{\gamma}(u):=V_{\gamma}(u) / V_{\gamma}(1)$. The equality

$$
P\left(\tau_{\gamma i}=x\right)=E\left[P\left(\tau_{\gamma i}=x \mid M_{\gamma}(1)\right)\right]=0
$$

will hold for $i=1,2$ and any $x \in \mathbb{R}$ iff

$$
P\left(\tau_{\gamma i}=x \mid M_{\gamma}(1)\right)=0 \text { a.s. }
$$

for $i=1,2$ and any $x \in \mathbb{R}$. In its turn, using the independence of $X_{\gamma}(u)$ and $M_{\gamma}(1)$, the latter will hold if

$$
\begin{aligned}
P\left(\frac{1}{2} \frac{\alpha^{2}-V_{\gamma}(1)}{\int_{0}^{1}\left(X_{\gamma}(1)+\alpha q_{\gamma}(u)\right)^{2} \mathrm{~d} u}\right. & =x)
\end{aligned}=0,
$$

hold for all $x \in \mathbb{R}$ and $\alpha \neq \pm \sqrt{V_{\gamma}(1)}$ (because $P\left(M_{\gamma}^{2}(1)=V_{\gamma}(1)\right)=0$), which in its turn will hold if

$$
P\left(\int_{0}^{1}\left(X_{\gamma}(u)+\alpha q_{\gamma}(u)\right)^{2} \mathrm{~d} u=x\right)=0
$$

for any $\alpha, x \in \mathbb{R}$. Since X_{γ} is a zero-mean Gaussian process with a continuous covariance and q_{γ} is square integrable, the equality in the previous display indeed holds, by o (a, pp. 472-473).

The second lemma in this section allows to combine the conditional convergence of a Gaussian bootstrap process with a marginal convergence on the space of the data into a conditional convergence of a pair.

Lemma A.2. Let the data be $D_{n}=\left(M_{n}, U_{n}\right)$ and let the bootstrap multipliers be $W_{n}^{*}=$ $\left(w_{1}^{*}, \ldots, w_{n}^{*}\right)^{\prime}$, with D_{n} independent of W_{n}^{*}. Let $\left(M_{n}^{*}, X_{n}\right)$ be random elements of $\mathscr{D}[0,1] \times \mathcal{S}$ for some complete and separable metric space \mathcal{S}, such that M_{n}^{*} and X_{n} are measurable respectively w.r.t. $\left(D_{n}, W_{n}^{*}\right)$ and D_{n}. Assume that M_{n}^{*} is, conditionally on the data, a zero-mean Gaussian prosess with independent increments and conditional variance function

$$
V_{n}^{*}=\phi\left(D_{n}, G_{n}\right)+o_{p}(1),
$$

wherereas $X_{n}=\psi\left(D_{n}\right)+o_{p}(1)$ for some continuous functions $\phi: \mathscr{D}_{3}[0,1] \rightarrow \mathscr{D}[0,1], \psi$: $\mathscr{D}_{2}[0,1] \rightarrow \mathcal{S}$ and for some $G_{n} \in \mathscr{D}[0,1]$ satisfying $G_{n} \rightarrow G$ in $\mathscr{D}[0,1]$ for a continuous $G \in$ $\mathscr{D}[0,1]$. Then under Assumptions 1 and 2 it holds that

$$
\left(M_{n}^{*}, X_{n}\right) \xrightarrow[w]{w_{w}^{*}}\left(M^{*}, X\right) \mid(M, U),
$$

where M^{*} conditionally on (M, U) is a zero-mean Gaussian process with independent increments and conditional variance function $\phi(M, U, G)$, whereas $X=\psi(M, U)$.

Proof of Lemma A.2. It holds that $\left(D_{n}, V_{n}^{*}\right) \xrightarrow{w}(M, U, \phi(M, U, G))$ in $\mathscr{D}_{3}[0,1]$ by Lemma 1 and the CMT. Let v_{n} be measurable functions such that $V_{n}^{*}=v_{n}\left(D_{n}\right)$. Based on Theorem A.1, consider a Skorokhod representation $\tilde{D}_{n} \stackrel{d}{=} D_{n}$ and $(\tilde{M}, \tilde{U}) \stackrel{d}{=}(M, U)$ such that $\left(\tilde{D}_{n}, v_{n}\left(\tilde{D}_{n}\right)\right) \xrightarrow{\text { a.s. }}$ $(\tilde{M}, \tilde{U}, \phi(\tilde{M}, \tilde{U}, G))$ in $\mathscr{D}_{3}[0,1]$.

