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Abstract: Increasing number of metagenome sequencing studies have proposed a central metabolic
role of still understudied Archaeal members in natural and artificial ecosystems. However, their
role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic
hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we
focused our study on the metagenomic characterization of the archaeal community inhabiting the
Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum
hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from
Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum
that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems
under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heim-
dallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central
metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis
identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and
aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight
into the archaeal community functionality and connection to hydrocarbon degradation in marine
sediment historically contaminated by hydrocarbons.

Keywords: Asgardarchaeota; Mar Piccolo; aromatic hydrocarbons; aliphatic hydrocarbons; Thorar-
chaeota; Lokiarchaeota; Heimdallarchaeota; bioremediation; metagenome

1. Introduction

During the past decades, hydrocarbon cycling in marine and terrestrial anoxic envi-
ronments has been mostly attributed to nitrate- and sulfate-reducing communities of Delta
and Betaproteobacteria catalyzing the oxidation of aliphatic and aromatic hydrocarbons
most commonly found in marine sediments under anoxic conditions [1-6]. Only recently,
metagenomic studies revealed that members of the Archaea kingdom, i.e., Archaeoglobus,
Bathyarchaeota, and Asgardchaeota, carry the genetic potential to degrade short-chain
alkanes, aliphatic and aromatic compounds under anaerobic conditions, suggesting that
hydrocarbons degradation might not be restricted to Bacteria lineages [7]. Indeed, the
Asgardarchaeota superphylum showed a surprisingly high diversity of pathways involved
in hydrocarbons degradation, revealing that this superphylum members might be crucial
contributors to the hydrocarbon cycling in anaerobic environments. In the last years, As-
gard archaea have been detected in marine, lake and river sediments, as well as in soil
and microbial mats [8]. The Asgardarchaea superphylum includes four different phyla,
Thor-, Odin-, Loki-, and Heimdallarchaeota, and the novel branches named Hermod-, Hel-,
Gerd- and Sifarchaeota [9-14]. Omics analysis revealed that Asgardarchaeota employs two
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main strategies for hydrocarbon degradation. In Helarchaeota reverse methanogenesis is
activated to degrade short-chain alkanes, whereas, in Hermodarchaeota, Thorarchaeota,
and Lokiarchaeota, hydrocarbon degradation pathways are similar to those observed
sulfate-reducing hydrocarbon-degrading bacteria pathway where fumarate addition leads
to degradation via benzoyl-CoA (for aromatic compounds) or malonyl-CoA for long-chain
hydrocarbon) pathway [10,11].

Mar Piccolo is a central Mediterranean semi-enclosed marine basin connected to the lo-
nian sea, historically contaminated by hydrocarbons and heavy metals pollutions ascribed
to decades of anthropogenic activity. Mar Piccolo underwent significant contaminations
from oil refineries, marine traffics and steel production, resulting in massive pollution of
heavy metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls
(PCBs) [15]. llumina sequencing analysis of Mar Piccolo sediments targeting 16S rDNA
gene reported a microbial community highly specialized in the degradation of aromatic
and aliphatic hydrocarbon mostly composed by well-known degraders of the Betapro-
teobacteriales, Deltaproteobacteria, and Chloroflexi bacterial groups [15]. Nonetheless, the
archaeal community’s role in the biodegradation of aromatic and aliphatic hydrocarbons in
this site is still unraveled. Here we describe the genetic potential of the Mar Piccolo resident
Asgardarchaeaota community. In particular, whole metagenome sequencing showed that
Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota identified in Mar Piccolo sediments
highly contaminated with crude oil and diesel fuel carry key genes needed for the degra-
dation of aromatic and aliphatic hydrocarbons under anaerobic conditions. This study
provides insights into functional genomics of Asgardarchaeota involved in the degradation
of aliphatic and aromatic compounds in the Mar Piccolo basin.

2. Materials and Methods
2.1. Sediment Sample Collection and Storage

A surface sediment sample from Mar Piccolo (Taranto, Italy) was collected in 2019 by
scuba diving at 12 m depth. Sediment was collected in 5 L HDPE jars (n = 4) filled up to the
top and hermetically sealed to prevent air exposure, immediately shipped to the laboratory
and stored at 4 °C until further processing.

