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ABSTRACT

Context. Occultation experiments represent unique opportunities to remotely probe the physical properties of atmospheres. The data
processing involved in modeling the time and frequency transfers of an electromagnetic signal requires that refractivity be properly
accounted for. On theoretical grounds, little work has been done concerning the elaboration of a covariant approach for modeling
occultation data.
Aims. We present an original method allowing fully analytical expressions to be derived up to the appropriate order for the covariant
description of time and frequency transfers during an atmospheric occultation experiment.
Methods. We make use of two independent powerful relativistic theoretical tools, namely the optical metric and the time transfer
functions formalism. The former allows us to consider refractivity as spacetime curvature while the latter is used to determine the time
and frequency transfers occurring in a curved spacetime.
Results. We provide the integral form of the time transfer function up to any post-Minkowskian order. The discussion focuses on the
stationary optical metric describing an occultation by a steadily rotating and spherically symmetric atmosphere. Explicit analytical
expressions for the time and frequency transfers are provided at the first post-Minkowskian order and their accuracy is assessed by
comparing them to results of a numerical integration of the equations for optical rays.
Conclusions. The method accurately describes vertical temperature gradients and properly accounts for the light-dragging effect due
to the motion of the optical medium. It can be pushed further in order to derive the explicit form of the time transfer function at higher
order and beyond the spherical symmetry assumption.
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1. Introduction

Theoretical problems dealing with time and frequency trans-
fers require knowledge of the function relating the (coordinate)
time transfer to the coordinate time at reception and to the
spatial coordinates of the reception and emission point-events.
Such a function is called a reception time transfer function.
An emission time transfer function can be introduced too. The
formalism designed to determine the time transfer functions
is called the time transfer functions formalism. It was first
introduced by Linet & Teyssandier (2002) relying on the the-
ory of the world function developed by Synge (1960). Later
on a general post-Minkowskian expansion of the world and
the time transfer functions was proposed by Le Poncin-Lafitte
et al. (2004) and then the method was refined by Teyssandier &
Le Poncin-Lafitte (2008) thanks to a simplified iterative pro-
cedure. The time transfer functions formalism confers a great
advantage in that it spares the trouble of integrating the geodesic
equation, which usually leads to heavy calculations, especially
beyond the post-Minkowskian regime (Richter & Matzner 1983;
Brumberg 1987). Until recently, the time transfer functions
formalism was systematically applied to the physical space-
time considering only gravitational effects on a ray of light

propagating in a vacuum. However, Bourgoin (2020) showed
that theoretical problems dealing with optical rays propagating
into flowing dielectric medium could also be solved making use
of the time transfer functions formalism by means of a power-
ful theoretical tool known as the optical metric or the Gordon’s
metric of spacetime.

When a ray of light is propagating into an optical medium
its trajectory does not follow a null geodesic path of the physi-
cal spacetime because light and matter interact. Conventionally,
the real trajectory is therefore determined by solving Maxwell’s
equation within the framework of geometrical optics. How-
ever, another interesting possibility initially proposed by Gordon
(1923) is to introduce an artificial optical metric which implic-
itly accounts for the interaction between light and matter such
that optical rays follow null geodesics of that new optical metric.
In other words, refractivity is treated as spacetime curvature in
the optical metric. Therefore, the time and frequency transfers
can still be determined with the time transfer functions formal-
ism even when considering a ray of light crossing through an
optical medium.

Occultation experiments are an example of an observing
technique requiring careful treatment of refractivity while mod-
eling the time and frequency transfers. The method consists in
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remotely measuring the physical properties of a planetary atmo-
sphere while the source of an electromagnetic signal is being
occulted by the atmosphere. When the source is a radio sig-
nal emitted by a spacecraft’s antenna the experiment is called
an atmospheric radio occultation (Kliore et al. 1965; Fjeldbo &
Eshleman 1965, 1968; Lindal et al. 1985, 1987; Lindal 1992;
Schinder et al. 2012, 2015), whereas it is called an atmo-
spheric stellar occultation when the source is made of visible
or near-infrared light emitted by a distant star (Roques et al.
1994; Sicardy et al. 2006). In practice, two methods are usually
employed for processing occultation data, namely the Abel inver-
sion for spherical symmetry (Phinney & Anderson 1968; Steiner
et al. 1999) and the numerical ray-tracing for any generic case
(Schinder et al. 2015). The former is an exact expression provid-
ing the index of the refraction profile directly from the bending
angle which is itself retrieved from the frequency transfer. The
latter consists in a numerical integration of the equations for
optical rays across a layered atmosphere. The refractivity in each
layer and the initial pointing direction are iteratively determined
such that the computed frequency coincides with the observed
frequency. While the numerical ray-tracing method is the most
general one, it does not provide a comprehensive description of
the light path and requires significant computational time. On
the other hand, if the Abel inversion method does not require
numerically solving for the equations for optical rays, it can only
be applied to spherically symmetric atmospheres and cannot
account for the atmospheric time delay which eventually affects
the determination of the emitter’s position (i.e., the spacecraft
in a one-way downlink configuration during a radio occultation
event). In addition, as in numerical ray-tracing, the Abel inver-
sion does not provide a comprehensive description of the light
path. An analytical expression describing the time and frequency
transfers for radio occultation experiments would allow these
issues to be overcome.

With this goal in mind, Bourgoin et al. (2019) proposed a
new approach exploiting similarities between equations of geo-
metrical optics and equations of celestial mechanics. It consists
in expressing the equations of geometrical optics as a set of
first-order perturbation equations (similar to Gauss equations of
celestial mechanics) which are better suited for finding analytical
solutions beyond the spherical symmetry assumption. However,
even if the perturbation equations can be solved more easily
than the equations of geometrical optics it is still a challenging
task to solve for the second-order expressions or to incorporate
the light-dragging effect caused by the motion of the optical
medium.

In this paper, we make use of the time transfer functions
formalism considering an optical metric in order to accurately
model the time and frequency transfers for occultation exper-
iments involving a flowing spherically symmetric atmosphere.
The determination of the time transfer functions allows us to
account for the atmospheric time delay. In addition, the formal-
ism being fully covariant, it naturally accounts for the light-
dragging effect due to the motion of the optical medium and
constitutes in that sense a significant improvement with respect
to the perturbation equations approach.

The paper is organized as follows. Section 2 lists the nota-
tions and assumptions we make throughout the paper. Section 3
recalls some basic information about relativistic geometrical
optics and allows us to define the index of refraction, the refrac-
tivity, and the optical metric. The equations for optical rays
propagating in an isotropic dispersive medium are derived in
the same section. The reader who is already familiar with rel-
ativistic geometrical optics can skip this section. Section 4

recalls basic information about the time transfer functions for-
malism and introduces the refractive delay function and the
post-Minkowskian parameter N0. The integral form of the delay
function is given at any post-Minkowskian order. Section 5 is an
application to occultation experiments involving steadily rotating
and spherically symmetric atmospheres. The refractivity profile
is built in Sect. 6 considering an exponential pressure profile and
a polynomial temperature profile of arbitrary degree. The refrac-
tive delay function is finally solved at first post-Minkowskian
order in the limit where the angular velocity of the optical
medium is small with respect to the speed of light in a vacuum.
The expressions for the time and frequency transfers are given
explicitly. Section 7 assesses the accuracy of the first-order solu-
tions for the time and frequency transfers by comparing them to
results of a numerical integration of the equations for optical rays
propagating into a nondispersive isotropic medium. Finally, we
give our conclusions in Sect. 8. Appendix A is a discussion about
the Abel transform method for finding the refractivity from the
frequency transfer while considering the light-dragging effect.

2. General assumptions and notations

In this paper, the influence of gravity on the propagation of light
is regarded as negligible, and so the physical metric g of space-
time is assumed to be a Minkowski metric. Greek indices run
from 0 to 3, and Latin indices run from 1 to 3. We systemati-
cally make use of an orthonormal Cartesian coordinate system
(xµ) = (x0, xi), and so the components of the physical metric may
be written as

gµν = ηµν, (1)

where

ηµν = diag(+1,−1,−1,−1). (2)

We put x0 = ct, with c being the speed of light in a vacuum
and t a time coordinate, and we use x to denote the triplet of spa-
tial coordinates (x1, x2, x3). More generally, we use the notation
a = (ai) = (a1, a2, a3) for a triplet constituted by the spatial com-
ponents of a 4-vector, and b = (bi) = (b1, b2, b3) for a triplet built
with the spatial components of a covariant 4-vector.

Given the triplet a, b, and c, the usual Euclidean scalar
product a · b is denoted aibi = δikaibk, where δik is the Kro-
necker delta. Similarly, a · c denotes the quantity aici = δikaick. In
each case, Einstein’s summation convention on repeated indices
is used. Furthermore, ‖a‖ denotes the Euclidean norm of a:
‖a‖=

√
a · a. Similarly, ‖c‖ denotes the quantity ‖c‖= √c · c.

For the sake of legibility, we employ ( f )x or [ f ]x instead of
f (x) whenever necessary. When a quantity f (x) is to be evalu-
ated at two point-events xA and xB, we employ ( f )A/B to denote
f (xA) and f (xB), respectively. The partial differentiation of f
with respect to xµ is denoted ∂µ f or f,µ.

3. Relativistic geometrical optics

This paper is devoted to the propagation of light rays through
a linear, isotropic, and nondispersive medium filling a spatially
bounded region D in Minkowski spacetime. The region exterior
to D is assumed to be empty of any matter. According to these
assumptions, the basic relations of the present paper are inferred
by substituting the metric components gµν from Eq. (1) into the
equations supplied in Bourgoin (2020).
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The electromagnetic properties of the medium are charac-
terized by two scalar functions, the permittivity ε(x) and the
permeability µ(x). The index of refraction of the medium is the
scalar function defined by the well-known relationship

n(x) = c
√
ε(x)µ(x). (3)

Moreover, it is assumed that the medium is made of a fluid
schematized by a flow of particles which are not colliding. The
unit 4-velocity vector of a particle of the fluid at a point-event
x of its world-line is denoted wµ(x). Outside D, the permittiv-
ity and the permeability reduce to their vacuum values ε(x) = ε0
and µ(x) = µ0, respectively. As c = (ε0µ0)−1/2, the index of refrac-
tion then reduces to n(x) = 1. The expression for the refractivity
is obtained by subtracting its vacuum value from the index of
refraction, namely

N(x) = n(x) − 1. (4)

In the context of the geometrical optics approximation, the
light rays propagating through our medium are the bicharacteris-
tic curves of the so-called eikonal equation, which reads

ḡµν∂µS ∂νS = 0, (5)

where S (x) is the eikonal function and ḡµν is the contravariant
tensor defined by

ḡµν = gµν + κµν, κµν = (n2 − 1)wµwν. (6)

Let us use ḡµν to denote the quantities such that

ḡµαḡ
αν = δ ν

µ . (7)

An elementary calculation leads to

ḡµν = gµν + γµν, γµν = −

(
1 −

1
n2

)
wµwν. (8)

The quantities ḡµν can be regarded as the components of a
Lorentzian metric ḡ defined on the regionD. This new metric is
called the optical metric associated with the optical medium, ter-
minology justified by the following considerations, which were
derived by Gordon (1923), Quan (1957), and Ehlers (1967).