On the added factor space of a product extension of the Skorokhod representation space, define $\tilde{W}_{n}^{*} \stackrel{d}{=} W_{n}^{*}$; then \tilde{W}_{n}^{*} is independent of \tilde{D}_{n}. If μ_{n} are measurable functions such that $M_{n}^{*}=\mu_{n}\left(D_{n}, W_{n}^{*}\right)$, define $\tilde{M}_{n}^{*}=\mu_{n}\left(\tilde{D}_{n}, \tilde{W}_{n}^{*}\right)$. Conditionally on \tilde{D}_{n}, the process \tilde{M}_{n}^{*} is a zeromean Gaussian process with independent increments and conditional variance function $v_{n}\left(\tilde{D}_{n}\right)$. This holds because the conditional distribution of \tilde{M}_{n}^{*}, and the functions v_{n} in particular, are determined by the distribution of $\left(\tilde{D}_{n}, \tilde{W}_{n}^{*}\right) \stackrel{d}{=}\left(D_{n}, W_{n}^{*}\right)$. By construction, the conditional variance function of \tilde{M}_{n}^{*} satisfies $v_{n}\left(\tilde{D}_{n}\right) \xrightarrow{\text { a.s. }} \phi(\tilde{M}, \tilde{U}, \tilde{G})$. By fixing the outcomes in an appropriate measure-one set in the factor space of \tilde{D}_{n}, it follows by an outcome-by-outcome argument that $\tilde{M}_{n}^{*}{ }^{w}$ a.s. $\tilde{M}^{*} \mid(\tilde{M}, \tilde{U})$, where \tilde{M}^{*} conditionally on (\tilde{M}, \tilde{U}) is a zero-mean Gaussian process with independent increments and conditional variance function $\phi(\tilde{M}, \tilde{U}, \tilde{G})$. The convergence facts $\tilde{D}_{n} \xrightarrow{\text { a.s }}(\tilde{M}, \tilde{U})$ and $\tilde{M}_{n}^{*} \xrightarrow{w}$ a.s. $\tilde{M}^{*} \mid(\tilde{M}, \tilde{U})$ jointly imply, by Lemma A. 3 of a (a), the convergence

$$
\begin{equation*}
\left(\tilde{M}_{n}^{*}, \tilde{D}_{n}\right){\xrightarrow{w^{*}}}_{p}\left(\tilde{M}^{*}, \tilde{M}, \tilde{U}\right) \mid(\tilde{M}, \tilde{U}) \tag{A.2}
\end{equation*}
$$

on the Skorokhod representation space (in fact, by the proof of the aforementioned Lemma A.3, also $\xrightarrow{w^{*}}$ a.s.).

Finally, if the measurable functions ξ_{n} are such that $X_{n}=\xi_{n}\left(D_{n}\right)$, then $\xi_{n}\left(\tilde{D}_{n}\right)=\psi\left(\tilde{D}_{n}\right)+$ $o_{p}(1)$ because this equality is determined by the joint distribution of $\left(\tilde{D}_{n}, \tilde{X}_{n}\right) \stackrel{d}{=}\left(D_{n}, X_{n}\right)$. As ψ is continuous and upon conditioning convergence in probability to zero becomes weak convergence in probability to zero, from (A.2) and Theorem 10 of e (w) it follows that

$$
\left(\tilde{M}_{n}^{*}, \xi_{n}\left(\tilde{D}_{n}\right)\right) \xrightarrow{w_{p}^{*}}\left(\tilde{M}^{*}, \psi(\tilde{M}, \tilde{U})\right) \mid(\tilde{M}, \tilde{U}) .
$$

The distributional equalities $\left(M_{n}^{*}, X_{n}, D_{n}\right) \stackrel{d}{=}\left(\tilde{M}_{n}^{*}, \xi_{n}\left(\tilde{D}_{n}\right), \tilde{D}_{n}\right)$ and $\left(M^{*}, X, M, U\right) \stackrel{d}{=}$ $\left(\tilde{M}^{*}, \psi(\tilde{M}, \tilde{U}), \tilde{M}, \tilde{U}\right)$ complete the proof.

A. 2 Proofs

Proof of Lemma 1. We follow the approach of the proof of Lemma 1 and other intermediate results in a (a). First, defining $e_{t}=z_{t}^{2}-1$,

$$
\sup _{u \in[0,1]}\left|U_{n}(u)-V_{n}(u)\right|=\sup _{u \in[0,1]}\left|n^{-1} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2} e_{t}\right| \xrightarrow{p} 0
$$

by Theorem A. 1 of $\mathrm{v}(\mathrm{a})$, since $\left\{e_{t}, \mathcal{F}_{t}\right\}_{t \geq 1}$ is an mds by Assumption 1 and $\sigma_{\lfloor n \cdot\rfloor+1}^{2}=\sigma_{n}^{2}(\cdot) \xrightarrow{w}$ $\sigma^{2}(\cdot)$ by Assumption 2 and the CMT; this proves (8), because convergence in the sup norm
implies convergence in the Skorokhod metric, i.e., in $\mathscr{D}[0,1]$. Next, we apply Theorem 2.1 of s (a) to

$$
M_{n}(\cdot)=\int_{0} \sigma_{n}(u) \mathrm{d} B_{z, n}(u),
$$

noting that Assumption 1 implies $\sup _{n \geq 1} n^{-1} \sum_{t=1}^{n} E\left(z_{t}^{2}\right)=1$, so that using Assumption 2, we have

$$
\left(\sigma_{n}(\cdot), B_{z, n}(\cdot), M_{n}(\cdot)\right) \xrightarrow{w}\left(\sigma(\cdot), B_{z}(\cdot), M(\cdot)\right) .
$$

The CMT together with (8) then implies (7), because

$$
\int_{0}^{u} \sigma_{n}^{2}(s) \mathrm{d} s=\frac{1}{n} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2}+\sigma_{\lfloor n u\rfloor+1}^{2}\left(u-\lfloor n u\rfloor n^{-1}\right), \quad u \in[0,1],
$$

so that $U_{n}(\cdot)=V_{n}(\cdot)+o_{p}(1)=\int_{0}^{r} \sigma_{n}^{2}(s) \mathrm{d} s+o_{p}(1)$, i.e., $U_{n}(\cdot)$ is a continuous functional of $\sigma_{n}(\cdot)$ plus an asymptotically negligible term.