2.2. Extraction and Analysis of Petroleum Hydrocarbons (PHCs) and Polychlorinated
Biphenyls (PCBs)

Petroleum hydrocarbons (PHCs) and polychlorinated biphenyls (PCBs) were extracted
using the Soxhlet method. Before extraction, sediments were centrifuged at 4000 rpm to
remove water and air-dried overnight. One gram of air-dried sediment was mixed with
sodium sulfate and 50 mL hexane:acetone (1:1) mixture 1 and extracted at 80 °C for 6 h.
The solvent was vent dried, the residue suspended in 10 mL hexane, and the extract
was purified via solid-phase extraction using flow-through ExtraBond®Sharlau cartridges
“Fluorsil” (polar phase; amount 500 mg; volume 3 mL; granulometry 200 pm), eluted with
hexane and collected in glass vials.

PHCs were quantified with a 6890N gas chromatograph coupled with a flame-ionization
detector (GC-FID) and a 6890 series II automatic sampler (Agilent Technologies, Palo Alto,
CA, USA), equipped with a 30 m HP-5 capillary column (0.25 mm ID; 0.25 um film) under
the analytical conditions described elsewhere [16], i.e., injection volume (splitless mode) =
1 uL; temperature of injector = 270 °C; temperature of detector = 320 °C; Carrier gas (nitro-
gen) constant pressure = 15 psi; temperature program of oven = initial temperature 60 °C,
isothermal for 1 min, temperature rate 10 °C min~!, final temperature 320 °C, isothermal
for 20 min. Diesel fuel (taken from a petrol station) was used to prepare seven points
calibration curves (1000, 750, 500, 250, 100, 50, 10 mg L~1, 2 >0.998). The recovery of PHCs
from sediment was 85% =+ 3%. The LOQ and RSD were 1 mg/L and <5%, respectively.

The qualitative and quantitative analysis of the extracted PCBs was performed with a
gas chromatograph (6890N) equipped with an HP-5 capillary column (30 m by 0.25 mm;
0.25 um film thickness), a ®*Ni micro electron capture detector (microECD), and a 6890



Microorganisms 2021, 9, 859

30f15

series I automatic sampler (Agilent Technologies, Palo Alto, CA, USA) under the analytical
conditions described elsewhere [17], i.e., injection volume (split ratio 9.5) = 1 uL; temper-
ature of injector = 250 °C; temperature of detector = 320 °C; Carrier gas (nitrogen) flow
rate = 1.5 mL min~!; temperature program of oven = initial temperature 60 °C, isothermal
for 1 min, first temperature rate 40 °C min~!, final temperature 140 °C, isothermal for
2 min, second temperature rate 1.5 °C min !, final temperature 185 °C, third temperature
rate 4.5 °C min!, final temperature 275 °C, isothermal for 5 min. Seven-point calibration
curves were obtained using standard PCB mixtures, namely Aroclor 1260, Aroclor 1254,
and Aroclor 1242, in hexane (10, 5, 2,1, 0.5,0.2,0.1 mg L1 2> 0.998) assuming co-eluting
congeners to be present in equal proportions [18] and considering weight percentage of
congeners as reported elsewhere [19]. The mean recovery of PCBs from sediment was
89% =+ 2%. The LOQ and RSD were in the range 0.15-0.120 ppb (depending on the PCB
congener /co-eluting congeners) and <5%, respectively.

Solvents used Met gas-chromatography specifications and were purchased by Merk
(Milan, Italy). Neat (i.e., pure 100 + 0.5%) PCB mixtures Aroclor 1242, Aroclor 1254,
Aroclor 1260 were purchased by Ultrascientific Italia SRL (Bologna, Italy).

2.3. DNA Extraction

Total DNA was extracted from each sample (n = 4) using the MoBio PowerSoil DNA
isolation kit (QIAGEN Inc., Valencia, CA, USA) according to the manufacturer’s instruc-
tions and finally diluted in 50 uL of nucleic acid-free ultra-pure water. Purified DNA was
quantified using the BR dsDNA kit (Thermo Fisher Scientific, Waltham, MA, USA) on
a Qubit 4.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Equal amounts
(ng uL~1) of DNA from each sample were pooled, achieving a final concentration of
24 ng uL~1.

2.4. lllumina Sequencing

Fifty ng of total DNA were prepared for sequencing using NEBNext® Ultra™ II FS
DNA library prep kit (New England Biolabs Japan, Tokyo, Japan). In total, 50 million
fragments, having an average length of 300 bp, were sequenced in paired-end (PE) mode
with a read length of 150 bp. Whole metagenome shotgun sequencing was performed on
an Illumina NextSeq 500 at the StarSEQ sequencing facility (Muniz, Germany).