Let us define the 4-wave covector field kµ as

kµ(x) = ∂µS (x). (9)

A contravariant vector field kµ can be associated with this
covector by putting

kµ = gµνkν. (10)

As recalled by Bourgoin (2020), it is convenient to define the
contravariant vector field k̄µ as

k̄µ = ḡµνkν. (11)

Indeed, the light rays xµ = xµ(ζ) associated with a solution S
of the eikonal Eq. (5) are the integral curves of the vector field
k̄µ, namely, they are solutions of the differential system (Perlick
2000)

dxµ

dζ
= k̄µ

(
x(ζ)

)
= ḡµν∂νS

(
x(ζ)

)
. (12)

A classical calculation shows that the solutions of Eq. (12) are
null geodesics of the optical metric ḡ (Synge 1960; Perlick 2000),
ζ being an affine parameter. The null character of the rays is
directly inferred from Eqs. (7), (12), and (5). We have indeed:

ḡµν
dxµ

dζ
dxν

dζ
= ḡαβ∂αS ∂βS = 0. (13)

The eikonal Eq. (5) is the Jacobi equation associated with the
Hamiltonian

H(xµ, kν) =
1
2
ḡαβ(x)kαkβ, (14)

where kν must be regarded as conjugate canonical variables of
xµ. As a consequence, the light rays in the region D can be
considered as solutions of the set of canonical equations (Quan
1957)

dxµ

dζ
=
∂H
∂kµ

= kµ + (n2 − 1)(wνkν)wµ, (15a)

dkµ
dζ

=−
∂H
∂xµ

= − nn,µ(wνkν)2 − (n2 − 1)(wνkν)wα,µkα. (15b)

It must be noted that the eikonal function is constant along a
light ray. Indeed, it follows from Eqs. (12) and (13) that

dS

dζ
=

dxµ

dζ
∂µS = ḡµν∂µS ∂νS = 0. (16)

This property is at the core of the procedure developed in the
following section.

For numerical integration, it is relevant to separate space and
time components in Eq. (15). Let li be the components defined
by

li =
ki

k0
, (17)

and let ` be a new parametrization of the curves for optical rays
(Schinder et al. 2015) such that

d`= nk0dζ. (18)

After inserting these new quantities into the set of canonical
Eq. (15), we find for the time components:

dx0

d`
=

1
n

[
1 + (n2 − 1)

(
w0 + wklk

)
w0

]
, (19a)

d ln ‖k0‖

d`
= − n,0

(
w0 + wklk

)2

−
(n2 − 1)

n

(
w0 + wklk

) (
w0

,0 + wk
,0lk

)
, (19b)

and, for the space components:

dxi

d`
= −

1
n

[
li − (n2 − 1)

(
w0 + wklk

)
wi

]
, (19c)

dli
d`

= −n,i
(
w0 + wklk

)2

−
(n2 − 1)

n

(
w0 + wklk

) (
w0

,i + wk
,ilk

)
−

d ln ‖k0‖

d`
li. (19d)

Equations (19) may be particularly interesting in the case where
the index of refraction n and the unit 4-velocity wµ do not depend
on time, and we use them in our attempt at numerical integration
(see Sect. 7). It is worthy of note that in this case the component
k0 is constant along each light ray.
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Fig. 1. Illustration of an occultation event in spacetime. The past light
cone C (xB) of the reception point-event xB intersects CA, the world-line
of the emitter, at the point-event xA. The zeroth-order null light path (red
line) joining the emission point-event xA to the reception point-event
xB lies on the surface of C (xB). The domain D represents the limit of
the refractive region while x− and x+ are the intersection point-events
between D and the zeroth-order null light path. The path of integration
(dashed red line) is limited to the portion of the zeroth-order null light
path crossing throughD.

4. Refractive delay function

In this section, we introduce the formalism of time transfer
functions that we apply to optical metric in order to describe
refraction due to a linear, isotropic, and nondispersive medium.

4.1. Time transfer functions formalism

Let us consider a light ray ΓAB starting from an emission point-
event (x0

A, xA) and arriving at a reception point-event (x0
B, xB).

We consider that a part of ΓAB travels through the domain D,
while the other part travels through a vacuum, that is a medium
such that n = 1 (see Fig. 1).

It is immediately inferred from Eq. (16) that the phase S
is constant along ΓAB. As a consequence, the coordinates of the
emission point xA and of the reception point xB are such that the
following relation is satisfied:

S
(
x0

B, xB
)
−S

(
x0

A, xA
)
= 0. (20)

Equation (20) shows that x0
A may be considered as an implicit

function of xA and the coordinates of the reception point, namely
x0

B and xB. Hence, it is appropriate to introduce T the reception
time transfer function associated with ΓAB as

x0
B − x0

A = cT
(
xA, x0

B, xB
)
. (21)

An emission time transfer function can be introduced too. Here-
after, we merely consider the case at reception which is better
suited for a downlink one-way transfer during an occultation
event with a radio signal that is recorded when received.

A relevant theorem about the components of the 4-wave
covector can be directly inferred from Eqs. (20) and (21); see
Le Poncin-Lafitte et al. (2004). Indeed after writing Eq. (21) as

x0
A = x0

B − cT
(
xA, x0

B, xB
)
, (22)

and then inserting this relation into Eq. (20), we get the following
expression:

S
(
x0

B, xB
)
−S

(
x0

B − cT
(
xA, x0

B, xB
)
, xA

)
= 0. (23)

Equation (23) is in fact an identity. Therefore, straightforward
differentiations of this last relation with respect to xA, x0

B, and
xB lead to the following set of equations:

∂S

∂xi
A

−
∂S

∂x0
A

∂R

∂xi
A

= 0, (24a)

∂S

∂x0
B

−
∂S

∂x0
A

1 − ∂R

∂x0
B

 = 0, (24b)

∂S

∂xi
B

+
∂S

∂x0
A

∂R

∂xi
B

= 0, (24c)

where we introduced R a reception range transfer function as

R(xA, xB) = cT
(
xA, x0

B, xB
)
. (25)

Using Eqs. (9) and (17), it is easily seen that Eq. (24) imply the
following relationships:

(li)A =
∂R

∂xi
A

, (26a)

(li)B =−
∂R

∂xi
B

1 − ∂R

∂x0
B

−1

, (26b)

and

(k0)B

(k0)A
= 1 −

∂R

∂x0
B

. (26c)

Unsurprisingly, these relations are similar to Eqs. (40)–(42) of
Le Poncin-Lafitte et al. (2004) established for optical rays in a
vacuum. We actually see that they are still valid for optical rays
propagating into a linear, isotropic, and nondispersive medium
within the framework of geometrical optics.

The main interest of Eq. (26) lies in the fact that it enables
us to calculate the Doppler effect between an emitter and a
receiver when the explicit expression of the function R is known.
Indeed, it is well known (Synge 1960; Blanchet et al. 2001) that
the Doppler frequency shift measured between an emitter and a
receiver can be expressed as

νB

νA
=

(uµkµ)B

(uµkµ)A
=

(u0k0)B

(u0k0)A

(1 + βili)B

(1 + βili)A
, (27)

where (uµ)A/B are the unit 4-velocity vectors of the emitter and
receiver defined by

(uµ)A/B =

(
dxµ

ds

)
A/B

, (28)

with

ds2 = gµνdxµdxν. (29)

The unit 4-velocity is by definition a unit vector for the physical
metric of spacetime Eq. (1), hence

(u0)A/B =

 1√
1 − ‖β‖2


A/B

, (30)

where (βi)A/B denote the coordinate 3-velocity vectors of the
emitter and receiver, namely

(βi)A/B =

(
ui

u0

)
A/B

=
1
c

(
dxi

dt

)
A/B

. (31)
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As shown by Linet & Teyssandier (2002) and Hees et al.
(2012, 2014), the frequency transfer may be expressed in terms of
the time (or similarly the range) transfer function after inserting
Eqs. (26) and (30) into (27), namely

νB

νA
=

(u0)B

(u0)A

qB

qA
, (32)

with

qA = 1 + βi
A
∂R

∂xi
A

, (33a)

qB = 1 −
∂R

∂x0
B

− βi
B
∂R

∂xi
B

. (33b)

Therefore, the time and frequency transfers in Eqs. (21) and (33)
can be computed once the explicit form of the time (or similarly
the range) transfer function is known.