Proof of Theorem 1. The idea of the proof is to construct on a special probability space random elements distributed like $\left(\sigma_{n}, M_{n}, U_{n}, M_{n}^{*}, U_{n}^{*}\right)$ and such that on this probability space the convergence asserted in Theorem 1 holds weakly a.s.; on a general probability space it will then hold \xrightarrow{w}_{w}. Throughout, we use repeatedly the fact that for independent random elements ξ and η and for a measurable real ϕ such that $E(|\phi(\xi, \eta)|)<\infty$, it holds that $E(\phi(\xi, \eta) \mid \eta)=$ $\left.E(\phi(\xi, v))\right|_{v=\eta}$ a.s., with $E(\phi(\xi, v))$ defining a function of a non-random v; see l (u, p. 341).

By Assumption 3, $\psi_{n t}$ are $\mathcal{G}_{n 0}$-measurable and hence are measurable functions of σ_{n} that we denote, with a slight abuse of notation, by $\psi_{n t}\left(\sigma_{n}\right)$. Let

$$
e_{n m}(\gamma):=E\left(v_{n t}^{2} \psi_{n t}^{2}(\gamma) \mathbb{I}_{\left\{\left|v_{n t} \psi_{n t}(\gamma)\right|>\sqrt{n} / m\right\}}\right),
$$

for $m \in \mathbb{N}$ and a generic non-random γ; then $e_{n m}\left(\sigma_{n}\right)$ is a version of the conditional expectation $E\left(z_{t}^{2} \mathbb{I}_{\left\{\left|z_{t}\right|>\sqrt{n} / m\right\}} \mid \sigma_{n}\right)$ because $\left\{v_{n t}\right\}_{t=1}^{n}$ and σ_{n} are independent. Define $B_{v, n}:=n^{-1 / 2} \sum_{t=1}^{n \cdot\rfloor} v_{n t}$. We apply Theorem A. 1 with $\xi_{n}=\left(\sigma_{n}, B_{v, n}\right), \xi=\left(\sigma, B_{z}\right)$,

$$
f_{n}\left(\xi_{n}\right)=\left(\sigma_{n}, Q_{\psi, n}, Q_{z, n}, \mathcal{L}_{n}, L_{n}\right) \text { and } f(\xi)=\left(\sigma, Q, Q, 0^{\infty}, 0^{\infty}\right)
$$

where $Q_{\psi, n}=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \psi_{n t}^{2}, Q_{z, n}=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} z_{t}^{2}, \mathcal{L}_{n}=\left\{n^{-1} \sum_{t=1}^{n} e_{n m}\left(\sigma_{n}\right)\right\}_{m \in \mathbb{N}} \in \mathbb{R}^{\infty}, L_{n}=$ $\left\{n^{-1} \sum_{t=1}^{n} z_{t}^{2} \mathbb{I}_{\left\{\left|z_{t}\right|>\sqrt{n} / m\right\}}\right\}_{m \in \mathbb{N}} \in \mathbb{R}^{\infty}, Q(u)=u, u \in[0,1]$, and 0^{∞} is the zero sequence in \mathbb{R}^{∞}, the Frechet space. The functions f_{n} and f are defined on subspaces of the Borel space $\mathscr{D}_{2}[0,1]$ with the Skorokhod metric and the induced Borel σ-algebra, and take values in the Polish space $\mathscr{D}_{3}[0,1] \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ with the product of the Skorokhod and the Frechet metric. The assumptions of the lemma imply $\left(Q_{\psi, n}, Q_{z, n}\right) \xrightarrow{p}(Q, Q)$, because ($Q_{\psi, n}-Q, Q_{z, n}-Q$) is the partial sum process of $n^{-1}\left(\psi_{n t}^{2}-1, z_{t}^{2}-1\right)$, which is an mda with respect to \mathcal{F}_{t} since
$E\left(\psi_{n t}^{2} \mid \mathcal{F}_{t-1}\right)=E\left(z_{t}^{2} \mid \mathcal{F}_{t-1}\right)=1$ by the tower property; this partial sum converges to the zero function in probability by the corollary to Theorem 3.3 of n (a). Noting that, by applying Markov's conditional inequality, $L_{n} \xrightarrow{p} 0^{\infty}$ follows from the corresponding result for $\mathcal{L}_{n}=$ $E\left(L_{n} \mid \mathcal{G}_{n 0}\right)$, the assumptions of the lemma eventually imply $f_{n}\left(\xi_{n}\right) \xrightarrow{w} f(\xi)$.

Theorem A. 1 then implies the existence of $\tilde{\xi}_{n}=\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \stackrel{d}{=}\left(\sigma_{n}, B_{v, n}\right)$ and $\tilde{\xi}=\left(\tilde{\sigma}, \tilde{B}_{z}\right) \stackrel{d}{=}$ $\left(\sigma, B_{z}\right)$, defined on a single probability space and such that

$$
\begin{equation*}
\left(\tilde{\sigma}_{n}, \tilde{Q}_{\psi, n}, \tilde{Q}_{z, n}, \tilde{\mathcal{L}}_{n}, \tilde{L}_{n}\right):=f_{n}\left(\tilde{\xi}_{n}\right) \xrightarrow{\text { a.s. }} f(\tilde{\xi})=\left(\tilde{\sigma}, Q, Q, 0^{\infty}, 0^{\infty}\right) . \tag{A.3}
\end{equation*}
$$

Finally, we complete the set up by introducing a product extension of the previous probability space with generic outcomes $\left(\tilde{\omega}, \omega^{*}\right)$ where a sequence $\left\{\tilde{w}_{t}^{*}\left(\omega^{*}\right)\right\} \stackrel{d}{=}\left\{w_{t}^{*}\right\}$ and a standard Brownian motion $\tilde{B}_{z}^{*}\left(\omega^{*}\right)$ are defined; these are thus independent of $\left\{\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)\right\}_{n \geq 1}$ and $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$.