2.5. Reconstruction of Metagenome-Assembled Genomes (MAGs) and Functional Annotation

Raw reads were processed using BBduk to remove sequencing adapters (tbo, tpe, ktrim
=1, k =23, mink = 11) and clipping low-quality end (qtrim = 1l, trimq = 15, minlength = 30,
entropy = 0.5) (https://sourceforge.net/projects/bbmap/ version 38.84). High-quality
reads were assembled with MEGAHIT [20], and short-length contigs (<1500 bp) filtered out
using “reformat.sh” (https:/ /sourceforge.net/projects/bbmap/ version 38.84). The assem-
bled contigs were binned using three different binning algorithms CONCOCT [21], MaxBin
2.0 [22], and MetaBAT 2.0 [23], and resulting bins were further combined into metagenomes
assembled genomes (MAGs) using metaWRAP [24]. Quality assessment of MAGs was
performed within CheckM [25]. MAGs open reading frames were detected using prodigal
within the RAST-tk annotation pipeline implemented in the PATRIC platform [26-28]. Pro-
tein coding genes were submitted to eggNOG for functional annotation [29]. For the gene
of interest, eggINOG functional annotation was manually curated by identifying protein
domains InterProScan [30]. Carbohydrate degrading enzymes, peptidase and hydrogenase
coding genes were predicted using dbCAN, MEROPS, and HydDB databases, respec-
tively [31-33]. To detect membrane-bound peptidase and secreted carbohydrate-active
enzymes, TMHMM v2.0 (http:/ /www.cbs.dtu.dk/services/ TMHMM/) and SignalP-5.0
were used [34].
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2.6. Phylogenetic Analysis of Alkyl (Ass) and Benzyl-Succinate Synthase (Bss), Sulfhydrogenase,
and Reductive Dehalogenase Genes

Putative Ass and Bss protein sequence were downloaded from Zhang et al. [11] and
used as a reference database to query Asgardarchaeota proteome using DIAMOND [35].
Hits having a query coverage above 60% and a minimum percentage identity of 35% were
selected for phylogenetic analysis. Putative Ass/Bss for the reference database and Mar
Piccolo Asgardarchaeota were aligned to each other using MAFFT, and non-conserved
regions were trimmed using trimAl [36,37]. Trimmed alignments were then analyzed
with FastTree using the LG amino acid substitution model [38]. Asgardarchaeota putative
sulfthydrogenase were aligned using MAFFT against the sulfhydrogenase complex I and
II from Pyrococcus furiosus DSM 3638, and a phylogenetic tree was constructed in IQ-
TREE applying the substitution model LG + F [39]. Protein coding sequence having the
reductive dehalogenase (Rdh) domain IPR028894 were aligned using MAFFT against a
custom database from Zhang et al. [11] amended with putative Asgardarchaeota Rdh
proteins downloaded from UniProtKB/TrEMBL (release 2020_05). The alignment file was
then analyzed with IQ-TREE, enabling the best substitution model (WAG + F + I + G4).
All phylogenetic trees were computed applying an SH-like approximate likelihood ratio
test with 1000 permutation [40].

2.7. Phylogenomic Analysis

Phylogenetic relatedness of MAGs having completeness above 50% was assessed in
two steps. First, GTDB-Tk [41] was used to determine the taxonomy of MAGs/bins and a
custom database, including all representative proteomes in the taxonomic lineage using
GToTree [42]. Second, for each genome in the database, including the MAG of interest, the
76 archaeal phylogenetic markers were concatenated with GToTree, and a phylogenetic
tree was built in FastTree with the -lg (LG + CAT model) parameter enabled.

3. Results and Discussion
3.1. Sampling Site Description

In several studies, Mar Piccolo sediments were described as heavily contaminated with
heavy metals (especially mercury) at 9 mg/kg sediment, polycyclic aromatic hydrocarbons
up to 12.7 mg/kg sediment, and PCBs up to 1.7 mg/kg sediment [15,43,44]. The sediment
collected in this study showed a high concentration of PHCs: 1.38 £ 0.10 g/kg of sediment
(dry weight). PCB contamination was assessed, too, revealing a total concentration of
10.6 = 0.05 mg/kg of sediment (dry weight) (Table 1).

Table 1. Concentration of petroleum hydrocarbons (PHCs) and polychlorinated biphenyls (PCBs) in
the Mar Piccolo sediment.

