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Summary

Multi-arm clinical trials are complex experiments which involve several objectives.
The demand for unequal allocations in a multi-treatment context is growing and adap-
tive designs are being increasingly used in several areas of medical research. For
uncensored and censored exponential responses, we propose a constrained optimiza-
tion approach in order to derive the design maximizing the power of the multivariate
test of homogeneity, under a suitable ethical constraint. In the absence of censoring,
we obtain a very simple closed-form solution that dominates the balanced design in
terms of power and ethics. Our suggestion can also accommodate delayed responses
and staggered entries, and can be implemented via response adaptive rules. While
other targets proposed in the literature could present an unethical behaviour, the sug-
gested optimal allocation is frequently unbalanced by assigning more patients to
the best treatment, both in the absence and presence of censoring. We evaluate the
operating characteristics of our proposal both theoretically and by simulations, also
redesigning a real lung cancer trial, showing that the constrained optimal target guar-
antees very good performances in terms of ethical demands, power and estimation
precision. Therefore, it is a valid and useful tool in designing clinical trials, especially
oncological trials and clinical experiments for grave and novel infectious diseases,
where the ethical concern is of primary importance.
KEYWORDS:
Multiple treatments, response adaptive randomization, survival trials, unequal allocations

1 INTRODUCTION

In this paper we deal with the design of randomized multi-arm clinical trials for treatment comparisons to achieve a suitable
trade-off between inferential and ethical demands. Most of the randomized clinical trials have been designed to achieve balanced
allocation among the treatment groups. Equal allocation frequently maximizes the inferential precision in the estimation of the
treatment effects and reflects the condition of equipoise, that has been widely recognized as an ethically necessary condition
that should hold at the beginning of each trial.1 However, the balanced allocation may not be efficient and could be strongly
inappropriate for clinical trials, in which the ethical concern of individual care could be of crucial importance. Indeed, it is
becoming increasingly common the use of unequal allocations not only for ethical reasons,2,3 and the absolute need of true
equipoise is object of debate.4 Moreover, for heterogeneous treatment groups, unequal randomization often outperforms the
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balanced design in terms of statistical efficiency. Advantages of unequal randomization can be ramped up in multi-arm trials
with the promise of shortening drug development processes.5

Many clinical studies for severe/fatal diseases or oncological trials have time-to-event outcomes that can be modelled with the
exponential distribution; this model can be used in trials for diseases with a very fast progression to death6,7 or in combination
with a censoring scheme.8,9 In this context, the ethical demand of maximizing patient’s care becomes prominent and the choice
of the design should compromise between the conflicting goals of assigning more patients to the best performing treatment(s),
while preserving power. These objectives can be formalized in a constrained/combined optimization problem,10,11,12 whose
solution is the so-called optimal compromise target. This framework has been adopted for example by Tymofyeyev et al13 for
the binary model, by Biswas et al14 for both binary and continuous outcomes and by Baldi Antognini et al15 for the linear
homoscedastic model. In general, these optimal targets depend on the unknown model parameters and, under suitable conditions,
response-adaptive randomization (RAR) procedures can be implemented to approach the desired target.16,17,18 Principles and a
variety of advantages of adaptive designs have been recently listed by FDA.19 However, the application of RAR procedures in
survival trials presents several complexities since: (i) the responses cannot be observed immediately but are naturally delayed,
(ii) censored observations may be present and (iii) patients enrolment is often staggered in time.

Indeed, literature on RAR procedures for survival outcomes is quite scarce. To the best of our knowledge, Zhang and Rosen-
berger20 were the first authors suggesting to design a survival trial on the basis of optimality criteria. They derived targets for
two-arm trials with exponential and Weibull distribution, by minimizing an approximation of the total expected hazard, subject
to power constraints. For several treatments and in absence of censoring, Zhu and Hu21 derived analytically the optimal alloca-
tion that maximizes power for fixed weighted sample size. On the other hand, Sverdlov et al22 introduced two optimal allocations
for censored exponentially distributed outcomes, 𝑁𝑃1 and 𝑁𝑃2, based on non linear programming; analytical solution is avail-
able only for 𝑁𝑃1, while 𝑁𝑃 2 can be addressed numerically. However, both these works21,22 are based on the same constrained
optimization framework proposed by Tymofyeyev et al,13 which requires the choice of two user-selected thresholds: one of them
related to a minimum percentage of allocations to each treatment (to avoid degenerate scenarios) and the other regarding the
chosen efficacy measure (which is, however, a priori unknown since it depends on the model parameters). A further downside
is related to the structure of the ensuing targets, since they do not always send more patients to the best treatment. To overcome
these drawbacks, Baldi Antognini et al15 proposed a new multi-purpose design strategy for the normal homoscedastic model.

This work deals with the problem of how to allocate subjects to 𝐾 ≥ 2 treatments for exponential trials. After introducing
notation in Section 2, Section 3 discusses the simple set-up without censored observations. Firstly, we derive analytically the
design maximizing the power of the multivariate Wald test. In absence of treatments with the same efficacy, the optimal target
is a Neyman allocation involving just the clinically best and the worst treatments. Clearly, this allocation presents undesirable
properties for both inference and ethics and, on this purpose, we discuss the complex issue of how to take into account patients’
health in the design of a trial for more than two treatments. Therefore, we formalize a constrained optimization problem in which
the power function is maximized subject to an ethical constraint on the allocation proportions, reflecting the effectiveness of the
treatments. We compare the ensuing optimal target to several targets proposed in the literature - including a Bayesian procedure23
- and we demonstrate that it is superior to the balanced design in terms of power and ethics. Then, we generalize the results by
taking into account censored observations, also including delayed responses and staggered entries (Section 4). We implement
our proposals with the Doubly adaptive Biased Coin Design24 (DBCD) to discuss their operating characteristics in several
experimental settings. We also perform robustness studies to model misspecifications and we redesign the three-arm KEYNOTE-
0108 clinical trial. We conclude the paper with a discussion and future developments (Section 5), while mathematical details
are reported in Appendix A.