As $\tilde{B}_{v, n}$ and $\tilde{\sigma}_{n}$ are independent (because $B_{v, n}$ and σ_{n} are), it holds for any integrable random variable $h\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ that $E\left(h\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \mid \tilde{\sigma}_{n}\right)=\left.E\left(h\left(\gamma, \tilde{B}_{v, n}\right)\right)\right|_{\gamma=\tilde{\sigma}_{n}}$. A similar equality holds for the independent \tilde{B}_{z} and $\tilde{\sigma}$. Therefore, to prove any convergence of the form

$$
\begin{equation*}
E\left(h_{n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \mid \tilde{\sigma}_{n}\right) \xrightarrow{\text { a.s. }} E\left(h\left(\tilde{\sigma}, \tilde{B}_{z}\right) \mid \sigma\right), \tag{A.4}
\end{equation*}
$$

it is sufficient to prove that $E\left(h_{n}\left(\gamma_{n}, \tilde{B}_{v, n}\right)\right) \rightarrow E\left(h\left(\gamma, \tilde{B}_{z}\right)\right)$ for all deterministic sequences $\left\{\gamma_{n}\right\}_{n \geq 1}$ in some set $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ such that $P\left(\left\{\tilde{\sigma}_{n}\right\}_{n \geq 1} \in \Gamma\right)=1$. We now choose and fix Γ. Consider the outcomes $\tilde{\omega}$ such that convergence (A.3) holds at $\tilde{\omega}$ and, moreover, $\left.\left(\int_{0}^{j} \gamma \mathrm{~d} \tilde{B}_{z}^{*}\right)\right|_{\gamma=\tilde{\sigma}(\tilde{\omega})}$ $=\left(\int_{0} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}\right)\left(\tilde{\omega}, \omega^{*}\right)$ up to indistinguishability w.r.t. the measure of \tilde{B}_{z}^{*}; here $\int_{0}^{j} \gamma \mathrm{~d} \tilde{B}_{z}^{*}$ is a Wiener integral defined on the factor space of \tilde{B}_{z}^{*} with square-integrable $\gamma \in \mathscr{D}[0,1]$, whereas $\int_{0}^{*} \tilde{\sigma} d \tilde{B}_{z}^{*}$ is an Itô integral defined on the product space. A measure-one set of such outcomes $\tilde{\omega}$ exists; see e.g. Lemma 3.2 of $\mathrm{k}(\mathrm{a})$. Define $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ as the set of sequences $\left\{\tilde{\sigma}_{n}(\tilde{\omega})\right\}_{n \geq 1}$ corresponding to $\tilde{\omega}$ in such a set, then $P\left(\left\{\tilde{\sigma}_{n}\right\}_{n \geq 1} \in \Gamma\right)=1$ as required.

As noted in Remark 4.4, we may recover $\left(M_{n}, U_{n}\right)$ (and hence the original data D_{n}) from ($\sigma_{n}, B_{v, n}$) as some measurable transformation, say $m_{n}\left(\sigma_{n}, B_{v, n}\right)$. Define accordingly $\left(\tilde{M}_{n}, \tilde{U}_{n}\right):=m_{n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ (and analogously $\left.\tilde{D}_{n}\right)$. With $\tilde{z}_{n t}:=\tilde{\psi}_{n t} \tilde{v}_{n t}$, where $\tilde{\psi}_{n t}=\psi_{n t}\left(\tilde{\sigma}_{n}\right)$ and

$$
\tilde{v}_{n t}:=n^{1 / 2}\left(\tilde{B}_{v, n}(t / n)-\tilde{B}_{v, n}((t-1) / n)\right),
$$

define also the process $\tilde{B}_{z, n}:=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}=: m_{z, n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$, such that

$$
\left(\tilde{\sigma}_{n}, \tilde{B}_{z, n}, \tilde{M}_{n}, \tilde{U}_{n}\right) \stackrel{d}{\stackrel{d}{ }}\left(\sigma_{n}, B_{z, n}, M_{n}, U_{n}\right) .
$$

We proceed to the convergence of $\left(\tilde{M}_{n}, \tilde{U}_{n}\right)$ conditional on $\tilde{\sigma}_{n}$ and prove that

$$
\begin{equation*}
E\left(g\left(\tilde{B}_{z, n}, \tilde{M}_{n}, \tilde{U}_{n}\right) \mid \tilde{\sigma}_{n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{B}_{z}, \tilde{M}, \tilde{V}\right) \mid \tilde{\sigma}\right) \tag{A.5}
\end{equation*}
$$

for continuous bounded real g of matching domain; this convergence is of the form (A.4) with $h_{n}=g \circ\left(m_{z, n}, m_{n}\right)$. In so doing, for any random element $Z=\phi\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ we write $Z\left(\gamma_{n}\right)$ for $\phi\left(\gamma_{n}, \tilde{B}_{v, n}\right)$; e.g., $\tilde{B}_{z, n}\left(\gamma_{n}\right)=m_{z, n}\left(\gamma_{n}, \tilde{B}_{v, n}\right)$. By the discussion in the previous paragraph, (A.5) will follow from the standard weak convergence of $\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\gamma_{n}\right), \tilde{U}_{n}\left(\gamma_{n}\right)\right.$), for all $\left\{\gamma_{n}\right\}_{n \geq 1} \in \Gamma$, that we establish next.