Pollutant Concentration
PHCs (g/kgdw) 1.38 £ 0.10
Di-chlorobiphenyls (mg/kgqw) 3.36 £+ 0.02
Tri-chlorobiphenyls (mg/kg4.) 1.05 £ 0.00
Tetra-chlorobiphenyls (mg/kgq.w) 0.98 + 0.00
Penta-chlorobiphenyls (mg/kgqyw) 0.83 £0.00
Hexa-chlorobiphenyls (mg/kgq.) 2.26 + 0.01
Hepta-chlorobiphenyls (mg/kgg.,) 1.07 £ 0.41
Octa-chlorobiphenyls (mg/kggyw) 0.35 & 0.00
Total PCBs (mg/kgqw) 10.6 + 0.05

The relative concentrations of the contaminants were expected to select for microbial
community specialized in the degradation of aliphatic and aromatic hydrocarbons rather
than PCBs, the latter being present at concentrations two orders of magnitude lower and
being notably more recalcitrant to biodegradation than PHCs under anaerobic conditions.
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3.2. Assembly Results and Phylogenomic Analysis of Asgardarchaeota MAGs from the Mar
Piccolo Sediment

A total of 34,682 contigs having a minimum length of 1500 bp and an average GC
content of 47% were assembled from approximately 47 million high PE reads. Only
17% of the assembled high-quality reads mapped against contigs, suggesting that a large
fraction of reads were not assembled or assembled in contigs with a length lower than
1500 bp. Among these, metaWRAP retrieved 1 high-quality MAG (completeness > 90% and
contamination < 5%), 9 medium-quality MAGs (completeness > 50% and contamination
< 10%) and 17 low-quality MAGs (completeness < 50%) (Table S1). The fact that only
a limited number of high/medium-quality MAGs was retrieved indicates that the Mar
Piccolo sediment resident microbial community has a remarkable sequence diversity; hence
the assembly graph was hardly resolvable in longer contigs, possibly due to a very high
intraspecific diversity. Most of the archaea bins grouped in the phylum of Asgardarchaeota,
while others in Crenarchaeota and Euryarchaeota (Table S1). The phylogenomic analysis
performed on 76 archaeal phylogenetic markers confirms the affiliation of the Thor_24 to
the Thorarchaeota phylum (Figure 1), as Thorarchaeota AB-25 was the closest genome to
this MAG.

DPANN

Sifarchaeota
Heimdallarchaeota

Lokiarchaeota

GCA 004524445.1 Archaea Asgardarchaeota Thorarchaeia TEKIR-14 sp004524445
GCA 004524435.1 Archaea Asgardarchaeota Thorarchaeia TEKIR-12S sp004524435

GCA 003662765.1 Archaea Asgardarchaeota Thorarchaeia B65-G9 sp003662765

GCA 003345555.1 Archaea Asgardarchaeota Thorarchaeia OWC5 sp003345555
GCA 003345595.1 Archaea Asgardarchaeota Thorarchaeia OWC5 sp003345595
GCA 001563325.1 Archaea Asgardarchaeota Thorarchaeia SMTZ1-83 sp001563325
GCA 004376265.1 Archaea Asgardarchaeota Thorarchaeia SMTZ1-45 sp004376265
Thor_24

GCA 001940705.1 Archaea Asgardarchaeota Thorarchaeia SMTZ1-45 sp001940705
GCA 001563335.1 Archaea Asgardarchaeota Thorarchaeia SMTZ1-45 sp001563335
GCA 002825515.1 Archaea Asgardarchaeota Thorarchaeia SMTZ1-45 sp002825515
GCA 003345545.1 Archaea Asgardarchaeota Thorarchaeia MP8T-1 sp003345545
GCA 004524595.1 Archaea Asgardarchaeota Thorarchaeia MP8T-1 sp004524595
GCA 004524565.1 Archaea Asgardarchaeota Thorarchaeia MP8T-1 sp004524565
GCA 002825465.1 Archaea Asgardarchaeota Thorarchaeia MP8T-1 sp002825465
GCA 002825535.1 Archaea Asgardarchaeota Thorarchaeia MP8T-1 sp002825535

Thermoproteota

Tree scale: 1 +

Figure 1. Phylogenomic analysis of Thorarchaeota metagenome-assembled genome (MAG) (Thor_24) based on 76 archaeal

phylogenetic markers using IQTree. Only nodes supporting a bootstrap value above 0.7 are shown. Diapherotrites,
Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota (DPAAN) was manually placed as an outgroup.
Taxonomy nomenclature from the GTDK database is displayed as well as the GenBank Accession numbers.