The time transfer function may be determined from the
eikonal equation. Indeed, after making use of Eq. (9) and (17)
while evaluating Eq. (5) at xA, we end up with(
ḡ00 + 2ḡ0ili + ḡi jlil j

)
A

= 0. (34)

Then, by invoking Eqs. (26), (6), and assumption (1), we obtain
the Hamilton-Jacobi equation that is satisfied by R. By replac-
ing xA by a variable x while considering x0

B and xB as fixed
parameters, the Hamilton-Jacobi equation eventually reads[
∂iR ∂iR

]
(x,xB) = 1 + κ00(x0

B − R
(
x, xB

)
, x

)
+ 2κ0i(x0

B − R
(
x, xB

)
, x

)[
∂iR

]
(x,xB)

+ κi j(x0
B − R

(
x, xB

)
, x

)[
∂iR ∂ jR

]
(x,xB). (35)

The form of the optical metric in Eqs. (6) and (8) implies that
the range transfer function can be looked for as

R(x, xB) = ‖xB − x‖ + ∆(x, xB), (36)

where ∆ is a refractive delay function. In the present context,
the delay function depends on κµν and is due to refraction when
the light ray is crossing through D. After substituting R from
Eqs. (36) into (35), we find the following expression:

−2N i[∂i∆
]
(x,xB) = W(x, xB), (37)

where we introduced

W(x, xB) =
(
κ00 − 2κ0iN i + κi jN iN j)

x

+ 2
(
κ0i − κi jN j)

x
[
∂i∆

]
(x,xB)

+
(
κi j − δi j)

x
[
∂i∆ ∂ j∆

]
(x,xB), (38)

with N given by

N =
xB − x
‖xB − x‖

, (39)

and where the point-event x is defined as

x(x) =
(
x0

B − ‖xB − x‖ − ∆(x, xB), x
)
. (40)

As x is a free variable, we choose for convenience to con-
sider the case where x is varying along the straight line segment
joining xA and xB, that is x = z(σ) with

z(σ) = xB − σRABNAB, 0 6 σ 6 1, (41)

where RAB = ‖xB − xA‖. In that respect, we have

N = NAB. (42)

A straightforward calculation shows that the total differenti-
ation of ∆(z(σ), xB) with respect to σ is given by

d
dσ

∆
(
z(σ), xB

)
=−RABN i

AB
[
∂i∆

]
(z(σ),xB), (43)

where [∂i∆](z(σ),xB) denotes the partial derivative of ∆(x, xB) with
respect to xi taken at x = z(σ). Then, after inserting Eqs. (37) and
(39) into (43) while accounting for Eq. (42), we infer

d
dσ

∆
(
z(σ), xB

)
=

RAB

2
W

(
z̃(σ), xB

)
, (44)

where the components of the point-event z̃(σ) are given by (40)
with z̃(σ) ≡ x(z(σ)), namely

z̃(σ) =
(
x0

B − σRAB − ∆(z(σ), xB), z(σ)
)
, 0 6 σ 6 1. (45)

Equation (44) is the fundamental differential equation for the
determination of the delay function, and can be integrated with
the following boundary conditions

∆
(
z(0), xB

)
= 0, (46a)

∆
(
z(1), xB

)
= ∆

(
xA, xB

)
, (46b)

which follow from the requirement that ∆(xB, xB) = 0 and from
z(0) = xB. Therefore, Eq. (44) is such that

∆(xA, xB) =
RAB

2

∫
D

{(
κ00 − 2κ0iN i

AB + κi jN i
ABN j

AB
)
z̃(σ)

+ 2
(
κ0i − κi jN j

AB
)
z̃(σ) [∂i∆](z(σ),xB)

− [∂i∆ ∂i∆](z(σ),xB)

}
dσ, (47)

where the integration goes from σ= 0 to 1 and is limited to the
spacetime region withinD.

4.2. Post-Minkowskian expansion

As we plan to apply our general formalism to occultation mea-
surements, we suppose that the refractivity of the medium
satisfies the condition

N(x) � 1, (48)

on the domain D. This condition implies that the optical metric
ḡ deviates only slightly from the Minkowski metric, namely

|γµν| � 1, |κµν| � 1. (49)

It will be convenient to use the maximum value N0 of the
refractivity as a small parameter. For a rocky planet or satellite,
N0 can be defined as the refractivity at ground level. For gas
giants, N0 can be defined as the refractivity at a certain pressure
level. In each case, we can put

N(x) = N0N(x), (50)

where 0 < N(x) 6 1 at each point x ∈ D. With this definition of
N(x), the perturbation terms in the optical metric read

κµν(x,N0) = N0κ
µν
(1)(x) + (N0)2κ

µν
(2)(x), (51a)
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with

κ
µν
(1)(x) = 2N(x)wµwν, κ

µν
(2)(x) =N2(x)wµwν. (51b)

Our modeling is based on the two following additional
assumptions: (i) the function N(x) is independent of N0, and
(ii) the spatial positions of the emitter and of the receiver are
such that the light ray ΓAB, which can be observed in real-
istic situations, has a delay function ∆(xA, xB) given by the
expansion

∆(xA, xB,N0) =

∞∑
m = 1

(N0)m∆(m)(xA, xB). (52)

Inserting the expansions (51) and (52) into (47), one deduces
the expressions for the quantities ∆(m) as (Bourgoin 2020)

∆(1)(xA, xB) =
RAB

2

×

∫
D

(
κ00

(1) − 2κ0i
(1)N

i
AB + κ

i j
(1)N

i
ABN j

AB

)
z(σ)

dσ,

(53a)

∆(2)(xA, xB) =
RAB

2

∫
D

{ (
κ̂00

(2) − 2κ̂0i
(2)N

i
AB + κ̂

i j
(2)N

i
ABN j

AB

)
(z(σ),xB)

+ 2
(
κ0i

(1) − κ
i j
(1)N

j
AB

)
z(σ)

[
∂∆(1)

∂xi

]
(z(σ),xB)

−

[
∂∆(1)

∂xi

∂∆(1)

∂xi

]
(z(σ),xB)

}
dσ, (53b)

and, for l > 3 by

∆(l)(xA, xB) =
RAB

2

∫
D

{ (
κ̂00

(l) − 2κ̂0i
(l)N

i
AB + κ̂

i j
(l)N

i
ABN j

AB

)
(z(σ),xB)

+ 2
l−1∑

m = 1

(
κ̂0i

(m) − κ̂
i j
(m)N

j
AB

)
(z(σ),xB)

[
∂∆(l−m)

∂xi

]
(z(σ),xB)

+

l−2∑
m = 1

(
κ̂

i j
(m)

)
(z(σ),xB)

l−m−1∑
n = 1

[
∂∆(n)

∂xi

∂∆(l−m−n)

∂x j

]
(z(σ),xB)

−

l−1∑
m = 1

[
∂∆(m)

∂xi

∂∆(l−m)

∂xi

]
(z(σ),xB)

}
dσ. (53c)

The integrations are limited to the refractive domain D (see
Fig. 1) and the point-event z(σ) is defined by

z(σ) =
(
x0

B − σRAB, z(σ)
)
, 0 6 σ 6 1. (54)

The quantities κ̂µν(m) are given by

κ̂
µν
(1)(z(σ), xB) = κ

µν
(1)(z(σ)), (55a)

and, for l > 2 by

κ̂
µν
(l)(z(σ), xB) = κ

µν
(l)(z(σ))

+

l−1∑
m = 1

m∑
n = 1

Φ(m,n)(z(σ), xB)

∂nκ
µν
(l−m)

(∂x0)n


z(σ)

. (55b)

The reception function Φ(m,n)(x, xB) is defined for m > 1 and 1 6
n 6 m (Teyssandier & Le Poncin-Lafitte 2008) and is given by

Φ(m,n)(x, xB) =
(−1)n

n!

∑
k1+···+kn = m−n

[ n∏
i = 1

∆(ki+1)(x, xB)
]
, (56)

with k1, . . . , km ∈ N>0. The summation in Eq. (56) is taken over
all sequences of k1 through kn such that the sum of all kn is m−n.

5. Application to radio occultations

The time transfer functions formalism is now successively
applied to the cases of a static and a stationary optical metric.
Subsequently, the discussion is specialized to spherical symme-
try and to radio occultations considering the case of a downlink
one-way transfer.

5.1. Static optical metric

Let us assume that the optical medium is still in the global
coordinate system (xµ), namely

wµ = (1, 0). (57)

Therefore, the post-Minkowskian expansion of the optical metric
can be derived straightforwardly from Eqs. (51b). The only non-
null components are

κ00
(1) = 2N , κ00

(2) =N2. (58)

Within such a coordinate system, the refractive properties of
the medium are supposed to be independent of the component
x0, that is to say

n(x) − 1 =

{
N0N(x) for x ∈ D,
0 for x < D. (59)

Hence, the optical metric is constant and static, so that
relations (55) reduce to

κ̂
µν
(l)(z(σ), xB) = κ

µν
(l)(z(σ)) for l > 1. (60)

By inserting Eqs. (58) into (53) while considering (60), we
obtain the integral form of the delay function up to the lth post-
Minkowskian order

∆(1)(xA, xB) = RAB

∫
D

(
N

)
z(σ)dσ, (61a)

∆(2)(xA, xB) =
RAB

2

×

∫
D

{ (
N2

)
z(σ)
−

[
∂∆(1)

∂xi

∂∆(1)

∂xi

]
(z(σ),xB)

}
dσ,

(61b)

and, for l > 3

∆(l)(xA, xB) =−
RAB

2

∫
D

l−1∑
m = 1

[
∂∆(m)

∂xi

∂∆(l−m)

∂xi

]
(z(σ),xB)

dσ. (61c)

As mentioned previously by Bourgoin (2020), these equa-
tions show that the first-order delay is the well-known excess
path delay due to the change of the phase velocity when the
signal is crossing through D. The geometric delay shows up at
the second post-Minkowskian order as well as the second-order
correction to the excess path delay.

5.2. Stationary optical metric

Let us now assume that the fluid optical medium is at rest in a
coordinate system rotating with respect to the global coordinate
system. We use (xα̂) to denote the rotating coordinate system1.
1 In this section, we use the convention that indices with a circum-
flex starting from the first part of the Greek or Latin alphabet denote
components expressed in the rotating frame.
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The relation between the optical medium rest frame and the
global coordinate system reads

x0̂ = x0, xâ = Λâ
i(t)xi, (62a)

in which Λâ
i(t) ∈ SO(3) are the elements of a rotation matrix.

The inverse relation is given by

x0 = x0̂, xi = Λi
â(t)xâ, (62b)

with Λi
â(t) being the elements of the inverse matrix. The rela-

tionships

Λâ
iΛ

i
b̂

= δâ
b̂
, Λi

âΛâ
j = δi

j, (63)

ensure that a transformation followed by its inverse is an identity
transformation.

Differentiating Eqs. (62b) with respect to the global coor-
dinate time returns the transformation law that relates the
3-velocities expressed in the two coordinate systems:

ẋi = Λi
â(ẋâ + ωâ

b̂
xb̂). (64)

Here, an overdot indicates differentiation with respect to t and
ωâĉ is the angular velocity tensor being defined by

ωâ
ĉ = Λâ

iΛ̇
i
ĉ, ωâĉ = εâb̂ĉω

b̂. (65)

The quantities εâb̂ĉ represent the components of the permuta-
tion symbol and ωâ is the âth component of the angular velocity
vector expressed in the rotating coordinate system, namely

ωâ =ωeâ, (66)

where ω is the magnitude of the angular velocity of rotation and
eâ is the âth component of the unit direction of the spin axis.