For $\left\{\tilde{\sigma}_{n}\right\}_{n \in \mathbb{N}}$ replaced by a fixed $\left\{\gamma_{n}\right\}_{n \geq 1} \in \Gamma, \tilde{z}_{n t}\left(\gamma_{n}\right)=\psi_{n t}\left(\gamma_{n}\right) \tilde{v}_{n t}$ is an mda satisfying the conditions of w (r)'s functional central limit theorem. First, $E\left(\psi_{n t}\left(\gamma_{n}\right) \tilde{v}_{n t} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=$ $\psi_{n t}\left(\gamma_{n}\right) E\left(\tilde{v}_{n t} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=0$ because the mda property of $\tilde{v}_{n t}$ is inherited from the original probability space as $\left\{\tilde{v}_{n i}\right\}_{i=1}^{n} \stackrel{d}{=}\left\{v_{n i}\right\}_{i=1}^{n}$. Second, $n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} E\left(\psi_{n t}^{2}\left(\gamma_{n}\right) \tilde{v}_{n t}^{2} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=$ $n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \psi_{n t}^{2}\left(\gamma_{n}\right)=\tilde{Q}_{\psi, n}\left(\gamma_{n}\right) \rightarrow Q$, where the first equality is again inherited from the original probability space, and the convergence by the definition of Γ. Third, as $\tilde{\mathcal{L}}_{n}\left(\gamma_{n}\right) \rightarrow 0^{\infty}$ again by the choice of Γ, it holds that $n^{-1} \sum_{t=1}^{n} e_{n m}\left(\gamma_{n}\right) \rightarrow 0$ for all $m \in \mathbb{N}$, which is equivalent to

$$
n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right) \mathbb{I}_{\left\{\left|\tilde{z}_{n t}\left(\gamma_{n}\right)\right|>\sqrt{n} / m\right\}}\right) \rightarrow 0, \quad m \in \mathbb{N},
$$

by the definition of $e_{n m}$ and implies the Lindeberg condition in its usual form

$$
n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right) \mathbb{I}_{\left\{\left|\tilde{z}_{n t}\left(\gamma_{n}\right)\right|>\sqrt{n} \epsilon\right\}}\right) \rightarrow 0
$$

for all $\epsilon>0$. Therefore,

$$
\tilde{B}_{z, n}\left(\gamma_{n}\right) \xrightarrow{w} \tilde{B}_{z}^{*},
$$

in the sense that $E\left(g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right)\right)\right) \rightarrow E\left(g\left(\tilde{B}_{z}^{*}\right)\right)$ for continuous bounded real g with matching domain. For the same fixed γ_{n}, this in turn implies that

$$
\tilde{M}_{n}\left(\gamma_{n}\right)=\int_{0} \gamma_{n}(u) \mathrm{d} \tilde{B}_{z, n}\left(u, \gamma_{n}\right) \xrightarrow{w} \int_{0} \gamma(u) \mathrm{d} \tilde{B}_{z}^{*}(u),
$$

where $\gamma=\lim \gamma_{n}$ exists in $\mathscr{D}[0,1]$ by the choice of γ_{n}. More precisely, by Theorem 2.1 of $\mathrm{s}(\mathrm{a})$, as $\sup _{n \geq 1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right)\right)=\sup _{n \geq 1} \tilde{Q}_{\psi, n}\left(1, \gamma_{n}\right)<\infty$, the previous convergence holds jointly with that of $\tilde{B}_{z, n}$, such that $E\left(g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\gamma_{n}\right)\right)\right) \rightarrow E\left(g\left(\tilde{B}_{z}^{*}, \int_{0}^{*} \gamma \mathrm{~d} \tilde{B}_{z}^{*}\right)\right)$ for continuous bounded real g. Furthermore, using

$$
\begin{aligned}
\tilde{U}_{n} & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2} \tilde{\psi}_{n t}^{2}+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}\left(\tilde{z}_{n t}^{2}-\tilde{\psi}_{n t}^{2}\right) \\
& =\int_{0} \tilde{\sigma}_{n}^{2}(u) \mathrm{d} \tilde{Q}_{\psi, n}(u)+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}\left(\tilde{z}_{n t}^{2}-\tilde{\psi}_{n t}^{2}\right)+o(1)
\end{aligned}
$$

uniformly, it follows that $\tilde{U}_{n}\left(\gamma_{n}\right) \xrightarrow{p} \int_{0}^{r} \gamma^{2}(u)$ d u by Theorem A. 1 of $\mathrm{v}(\mathrm{a})$, since $\tilde{z}_{n t}^{2}\left(\gamma_{n}\right)-\tilde{\psi}_{n t}^{2}\left(\gamma_{n}\right)$ is an mda. As convergence in probability to a constant is joint with any weak convergence of
random elements defined on the same probability space, the convergence

$$
E\left[g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\gamma_{n}\right), \tilde{U}_{n}\left(\gamma_{n}\right)\right)\right] \rightarrow E\left[g\left(\tilde{B}_{z}^{*}, \int_{0} \gamma \mathrm{~d} \tilde{B}_{z}^{*}, \int_{0} \gamma^{2}\right)\right]
$$

is true for continuous bounded real g and $\left\{\gamma_{n}\right\}_{n \geq 1} \in \Gamma$, with $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma$. Recall that, by the choice of Γ, for $\tilde{\omega}$ in a set of probability one it holds that $\left\{\tilde{\sigma}_{n}(\tilde{\omega})\right\}_{n \geq 1} \in \Gamma, \tilde{\sigma}_{n}(\tilde{\omega}) \rightarrow \tilde{\sigma}(\tilde{\omega})$ and

