Appendix S1 - Mathematical dissertation on the

proposed algorithms

From zero to infinity: minimum to maximum diversity of the planet by spatio-parametric Rao's quadratic entropy

February 7, 2021

, 1 Hill's numbers and generalized entropy

8 Hill (1973) expressed parametric diversity as the "numbers equivalent" of Rényi's gener9 alized entropy, as:

$$
\begin{equation*}
K_{\alpha}=\frac{1}{\left(\sum_{i=1}^{N} p_{i} \times p_{i}^{\alpha-1}\right)^{\frac{1}{\alpha-1}}} \tag{1}
\end{equation*}
$$

10

11

12 (i.e. all those with $\left.p_{i}=\frac{1}{K_{\alpha}}\right)$ that are needed in order that its diversity be H_{α} (Patil \&
13 Taillie, 1982).

15 (2006) further showed that, like for H_{α}, the numbers equivalents of all parametric and

16 non-parametric measures of diversity that can be expressed as monotonic functions of
${ }_{17} \sum p_{i}^{\alpha}$ have the form of the reciprocal of a generalized mean of order $\alpha-1$ (for details,
18 Jost 2006). mean among the generalized means, for $\alpha \rightarrow \infty$ Q_{∞} is the maximum distance between pixel values pairs

We want to compute

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} Q_{\alpha} \quad \text { where } \quad Q_{\alpha}=\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)^{\frac{1}{\alpha}} . \tag{2}
\end{equation*}
$$

By $\exp (\log (x))=x$ we can rewrite Q_{α} as

$$
Q_{\alpha}=\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)^{\frac{1}{\alpha}}=\exp \left(\log \left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)^{\frac{1}{\alpha}}\right)=\exp \left(\frac{1}{\alpha} \log \left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)\right)
$$

reminding that if $N>1$, there is at least one distance $d_{i j}>0$. We use this last expression to calculate (2). We use the following two well known results.

Theorem 1 (De l'Hôpital). Let $f_{1}, g_{1}:(a, b) \mapsto \mathbb{R}$ be two functions such that

- $\lim _{x \rightarrow a} f_{1}(x)=\lim _{x \rightarrow a} g_{1}(x)=0$
- f_{1} and g_{1} are differentiable in (a, b) with $g_{1}^{\prime}(x) \neq 0$ for every $x \in(a, b)$
- the limit $\lim _{x \rightarrow a} \frac{f_{1}^{\prime}(x)}{g_{1}^{\prime}(x)}=L$ with $L \in \mathbb{R}$
then

$$
\lim _{x \rightarrow a} \frac{f_{1}(x)}{g_{1}(x)}=L
$$

Theorem 2 (Limit composition). Let $f_{2}:(a, b) \mapsto \mathbb{R}$ and let $g_{2}:(c, d) \mapsto \mathbb{R}$ be two functions such that the image set of g_{2} is contained in the domain of f_{2}, i.e. $\operatorname{Img}\left(g_{2}\right) \subseteq$ (a, b). Let $x_{0} \in(c, d)$, if it holds that

- $\lim _{x \rightarrow x_{0}} g_{2}(x)=y_{0}$ with $g_{2}(x) \neq y_{0}$ definitely for $x \rightarrow x_{0}$
- $\lim _{y \rightarrow y_{0}} f_{2}(y)=l$
with $a, b, c, d, x_{0}, y_{0}, l \in \mathbb{R} \cup \pm \infty$ then

$$
\lim _{x \rightarrow x_{0}}\left(f_{2} \circ g_{2}\right)(x)=l .
$$

We apply Theorem (2) to calculate the limit (2) with $f_{2}(x)=\exp (x)$ and

$$
g_{2}(\alpha)=\frac{1}{\alpha} \log \left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right) .
$$