2 FRAMEWORK AND NOTATION

Consider a clinical trial in which patients are allocated sequentially to 𝐾 ≥ 2 treatments and let 𝑌𝑖𝑗 be the response of the 𝑗-th
patient assigned to the 𝑖-th treatment where 𝑌𝑖𝑗 follows an exponential distribution with mean 𝜃𝑖 ∈ ℝ+, for 𝑖 = 1,… , 𝐾 . Let
𝐍𝑛 = (𝑁1𝑛,… , 𝑁𝐾𝑛)⊤ be the random allocation vector, whose 𝑖-th component is the number of patients assigned to treatment
𝑖 up to step 𝑛, where 𝑛 = 𝐍⊤

𝑛 𝟏𝐾 and 𝟏𝐾 is the 𝐾-dimensional vector of ones. Let 𝜋𝑖𝑛 = 𝑁𝑖𝑛∕𝑛, then 𝝅𝑛 = (𝜋1𝑛,… , 𝜋𝐾𝑛)⊤ is the
vector of allocation proportions such that 𝝅⊤

𝑛 𝟏𝐾 = 1.
After 𝑛 steps, letting �̂�𝑛 = (�̂�1𝑛,… , �̂�𝐾𝑛)⊤ be the vector of the MLEs of the treatment effects, by a well-known result �̂�𝑛

𝑎.𝑠.
←→ 𝜽

and √

𝑛(�̂�𝑛 − 𝜽)
𝑑
←→ N(𝟎𝐾 ,M−1), where M = diag (𝜋𝑖𝑛𝜃−2𝑖

)

𝑖=1,…,𝐾 is the Fisher information matrix. In multi-arm trials, the
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inferential interest is usually focused on the contrasts, so let us define 𝜸 = A𝜽 where A = [𝟏𝐾−1|− I𝐾−1] and I𝐾−1 is the (𝐾−1)-
dim identity matrix so that 𝜸 = (𝜃1 − 𝜃2,… , 𝜃1 − 𝜃𝐾 )⊤. By denoting with �̂�𝑛 = A�̂�𝑛 the corresponding MLE, it is known that
�̂�𝑛 is strongly consistent and asymptotically normal with √

𝑛(�̂�𝑛 − 𝜸)
𝑑
←→ N(𝟎𝐾−1,𝚺), where 𝚺 = AM−1A⊤.

We define the target as the desirable treatment allocation proportion 𝝆 = (𝜌1,… , 𝜌𝐾 )⊤, where 𝝆⊤𝟏𝐾 = 1 and 𝜌𝑖 ≥ 0, for
𝑖 = 1,… , 𝐾 . If the latter inequality is strict, namely if 𝜌𝑖 > 0 for all 𝑖 = 1,… , 𝐾 , 𝝆 is called non degenerate. The target can
be seen, in a finite set-up, as the actual desired proportion of treatment assignments. Otherwise, it can be found as a limit, for
increasing 𝑛, to which the allocation proportion should ideally converge. In general, the targets could depend on the unknown
parameters and, under suitable conditions, RAR procedures can be carried out to sequentially estimate the model parameters,
and then force the assignments to asymptotically approach the chosen target.17,18

Without loss of generality, in this work we assume that higher values for the response are more desirable and we let 𝜃1 ≥ 𝜃2 ≥
… ≥ 𝜃𝐾 , i.e. the best treatment is indicated with label 1 and the worst one with label 𝐾 , admitting also groups of treatments with
the same efficacy. This assumption is not restrictive since it is simply a label-coding choice. Indeed, the ordering of treatments
is a priori unknown, but for RAR rules the treatment effects are estimated step by step and then their ranking is sequentially
updated. Clearly, the contrasts can be defined with respect to any treatment (not necessary the best one) by re-defining the matrix
A. For instance, if we set A = [I𝐾−1|− 𝟏𝐾−1], then 𝜸 = (𝜃1 − 𝜃𝐾 ,… , 𝜃𝐾−1 − 𝜃𝐾 )⊤ so that the contrasts are defined with respect
to the worst performing treatment.

3 OPTIMAL ALLOCATIONS FOR HYPOTHESIS TESTING FOR THE EXPONENTIAL
MODEL

In this section we derive optimal targets for testing the hypothesis of homogeneity among treatment effects. Such overall null-
hypothesis is a milestone in the statistical literature and it is the first stage of multiple comparison techniques for many stepwise
procedures25,26 (see also Section 5). We then compare the ensuing target with the optimal allocations for the exponential model
proposed in the literature both theoretically and numerically.

3.1 Single-objective optimal allocation for hypothesis testing
Let us consider the problem of testing the null-hypothesis of equality among the treatment effects,

{

H0 ∶ 𝜸 = 𝟎𝐾−1

H1 ∶ 𝜸 ≠ 𝟎𝐾−1,

where 𝟎𝐾−1 is the𝐾−1 dimensional vector of zeros. After 𝑛 steps, let M̂𝑛 and �̂�𝑛 = AM̂−1
𝑛 A⊤ be consistent estimators of M and𝚺,

respectively. Under H0, the Wald’s statistic 𝑊𝑛 = 𝑛⋅ �̂�⊤𝑛 �̂�−1
𝑛 �̂�𝑛

𝑑
←→ 𝜒2

𝐾−1(0), while under H1, 𝑊𝑛
𝑑
←→ 𝜒2

𝐾−1(𝑛𝜙), where 𝜒2
𝐾−1(𝑛𝜙)is a chi-squared r.v. with 𝐾 − 1 degrees of freedom and non centrality parameter (NCP) 𝑛𝜙, where 𝜙 = 𝜙(𝝅) = 𝜸⊤ 𝚺−1 𝜸 is

given by (see for example Zhu and Hu21)

𝜙(𝝅) =
𝐾
∑

𝑖=1

(

𝜃1 − 𝜃𝑖
𝜃𝑖

)2

𝜋𝑖 −
1

∑𝐾
𝑖=1

𝜋𝑖
𝜃2𝑖

( 𝐾
∑

𝑖=1

𝜃1 − 𝜃𝑖
𝜃2𝑖

𝜋𝑖

)2

. (1)

For every sample size, the power of the Wald homogeneity test monotonically increases as 𝜙 grows; as a shorthand we shall
often refer to 𝜙 as the NCP. In the next Theorem, following a similar set-up to Tymofyeyev et al,13 we derive the allocation
proportion maximizing the NPC.
Theorem 1. The target allocation �̃� = (�̃�1,… , �̃�𝐾 )⊤ maximizing the power of Wald’s test is such that 𝜙(�̃�) =

(

𝜃1−𝜃𝐾
𝜃1+𝜃𝐾

)2. Given
𝜃1 = ⋯ = 𝜃𝑗 > 𝜃𝑗+1 ≥ ⋯ ≥ 𝜃ℎ = ⋯ = 𝜃𝐾 , with 1 ≤ 𝑗 < ℎ ≤ 𝐾 ,

(i) if 𝜃𝑗+1 > 𝜃ℎ, then every allocation �̃� such that ∑𝑗
𝑖=1 �̃�𝑖 =

𝜃1
𝜃1+𝜃𝐾

, �̃�𝑗+1,… , �̃�ℎ−1 = 0 and ∑𝐾
𝑖=ℎ �̃�𝑖 =

𝜃𝐾
𝜃1+𝜃𝐾

is optimal;
(ii) if 𝜃𝑗+1 = 𝜃ℎ i.e. in presence of only two clusters of treatments, every allocation �̃� such that ∑𝑗

𝑖=1 �̃�𝑖 =
𝜃1

𝜃1+𝜃𝐾
= 1−

∑𝐾
𝑖=𝑗+1 �̃�𝑖is optimal.