Hereafter, we assume that the time-dependent rotation matrix
corresponds to a rigid uniform rotation so that the angular
velocity tensor is constant, namely

ω̇âĉ = 0. (67)

In addition, in the rotating frame, which is the rest frame of the
medium, the 3-velocity vector of a particle of a fluid is null by
definition, that is to say

ẋâ = 0. (68)

The expression for the velocity of a particle of a fluid expressed
in the global coordinate system is derived after substituting ẋâ

from Eqs. (68) into (64) which leads to

dxi

dt
= Λi

âω
â
b̂
Λb̂

jx
j. (69)

Let ξ(x) be a coordinate 3-velocity vector field at the point-
event x belonging to a fluid element of the optical medium. It is
defined in global coordinate notation by

ξi(x) =
wi

w0 =
1
c

dxi

dt
. (70)

Owing to Eqs. (65), (66), and (69), the coordinate 3-velocity vec-
tor of an element of the fluid dielectric medium is given in the

global coordinate system by

ξ(x) =
ω

c
e × x. (71)

Thus, the unit 4-velocity vector of the medium reads

wµ(x) =w0(1, ξ(x)
)
. (72)

The expression for the time component w0 is straightforwardly
inferred from the fact that the 4-velocity is a unit vector for the
physical metric of spacetime (see assumption (1)), hence w0 = Γ,
where Γ is defined as

Γ(x) =
1√

1 − ξ(x) · ξ(x)
. (73)

We can now express the components of the optical metric from
the relation in Eq. (6). The only non-null components are

κ00
(1) = 2Γ2N , κ0i

(1) = κ00
(1) ξ

i, κ
i j
(1) = κ00

(1) ξ
iξ j, (74a)

κ00
(2) = Γ2N2, κ0i

(2) = κ00
(2) ξ

i, κ
i j
(2) = κ00

(2) ξ
iξ j. (74b)

As seen in Sect. 3, the index of refraction is defined in the
instantaneous rest frame of the medium, namely the rotating
frame. Thus, the index of refraction is independent of the time
component of the rotating coordinate system, that is to say

n(xâ) − 1 =

{
N0N(xâ) for xâ ∈ D,
0 for xâ < D.

(75)

This statement implies that ∂0N = 0 according to the transforma-
tion rules in (62). Similarly, (71) also reveals that ∂0ξ

i = 0, hence
∂0Γ = 0. These simplifications imply that the optical metric is
stationary, and so Eqs. (55) eventually reduce to

κ̂
µν
(l)(z(σ), xB) = κ

µν
(l)(z(σ)) for l > 1. (76)

By inserting (74) into (53) while considering (76), we obtain
the integral form of the delay function up to the lth post-
Minkowskian order:

∆(1)(xA, xB) = RAB

∫
D

(
Γ2NC2

)
z(σ)

dσ, (77a)

∆(2)(xA, xB) =
RAB

2

∫
D

{ (
Γ2N2C2

)
z(σ)
−

[
∂∆(1)

∂xi

∂∆(1)

∂xi

]
(z(σ),xB)

+ 4
(
Γ2NCξi

)
z(σ)

[
∂∆(1)

∂xi

]
(z(σ),xB)

}
dσ, (77b)

∆(3)(xA, xB) = RAB

∫
D

{ (
Γ2Nξiξ j

)
z(σ)

[
∂∆(1)

∂xi

∂∆(1)

∂x j

]
(z(σ),xB)

+
(
Γ2N2Cξi

)
z(σ)

[
∂∆(1)

∂xi

]
(z(σ),xB)

+ 2
(
Γ2NCξi

)
z(σ)

[
∂∆(2)

∂xi

]
(z(σ),xB)

−

[
∂∆(1)

∂xi

∂∆(2)

∂xi

]
(z(σ),xB)

}
dσ, (77c)

A46, page 7 of 19



A&A 648, A46 (2021)

and, for l > 4,

∆(l)(xA, xB) =
RAB

2

∫
D

{
−

l−1∑
m = 1

[
∂∆(m)

∂xi

∂∆(l−m)

∂xi

]
(z(σ),xB)

+ 2
(
Γ2Nξiξ j

)
z(σ)

l−2∑
n = 1

[
∂∆(n)

∂xi

∂∆(l−n−1)

∂x j

]
(z(σ),xB)

+
(
Γ2N2ξiξ j

)
z(σ)

l−3∑
n = 1

[
∂∆(n)

∂xi

∂∆(l−n−2)

∂x j

]
(z(σ),xB)

+ 4
(
Γ2NCξi

)
z(σ)

[
∂∆(l−1)

∂xi

]
(z(σ),xB)

+ 2
(
Γ2N2Cξi

)
z(σ)

[
∂∆(l−2)

∂xi

]
(z(σ),xB)

}
dσ. (77d)

We introduced C and D as

C(x) = 1 − D(x), D(x) = ξ(x) · NAB. (78)

Hereafter, C is referred to as the geometric factor and D as the
light-dragging term.

By comparing Eqs. (77a) and (61a), it is seen that the dynam-
ics of the optical medium affects the expression of the delay
function as soon as the first post-Minkowskian order. Hereafter,
we solve Eqs. (77a) assuming a spherically symmetric optical
metric.

5.3. Spherical symmetry

Let us assume that the optical medium is the planetary neutral
atmosphere of the occulting body. The global coordinate system
is supposed to be centered at the center of mass of the occulting
body and is nonrotating with respect to distant stars. The medium
is assumed to be at rest in the frame rotating with the planet (i.e.,
the medium rest frame). The atmosphere of the occulting body is
assumed to be spherically symmetric so centrifugal effects due
to the rotation are neglected. In that respect, D draws a timelike
tube defining the spacetime boundaries of the planetary neutral
atmosphere (see Fig. 1).

The spherical symmetry assumption allows us to determine
the limits of integration in Eq. (77). Let H be the radius of
the top neutral atmosphere. The intersection between the path
of integration andH can be determined from Eq. (41) as

‖z(σ)‖=H . (79)

After a little algebra, we find

σ± =σK ±

√
H2 − K2

RAB
, σK =

NAB · xB

RAB
, (80)

where we have introduced

K = ‖NAB × xB‖. (81)

This latter expression suggests that K is the impact parameter
with respect to the center of symmetry (i.e., the center of mass
of the occulting planet).

Let xK be the point-event defined by xK ≡ z(σK). After sub-
stituting σK from Eqs. (80) into (54), we find the spacetime

components of xK = (x0
K , xK) with

x0
K = x0

B − NAB · xB, (82a)
xK = (NAB × xB) × NAB. (82b)

It can be seen that K = ‖xK‖, and therefore the unit 3-vector for
the direction of xK , namely nK = xK/K, is given by

nK =
NAB × xB

‖NAB × xB‖
× NAB. (83)

Therefore, xK is the point-event along the path of integration
where the euclidean distance with respect to the center of sym-
metry is the smallest. Let us note that Eq. (83) implies that

nK · NAB = 0. (84)

Accordingly, it is helpful to introduce the unit 3-vector SAB such
that the triad of vectors (nK , NAB,SAB) forms a right-handed
vector basis. That is to say

SAB = nK × NAB. (85)

After identifying Eq. (85) with (83), we deduce

SAB =−
NAB × xB

‖NAB × xB‖
. (86)

The unit vector SAB is therefore recognized to be the direction of
the angular momentum vector of the zeroth-order null geodesic
path (Teyssandier 2012).

Let x+ and x− be the point-events defined by x± ≡ z(σ±).
After substituting σ± from Eq. (80) into (54), we find the
spacetime components of x± = (x0

±, x±) with

x0
± = x0

K ∓
√
H2 − K2, (87a)

x± = xK ∓
√
H2 − K2NAB. (87b)

The point-event x+ is the spacetime point where the zeroth-order
null geodesic path is enteringD, and conversely, x− is the space-
time point where the zeroth-order null geodesic path is exiting
D as shown in Fig. 1.

Therefore, in the context of radio occultations by a spher-
ically symmetric atmosphere, any integral over the refractive
domain, such as

I(xA, xB) =
RAB

2

∫
D

f
(
z(σ)

)
dσ, (88)

where f is a known function which varies over the path of
integration, can now be written as

I(xA, xB) =
RAB

2

[∫ σK

σ−

f
(
z(σ)

)
dσ +

∫ σ+

σK

f
(
z(σ)

)
dσ

]
. (89)

By separating the path of integration as

y+(χ) = xK − χ
√
H2 − K2NAB, (90a)

y−(χ) = x− − χ
√
H2 − K2NAB, (90b)

where χ is a new variable with

0 6 χ 6 1, (90c)
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and making use of Eqs. (82b), (87b), and Eq. (41), we find that
(89) can also be written as

I(xA, xB) =

√
H2 − K2

2

×

[∫ 1

0
f
(
y−(χ)

)
dχ +

∫ 1

0
f
(
y+(χ)

)
dχ

]
. (91)

The spherical symmetry implies that f = f (r), and so it is
more convenient to integrate toward the radial component r. To
perform the change of variable, we can introduce r as follows

r = ‖y+(χ)‖, r = ‖y−(χ)‖, (92)

and resolve for χ considering condition Eq. (90c), that is to say

χ+(r) =

√
r2 − K2

√
H2 − K2

, χ−(r) = 1 − χ+(r). (93)

The expressions for the differentials of χ± are given by

dχ± =
±r dr

√
H2 − K2

√
r2 − K2

, (94)

such that Eq. (91) now reads

I(K,H) =

∫ H

K
f
(
y(r)

) r dr
√

r2 − K2
, (95a)

where the path of integration satisfies ‖y(r)‖= r and is given by

y(r) = xK −
√

r2 − K2NAB. (95b)

Because the relations in Eq. (77) are the same as those in
Eq. (88), which is itself equivalent to Eq. (95a), the 3-velocity of
the medium must be evaluated along y(r) within the assumption
of spherical symmetry. From Eqs. (95b) and (71), we infer

ξ
(
y(r)

)
=Ω ×

nK −

√
r2 − K2

K
NAB

 , (96)

where we introduce

Ω= Ωe, Ω =
ωK
c

. (97)

We can immediately see from Eqs. (84), (85), and (96) that
the scalar product of the dragging term in Eq. (78) is actually
independent of r and can therefore be considered constant during
integration along y(r). Thus, the light-dragging coefficient reads

D =Ω · SAB. (98)

According to Eq. (78), we deduce that the geometric factor C is
independent of r too.