(all assumptions of the theorem hold). Setting $x_{0}=0$, we have to compute

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} g_{2}(\alpha) . \tag{3}
\end{equation*}
$$

which will be accomplished using Theorem (1) by setting $f_{1}:(0,+\infty) \mapsto \mathbb{R}$

$$
f_{1}(\alpha)=\log \left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)
$$

and $g_{2}:(0,+\infty) \mapsto \mathbb{R}, g_{2}(\alpha)=\alpha$. Then we have

$$
f_{1}(0)=\lim _{\alpha \rightarrow 0} f_{1}(\alpha)=\log \left(\frac{1}{N^{2}} \sum_{i, j=1}^{N} 1\right)=\log (1)=0
$$

as the limit exists and

$$
g_{1}(0)=\lim _{\alpha \rightarrow 0} g_{1}(\alpha)=0
$$

Both functions f_{1} and g_{1} are differentiable. Lastly we observe that $g_{1}^{\prime}(\alpha) \equiv 1$. Since all the assumptions of Theorem 1 hold then

$$
\begin{align*}
\lim _{\alpha \rightarrow 0} \frac{f_{1}(\alpha)}{g_{1}(\alpha)} & =\lim _{\alpha \rightarrow 0} \frac{f_{1}^{\prime}(\alpha)}{g_{1}^{\prime}(\alpha)}=\lim _{\alpha \rightarrow 0} \frac{\left(\frac{1}{N^{2}} \sum_{i, j=1}^{N} d_{i j}^{\alpha}\right)^{-1}\left(\frac{1}{N^{2}} \sum_{i, j=1}^{N} d_{i j}^{\alpha} \log d_{i j}\right)}{1} \\
& =\frac{1}{N^{2}} \sum_{i, j=1}^{N} \log d_{i j}=\sum_{i, j=1}^{N} \log \left(d_{i j}\right)^{\frac{1}{N^{2}}}=\prod_{i, j=1}^{N} \log \left(d_{i j}^{\frac{1}{N^{2}}}\right) \tag{4}
\end{align*}
$$

By Equation (4) we have the expression of Equation 3. Let

$$
y_{0}=\prod_{i, j=1}^{N} \log \left(d_{i j}^{\frac{1}{N^{2}}}\right)
$$

and we conclude by observing

$$
\lim _{y \rightarrow y_{0}} \exp (y)=\exp \left(\prod_{i, j=1}^{N} \log \left(d_{i j}^{\frac{1}{N^{2}}}\right)\right)=\prod_{i, j=1}^{N} \exp \left(\log \left(d_{i j}^{\frac{1}{N^{2}}}\right)\right)=\prod_{i, j=1}^{N} d_{i j}^{\frac{1}{N^{2}}}=\sqrt[N^{2}]{\prod_{i, j=1}^{N} d_{i j}} .
$$

Now we want to compute

$$
\lim _{\alpha \rightarrow+\infty} Q_{\alpha} \quad \text { where } \quad Q_{\alpha}=\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)^{\frac{1}{\alpha}}
$$

We define $d=\max \left\{d_{i j} \mid i, j \in\{1, \ldots, N\}\right\}$ and we rewrite Q_{α} as

$$
Q_{\alpha}=\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d_{i j}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}} d^{\alpha}\left(\frac{d_{i j}}{d}\right)^{\alpha}\right)^{\frac{1}{\alpha}}=d\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}}\left(\frac{d_{i j}}{d}\right)^{\alpha}\right)^{\frac{1}{\alpha}}
$$

Next we observe that

$$
\frac{d_{i j}}{d} \leq 1
$$

by construction and there exist a pair (\bar{i}, \bar{j}) such that $\frac{d_{\bar{i}, \bar{j}}}{d}=1$. Therefore it follows that

$$
\sum_{i, j=1}^{N} \frac{1}{N^{2}}\left(\frac{d_{i j}}{d}\right)^{\alpha}=\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left(\frac{d_{i j}}{d}\right)^{\alpha}=\frac{1}{N^{2}}\left(1+\sum_{\substack{i, j=1 \\(i, j) \neq(\bar{i}, \bar{j})}}^{N}\left(\frac{d_{i j}}{d}\right)^{\alpha}\right) \leq 1
$$

for every $\alpha>1$. And the limit in (4) is

$$
\lim _{\alpha \rightarrow+\infty} d\left(\sum_{i, j=1}^{N} \frac{1}{N^{2}}\left(\frac{d_{i j}}{d}\right)^{\alpha}\right)^{\frac{1}{\alpha}}=d=\max _{i, j} d_{i j} .
$$

${ }_{34}$ References

35 Ecology, 54: 427-431.
${ }_{37}$ Jost, L. (2006). Entropy and diversity. Oikos, 113: 363-375.
${ }_{38}$ Patil, G. P., Taillie, C. (1982). Diversity as a concept and its measurement. Journal of 39 the American Statistical Association, 77, 548-561.