Proof. See Appendix A.1.
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The targets in (i) are degenerate, since every �̃� provides at least an empty treatment arm. In particular, in presence of a single
superior and inferior treatments (𝑗 = 1 and ℎ = 𝐾),

�̃� =
(

𝜃1
𝜃1 + 𝜃𝐾

, 0,… , 0,
𝜃𝐾

𝜃1 + 𝜃𝐾

)⊤

(2)
i.e. it is a generalization of Neyman allocation involving just the best and the worst treatments, not collecting informations on
the intermediates. Target in (2) is always a possible solution for both (i) and (ii), and for 𝐾 = 2 we retrieve the usual Neyman
allocation. Notice that the only non degenerate optimal targets �̃� are those obtained under scenario (𝑖𝑖) of Theorem 1.
Example 1. If 𝜽 = (4, 4, 4, 1)⊤, then �̃� =

(

4
5
, 0, 0, 1

5

)⊤ is optimal with 𝜙(�̃�) = 9
25

. Moreover, every combination of �̃�1, �̃�2 and
�̃�3 such that ∑3

𝑖=1 �̃�𝑖 =
4
5

is optimal, like e.g.,
(

2
5
, 2
5
, 0, 1

5

)⊤ or
(

2
5
, 1
5
, 1
5
, 1
5

)⊤.
Remark 1. For trials comparing 𝐾 > 2 treatments, the definition of the ethical issue is highly debated and controversial. For
example, the trial may be designed with the requirement of maximizing patients’ benefit by a) maximizing the number of subjects
receiving the superior treatment(s) or b) minimizing the number of patients treated with the inferior arm(s). While for 𝐾 = 2
these two ethical paradigms are equivalent, in the case of multi-arm trials the implementation of a) does not necessarily satisfy
b) and vice versa; moreover, even if a) and b) hold simultaneously, the conclusions may be questionable. For instance, under
the-larger-the-better scenario and assuming 𝜃1 > 𝜃2 > 𝜃3 > 𝜃4, the target

(

7
16
, 2
16
, 6
16
, 1
16

)⊤ complies with a) and b), but how it
can be considered as ethical? Wouldn’t it be the target

(

7
16
, 6
16
, 2
16
, 1
16

)⊤ more desirable for patients’ health? In this paper, a target
will be considered as ethical if its components are ordered according to the magnitude of the treatment effects (this definition
was mentioned in Theorem 1 of Sverdlov et al22). In this way not only a) and b) hold, but the ranking of the 𝜌𝑖’s reflects the
efficacy of 𝜽, i.e. 𝜌𝑖 ≥ 𝜌𝑖+1 ⇐⇒ 𝜃𝑖 ≥ 𝜃𝑖+1 for all 𝑖 = 1,… , 𝐾 − 1. Clearly, for 𝐾 = 2 the Neyman allocation for the exponential
model is ethical since 𝜌1 ≥ 𝜌2 ⇐⇒ 𝜃1 ≥ 𝜃2.

Despite the optimal unconstrained design �̃� maximizes power, it presents undesirable characteristics from both ethical and
inferential perspective. In general, this target does not assign patients to the intermediate treatments, giving unreliable variance
of the estimate of model parameters. Moreover, �̃� is not attractive from an ethical point of view, since it always allocates a
fraction of patients to the worst treatment arm.

3.2 Multi-objective optimal allocation for hypothesis testing
In this section we introduce the multi-purpose optimal target 𝝆𝐶 maximizing the NCP subject to an ethical constraint reflect-
ing the order among treatments. Specifically, in the following Theorem we derive the closed form solution of the constrained
optimization problem

{

max𝜙(𝝆)
s.t. 𝜌𝑖 ≥ 𝜌𝑖+1 for 𝑖 = 1,… , 𝐾 − 1 and ∑𝐾

𝑖=1 𝜌𝑖 = 1.
(3)

Theorem 2. Given 𝜃1 = ⋯ = 𝜃𝑗 > 𝜃𝑗+1 ≥ ⋯ ≥ 𝜃ℎ = ⋯ = 𝜃𝐾 (1 ≤ 𝑗 < ℎ ≤ 𝐾), let us define

𝑥 =
1
𝜃1

∑𝐾
𝑖=1

(

1
𝜃𝑖
− 1

𝜃1

)2

[

∑𝐾
𝑖=1

(

1
𝜃𝑖
− 1

𝜃1

)] [

∑𝐾
𝑖=1

(

1
𝜃2𝑖

− 1
𝜃21

)] . (4)

If 𝑥 > 𝐾−1, then the balanced design 𝝆𝐵 =
(

1
𝐾
,… , 1

𝐾

)⊤ is optimal. Otherwise, when 𝑥 ≤ 𝐾−1, the solution of (3) is 𝝆𝐶 =
(𝜌𝐶1 ,… , 𝜌𝐶𝐾 )

⊤ (with 𝜌𝐶𝑖 ≥ 𝜌𝐶𝑖+1 for 𝑖 = 1,… , 𝐾 − 1 and 𝟏⊤𝐾𝝆
𝐶 = 1), where

(i) if 𝜃𝑗+1 > 𝜃ℎ, then 𝜌𝐶𝑗+1 = … = 𝜌𝐶𝐾 = 𝑥 (and, clearly, ∑𝑗
𝑖=1 𝜌

𝐶
𝑖 = 1 − (𝐾 − 𝑗)𝑥);

(ii) in the case of just two clusters of treatments, namely when 𝜃𝑗+1 = 𝜃ℎ, then ∑𝑗
𝑖=1 𝜌

𝐶
𝑖 = 1 − (𝐾 − 𝑗)𝑥 = 𝜃1∕(𝜃1 + 𝜃𝐾 ) =

1 −
∑𝐾

𝑖=𝑗+1 𝜌
𝐶
𝑖 .