Accordingly, Thor_24 shared an average nucleotide identity (ANI) of 80% and an
average amino acid identity (AAI) of 75% with AB-25, indicating that both Asgardar-
chaeota belongs to the same genus (Table S1). The GTDB-Tk phylogenetic analysis of
low-quality Asgardarchaeota bins was attempted despite the low completeness. These bins
(i.e., loki_1, loki_4 loki_6, and heim_22) resulted in being affiliated with Lokiarchaeota and
Heimdallarchetoa, respectively. However, the low AAI (Table S1) suggests that Loki and
Heim bins could belong to phylogenetically distinct lineages within the Lokiarchaeota and
Heimdallarchaeota phyla.
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3.3. Genetic Potential of Asgardarchaeota Mar Piccolo Resident Microbial Community
3.3.1. Carbohydrate and Peptides Degrading Enzymes

The capability of carbohydrate degradation was investigated by assigning protein-
coding genes to families of carbohydrate-active enzymes (CAZy). Only a limited number
of CAZy families was found in Thor_24, which is in agreement with other Thorarchaeaota
identified in river estuary (SMTZ) and coastal sediments (AB) [45,46]. In addition, none of
the CAZy families identified in Thor_24 possessed a signal peptide, suggesting that these
enzymes are not actively involved in the extracellular degradation of carbohydrates. The
lack of secreted CAZy enzymes does not necessarily prevent Thorarchaeota to ferment
organic carbon. Indeed, among the CAZy found in Thorarchaeota, the families shared
by members of this taxonomic group were GH109, GH38, and GH36, which include
enzymes with a hydrolytic activity towards N-acetylgalactosamine, a-mannosides, and
a-galactosides, respectively (Table S2). Therefore, these enzymes may enable members
of this taxonomic group to scavenge readily degraded carbohydrates derived from the
hydrolytic activity of other microorganisms. Despite the low completeness, Loki and
Heim bins carried a more diversified set of CAZy families. «-N-acetylgalactosaminidase
(GH109), a-mannosidases (GH38) and «-galactosides (GH36) were also found in Loki bins
in addition to c-amylase (GH57), 3-galactosidase/mannosidase/glucuronidase (GH2) and
CE14 (chitooligosaccharide deacetylases). CAZy enzymes identified in Loki bins did not
show a signal peptide domain. Finally, heim_bin carried a higher number of carbohydrate
esterases (CE) families, including the CE14, also detected in Loki bins, and CE1, CE11, and
CE4, which comprise enzymes catalytically active towards phenolic polymers (e.g., lignin),
and lipopolysaccharides (Table S2). With such a diversified set of CAZy families, heim_22
shows a stronger degradative potential towards carbohydrates than Thor_24 and Loki bins.

In addition to CAZy enzymes, the capacity to degrade peptides and oligopeptides
was investigated by assessing the presence of membrane-bound peptidase and amino
acid/oligopeptide transport systems. Asgardarchaeota MAG contains multiple membrane-
bound and soluble peptidases (M, metallopeptidase; S, serine peptidase, A, aspartic pepti-
dase) together with genes coding for components of the oligo- and dipeptide transporters
(Opp and Dpp) and branched amino acid transport system Liv (Table S3). The presence of
genes encoding enzymes involved in the breakdown of poly- and oligo-peptides together
with Opp, Dpp and Liv systems, suggests that these microorganisms could utilize amino
acids, oligopeptides and proteins as both carbon and nitrogen sources. In conclusion, the
presence of CAZy enzymes and peptidase is consistent with the proposed heterotrophic
lifestyle of Asgardarchaeota [8,45,47].

3.3.2. Central Metabolism

The Wood-Ljungdahl pathway (WLP) includes a series of enzymes catalyzing the
reduction of two molecules of CO, into acetyl-CoA through two different pathways, i.e.,
the methyl and carbonyl branches [48]. Depending on the C; carrier, two variants of the
WLP have been characterized so far. Concerning the C; carriers, the acetogenic bacteria
use tetrahydrofolate (THF), whereas the methanogenic Archaea, which couple methano-
genesis to CO, reduction, utilize the tetrahydromethanopterin (THMPT) as carrier [49].
While the carbonyl-branch can be found in both Bacteria and Archaea, the THF-WLP and
THMPT-WLP paths of the methyl branch are, respectively, found in acetogenic bacteria and
methanogenic Archaea. Like in other Thorarchaeota, the genes involved in the reduction
of CO, into acetyl-CoA through the WLP methyl and carbonyl branches were detected in
Thor_24 (Figure 2). Coding genes of the subunits of the enzymatic complex CODH/ACS
catalyzing the reduction of CO2 through the carbonyl branch were found in Thor_24 and
Thorarchaeota MAGs AB and SMTZ (Figure 2) [45].
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and S3.