$$
\left.\left(\tilde{B}_{z}^{*}\left(\omega^{*}\right),\left(\int_{0} \gamma \mathrm{~d} \tilde{B}_{z}^{*}\right)\left(\omega^{*}\right), \int_{0} \gamma^{2}\right)\right|_{\gamma \tilde{\sigma}(\tilde{\omega})}=\left(\tilde{B}_{z}^{*}\left(\omega^{*}\right),\left(\int_{0} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}\right)\left(\tilde{\omega}, \omega^{*}\right), \int_{0} \tilde{\sigma}^{2}(\tilde{\omega})\right)
$$

up to \tilde{B}_{z}^{*}-indistinguishability. Since \tilde{B}_{z}^{*} is independent of $\tilde{\sigma}$, the two previous displays jointly imply

$$
E\left[g\left(\tilde{B}_{z, n}, \tilde{M}_{n}, \tilde{U}_{n}\right) \mid \tilde{\sigma}_{n}\right] \xrightarrow{\text { a.s. }} E\left[g\left(\tilde{B}_{z}^{*}, \int_{0} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}, \tilde{V}\right) \mid \tilde{\sigma}\right] .
$$

The proof of (A.5) is completed by using the distributional equality $\left(\tilde{B}_{z}, \tilde{M}, \tilde{V}\right) \stackrel{d}{=}\left(\tilde{B}_{z}^{*}, \int_{0} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}, \tilde{V}\right)$.
We turn to the bootstrap processes. Define

$$
\tilde{B}_{z, n}^{*}:=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t} \tilde{w}_{t}^{*}, \quad \tilde{M}_{n}^{*}:=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t} \tilde{z}_{n t} \tilde{w}_{t}^{*}, \quad \tilde{U}_{n}^{*}:=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2} \tilde{z}_{n t}^{2} \tilde{w}_{t}^{* 2} .
$$

Here we show that

$$
E\left(g\left(\tilde{B}_{z, n}^{*}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{B}_{z}^{*}, \tilde{M}^{*}, \tilde{V}\right) \mid \tilde{\sigma}\right)
$$

for continuous bounded real g, where \tilde{B}_{z}^{*} is a standard Brownian motion independent of $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$, and $\tilde{M}^{*}:=\int_{0} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}$. Given that $\left\{\tilde{w}_{t}^{*}\right\}$ and $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$ are independent, as in the proof of (A.5), we could proceed by fixing $\left\{\left(\gamma_{n}, b_{n}\right)\right\}_{n \geq 1} \in \Gamma$, where Γ B is an appropriate set with $P\left(\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)_{n \geq 1}\right.$ $\in \Gamma \mathrm{B})=1$, and then discuss the standard weak convergence of $\left(\tilde{B}_{z, n}^{*}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right)$ as a transformation of ($\left.\gamma_{n}, b_{n},\left\{\tilde{w}_{t}^{*}\right\}\right)$ instead of ($\left.\tilde{\sigma}, \tilde{B}_{z},\left\{\tilde{w}_{t}^{*}\right\}\right)$. Since now ($\left.\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ and $\left\{\tilde{w}_{t}^{*}\right\}$ are defined on a product space, we implement this equivalently by fixing outcomes $\tilde{\omega}$ in the component space of ($\tilde{\sigma}_{n}, \tilde{B}_{v, n}$) and letting the outcome in the component space of $\left\{\tilde{w}_{t}^{*}\right\}$ be the only source of randomness. In what follows, fix an $\tilde{\omega}$ in a probability-one set where convergence (A.3) holds. Then

$$
n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*} \xrightarrow{w} B_{z}^{*},
$$

because $n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} E\left[\tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{*}\right)^{2}\right]=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}^{2}(\tilde{\omega})=Q_{z, n}(\tilde{\omega}) \rightarrow Q$ and

$$
L_{n}(\tilde{\omega})=\left\{n^{-1} \sum_{t=1}^{n} \tilde{z}_{n t}^{2}(\tilde{\omega}) \mathbb{I}\left(\left|\tilde{z}_{n t}(\tilde{\omega})\right|>\sqrt{n} / m\right)\right\}_{m \in \mathbb{N}} \rightarrow 0^{\infty}
$$

by the choice of $\tilde{\omega}$, such that the following Lindeberg condition holds for every $m \in \mathbb{N}$:

$$
n^{-1} \sum_{t=1}^{n} E\left[\tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{*}\right)^{2} \mathbb{I}\left(\left|\tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*}\right|>\sqrt{n} / m\right)\right]
$$

$$
\begin{aligned}
\leq & n^{-1} \sum_{t=1}^{n} E\left[\tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{*}\right)^{2} \mathbb{I}\left(\left|\tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*}\right|>\sqrt{n} / m,\left|\tilde{w}_{t}^{*}\right| \leq K\right)\right] \\
& +n^{-1} \sum_{t=1}^{n} E\left[\tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{*}\right)^{2} \mathbb{I}\left(\left|\tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*}\right|>\sqrt{n} / m,\left|\tilde{w}_{t}^{*}\right|>K\right)\right] \\
\leq & n^{-1} \sum_{t=1}^{n} \tilde{z}_{n t}^{2}(\tilde{\omega}) \mathbb{I}\left(\left|\tilde{z}_{n t}(\tilde{\omega})\right|>\sqrt{n} /(m K)\right) \\
& +E\left[\left(\tilde{w}_{1}^{*}\right)^{2} \mathbb{I}\left(\left|\tilde{w}_{1}^{*}\right|>K\right)\right] \cdot n^{-1} \sum_{t=1}^{n} \tilde{z}_{n t}^{2}(\tilde{\omega}) \\
\underset{n \rightarrow \infty}{\longrightarrow} & E\left\{\left(\tilde{w}_{1}^{*}\right)^{2} \mathbb{I}\left(\left|\tilde{w}_{1}^{*}\right|>K\right)\right\} \underset{K \rightarrow \infty}{\longrightarrow} 0 .
\end{aligned}
$$