Proof. See Appendix A.2.
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The constrained optimal target presents very appealing properties: 𝝆𝐶 has a very simple form and it is non degenerate, so that
there is no need to fix a lower bound for the treatment allocation proportion to the worst treatment(s). Furthermore, it assigns
the same proportion of patients to all the treatment arms or it skews the allocations in favour of the best performing treatment(s).

The behaviour of 𝝆𝐶 for 𝐾 = 3 and several experimental settings is displayed in Table 1. The optimal constrained target
allocates a higher proportion of subjects to the superior treatment and this proportion increases as the difference between 𝜃1 and
𝜃2 grows (Table 1a). Moreover, 𝜌𝐶1 increases as the magnitude of the superior treatment increases (Table 1b). Note that, in the
last scenario of Table 1a 𝑥 = 1∕6, so that all the targets with 𝜌𝐶2 + 𝜌𝐶3 = 1∕3 are optimal.

TABLE 1 Behaviour of the optimal constrained target.
(a) Fixed 𝜃1 and 𝜃3 and decreasing 𝜃2.

𝜽 𝜌1𝐶 𝜌2𝐶 𝜌3𝐶

(10, 9, 5)⊤ 0.436 0.282 0.282
(10, 7, 5)⊤ 0.590 0.205 0.205
(10, 5, 5)⊤ 0.667 0.1665 0.1665

(b) Fixed 𝜃2 and 𝜃3 and increasing 𝜃1.
𝜽 𝜌1𝐶 𝜌2𝐶 𝜌3𝐶

(10, 8, 4)⊤ 0.546 0.227 0.227
(15, 8, 4)⊤ 0.706 0.147 0.147
(20, 8, 4)⊤ 0.774 0.113 0.113

3.3 Comparison of optimal targets for the exponential model
The aim of this section is to compare, both theoretically and with numerical examples, the constrained optimal target with those
proposed in the literature for exponential outcomes. By taking into account the well known 𝐴-optimal criterion, Sverdlov and
Rosenberger27 derived the optimal allocation 𝝆𝐴 minimizing the trace of 𝚺,

𝜌𝐴1 =
𝜃1
√

𝐾 − 1

𝜃1
√

𝐾 − 1 +
∑𝐾

𝑘=2 𝜃𝑘
and 𝜌𝐴𝑖 =

𝜃𝑖
𝜃1
√

𝐾 − 1 +
∑𝐾

𝑘=2 𝜃𝑘
for 𝑖 = 2,… , 𝐾,

while Wong and Zhu28 found the 𝐷-optimal allocation 𝝆𝐷 minimizing the determinant of 𝚺 (this target is not available in closed
form but is derived as the unique root of a non linear system of equations). Although for linear contrasts these criteria are usually
called 𝐴𝐴 and 𝐷𝐴, for the sake of notation, we simply refer to them as 𝝆𝐴 and 𝝆𝐷.

For exponential outcomes without censoring, Zhu and Hu21 derived the optimal allocation 𝝆𝑍 maximizing the NCP for fixed
𝑛, subject to the constraint that 𝜌𝑍𝑖 ≥ 𝑇 for all 𝑖 = 1,… , 𝐾 where 𝑇 ∈ [0, 𝐾−1] is a user-selected threshold. Nevertheless, no
guidelines are provided by the authors to help the choice of 𝑇 ; moreover, Theorem 1 of Zhu and Hu21 does not include trials in
which the treatments are grouped into two clusters (like, e.g., 𝐾 = 3 with 𝜃1 = 𝜃2 > 𝜃3).

To measure the effectiveness of such targets in terms of both statistical and ethical performances, we evaluate:
1. the efficiency in terms of power of a given target 𝝆 as 𝐸𝜙(𝝆) =

𝜙(𝝆)
𝜙(�̃�)

where �̃� is the unconstrained optimal target defined
in Theorem 1;

2. 𝐷𝐴 and 𝐴𝐴 efficiency, defined by 𝐸𝐷𝐴
(𝝆) =

[

|AM−1(𝝆𝐷)A⊤
|

|AM−1(𝝆)A⊤
|

]
1

𝐾−1 and 𝐸𝐴𝐴
(𝝆) = 𝑡𝑟(AM−1(𝝆𝐴)A⊤)

𝑡𝑟(AM−1(𝝆)A⊤) , respectively. Accordingly,
values of 𝐸𝐷𝐴

(𝝆) or 𝐸𝐴𝐴
(𝝆) close to 1 point out that the design 𝝆 has similar performance in terms of estimation precision

of the optimal design 𝝆𝐷 or 𝝆𝐴;
3. besides the ethical measures provided by 𝜌1 and 𝜌𝐾 representing the assignments to the best and worst treatments, to

assess a global ethical performance we compute 𝐸𝑒(𝝆) =
∑𝐾

𝑖=1 𝜃𝑖𝜌𝑖
𝜃1

, that is the ratio between the total expected responses
under a given target 𝝆 and the total expected outcomes obtained by assigning all the subjects to the best treatment.

In the comparisons we also take into account the balanced design as a benchmark. However, equal allocation may be suboptimal
in trials with heterogeneous variance.3 In the following Theorem we demonstrate that the constrained optimal target proposed
in this paper has always better performance in terms of power and ethical efficiency wrt the balanced design.
Theorem 3. The optimal constrained target 𝝆𝐶 dominates the balanced allocation 𝝆𝐵 , namely 𝐸𝜙(𝝆𝐶 ) ≥ 𝐸𝜙(𝝆𝐵) and 𝐸𝑒(𝝆𝐶 ) ≥
𝐸𝑒(𝝆𝐵), simultaneously.
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Proof. See Appendix A.3.
Remark 2. While 𝝆𝐷 satisfies the property of Remark 1 (shown by Sverdlov et al22), i.e. 𝜃1 ≥ ... ≥ 𝜃𝐾 ⇔ 𝜌𝐷1 ≥ ... ≥ 𝜌𝐷𝐾 , targets
𝝆𝑍 and 𝝆𝐴 could present a controversial behaviour in terms of ethics. In general, 𝝆𝐴 assigns more subjects to the reference
treatment (that does not always coincide with the best one, as in our framework). For instance, if 𝜽 = (25, 29, 30)⊤ then 𝝆𝐴 =
(0.375, 0.307, 0.318)⊤, so that more subjects receive the worst treatment. Moreover, also 𝝆𝑍 is unethical since it does not always
satisfy a) and/or b) of Remark 1. Indeed, in the same scenario, by setting 𝑇 = 0.2, we obtain 𝝆𝑍 = (0.425, 0.2, 0.375)⊤, so it
assigns the higher proportion of patients to the less effective treatment.