6. Mathematical modeling

According to relations (77), we now need a mathematical expres-
sion describing the radial evolution of refractivity in order to
derive the expressions for the time and frequency transfers.

We emphasize that the method usually employed for pro-
cessing radio occultation data proceeds the other way around.
Indeed, the refractivity profile is usually determined from the
frequency transfer by employing Abel inversion (Phinney &
Anderson 1968) or numerical ray-tracing (Schinder et al. 2015)

methods. Here, the approach is more closely related to a model-
fitting parameter method. Indeed, we first build a mathematical
modeling for the refractivity profile and then we deduce the
consequences at the level of the observables, namely the time
and frequency transfers. In principle, the last step should be to
compare these computed observables to real ones in order to
minimize the differences by estimating the parameters of the
model (i.e., the parameters entering the refractivity profile) using
for instance a standard least-squares fit.

In Appendix A, we comment on how the ideas of Sect. 5 can
indeed be applied in the context of an Abel inversion method
while accounting for the light-dragging effect, such that no a
priori modeling for the refractive profile is required.

6.1. Refractivity profile

In the context of atmospheric occultation experiments, a priori
knowledge of the atmospheric composition must be assumed. In
what follows, the refractive medium is assumed to be an ideal
gas. Taking h to denote the altitude above ground level, that is

h = r − R, (99)

where R is the value of the radial coordinate for the points such
that N = N0, the pressure profile is given by

P(h) =

(
N
Nv

)
h

kT (h), (100)

where Nv is the refractive volume (Fjeldbo & Eshleman 1968),
T the temperature, and k the Boltzmann constant:

k = 1.380 649 × 10−23 m2 kg s−2 K−1. (101)

From Eq. (100), we deduce the following expression:

N(h) = N0

(
P
P0

)
h

(
T0

T

)
h

, (102)

where P0 and T0 are the pressure and temperature at ground
level, respectively. The refractivity at ground level N0 is

N0 = Nv
P0

kT0
. (103)

The refractivity profile in Eq. (102) is eventually proportional
to the product of two functions, namely (P/P0)h and (T0/T )h.
However, let us emphasize that for planetary atmospheres the
temperature usually varies much more slowly than the pressure
across the profile. Therefore, in some application that does not
necessitate high precision, it might be convenient to consider
that (T0/T )h is constant (isotherm atmosphere) with respect to
(P/P0)h. In this work, we do not make such a simplification and
we consider that the temperature is a function of the altitude
inside the atmosphere.

Planetary neutral atmospheres all admit an exponential pres-
sure profile as a first approximation (Withers 2010), meaning that
it is common to model the pressure as(

P
P0

)
h

= exp
(
−

h
H

)
, (104)

where H is a constant parameter called the scale height of
the neutral atmosphere and has length dimension (L). The
large-scale temperature variation across the atmospheric profile
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can then be expressed as a polynomial function of degree d,
namely(

T0

T

)
h

=

d∑
m = 0

amhm, (105)

where am are the polynomial coefficients and have dimen-
sion L−m. Because T0 is the temperature at ground level (i.e.,
h = 0 km), it follows that

a0 = 1. (106)

The series expansion in Eq. (105) is easily changed into a
function of r with Eq. (99). After a little algebra, we find(

T0

T

)
r

=

d∑
m = 0

bmrm, (107)

where the bm coefficients have dimension L−m and are given by

bm =
1

Rm

d∑
l = m

(
l
m

)
(−1)l−malRl. (108)

The binomial coefficient is defined as(
l
m

)
=

l!
m!(l − m)!

. (109)

In the context of radio occultation experiments, it is more
convenient to express the profiles in terms of η the altitude above
the impact parameter, namely

η= r − K. (110)

The advantage for using η instead of r relies on the fact that most
applications satisfy η � K everywhere in D which allows us to
look for solutions in an infinite series in ascending power of η/K.
Accordingly, the temperature variation now reads(

T0

T

)
η

=

d∑
m = 0

Bm

(
η

K

)m
, (111)

with

Bm(K) =

d∑
l = m

(
l
m

)
blKl, (112a)

or, after substituting bl from (108),

Bm(K) =

d∑
l = m

(
l
m

) (K
R

)l d∑
k = l

(
k
l

)
(−1)k−lakRk. (112b)

Once expressed in terms of η, the pressure profile now reads(
P
P0

)
η

=

(
PK

P0

)
exp

(
−
η

H

)
, (113)

where PK is the pressure at the level of the impact parameter and
is given by Eq. (104), that is to say(

PK

P0

)
= exp

(
−

K − R
H

)
. (114)

The expression for N(η) can be inferred after inserting
Eqs. (113) and (111) into (102). Finally, by invoking the

definition (50), we eventually find

N(η) =

(
PK

P0

)
exp

(
−
η

H

) d∑
m = 0

(
η

K

)m
Bm(K). (115)

Let us evaluate this last relationship at the top of the atmo-
sphere and for the optical ray grazing event, namely η=H − K
with K =H . A simple substitution into Eq. (115) returns

NH =

(
PH
P0

)
B0(H). (116)

This result shows that refractivity is non-null on the limits of
the refractive domain D. In order to ensure a smooth transi-
tion between the inside of the domain D (where the refractivity
should be N , 0) and the outside (where the refractivity should
be N = 0), we would rather introduce N(η) such as

N(η) =

(
PK

P0

)
exp

(
−
η

H

) d∑
m = 0

(
η

K

)m
Bm(K) − NH . (117)

In the context of radio occultation experiments, the value of
H should be adjusted such that the effect ofNH becomes unob-
servable, that is to say NH = 0. As seen from Eq. (116), this can
be achieved by taking the limit H → ∞. Hereafter, we continue
the discussion keepingH at an arbitrary value for completeness.

In practice, parameters H and bm (or am) would now need
to be determined by confrontation with observations. To do so,
we need to derive the expressions for the time and the frequency
transfers resulting from Eq. (117).

6.2. The time transfer function

A direct integration of relations (77) is difficult in the context
of a purely post-Minkowskian expansion in ascending power
of N0. The main difficulty is related to the arbitrariness in the
magnitude of the velocity of the medium. However, everywhere
within the Solar System, we are only dealing with planetary
atmospheres with Ω � 1. Consequently, Γ2 in Eq. (73), that is,

Γ2(r) =
[
1 − ξ

(
y(r)

)
· ξ

(
y(r)

)]−1
, (118)

can be expanded as

Γ2(η) = 1 +

∞∑
m = 1

Ω2m
∑

i+ j+k = m

j
2 +k∑
p = 0

2 j+p
(

m
i, j, k

) ( j
2 + k

p

)

×

(
η

K

) j+2k−p 2i∑
q = 0

2k∑
l = 0

(
2i
q

) (
2k
l

)
(−1)q+l

× (e · nK)2q+ j(e · NAB)2l+ j, (119)

where the multinomial coefficient is defined by(
k

n1, n2, . . . , nm

)
=

k!
n1!n2! · · · nm!

. (120)

This expansion shows that the first nonconstant contribution in
Γ2 is a second-order term in Ω.

Hereafter, in order to simplify computations, we consider
terms up to first order in Ω, so that we now assume

Γ2 = 1 + O(Ω2). (121)
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Therefore, the geometric factor (introduced in Eq. (78)) is the
only term that is contributing at first order in Ω:

C2 = 1 − 2Ω · SAB + O(Ω2). (122)

By making use of Eqs. (88) and (95a), we see that (77a) can
be written as follows

∆(1)(K,H) = 2C2
∫ H

K

(
N

)
y(r)

r dr
√

r2 − K2
+ O(Ω2). (123)

Then, by invoking Eq. (110), the function to be integrated can be
written as an expansion in ascending power of η/K, that is to say

∆(1)(K,H) = C2
√

2K
∞∑

m = 0

Qm

×

∫ H−K

0

dη
√
η

(
η

K

)m (
N

)
y(η) + O(Ω2), (124)

where Qm is given by

Qm =
(−1)m+1

m!
(2m + 1) · (2m − 3)!!

22m . (125)

The double factorial (Arfken 1985) is defined by

m!! =


m× (m − 2)× . . . × 3× 1 for m odd,
m× (m − 2)× . . . × 4× 2 for m even,
1 for m =−1, 0,

(126a)

and by

(−2m − 1)!! =
(−1)m

(2m − 1)!!
for m > 1. (126b)

After substitutingN(η) from Eqs. (117) into (124), we arrive
at the following expression:

∆(1)(K,H) = C2
[ ∞∑

m = 0

Lm(K,H)
md∑

n = 0

Qm−nBn(K)

− B0(H)
∞∑

m = 0

QmMm(K,H)
]

+ O(Ω2), (127)

with

Lm(K,H) =
√

2K
(

PK

P0

) ∫ H−K

0

dη
√
η

(
η

K

)m
exp

(
−
η

H

)
, (128a)

Mm(K,H) =
√

2K
(

PH
P0

) ∫ H−K

0

dη
√
η

(
η

K

)m
, (128b)

and

md =

{
m for m 6 d,
d for m > d. (129)

Each Lm and Mm can now be integrated exactly. The solu-
tions for the first terms (i.e., m = 0) are given by

L0(K,H) =
√

2π
√

HK exp
(
−

K − R
H

)
erf


√
H − K

H

 , (130a)

M0(K,H) = 2
√

2K
√
H − K exp

(
−
H − R

H

)
, (130b)

where erf(x) denotes the well-known error function

erf(x) =
2
√
π

∫ x

0
exp

(
−y2

)
dy. (131)

The following solutions (i.e., m > 1) are conveniently
expressed in terms of L0,M0, and the mth power of H/K:

Lm(K,H) =
(2m − 1)!!

2m

(H
K

)m

×

L0 −M0

m−1∑
p = 0

2p

(2p + 1)!!