It follows that $\tilde{M}_{n}^{*}(\tilde{\omega})=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}(\tilde{\omega}) \tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*} \xrightarrow{w} \int_{0} \tilde{\sigma}(\tilde{\omega}) \mathrm{d} \tilde{B}_{z}^{*}$. Further,

$$
\begin{aligned}
\tilde{U}_{n}^{*}(\tilde{\omega}) & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}(\tilde{\omega}) \tilde{z}_{n t}^{2}(\tilde{\omega}) \tilde{w}_{t}^{* 2} \\
& =\tilde{U}_{n}(\tilde{\omega})+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}(\tilde{\omega}) \tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{* 2}-1\right) \xrightarrow{p} \tilde{V}(\tilde{\omega}),
\end{aligned}
$$

using Theorem A. 1 of v (a). Since $\tilde{V}(\tilde{\omega})$ is non-random, the last two convergence facts are joint:

$$
E\left[g\left(\tilde{M}_{n}^{*}(\tilde{\omega}), \tilde{U}_{n}^{*}(\tilde{\omega})\right)\right] \rightarrow E\left[g\left(\tilde{M}^{*}(\tilde{\omega}), \tilde{V}(\tilde{\omega})\right)\right]
$$

for continuous and bounded real g. As in the first part of the proof, by the product structure of the probability space and since the set of considered outcomes $\tilde{\omega}$ has probability one, the previous convergence implies that

$$
E\left(g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{M}^{*}, \tilde{V}\right) \mid \tilde{\sigma}\right),
$$

and eventually, as $\left(\tilde{M}^{*}, \tilde{V}, \tilde{\sigma}\right) \stackrel{d}{=}(\tilde{M}, \tilde{V}, \tilde{\sigma})$, that

$$
E\left(g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E(g(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}) .
$$

Notice that conditioning on ($\tilde{\sigma}_{n}, \tilde{B}_{v, n}$) can be replaced by conditioning on \tilde{D}_{n} because ($\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}$) is a measurable function of ($\tilde{\sigma}_{n}, \tilde{B}_{v, n}$) and $\left\{\tilde{w}_{t}^{*}\right\}$.

We can conclude from (A.5) and this result that

$$
\left(E\left[h\left(\tilde{M}_{n}, \tilde{U}_{n}\right) \mid \tilde{\sigma}_{n}\right], E\left[g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{D}_{n}\right]\right) \xrightarrow{\text { a.s. }}(E[h(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}], E[g(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}])
$$

for all continuous and bounded real h, g, whereas on a general probability space

$$
\begin{equation*}
\left(E\left[h\left(M_{n}, U_{n}\right) \mid \sigma_{n}\right], E\left[g\left(M_{n}^{*}, U_{n}^{*}\right) \mid D_{n}\right]\right) \xrightarrow{w}(E[h(M, V) \mid \sigma], E[g(M, V) \mid \sigma]), \tag{A.6}
\end{equation*}
$$

because $\left(\tilde{\sigma}_{n}, \tilde{M}_{n}, \tilde{U}_{n}, \tilde{D}_{n}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \stackrel{d}{=}\left(\sigma_{n}, M_{n}, U_{n}, D_{n}, M_{n}^{*}, U_{n}^{*}\right)$. This is precisely the definition of the joint \xrightarrow{w} convergence in the theorem.

Proof of Corollary 1. From (A.6) with $h=g=\tau$, if the random $\operatorname{cdf} P(\tau(M, V) \leq \cdot \mid \sigma)$ a.s. has continuous sample paths, conditional validity of the bootstrap as in Corollary 1 follows from Corollary 3.2 of v (a).

Proof of Lemma 1. For any $K \in \mathbb{R}$, consider the continuous function $g_{K}: \mathbb{R} \rightarrow[0,1]$ defined by $g_{K}(x)=\mathbb{I}_{(-\infty, K]}(x)+(K+1-x) \mathbb{I}_{(K, K+1]}$. Then $\mathbb{I}_{(-\infty, K]} \leq g_{K} \leq \mathbb{I}_{(-\infty, K+1]}$ and the convergence $\tau_{n}^{*} \xrightarrow{w_{w}^{*}} \tau^{*} \mid \sigma$ implies that

$$
F_{n}^{*}(K) \leq E^{*}\left(g_{K}\left(\tau_{n}^{*}\right)\right) \xrightarrow{w} E\left(g_{K}(\tau) \mid \sigma\right) \leq F^{*}(K+1),
$$

where $F^{*}(K+1)=P\left(\tau^{*} \leq K+1 \mid \sigma\right)$. Therefore, for all $q \in(0,1)$,

$$
\liminf _{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q\right) \geq P\left(F^{*}(K+1) \leq q\right) .
$$