Further numerical comparisons are reported in Table 2, in which we consider 𝐾 = 3 and 5 treatments and several values of 𝜽.
We have included �̃� for completeness, even if it is strongly inadequate, as widely discussed in Section 3.1. Let us first consider
the case of 𝐾 = 3. As far as power is concerned, the proposed constrained target 𝝆𝐶 always presents higher power than the
competitors except in the scenario 𝜽 = (8, 5, 4)⊤, with a loss of 0.7% wrt 𝝆𝑍 . In the remaining cases, the gain of 𝝆𝐶 in terms of
power efficiency on the second best is up to 3.4%. With regard to the ethical concern, 𝝆𝐶 presents values closest to one, except
in the first scenario, in which 𝝆𝐴 has essentially equivalent ethical efficiency. This latter target represents the second best choice
in terms of ethical demand. In general, the 𝐷𝐴 efficiency of 𝝆𝐶 is higher for narrower values of the relative differences among
𝜃1 and 𝜃2 and it is higher than 77% in all these settings. Very good performances in terms of 𝐴𝐴 efficiency are achieved by
the constrained target, with values always greater than 90.6%. Note that 𝝆𝑍 is nearly constant as the vector of treatment effects
changes. Indeed, the allocation proportion to the worst treatments is equal, or very close to 𝑇 . The results for 𝐾 = 5 treatments
enhance the value of our proposal and similar considerations to the case of 𝐾 = 3 treatments still hold. Note that the gain
in terms of power efficiency reaches the 19% wrt other designs (see the last scenario). The undesirable behaviour in terms of
patients’ benefit of 𝝆𝑍 , discussed in Remark 2, holds for both 𝐾 = 3 and 𝐾 = 5 treatments.

In Figure 1 we show the behaviour of the above-mentioned efficiency measures for 𝐾 = 3 treatments where 𝜃1 varies between
10 and 30, 𝜃2 = 9 and 𝜃3 = 8. The constrained target 𝝆𝐶 dominates the other allocations in terms of power and ethics for values
of 𝜃1 ≥ 15, whereas for smaller values of 𝜃1 the maximum loss wrt 𝝆𝑍 is 8.8% for 𝜃1 = 10. The ethical efficiency of 𝝆𝐶 is
increasing in 𝜃1 for 𝜃1 > 20 (the same behaviour can be observed only for 𝝆𝐴 when 𝜃1 > 22, whereas 𝝆𝐷, 𝝆𝐵 and 𝝆𝑍 are always
decreasing in 𝜃1), and the average gain of 𝝆𝐶 on the second best (𝝆𝐴) is 3.5%. The best performance in terms of 𝐷𝐴 efficiency is
given by 𝝆𝐵 , while 𝝆𝑍 is the second best for high values of 𝜃1. On the other hand, 𝐸𝐷𝐴

(𝝆𝐶 ) and 𝐸𝐷𝐴
(𝝆𝐴) decrease as 𝜃1 increases,

having lower values with respect to the other targets. Both 𝝆𝑍 and 𝝆𝐶 present 𝐴𝐴 efficiency close to 1 (in particular highest
values are achieved by 𝝆𝑍 for 𝜃1 ∈ [13, 26] while in the remaining configurations of parameters the highest values are reached
by 𝝆𝐶 ). It is worth notice that 𝐸𝐴𝐴

(𝝆𝐶 ) is nearly constant w.r.t. 𝜃1 while 𝐴𝐴 efficiency tends to decrease for the remaining targets.
The theoretical properties as well as the comparisons in Table 2 and Figure 1 show that the optimal constrained target 𝝆𝐶

guarantees very good performance in terms of power, estimation precision and ethical concerns.

3.4 Implementing the optimal target with RAR procedures
In this section we apply the DBCD24 to implement the constrained target, under the assumption that responses are available
immediately (see e.g. Shulz et al7). This procedure starts with a sample of 𝑛0 patients allocated to the 𝐾 treatments (usually by
restricted randomization) to obtain initial estimates of model parameters. After 𝑗 > 𝑛0 subjects are assigned and the responses are
observed, the unknown parameters are estimated by �̂�𝑗 = (�̂�1𝑗 ,… , �̂�𝐾𝑗)⊤ and they are used to compute the estimated target �̂�𝑗 =

(�̂�1𝑗 ,… , �̂�𝐾𝑗)⊤. Then, the (𝑗+1)th patient is randomized to treatment 𝑖 with probability Ψ𝑗+1,𝑖 = �̂�𝑖𝑗
(

�̂�𝑖𝑗
𝜋𝑖𝑗

)𝜅 [
∑𝐾

𝑖=1 �̂�𝑖𝑗
(

�̂�𝑖𝑗
𝜋𝑖𝑗

)𝜅]−1,
where 𝜅 ∈ [0,+∞). We apply the above-mentioned procedure to target the constrained optimal design by setting 𝜅 = 2, that
represents a good trade-off between randomness and optimality.29 We take into account the scenarios of Tables 1a and 1b for
different sample sizes, where each trial has been replicated 10000 times. The first 1

10
of the total sample size is assigned to the

treatments with restricted randomization, then allocations become response adaptive. The results are provided in Tables 3 and
4, in which we report for every scenario the estimates �̂�𝑛, the theoretical target, the simulated allocation proportions 𝝅𝑛 (with
their standard deviations in square brackets) and the simulated average power (W) of Wald’s test.

The sequential procedure implementing 𝝆𝐶 assigns a higher proportion of subjects to the more effective treatment. Clearly,
the convergence to the optimal target improves for increasing 𝑛, even though, in many experimental scenarios, good convergence
is also achieved for 𝑛 = 100 and the simulated allocation proportions are equal or really close to their target values for 𝑛 = 250.
Moreover, the convergence improves as the efficacy of the best treatment grows (see Table 4) and the average power exhibits
values over 72% in all the considered settings, while for 𝑛 ≥ 150 it is above 88%.



FRIERI and ZAGORAIOU 7

TABLE 2 Comparison of optimal targets for 𝐾 = 3 and 5 treatments in different experimental scenarios wrt power efficiency
𝐸𝜙(𝝆), ethical efficiency 𝐸𝑒(𝝆), 𝐷𝐴 efficiency 𝐸𝐷𝐴

(𝝆), and 𝐴𝐴 efficiency 𝐸𝐴𝐴
(𝝆).