Enzymes of the WLP pathway carbonyl branch were also detected in Loki and Heim
bins. Both pathways of the methyl branch require the multiple-stage reduction of CO,
through the formation of formate/formyl, methenyl, methylene, and finally, a methyl
group. The genes catalyzing each reduction step were detected in Thor_24 MAG except
for the enzymes of the formate dehydrogenase complex, which catalyzes the conversion
of CO; into formate within the WLP-THF branch. However, Thor_24 carried multiple
copies of the pyruvate-formate lyase (pfl), indicating that formate, rather than CO5, is the
main substrate of the enzymes of the WLP-THF branch (Table S3). Therefore, Thor_24
potentially performs autotrophic carbon fixation through the WLP methyl branch THMP.
Partial sets of WLP-THMP methyl branch enzymes were also detected in Loki and Heim
bins (Figure 2), possibly due to the poor completeness of the respective bins. Indeed,
Lokiarchaeota were shown to possess a complete WLP, comparable to that observed in
Thorarchaeota [8]. On the other hand, the lack of WLP enzymes seems to be common in
Heimdallarchaeota [50,51]. Furthermore, the presence of enzymes catalyzing the conver-
sion of acetyl-CoA into acetate via acetyl-CoA synthetase (acd, ADP-forming) indicates
that Thor_24 possesses the potential to synthesize reducing equivalents in the form of
acetate via CO; fixation or fermentation of organic substrates (Figure 2). Acd coding genes
were also detected in the Heim bin. Finally, Several components of the tricarboxylic acid
(TCA) cycle were missing in Thor_24 as well as in Loki and Heim bins. The missing
enzymes in Thor_24 were the aconitate hydratase, isocitrate dehydrogenase, and malate
dehydrogenase, catalyzing, respectively, the second, third and last reactions of the TCA
cycle (Figure 2).
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3.3.3. Sulfur and Nitrogen Metabolism

Energetically favorable oxidation of hydrocarbons in anaerobic environments is cou-
pled to the utilization of a final electron acceptor such as nitrate and sulfate [10]. Therefore,
the presence of genes involved in nitrate and sulfate reduction was assessed in Asgardar-
chaeota bins. While multiple nitrite-reductase coding genes (nir) catalyzing the dissimi-
latory reduction of nitrite to ammonia were found in Thor_24, none of these genes was
organized in a cluster with other genes of the Nir complex. This suggests the absence of
terminal reductases involved in nitrite/nitrate reduction in Thor_24. Anaerobic sulfite re-
ductase (asr) genes and dissimilatory sulfite-reductase (dsr) genes were also missing in the
Thor_24 as well as in the Asgard archaea bins. Lack of dsr and asr genes in Asgardarchaeota
was previously reported suggesting that these organisms do not perform dissimilatory
sulfate reduction [8]. On the contrary, members of the [NiFe] group-3b hydrogenase have
been proposed to possess a sulthydrogenase activity, catalyzing the reduction of elemen-
tal sulfur S(0) and polysulfides into hydrogen sulfide, using H; as electron donor [52].
Pyrococcus furiosus sulfhydrogenase complex, I (Hyd) and II (Shy), are two cytoplasmatic
enzymes possessing different catalytic activity and affinity towards S(0) and polysulfide.
As compared to complex Hyd, the Shy complex II showed higher affinity towards S(0), and
therefore, becoming relevant when sulfur levels are lows [53]. Additionally, in the absence
of 5(0) or polysulfides, Shy complex II can work in reverse utilizing not NADH as electron
donors for H; generation [53]. While Thor_24, Loki, and Heim bins carried one copy of
the catalytic subunit of NiFe group-3b hydrogenase, only Thor_24 HydA clusters with the
sulfhydrogenase 1 subunit alpha (Hyd1A) of P. furiosus, which possess a sulfur-reducing
activity under in vitro condition (Figure 3) [54].
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Figure 3. Phylogenetic three of sulthydrogenase complex I and II genes in Mar Piccolo Asgardarchaeota. Only nodes

supporting a bootstrap value above 0.7 are shown. GenBank Accession numbers and Uniprot accession numbers are shown.

Evidence of sulfhydrogenase genes has been found in Thorarchaeota MAGs recovered
from river estuary, suggesting that Thorarchaeota could potentially perform hydrocarbon
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degradation while using sulfur as electron sinks [14]. Finally, in addition to sulfthydrogenase
I complex genes, Thor_24 and heim_bin carried two clusters encoding for the subunits A
and B of the electron transfer flavoproteins EFTAB (Table S3), which can transfer electrons
from succinate conjugates to a pool of quinone during the degradation of aromatic and
aliphatic hydrocarbons [55].