As a result,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} P\left(F_{n}^{*}\left(\tau_{n}\right) \leq q\right) & \geq \liminf _{n \rightarrow \infty} P\left(F_{n}^{*}\left(\tau_{n}\right) \leq q, \tau_{n} \leq K\right) \\
& \geq \liminf _{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q, \tau_{n} \leq K\right) \\
& \geq \operatorname{limin}_{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q\right)-\lim _{n \rightarrow \infty} P\left(\tau_{n}>K\right) \\
& \geq P\left(F^{*}(K+1) \leq q\right),
\end{aligned}
$$

since $\tau_{n} \xrightarrow{p}-\infty$ means that $\lim _{n \rightarrow \infty} P\left(\tau_{n}>K\right)=0$ for all $K \in \mathbb{R}$. By Markov's inequality,

$$
P\left(F^{*}(K+1) \leq q\right) \geq 1-q^{-1} E\left(F^{*}(K+1)\right)=1-q^{-1} P\left(\tau^{*} \leq K+1\right),
$$

and the proof is completed by letting $K \rightarrow-\infty$.

Proof of eq. (23). Notice that

$$
\begin{aligned}
\hat{U}_{n}(\cdot) & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor}\left(\sum_{i=0}^{t-1} \psi_{i} \varepsilon_{t-i}\right)^{2} \\
& =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \sum_{i=0}^{t-1} \psi_{i}^{2} \varepsilon_{t-i}^{2}+2 n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \sum_{i=0}^{t-1} \sum_{j=0}^{i-1} \psi_{i} \psi_{j} \varepsilon_{t-i} \varepsilon_{t-j} \\
& =: a_{1 n}(\cdot)+a_{2 n}(\cdot),
\end{aligned}
$$

with $a_{1 n}(\cdot)$ and $a_{2 n}(\cdot)$ implicitly defined. First, $a_{2 n}(\cdot)=o_{p}(1)$ uniformly in $\cdot \in[0,1]$, similarly to Lemma A. 7 in a (a). Second,

$$
a_{1 n}(\cdot)=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \varepsilon_{t}^{2}\left(\sum_{i=0}^{\lfloor n \cdot\rfloor-t} \psi_{i}^{2}\right)=\left(\sum_{i=0}^{\infty} \psi_{i}^{2}\right) U_{n}(\cdot)+b_{n}(\cdot),
$$

with

$$
b_{n}(\cdot):=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \varepsilon_{t}^{2}\left(\sum_{i=\lfloor n \cdot\rfloor-t+1}^{\infty} \psi_{i}^{2}\right) .
$$

Since the ψ_{i} 's are exponentially decaying, there exist constants C and $\rho \in(0,1)$ such that $\sum_{i=\lfloor n \cdot\rfloor-t+1}^{\infty} \psi_{i}^{2} \leq C \rho^{\lfloor n \cdot\rfloor-t+1}$. Using the facts that $\max _{t=1, \ldots, n} \sigma_{t}^{2}=O_{p}(1)$ by Assumption 2 and $E\left(z_{t}^{2}\right)=1$ by Assumption 1, it holds that

$$
\begin{aligned}
\sup _{u \in[0,1]} b_{n}(u) & \leq C n^{-1} \sup _{u \in[0,1]} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2} z_{t}^{2} \rho^{\lfloor n \cdot\rfloor-t+1} \\
& \leq C\left(\max _{t=1, \ldots, n} \sigma_{t}^{2}\right)\left(n^{-1} \max _{t=1, \ldots, n} z_{t}^{2}\right) \sup _{u \in[0,1]}\left(\sum_{t=1}^{\lfloor n \cdot\rfloor} \rho^{\lfloor n \cdot\rfloor-t+1}\right) \\
& =O_{p}(1) o_{p}(1) \sum_{t=1}^{n} \rho^{t}=o_{p}(1) .
\end{aligned}
$$

Hence, $\hat{U}_{n}(\cdot)=\left(\sum_{i=0}^{\infty} \psi_{i}^{2}\right) U_{n}(\cdot)+o_{p}(1)$.

References

Brown, B. M. (1971). Martingale central limit theorems. Annals of Mathematical Statistics 42, 59-66.

Cavaliere, G., Georgiev, I. (2020). Inference under random limit bootstrap measures. Econometrica $88,2547-2574$.

Cavaliere, G., Rahbek, A., Taylor, A. M. R. (2010). Testing for co-integration in vector autoregressions with non-stationary volatility. Journal of Econometrics 158, 7-24.

Cavaliere, G., Taylor, A. M. R. (2009). Heteroskedastic time series with a unit root. Econometric Theory 25, 1228-1276.

Dudley, R. M. (2004). Real Analysis and Probability. Cambridge University Press, Cambridge.
Hansen, B. E. (1992). Convergence to stochastic integrals for dependent heterogeneous processes. Econometric Theory 8, 489-500.

Hansen, B. E. (1995). Regression with nonstationary volatility. Econometrica 63, 1113-1132.
Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.
Pakkanen M. S. (2010). Stochastic integrals and conditional full support. Journal of Applied Probability 47, 650-667.

Rao, M. M., Swift, R. J. (2006). Probability Theory with Applications. Springer, New York.
Sweeting, T. J. (1989). On conditional weak convergence. Journal of Theoretical Probability 2, 461-474.

[^0]: * Corresponding author.

 E-mail addresses: h.p.boswijk@uva.nl (H. P. Boswijk), giuseppe.cavaliere@unibo.it (G. Cavaliere), i.georgiev@unibo.it (I. Georgiev), anders.rahbek@econ.ku.dk (A. Rahbek).