𝜽⊤ 𝝆 𝐸𝜙(𝝆) 𝐸𝑒(𝝆) 𝐸𝐷𝐴
(𝝆) 𝐸𝐴𝐴

(𝝆)

(30, 20, 8)

𝝆𝐴 = (0.602, 0.284, 0.114)⊤ 0.761 0.822 0.933 1
𝝆𝐷 = (0.441, 0.385, 0.174)⊤ 0.765 0.744 1 0.905
�̃� = (0.789, 0, 0.211)⊤ 1 0.845 → 0 → 0
𝝆𝐶 = (0.664, 0.168, 0.168)⊤ 0.889 0.821 0.836 0.906
𝝆𝐵 0.740 0.644 0.903 0.730
𝝆𝑍 = (0.591, 0.200, 0.209)⊤ 0.881 0.780 0.888 0.927

(30, 10, 8)

𝝆𝐴 = (0.702, 0.165, 0.133)⊤ 0.868 0.792 0.864 1
𝝆𝐷 = (0.464, 0.295, 0.241)⊤ 0.657 0.627 1 0.815
�̃� = (0.789, 0, 0.211)⊤ 1 0.845 → 0 → 0
𝝆𝐶 = (0.768, 0.116, 0.116)⊤ 0.900 0.839 0.770 0.973
𝝆𝐵 0.501 0.533 0.954 0.620
𝝆𝑍 = (0.600, 0.200, 0.200)⊤ 0.807 0.720 0.953 0.956

(12, 5, 4)

𝝆𝐴 = (0.653, 0.193, 0.154)⊤ 0.838 0.785 0.899 1
𝝆𝐷 = (0.449, 0.303, 0.248)⊤ 0.668 0.658 1 0.856
�̃� = (0.750, 0, 0.250)⊤ 1 0.833 → 0 → 0
𝝆𝐶 = (0.726, 0.137, 0.137)⊤ 0.872 0.828 0.805 0.968
𝝆𝐵 0.535 0.583 0.962 0.683
𝝆𝑍 = (0.600, 0.200, 0.200)⊤ 0.822 0.750 0.942 0.985

(8, 5, 4)

𝝆𝐴 = (0.557, 0.246, 0.197)⊤ 0.760 0.809 0.944 1
𝝆𝐷 = (0.411, 0.321, 0.268)⊤ 0.669 0.746 1 0.919
�̃� = (0.667, 0, 0.333)⊤ 1 0.834 → 0 → 0
𝝆𝐶 = (0.628, 0.186, 0.186)⊤ 0.801 0.837 0.876 0.973
𝝆𝐵 0.603 0.708 0.979 0.814
𝝆𝑍 = (0.555, 0.200, 0.245)⊤ 0.808 0.802 0.931 0.980

(12, 11, 10, 5, 3)

𝝆𝐴 = (0.453, 0.208, 0.189, 0.094, 0.057)⊤ 0.660 0.854 0.858 1
𝝆𝐷 = (0.235, 0.232, 0.229, 0.182, 0.123)⊤ 0.719 0.745 1 0.775
�̃� = (0.800, 0, 0, 0, 0.200)⊤ 1 0.850 → 0 → 0
𝝆𝐶 = (0.540, 0.115, 0.115, 0.115, 0.115)⊤ 0.810 0.818 0.791 0.856
𝝆𝐵 0.723 0.683 0.966 0.676
𝝆𝑍 = (0.373, 0.150, 0.150, 0.150, 0.177)⊤ 0.796 0.742 0.912 0.869

(12, 10, 8, 6, 4)

𝝆𝐴 = (0.462, 0.192, 0.154, 0.115, 0.077)⊤ 0.574 0.808 0.865 1
𝝆𝐷 = (0.231, 0.224, 0.211, 0.189, 0.144)⊤ 0.562 0.701 1 0.763
�̃� = (0.750, 0, 0, 0, 0.250)⊤ 1 0.833 → 0 → 0
𝝆𝐶 = (0.548, 0.113, 0.113, 0.113, 0.113)⊤ 0.695 0.812 0.783 0.912
𝝆𝐵 0.577 0.667 0.983 0.683
𝝆𝑍 = (0.348, 0.150, 0.150, 0.150, 0.202)⊤ 0.683 0.716 0.927 0.882

(12, 8, 7, 6, 3)

𝝆𝐴 = (0.500, 0.167, 0.146, 0.125, 0.062)⊤ 0.548 0.774 0.840 1
𝝆𝐷 = (0.236, 0.221, 0.213, 0.202, 0.128)⊤ 0.526 0.640 1 0.718
�̃� = (0.800, 0, 0, 0, 0.200)⊤ 1 0.850 → 0 → 0
𝝆𝐶 = (0.612, 0.097, 0.097, 0.097, 0.097)⊤ 0.716 0.805 0.716 0.898
𝝆𝐵 0.565 0.600 0.973 0.628
𝝆𝑍 = (0.363, 0.150, 0.150, 0.150, 0.187)⊤ 0.674 0.672 0.918 0.877

𝝆𝐴, 𝐴𝐴 optimal design; 𝝆𝐷, 𝐷𝐴 optimal design; �̃�, optimal unconstrained target; 𝝆𝐶 , optimal constrained target; 𝝆𝐵 , balanced
design; 𝝆𝑍 , Zhu and Hu21 optimal target (with minimum allocation proportion for each arm 𝑇 equal to 0.2 for 𝐾 = 3 and 0.15
for 𝐾 = 5).
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FIGURE 1 Comparisons of optimal allocations wrt several measures of efficiency for 𝜽 = (𝜃1, 9, 8)⊤ as 𝜃1 varies from 10 to 30.
𝝆𝐴, 𝐴𝐴 optimal design; 𝝆𝐵 , balanced design; 𝝆𝐶 , optimal constrained target; 𝝆𝐷, 𝐷𝐴 optimal design; 𝝆𝑍 , Zhu and Hu21 optimal
target (with minimum allocation proportion for each arm 𝑇 equal to 0.2).

TABLE 3 Simulation results (Scenarios Table 1a). Estimates of model parameters �̂�𝑛, simulated allocation proportions 𝝅𝑛 (their
standard deviation in square brackets) and simulated average power W of Wald’s test; 10000 iterations.