3.3.4. Identification of Syntrophic Lifestyle Genes in Throarchaeota, Lokiarchaeota, and
Heimdalarchaeota Bins

Redox-active complex, such as NADH-quinone and NADH-ubiquinone oxidoreduc-
tase and external cytochromes, could potentially take part in syntrophic interaction with a
sulfate/nitrate-reducing bacterium. Such interactions have been hypothesized for mem-
bers of the Asgardarchaeota superphylum, such as Hermodarchaeota, Heimdallarchaeota,
Helarchaeota, and Lokiarchaeota [10,47,52]. Additionally, several MAG identified in this
work were affiliated with lineages of sulfate-reducing bacteria (Table S1). Hence, Thor_24
and low-quality bins were screened for genetic potential associated with interspecies inter-
actions, such as flagellin and pili coding genes. We found that one member of the loki_bins
(loki_4) harbors a gene encoding an archaeal type flagellin protein (IPR002774), while
Thor_24 carries multiple copies of quinone and ubiquinone oxidoreductase, which could
act as energy transferring complex in syntrophic interactions (Table S3). However, the lack
of extracellular cytochrome, which mediates electron transfer across syntrophic partners,
poses some questions about the capability of Thor_24 and loki_4 to engage in syntrophic
interactions with sulfate-reducing partners inhabiting Mar Piccolo identified in Quero
et al. [15] and in this study (Table S1).

3.3.5. Analysis of Genes Involved in Petroleum Hydrocarbon Degradation and
Reductive Dehalogenation

Under anaerobic conditions, the degradation of aromatic and aliphatic hydrocarbons
was attributed to the catalytic activity of benzyl/alkyl succinate synthase (Bss and Ass)
and methyl-CoM reductase (mcr), respectively [56,57]. Based on previous studies, Bss/Ass
proteins catalyze the conversion of aryl/alkyl hydrocarbons into the corresponding suc-
cinate conjugates through the fumarate addition to the benzylic carbon, in the case of
aromatic compounds, or to the terminal/subterminal carbon of n-alkanes [57,58]. The
degradation of short-chain alkanes, i.e., ethane, propane, and butane, under anaerobic
conditions has been associated with the mcr gene products, which catalyze the alkane
oxidation to acetyl-CoA through a reversal of the last step in methanogenesis [59]. While
in marine sediments, the degradation of aryl and alkyl-hydrocarbons were mostly at-
tributed to sulfate-reducing bacteria, recently, the ecological role of Asgardarcheota has
been proposed in hydrocarbon cycling. Therefore, we sought to determine the presence
of aryl and alkyl-hydrocarbons degrading enzymes in Asgardarcheota detected in Mar
Piccolo sediments. Putative Bss/Ass proteins were detected in Thor_24 and, Lokiarchaeota
and Heimdallarchaeota bins (Figure 4). However, only Thor_24, loki_1, and heim_22
Bss/ Ass protein clustered with benzyl and alky-succinate synthase previously identified in
Thorarchaeota, Lokiarchaeota and Hermodarchaeota [11](Figure 4).
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Figure 4. Phylogenetic tree of putative benzyl-alkyl-succinate synthase in Mar Piccolo Asgardarchaeota. Only nodes

supporting a bootstrap value above 0.7 are shown. GenBank Accession numbers and Uniprot accession numbers are shown.

Therefore, the capability to degrade aromatic and aliphatic compounds may not be
restricted to bacterial taxa previously identified in Mar Piccolo sediment [15]. Once the
substrate is activated, the succinate conjugates deriving from aromatic and aliphatic hydro-
carbons can be further oxidized through the benzoyl-CoA (bCoA) and methylmalonyl-CoA
(mmCoA) pathways. The first reaction step of the bCoA pathway involves the benzoyl-CoA
reductase activity (encoded by bcr gene), which catalyzes the conversion of benzoyl-CoA
into cyclohexa-1,5-dienecarbonyl-CoA. Genes coding for the subunits of the Bcr complex
were found in the sequence of Thor_24 (Figure 5A).