(
H − K

H

)p
 , (132a)

Mm(K,H) =
M0

(2m + 1)

(H
K

)m (
H − K

H

)m

. (132b)

It is seen from Eq. (130) that both L0 andM0 vanish when
K → H . In addition, both L0 and M0 are only defined for
K 6 H . Indeed, K > H would return a nonphysical imaginary
number. This fact states that the refractive delay due to the opti-
cal medium is only observed for an optical ray crossing through
the refractive domainD as expected.

Finally, the expression for the first-order delay function is
inferred after substitutingLm andMm from Eqs. (132) into (127)
which eventually returns

∆(1)(K,H) = C2
(
∆

(1)
L0

+ ∆
(1)
M0

)
(K,H)

+ O(Ω2), (133)

where

∆
(1)
L0

(K,H) =L0

∞∑
m = 0

(2m − 1)!!
2m

(H
K

)m md∑
n = 0

Qm−nBn(K), (134a)

∆
(1)
M0

(K,H) = −M0

[ ∞∑
m = 1

(2m − 1)!!
2m

(H
K

)m

×

m−1∑
p = 0

2p

(2p + 1)!!

(
H − K

H

)p md∑
n = 0

Qm−nBn(K)

+ B0(H)
∞∑

m = 0

Qm

(2m + 1)

(H
K

)m (
H − K

H

)m ]
.

(134b)

After substituting K, C2, and SAB from Eqs. (81), (122), and
(86), respectively, into Eqs. (130), (133), and (134), we find the
expression for the delay function in terms of xA and xB, as is
usually done in the literature for time transfer functions. We
eventually get a relationship as follows

T (xA, xB) =
‖xB − xA‖

c
+

N0

c
∆(1)(xA, xB) + O(N2

0 ). (135)

We recall that the global frame is centered at the occulting
body center of mass and is nonrotating with respect to distant
stars. The atmosphere is still in the frame attached to the occult-
ing body, namely the rotating frame. The refractivity profile is
given by Eq. (102), where the pressure profile is an exponen-
tial function and where the temperature profile is a polynomial
function of arbitrary degree d.
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6.3. Frequency transfer

Hereafter, we focus on the determination of the frequency
transfer. After inserting Eqs. (36) and (52) into (33), we
deduce

qA = 1 + βA · lA, qB = 1 + βB · lB, (136)

where the components of the covectors lA and lB have been
introduced such as

lA(xA, xB,N0) =−NAB +

∞∑
m = 1

(N0)m l(m)
A (xA, xB), (137a)

lB(xA, xB,N0) =−NAB +

∞∑
m = 1

(N0)m l(m)
B (xA, xB), (137b)

with

l(m)
A (xA, xB) =

[
∂∆(m)

∂xA

]
(xA,xB)

, (138a)

l(m)
B (xA, xB) = −

[
∂∆(m)

∂xB

]
(xA,xB)

. (138b)

In order to derive the explicit expression for the frequency
transfer, we need to determine lA and lB. To do so we have to
find the derivative of the time delay with respect to the impact
parameter, and then the derivative of K with respect to the com-
ponents of the position vectors at the level of the emission and
reception. The latter derivatives are easily inferred from Eq. (81)
and after inserting them into Eq. (138), we end up with

l(m)
A (xA, xB) = nK

(
NAB · xB

RAB

) [
∂∆(m)

∂K

]
(xA,xB)

, (139a)

l(m)
B (xA, xB) =−nK

(
1 −

NAB · xB

RAB

) [
∂∆(m)

∂K

]
(xA,xB)

. (139b)

Equations Eqs. (139) together with (83) and (84) show
that the directions lA and lB are unit triplets at the first post-
Minkowskian order (i.e., m = 1), namely

‖lA‖= 1 + O(N2
0 ), ‖lB‖= 1 + O(N2

0 ). (140)

In addition, we notice from Eq. (139b) that the covector at
reception can be written such as

lB = lA − nK

∞∑
m = 1

(N0)m
[
∂∆(m)

∂K

]
(xA,xB)

, (141)

which shows, after invoking (85), that

lA × lB =−SAB

∞∑
m = 1

(N0)m
[
∂∆(m)

∂K

]
(xA,xB)

, (142)

These relations are useful for defining the bending angle φ. Usu-
ally, this angle is introduced using the scalar product between the
two tangent vectors; however in order to avoid numerical errors,
especially when dealing with small angles, it is more appropriate
to introduce φ such as

φ(xA, xB) = arcsin
[ lA × lB

‖lA‖ ‖lB‖
· SAB

]
. (143)

Therefore, it is seen from Eqs. (137) that the bending angle
assumes a post-Minkowskian expansion too, namely

φ(xA, xB,N0) =

∞∑
m = 1

(N0)mφ(m)(xA, xB), (144)

where the first-order term satisfies

φ(1)(xA, xB) = −

[
∂∆(1)

∂K

]
(xA,xB)

. (145)

The last missing piece is now the derivative of the time delay
with respect to the impact parameter K. This latter can be derived
from Eqs. (133) and (134) as[
∂∆(1)

∂K

]
(K,H)

= C2

∂∆
(1)
L0

∂K
+
∂∆

(1)
M0

∂K


(K,H)

−
2D
K

(
∆

(1)
L0

+ ∆
(1)
M0

)
(K,H)

+ O(Ω2), (146)

where[
∂∆

(1)
L0

∂K

]
(K,H)

= −
L0

H

∞∑
m = 0

(2m − 1)!!
2m

(H
K

)m

×

md∑
n = 0

Qm−n

d∑
l = n

(
l
n

)
blKl

×

[
1 +

(H
K

) (
m − l −

1
2

+
M0

2L0

K
H − K

)]
, (147a)

[∂∆
(1)
M0

∂K

]
(K,H)

=
M0

K

{ ∞∑
m = 1

(2m − 1)!!
2m

(H
K

)m md∑
n = 0

Qm−n

×

d∑
l = n

(
l
n

)
blKl

m−1∑
p = 0

2p

(2p + 1)!!

(
H − K

H

)p

×

[
2(p − m + l + 1)K + (2m − 2l − 1)H

2(H − K)

]
+ B0(H)

∞∑
m = 0

Qm

(2m + 1)

(H
K

)m (
H − K

H

)m

×

[
2K + (2m − 1)H

2(H − K)

] }
. (147b)

After substituting K, C2, D, and SAB from Eqs. (81), (122),
(98), and (86), respectively, into Eqs. (146) and (147), we find
expressions for the derivatives in terms of xA and xB, as is
usually done in the literature for time transfer functions. The
expressions for lA and lB are obtained after inserting Eqs. (146)
and (147) into (139) and (137), and then the frequency transfer is
simply given by Eqs. (136) and (32).

6.4. Limits when the atmosphere radius H → ∞

As mentioned in Sect. 6.1, in the context of radio occultation
experiments, the effect of refractivity is often negligible when
the impact parameter K approachesH . This is mainly due to the
fast decrease of the exponential pressure profile when the value
of the impact parameter increases.
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We see above that the refractive profile in Eq. (117) has the
expected limit whenH → ∞. Hence, if one is interested in appli-
cations for occultation experiments, one can safely replace L0
andM0 (in Eqs. (130)) by their following limits:

lim
H→∞

L0(K,H) =
√

2π
√

HK exp
(
−

K − R
H

)
, (148a)

lim
H→∞

M0(K,H) = 0, (148b)

meaning that all terms proportional toM0 vanish.
Therefore, the time transfer function simplifies to

T (xA, xB) =
‖xB − xA‖

c

+
N0

c

[
1 + 2Ω ·

NAB × xB

‖NAB × xB‖
+ O(Ω2)

]
×
√

2π
√

H
√
‖NAB × xB‖ exp

(
−
‖NAB × xB‖ − R

H

)
×

∞∑
m = 0

(2m − 1)!!
2m

(
H

‖NAB × xB‖

)m

×

md∑
n = 0

Qm−n

d∑
l = n

(
l
n

)
bl‖NAB × xB‖

l + O(N2
0 ).

(149)

Similarly, the covectors lA and lB are now given by

lA(xA, xB) = −NAB

− N0
√

2π

√
‖NAB × xB‖

H

(
NAB · xB

RAB

)
× exp

(
−
‖NAB × xB‖ − R

H

)
×

∞∑
m = 0

(2m − 1)!!
2m

(
H

‖NAB × xB‖

)m

×

md∑
n = 0

Qm−n

d∑
l = n

(
l
n

)
bl‖NAB × xB‖

l

×

{
1 +

H
‖NAB × xB‖

(
m − l −

1
2

)
+ 2Ω ·

NAB × xB

‖NAB × xB‖

×

[
1 +

H
‖NAB × xB‖

(
m − l −

3
2

)]
+ O(Ω2)

}
×

NAB × xB

‖NAB × xB‖
× NAB + O(N2

0 ), (150a)

and

lB(xA, xB) = −NAB

+ N0
√

2π

√
‖NAB × xB‖

H

(
1 −

NAB · xB

RAB

)
× exp

(
−
‖NAB × xB‖ − R

H

)
×

∞∑
m = 0

(2m − 1)!!
2m

(
H

‖NAB × xB‖

)m

×

md∑
n = 0

Qm−n

d∑
l = n

(
l
n

)
bl‖NAB × xB‖

l

×

{
1 +

H
‖NAB × xB‖

(
m − l −

1
2

)
+ 2Ω ·

NAB × xB

‖NAB × xB‖

×

[
1 +

H
‖NAB × xB‖

(
m − l −

3
2

)]
+ O(Ω2)

}
×

NAB × xB

‖NAB × xB‖
× NAB + O(N2

0 ). (150b)

The expression for the frequency transfer is directly inferred
after inserting these last two expressions into (136) while making
use of (32).

7. Numerical ray-tracing

In this section, we perform a numerical integration of the equa-
tions for optical rays toward a spherically symmetric, rigidly
rotating planetary atmosphere. We consider the case of an
atmosphere with drastic changes in its temperature profile. We
simulate the time and frequency transfers for a one-way down-
link between an emitter in Keplerian orbit around the occulting
planet and a receiver at infinity. We compare the numerical
results to analytical solutions derived in Sect. 6.