𝑛 𝜽⊤ �̂�⊤

𝑛 𝝆𝐶 𝝅⊤
𝑛 W

100
(10, 9, 5)

(9.6, 8.6, 4.9)

(0.44, 0.28, 0.28)⊤
(0.44, 0.32, 0.24) [.164, .140, .072] 0.721

150 (9.7, 8.7, 5.0) (0.44, 0.32, 0.24) [.143, .122, .050] 0.885
200 (9.8, 8.8, 5.0) (0.44, 0.31, 0.25) [.129, .108, .044] 0.965
250 (9.8, 8.8, 5.0) (0.44, 0.30, 0.26) [.119, .098, .041] 0.990
100

(10, 7, 5)

(9.8, 6.8, 4.9)

(0.60, 0.20, 0.20)⊤
(0.55, 0.24, 0.21) [.135, .093, .062] 0.731

150 (9.9, 6.8, 5.0) (0.56, 0.23, 0.21) [.110, .072, .049] 0.894
200 (9.9, 6.9, 5.0) (0.57, 0.22, 0.21) [.093, .058, .041] 0.960
250 (9.9, 6.9, 5.0) (0.57, 0.22, 0.21) [.083, .049, .038] 0.987
100

(10, 5, 5)

(9.9, 4.9, 4.9)

(0.66, 0.17, 0.17)⊤
(0.64, 0.18, 0.18) [.096, .056, .049] 0.880

150 (10.0, 4.9, 4.9) (0.65, 0.18, 0.17) [.067, .038, .034] 0.973
200 (10.0, 4.9, 4.9) (0.66, 0.17, 0.17) [.053, .030, .027] 0.996
250 (10.0, 5.0, 5.0) (0.66, 0.17, 0.17) [.044, .024, .023] 0.999
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TABLE 4 Simulation results (Scenarios Table 1b). Estimates of model parameters �̂�𝑛, simulated allocation proportions 𝝅𝑛 (their
standard deviation in square brackets) and simulated average power W of Wald’s test; 10000 iterations.

𝑛 𝜽⊤ �̂�⊤

𝑛 𝝆𝐶 𝝅⊤
𝑛 W

100
(10, 8, 4)

(9.7, 7.6, 3.9)

(0.54, 0.23, 0.23)⊤
(0.51, 0.28, 0.21) [.166, .136, .062] 0.918

150 (9.8, 7.8, 3.9) (0.52, 0.27, 0.21) [.142, .113, .048] 0.988
200 (9.8, 7.8, 4.0) (0.53, 0.25, 0.22) [.123, .095, .042] 0.998
250 (9.9, 7.9, 4.0) (0.53, 0.25, 0.22) [.110, .081, .039] 1.000
100

(15, 8, 4)

(14.9, 7.6, 3.9)

(0.70, 0.15, 0.15)⊤
(0.70, 0.16, 0.14) [.106, .075, .044] 0.998

150 (14.9, 7.8, 3.9) (0.70, 0.15, 0.15) [.076, .049, .034] 1.000
200 (14.9, 7.8, 3.9) (0.70, 0.15, 0.15) [.058, .035, .028] 1.000
250 (15.0, 7.9, 4.0) (0.70, 0.15, 0.15) [.049, .028, .025] 1.000
100

(20, 8, 4)

(19.9, 7.6, 3.8)

(0.78, 0.11, 0.11)⊤
(0.77, 0.12, 0.11) [.073, .047, .034] 1.000

150 (20.0, 7.7, 3.9) (0.78, 0.11, 0.11) [.053, .031, .027] 1.000
200 (20.0, 7.9, 3.9) (0.78, 0.11, 0.11) [.043, .024, .022] 1.000
250 (20.0, 7.9, 3.9) (0.78, 0.11, 0.11) [.037, .020, .019] 1.000

In Table 5 we summarize the results of the simulated type I error (W𝛼) of Wald’s test, where the nominal value was set to 0.05.
Clearly, under this setting 𝝆𝐶 = 𝝆𝐵 and DBCD gives simulated allocation proportions that converge to the balanced design:
even for 𝑛 = 100, the type I error rate is really close to the nominal value.

TABLE 5 Simulation results of type I error W𝛼 , estimates of model parameters �̂�𝑛 and simulated allocation proportions 𝝅𝑛
(their standard deviation in square brackets); 10000 iterations.

𝑛 𝜽⊤ �̂�⊤

𝑛 𝝅⊤
𝑛 W𝛼

100
(12, 12, 12)

(11.6, 11.9, 11.8) (0.32, 0.33, 0.35) [.114, .093, .108] 0.052
150 (11.7, 11.9, 11.9) (0.33, 0.33, 0.34) [.104, .083, .093] 0.048
200 (11.8, 11.9, 11.9) (0.33, 0.33, 0.34) [.099, .078, .087] 0.048
250 (11.8, 12.0, 12.0) (0.33, 0.33, 0.34) [.094, .075, .083] 0.046
100

(4, 4, 4)

(3.9, 4.0, 3.9) (0.32, 0.33, 0.35) [.114, .093, .108] 0.052
150 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.104, .083, .093] 0.048
200 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.099, .078, .087] 0.048
250 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.094, .075, .083] 0.046

3.5 Comparisons of our proposal with the Bayesian adaptive randomization strategy proposed
by Trippa et al23

Although our approach is frequentist, Bayesian adaptive designs are quite used in practice. Under this framework, the unknown
parameters are random quantities and their a priori uncertainty is expressed through the prior distribution which - after observing
the outcomes - is updated to the posterior one to make inference. Trippa et al23 have recently proposed a Bayesian adaptive
randomization (BAR) strategy for testing multiple treatments in a trial for recurrent glioblastoma. The aim of BAR is to assign
more patients to the best performing treatment, while allocating a similar number of subjects to the control arm. In particular,
at each step 𝑗 + 1, the probabilities of enrolling a patient to each experimental arm are based on the posterior probabilities that
the effect of the given treatment at step 𝑗 is higher than that of the control. The probability of assigning a subject to the control
is based, instead, on the difference between the number of subjects assigned to the experimental group with the highest sample
size and the sample size of the control arm at step 𝑗 (see Trippa et al23 for details).
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Even if in our setting we do not fix a control arm (for a thorough discussion see Section 5), it is still possible to compare
the DBCD procedure targeting 𝝆𝐶 to BAR by selecting one of the treatments as the control. Moreover, as a benchmark we also
consider the completely randomized design (CRD) intending to target 𝝆𝐵 .