In particular, Thor_24 bcr genes showed the same organization observed in Thorar-
chaeota MAGs AB and SMTZ, whereas this gene arrangement could not be detected in
Loki and Heim bins due to their fragmented genome (Figure 5B). Compared to Hermodar-
chaeota, most of the genes of the bCoA pathway were missing in Thor_24, but also in
Loki and Heim bins. For instance, the dch (cyclohexa-1,5-dienecarbonyl-CoA hydratase)
had (6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase) and oah (6-oxocyclohex-
1-ene-carbonyl-CoA hydrolase) genes, which are involved in the synthesis of hydroxy-
pimeloyl-CoA from benzoyl-CoA, were missing (Figure 5A), were not detected in Mar
Piccolo Asgardarchaeota. Therefore, despite the presence of the ber genes, Thor_24 unlikely
possesses the capacity to degrade aromatic hydrocarbons through the bCoA and finally
into the -oxidation pathway. Conversely, the degradation of aromatic hydrocarbons in
Thorarchaeota may occur through an alternative and yet undiscovered pathway. While
the anaerobic degradation of aryl-succinates through the bCoA pathway is well charac-
terized, the mmCoA pathway has been recently proposed as a candidate route for the
degradation of alky-succinate conjugates [3]. MmCoA pathway enzymes catalyzing the
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epimerization (MUT), decarboxylation (MCA), and subsequent assimilation through the
-oxidation pathway have been identified in Thor_24 and Loki and Heim archaea bins
(Figure 5A). Therefore, hydrocarbon cycling carried out by Asgardarcheota in Mar Piccolo
preferentially involves the utilization of alkyl degrading enzymes over the aromatic ones.
Finally, along with the Ass/Bss proteins, Asgardarcheota were proposed to catalyze the
conversion of alkane to alkyl-CoM through the catalytic action of a methyl-CoM-reductase-
like enzyme [10]. Alkyl-CoM is further reduced to acyl-CoA through the action of the
heterodisulfide reductase encoded by hdr genes, which are needed for the recovery of the
CoM. While archaeal hdr genes were found in Thor_24 and low-quality Asgardarcheota
bins, the genes coding for putative Mcr enzyme were missing in these genomes. In con-
clusion, these results suggest that alkane degradation in Mar Piccolo Asgardarchaeota is

catalyzed by the ass-like genes.
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Reductive dehalogenase (rdh) genes in organohalide-respiring bacteria have been
linked to the anaerobic dehalogenation of PCBs and other halogenated hydrocarbons in
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marine and terrestrial environments [60]. While reductive dechlorination via rdh genes has
been well studied in anaerobic bacteria, the ecological role of archaea, and in particular
Asgardarcheota, in the degradation of halogenated hydrocarbons and PCBs has been only
hypothesized. Specifically, rdh genes have been identified in almost every phylum of the
Asgardarchaeota superphylum [10,11]. Therefore, the presence of rdh genes in Mar Piccolo
Asgardarchaeota was assessed. The enzymes linking the dechlorination with cellular
respiration have been identified only in the Thor_24 and loki_1 bin (Figure 6).

Asgardarchaeota Epoxyqueuosine reductase (QueG) cluster

Asgardarchaeota putative Rdh lacking IPR028894 domain

Chlorinated aromatic hydrocarbons bacteria Rdh

Chlorinated ethenes bacteria Rdh

Asgardarchaeota Rdh

Figure 6. Phylogenetic tree of putative reductive dehalogenase (Rdh) in Thor_24, Loki and Heim bins, and Asgardarchaeota.

Only nodes supporting a bootstrap value above 0.7 are shown. GenBank accession numbers and Uniprot accession numbers

are shown. Epoxyqueuosine reductases (QueG) from Asgardarchaeota were used as an outgroup.

Phylogenetic analysis confirmed the affiliation of these proteins to putative Rdh
previously characterized in Asgardarchaeota, clustering together with known bacterial
Rdh showing catalytic activity towards chlorinated ethenes [11,60]. Interestingly, the
Rdh from loki_4 was included in a cluster of Asgardarchaeota-reductive dehalogenase
lacking the dehalogenase domains (IPR028894). Although the RdhA from Asgardarcheota
shares the same functional domain IPR028894 with Rdh proteins of bacterial origin, they
lack the signal peptide; therefore, these enzymes’ actual involvement in the reductive
dechlorination is still an open question [61].

4. Conclusions

In this study, the metabolic potential of Asgardarcheota inhabiting sediment from
the Mar Piccolo basin was analyzed to dissect the genetic determinants involved in the
degradation of aromatic and aliphatic compounds in this contaminated marine basin. New
taxa in the branch of the Asgardarcheota group has been previously proposed to be in-
volved in hydrocarbon cycling, expanding previous studies mostly reporting sulfate and
nitrate/nitrite reducing bacteria as main degraders. We found that the Asgardarcheota
phyla Thorarchaeaota, Lokiarchaeota, and Heimdallarchaeota inhabiting the Mar Piccolo
sediment under analysis in this study possess the genetic potential to degrade hydrocar-
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bons via the formation of alky-succinate conjugates, which are further degraded through
the mmCoA pathway. These features suggest that the archaeal community associated
with this Mar Piccolo sediment is, as a whole, a contributor to hydrocarbon cycling in this
environment. Taken together, our results expand the knowledge on the contribution of
Asgardarcheota to hydrocarbon cycling biodegradation in highly contaminated marine en-
vironments, pointing out that further research is needed to unravel the extensive ecological
role of members of this superphylum that is still underestimated.
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