7.1. Optical rays equations

The equations for optical rays propagating in a nondispersive
isotropic medium are derived in Sect. 3 (see Eqs. (19)). However,
they can be further simplified. Indeed, above we assume that the
optical metric is spherically symmetric, constant, and station-
ary. Accordingly, the time component of the 4-wave vector is a
first integral because it remains constant during the propagation
of the radio signal through D. In addition, we assume that the
velocity of the medium is small with respect to the speed of light
in a vacuum so we may only consider terms up to first order in
ω/c. With these simplifications, the equations for optical rays
eventually read as follows

dx0

d`
= n, (151a)

dx
d`

=
1
n

[
−l +

ω

c
(n2 − 1)e× x

]
, (151b)

dl
d`

=−∇n +
ω

c
(n2 − 1)

n
e× l. (151c)

We emphasize that these equations reduce to the classical set of
equations of geometrical optics when ω/c → 0 (see Sect. 3.2.1
of Born & Wolf 1999 and also Sect. 85 of Landau & Lifshitz
1960).

Let us assume that the global frame (eX , eY , eZ) is centered
at the planet’s center of mass and is nonrotating with respect
to distant stars. The (eX , eY ) plane is chosen to coincide with
the equator of the occulting planet. The eZ axis is aligned with
the planet instantaneous axis of rotation, that is to say eZ = e.
For convenience, we consider the case of an emitter at infin-
ity whose direction vector is lying in the equatorial plane, so
that we can choose to define eY =−NAB. The orbit of the emit-
ter is characterized by the usual set of Keplerian elements,
namely (aA, eA, ιA,ΩA, ωA, τA). Values of the selected Keplerian
elements are given in Table 1. The Cartesian position and veloc-
ity of the emitter in the global frame are then given by Eqs. (3.40)
and (3.41) of Poisson & Will (2014). By substituting the Keple-
rian elements from Table 1 into Eq. (3.44) of Poisson & Will
(2014), it is seen that the direction of the pericenter coincides
with eY -axis.
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Table 1. Values of Keplerian elements of the emitter.

Element Unit Value

aA R 2
eA – 0.1
ιA deg −45
ΩA deg 90
ωA deg 0
τA min 50

100 200 400 1000 2000
0

100
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300
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500

600 100 200 400 1000 2000
0
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400

500

600 100 200 400 1000 2000
0

100

200
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600

Fig. 2. Temperature profiles inside the atmosphere of the occulting
planet. The plain curve represents a sixth-degree polynomial temper-
ature profile, the dashed line represents an isothermal atmospheric
profile, and the dotted line is the Titan atmospheric model of Waite
et al. (2012).

We consider that the mass and radius of the occulting planet
are similar to those of Titan, that is to say M = 1.35× 1023 kg
and R = 2 574 km. However, in order to truly assess the accuracy
of analytical solutions, we consider more extreme atmospheric
physical properties than those of the Titan atmospheric model
of Waite et al. (2012). For instance, we would rather consider a
completely fictional temperature profile exhibiting high vertical
gradients as shown in Fig. 2 (see plain curve). In addition, we
assume that the atmosphere is rapidly rotating with an angular
rate of 2π rad s−1, so that the relativistic light-dragging term at
the surface reaches Ω = 0.05.

The equations for optical rays are numerically integrated
considering the following spherically symmetric index of refrac-
tion profile inside the domainD (see discussion in Sect. 6.1)

n(r) = 1 + N0 exp
(
−

r − R
H

) d∑
m = 0

bmrm − NH , (152a)

with r = ‖x‖ and

NH = N0 exp
(
−
H − R

H

) d∑
m = 0

bmH
m. (152b)

The values of polynomial coefficients bm are given in Table 2 for
d = 6. The size of the domain D is taken to be H = 3 174 km,

Table 2. Values of bm coefficients for the determination of a sixth-
degree polynomial temperature profile.

Coefficient Unit Value

b0 – −5.415 049 754 779× 106

b1 km−1 +1.132 607 910 442× 104

b2 km−2 −9.860 328 832 788× 100

b3 km−3 +4.573 547 412 562× 10−3

b4 km−4 −1.192 048 581 350× 10−6

b5 km−5 +1.655 369 690 809× 10−10

b6 km−6 −9.568 664 414 388× 10−15

corresponding to an atmosphere thickness of 600 km. We con-
sider a scale height of H = 20 km (similar to that of Titan), and
use values of N0 (post-Minkowskian parameter of the theory)
ranging from 10−3 to 10−6 for illustrative purposes.

The equations for optical rays are only integrated inside the
refractive domainD. Outside, optical rays are simply assumed to
propagate along straight lines according to the assumption (1).

7.2. Numerical integration and initial pointing

The initial pointing direction at the level of the emitter is first
assumed to be

lA =−NAB. (153)

The spacetime coordinates of the ray entrance point-event inside
the atmosphere can always be determined once the initial point-
ing direction is known. Let (ctE , xE) be the coordinates of the
entrance point-event xE . It is clear that both tE and xE are
functions of lA, that is to say tE = tE(lA) and xE = xE(lA).

The initial pointing direction in Eq. (153) implies that xE ≡

x+ (see Eqs. (87)) for the first iteration. Then, having the coordi-
nates of xE , the equations for optical rays in Eq. (151) can now
be numerically integrated starting with `E = c(tE − tA) (we have
defined tA as the origin of the coordinate time for the numerical
integration) and

x0(`E , lA) = c(tE − tA), (154a)
x(`E , lA) = xE , (154b)
l(`E , lA) = lA. (154c)

The numerical integration is stopped when the optical ray
crosses the refractive domainD on the opposite side with respect
to the entrance point-event xE . Let (ctF , xF) be the coordinates of
xF , the final point-event for the numerical integration, that is to
say

x0(`F ; lA) = c(tF − tA), (155a)
x(`F ; lA) = xF , (155b)
l(`F ; lA) = lF . (155c)

It is clear that the coordinates of xF depend on the initial
conditions that have been used for conducting the numerical
integration, namely lA.

In general, because refractivity in D causes the optical ray
to depart from its original direction, the direction of the ray at
the exit of the atmosphere does not match the direction of the
receiver. In order to make the two directions coincide, the ini-
tial pointing is iteratively corrected using a Newton-Raphson
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Fig. 3. Time delay (left panel) and frequency shift (right panel) due to the atmosphere of the occulting planet for an index of refraction profile
given in Eq. (152a) with N0 = 10−6. Red circles represent results of the numerical integration (i.e., ∆atm in Eq. (157) for the left panel, and Eq. (158)
with lA deduced from Eq. (156) for the right panel). The thick blue line corresponds to the analytical predictions (i.e., N0∆

(1)(K,H) in Eq. (133) for
the left panel, and Eq. (158) with lA deduced from Eqs. (137), (139), and (146) for the right panel). The dashed lines correspond to the difference
between numerical and analytical results. The dotted lines represent the same difference setting Ω = 0 into analytical solutions. Above the horizontal
thin black line, the difference between numerical and analytical results is dominated by numerical noise, while below, it is dominated by neglected
second-order terms.

method (Press et al. 1992) for finding lA from the following
condition

l(`F ; lA) + NAB = 0. (156)

Equations (151) are numerically integrated between
Eqs. (154) and (155) assuming a relative numerical error toler-
ance of 10−12. The components of lA are iteratively determined
from (156) with the exact same accuracy. The partial derivatives
of l with respect to lA, which are needed for solving the initial
pointing from Eq. (156), are determined using a second-order
finite difference method. Finally, the time and frequency trans-
fers are computed from numerical solutions of tF , xF , and lA.

The well-known atmospheric delay is given by the difference
between the total light-time needed for reaching xF from xA and
the projection of xF − xA along NAB, namely

∆atm = tF − tA −
(xF − xA) · NAB

c
. (157)

The expression for the relative Doppler frequency shift due to the
atmosphere, and for the case of an observer at infinity, is obtained
after inserting lB =−NAB into (32) and (136), which eventually
returns

∆νB

[νB]vac
=
νB − [νB]vac

[νB]vac
=−

βA · (lA + NAB)
1 + βA · lA

, (158)

where [νB]vac is the frequency that would be observed at xB if the
signal were to be transmitted in a neat vacuum. The expression
for [νB]vac is inferred from Eqs. (A.2):

[νB]vac = νA

[
νB

νA

]
vac

. (159)

Expression (158) is used for computing the analytical rela-
tive Doppler frequency shift as well, where lA is given by the
analytical expression instead of the numerical one.

7.3. Accuracy of analytical solutions

We are now able to perform the comparison between analyti-
cal and numerical solutions for the time and frequency transfers
considering the index of refraction profile given in Eq. (152a).

The analytical solution for the atmospheric time delay is con-
structed from the first-order delay function in Eq. (133), that is
N0∆(1)(K,H). The summations over the index m are stopped for
m = 10, but could have been stopped long before thanks to the
small value of the coefficient for the expansion (e.g., for K = R,
we have (H/K)m ' (0.008)m). The analytical solution for the rel-
ative Doppler frequency shift is built from Eq. (158) with lA
deduced from the first-order terms in Eqs. (137) and (139), and
for m = 10 in Eq. (146). Because the receiver is at infinity, we
replace xB with

xB = xA + RABNAB (160)

any time it appears in analytical expressions.
Results of the comparison are presented in Figs. 3 and 4

for N0 = 10−6 and 10−3, respectively. In both figures, we note
that analytical solutions for the time and the frequency transfers
succeed in perfectly reproducing the effects due to the verti-
cal temperature variations (see e.g., signature at h ' 200 km in
Figs. 2–4). Furthermore, the difference between the numerical
and the analytical profiles remains at the level of the numerical
noise as shown in Fig. 3.

In addition, in order to assess the legitimacy of the light-
dragging effect we show, in each plot, the difference of the
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Fig. 4. Time delay (left panel) and frequency shift (right panel) due to the atmosphere of the occulting planet for an index of refraction profile
given in Eq. (152a) with N0 = 10−3. The reader is referred to the caption of Fig. 3 for more details.

numerical solution with an additional analytical solution built by
setting Ω = 0. It is clearly seen that neglecting the light-dragging
effect drastically decreases the accuracy of the analytical solu-
tion (up to three orders of magnitude for the time delay and up
to two orders of magnitude for the relative Doppler frequency
shift).

In this work, we focus our attention on the explicit resolution
of the first post-Minkowskian order (see Eq. (77a)) which corre-
sponds to the well-known excess path delay when the velocity of
the medium is neglected. The second-order term is composed of
a second-order correction to the excess path delay and a geomet-
ric delay involving the derivative of the first-order delay function.
The effect of these neglected second-order terms can be seen in
Figs. 3 and 4 when the differences between the numerical and
analytical solutions start to increase. For N0 = 10−6 in Fig. 3,
the second-order effects show up starting from h ' 150 km and
their influence increases when the altitude decreases, while they
manifest at higher altitude, around h ' 250 km, for N0 = 10−3 in
Fig. 4.

For N0 = 10−3, the differences between analytical solutions
and numerical results are thus dominated by numerical noise
above h ' 250 km and by the neglected second order below. The
relative error has its minimum value of 0.001% for h ' 250 km
and exceeds the 10% level below h ' 50 km for both the time
delay and the relative Doppler frequency shift. This means that
for high refractivity (i.e., N0 = 10−3) and for low altitude (i.e.,
h < 50 km), we cannot expect the first-order analytical solu-
tions to describe the overall atmospheric effects with a relative
accuracy better than one part in ten. In order to achieve a more
accurate modeling, second-order terms (i.e., the second-order
correction to the excess path delay and the geometric delay) shall
be considered.

For N0 = 10−6 the relative error is dominated by numerical
noise above h ' 150 km and by the neglected second order
below. For h ' 150 km, the relative error is 0.001% and reaches
0.1% at the ground level for both the time delay and the relative

Doppler frequency shift. This means that for small refractivity
(i.e., N0 = 10−6), neglecting second-order terms would not make
the relative errors larger than one part in 103 on the atmospheric
time delay and the relative Doppler frequency shift retrievals.
In that respect, the maximum absolute errors (at ground level)
due to neglected second-order terms are expected to be at the
level of 1 mm on the time delay and 10−13 [νB]vac on the Doppler
frequency shift.

8. Conclusions

In this work we present a fully covariant analysis for deriving
analytical expressions for the time and frequency transfers in
the context of atmospheric occultation experiments. We combine
two distinct relativistic theoretical tools, namely the Gordon’s
optical metric and the time transfer functions formalism. We pro-
vide the integral form of the refractive delay function for any
post-Minkowskian order and consider the case of an occulta-
tion by a steadily rotating and spherically symmetric atmosphere.
We assume a refractivity profile driven by an exponential pres-
sure profile and a polynomial temperature profile of arbitrary
degree. We explicitly solve for the time and frequency transfers
at first post-Minkowskian order in the limit where the angu-
lar velocity of the optical medium is small with respect to the
speed of light in a vacuum. Finally, we assess the accuracy of
the first-order analytical solutions by comparing them to results
of a numerical integration of the equations for optical rays.
We emphasize how complete these first-order analytical solu-
tions actually are. Indeed, they are able to properly consider any
vertical temperature gradients and properly account for light-
dragging effect due to the motion of the optical medium. We
also notice that for refractivity higher than 10−3, solutions that
include up to the second post-Minkowskian order should be con-
sidered. The fully covariant method described in this paper can
easily be extended in order to include following orders even
beyond spherical symmetry. An immediate application of the
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analytical method presented in this paper is the assessment of
the expected sensitivities in pressure, density, and temperature
profiles for planetary atmospheric radio occultation experiments.
This is beyond the scope of this paper and will be the subject of
future research.

Finally, let us provide a guideline to make it easier to use
our equations. The reader who is interested in deriving analyti-
cal expressions for the time and frequency transfers beyond the
post-Minkowskian order can focus either on the integration of
Eqs. (61) or (77) depending on whether the optical metric is static
or stationary, respectively.

The reader who is interested in implementing the analyt-
ical expressions for the frequency transfer in a data analysis
algorithm can proceed as follows. First, the coordinate time at
emission (we focus on the case of a downlink one-way trans-
fer here) shall be determined iteratively with the help of the
time transfer function expression in Eq. (149) using the following
algorithm:

t[i]
A = tB − T

(
xA(t[i−1]

A ), xB(tB)
)

for i > 0, (161)

while |t[i]
A − t[i−1]

A | > required precision, with

t[0]
A = tB. (162)

If the refractivity of the atmosphere is not known, the delay
function ∆(xA, xB) (cf. Eqs. (25) and (36)) can be set to zero.
Otherwise, the values for the refractivity at ground level N0,
the scale height H, and the polynomial coefficients bm can be
directly substituted within Eq. (149). Then, when the coordinate
time at emission is known, the position of the emitter xA(tA) can
be determined, and hence, the frequency transfer can be even-
tually modeled after substituting lA and lB from Eqs. (150) into
(136) and then (32). Thus, if the refractivity profile is known,
the analytical expressions (150), (136), and (32) provide the
frequency transfer directly. Otherwise, N0, H, and bm can be
determined by minimizing the frequency transfer by using, for
instance, a standard weighted least squares fit.
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Appendix A: Abel transform method

In this section, we show how the atmospheric time delay and the
refractivity can both be directly inferred from real Doppler data
by making use of an Abel transform method. The main novelty of
the following approach lies in its consideration of the dragging
of light due to the angular velocity of the rigid rotation of the
atmosphere.

A.1. Bending angle from frequency transfer

A general expression for the frequency transfer can be inferred
from Eqs. (136) and (137) such as

νB

νA
=

[
νB

νA

]
vac


1 +

∞∑
m = 1

(N0)m l(m)
B · βB

1 + βB · l(vac)
B

1 +

∞∑
m = 1

(N0)m l(m)
A · βA

1 + βA · l(vac)
A


, (A.1)

where the first factor on the right-hand side represents the
frequency transfer in a vacuum, namely[
νB

νA

]
vac

=
(u0)B

(u0)A

1 + βB · l(vac)
B

1 + βA · l(vac)
A

 . (A.2a)

The two triplets l(vac)
A and l(vac)

B represent the directions of the
light ray in a vacuum at the emission and reception, that is to say

l(vac)
A =−NAB + O(G), (A.2b)

l(vac)
B =−NAB + O(G). (A.2c)

The omitted terms, proportional to G, represent the gravitational
effects that are neglected here for clarity. The reader is referred to
Linet & Teyssandier (2013) for a complete determination of the
gravitational terms up to G3 in the context of a static, spherically
symmetric spacetime.

For applications in the Solar System we can always consider
that the 3-velocities are small with respect to the speed of light
in a vacuum, that is to say ‖βA‖ and ‖βB‖ � 1. Thus, at first order
in N0, ‖βA‖, and ‖βB‖, we get

νB

νA
=

[
νB

νA

]
vac

(
1 + N0 l(1)

B · βB − N0 l(1)
A · βA

)
. (A.3)

After substituting l(1)
A and l(1)

B from Eqs. (139), and making use
of (145), the previous equation now reads

νB

νA
=

[
νB

νA

]
vac

(
1 + N0 φ

(1)nK · βeff

)
, (A.4)

where we introduce βeff , an effective velocity, such as

βeff =

(
NAB · xB

RAB

)
βA +

(
1 −

NAB · xB

RAB

)
βB. (A.5)

Let us note that when the receiver is at infinity (as in one-
way radio occultations by planets or satellites of the outer Solar
System), we have

lim
rB→∞

NAB · xB

RAB
= 1, (A.6)

and therefore the effective velocity reduces to

lim
rB→∞

βeff =βA. (A.7)

On the other hand, if the emitter is at infinity (like for one-way
stellar occultations by planets or satellites of the Solar System),
we have

lim
rA→∞

NAB · xB

RAB
= 0, (A.8)

and therefore the effective velocity reduces to

lim
rA→∞

βeff =βB. (A.9)

Equation (A.4) allows the first-order bending angle to be
determined at each time step from real Doppler data. Because
the impact parameter is only given by the geometry at a given
time, the data eventually provide N0φ

(1)(K,H).

A.2. Atmospheric time delay from bending angle

The refractive delay function can then be straightforwardly
retrieved from the bending angle because, according to Eq. (145),
the bending angle is the derivative of the delay function with
respect to K.

At first post-Minkowskian order, we recall that the delay
function and the bending angle (see Eqs. (52) and (144), respec-
tively) are given by

∆(K,H) = N0∆(1)(K,H), (A.10)

and

φ(K,H) = N0 φ
(1)(K,H). (A.11)

Therefore, by making use of (145), we find

∆(K,H) =

∫ H

K
φ(K′,H)dK′, (A.12)

where the constant of integration has been chosen such that

∆(H ,H) = 0, (A.13)

considering that the bending angle is null at the beginning of the
occultation, that is to say

φ(H ,H) = 0. (A.14)

After determining φ(K,H) thanks to Eq. (A.4), Eq. (A.12)
allows the atmospheric time delay and then the total light time to
be determined.

A.3. Refractivity from bending angle

We see in Sect. 6.2 that ∆(1)(K,H) is defined by Eq. (123). If we
apply the following change of variables

a = K2 −H2, (A.15a)

b = r2 −H2, (A.15b)

we can rewrite Eq. (123) as

∆(1)(a) =−C2
∫ a

0
N(b)

db
√

b − a
. (A.16)
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Interestingly, it can be seen that this expression is a special
case of Abel transform (see e.g., Phinney & Anderson 1968;
Landau & Lifshitz 1969), which allows us to write

C2N(b) =
1
π

∫ b

0

∂∆(1)

∂a
da
√

a − b
. (A.17)

Going back to the previous set of variables, and making use of
Eq. (145), we infer the following relationship after multiplying
both sides of Eq. (A.17) by N0

C2N(r) =
1
π

∫ H

r
φ(K,H)

dK
√

K2 − r2
. (A.18)

After integrating the right-hand side by parts we get

C2N(r) =
1
π

∫ φ(r,H)

0
argch

(
K(φ′)

r

)
dφ′, (A.19)

where we use (A.14) to show that[
φ(K,H) argch

(K
r

)]K =H

K = r
= 0. (A.20)

The expression for C2 can be inferred from Eq. (122).
It is interesting to confront Eq. (A.19) with the standard

Abel transform (Fjeldbo et al. 1971) which usually provides the
following expression

n(r) = exp
[
1
π

∫ φ(r,H)

0
argch

(
K(φ′)

r

)
dφ′

]
. (A.21)

According to Eq. (4), in the limiting case where C2 → 1 (i.e.,
no light-dragging effect), it is seen that Eq. (A.19) corresponds
to the first-order expression of Eq. (A.21). Thus, the novelty of
Eq. (A.19) with respect to Eq. (A.21) lies in the fact that it takes
into account the light-dragging effect through the geometric
factor C2.
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