In the simulation study we consider the case of 𝐾 = 3 treatments by taking into account a control arm with mean effect
equal to 5 and two different scenarios corresponding to i) two active experimental arms 𝜽 = (10, 7, 5)⊤ and ii) a single one
𝜽 = (10, 5, 5)⊤. As regards BAR, we set a conjugate inverse-gamma prior on each model parameter (with shape and scale
equal to 2 and 𝜃𝑖, respectively) and the probabilities of assigning the patients to the treatments are computed via Monte Carlo
approximation. Following the authors’ suggestion, the tuning parametric functions for the experimental arms and the control
(i.e. 𝛾(𝑗) and 𝜂(𝑗) in their notation) are set equal to (𝑗∕𝑛)1.5 and 0.25 ⋅ 𝑗∕𝑛, respectively.

Besides the importance of testing the global null hypothesis (see Section 5), in many clinical trials the interest may be also
focused on alternative power metrics. The pairwise comparisons (experimental vs. control) may be of interest and so the assess-
ment of the design performance on a marginal power metric may be relevant to the experimenter. For instance, in many contexts,
it may be important to identify a single treatment to recommend to patients instead of detecting any treatment with a potential
therapeutic effect. On this purpose, we investigate the performance of our design, also wrt those of the BAR procedure, in terms
of power of the test for the pairwise comparison between the experimental arm with the longest survival time and the control
treatment.

In Table 6 we report the average power of the Wald test, the average size of the treatment group for which the mean survival
time is the highest/lowest (nSup and nInf) and the total observed survival time (TS) for several sample sizes. We also show
the values of the simulated average marginal power W𝑚, computed as the probability to reject the null of equality among the
superior experimental arm and the control arm.
Under these scenarios, both the adaptive procedures are superior to the balanced design in terms of average power of the Wald
test. However, the optimal constrained allocation rule presents higher power than BAR with a gap that tends to decrease as the
sample size increases, going from 4.6% and 8.6% for scenario i) and ii), respectively, to 0.2%. Both the adaptive randomizations
outperform the CRD in terms of marginal power as well, with a gain up to 17.6% in adopting 𝝆𝐶 for 𝑛 = 100. In scenario i) the
RAR targeting 𝝆𝐶 guarantees the highest values of W𝑚; in scenario ii) when 𝑛 ≥ 150 instead, the BAR leads to slightly higher
values of the marginal power.

TABLE 6 Simulated average power of the Wald test (W) and marginal power (W𝑚), number of patients treated with the superi-
or/inferior arm (nSup and nInf) and total survival time (TS) for the DBCD targeting 𝝆𝐶 , the Bayesian adaptive procedure (BAR)
and the CRD intending to target 𝝆𝐵 for several sample sizes and 10000 iterations.

𝜽 = (10, 7, 5)⊤ 𝜽 = (10, 5, 5)⊤

𝑛 Design W W𝑚 nSup nInf TS W W𝑚 nSup nInf TS

100
𝝆𝐶 0.731 0.685 55 21 820 0.880 0.751 64 18 812
BAR 0.685 0.617 34 36 730 0.794 0.700 37 37 685
𝝆𝐵 0.654 0.575 34 33 734 0.741 0.575 34 33 667

150
𝝆𝐶 0.894 0.861 84 32 1234 0.973 0.899 97 26 1225
BAR 0.873 0.840 50 53 1097 0.941 0.901 55 55 1028
𝝆𝐵 0.862 0.820 50 50 1102 0.928 0.820 50 50 1002

200
𝝆𝐶 0.960 0.946 114 42 1648 0.996 0.965 132 34 1639
BAR 0.955 0.940 67 70 1461 0.988 0.973 74 74 1370
𝝆𝐵 0.947 0.928 66 66 1469 0.977 0.928 67 66 1335

250
𝝆𝐶 0.987 0.981 142 53 2067 0.999 0.990 165 43 2054
BAR 0.985 0.980 83 87 1824 0.997 0.993 92 92 1712
𝝆𝐵 0.983 0.977 83 83 1832 0.996 0.977 83 83 1666

The performance of the BAR procedure strongly depends on the choice of the tuning parametric functions. Indeed the BAR
procedure may become more competitive in terms of marginal power as 𝛾(𝑗) grows. We run further simulations in which we
consider 𝛾(𝑗) = 5 ⋅ (𝑗∕𝑛)1.5 and, for example, when 𝜽 = (10, 7, 5)⊤ and 𝑛 = 100, W𝑚 increases to 0.712. However, as noted
by Lin and Bunn,30 since the control arm is usually the worst treatment, the allocation given by BAR is often not attractive to
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clinicians due to a large proportion of patients randomized to the poorest performing arm. In this situation, by assigning more
subjects to the best and the worst treatments, BAR presents good performance in terms of power, especially for large values of
𝛾(𝑗). In these extreme cases, randomization probabilities to the intermediate arms become approximately null,23 making BAR
procedure affected by similar drawbacks to those of the optimal unconstrained target �̃�.

The results of Table 6 also show how the implementation of 𝝆𝐶 leads to a considerable benefit for patients when compared
to the others procedures. In the presence of two effective experimental arms the optimal constrained target assigns around 23%
more patients to the best performing treatment than BAR, while the proportion grows to 28% in the case of a single active
experimental arm. At the same time our procedure allocates, on average,−12% and−15% subjects to the treatment arm exhibiting
the lowest mean survival time wrt BAR (for scenario i) and ii), respectively). Moreover, our proposal has consistently higher
average observed survival time compared with both BAR and CRD.

We also compare the procedures in terms of the minimum sample size necessary to ensure the average power of the Wald test
greater than 80% for the experimental set-up 𝜽 = (10, 7, 5)⊤. As regards 𝝆𝐶 , 117 patients are required while for BAR at least 130
subjects should be enrolled. By using CRD, the minimum sample size reaches 133 units. These differences tend to decrease as
the minimum power requested increases: the smallest sample size such that W≥ 90% is 154 for 𝝆𝐶 , 160 for BAR and 167 for 𝝆𝐵 .

For completeness we also investigated the hypothetical scenario in which only one of the experimental treatments is better
than the control. For instance, if the control arm has mean equal to 7 and the experimental arms have mean effects 10 and 5, an
average loss of 1.5% of power is observed compared to the performance of BAR in setting i) of Table 6, that is matched with an
improvement of the survival time (for 𝑛 = 100, TS= 779 and for 𝑛 = 250, TS = 1972).

These results provide further confirmation to the arguments in favour of the optimal constrained design as a compromise
between statistical power and patients’ benefit. Even in the case of designs with comparable performance in terms of power, the
ethical gain induced by our procedure makes it more attractive from patients’ point of view.

4 OPTIMAL ALLOCATIONS FOR SURVIVAL TRIALS WITH RIGHT-CENSORING

Consider now a trial in which each patient has exponentially distributed survival time subjected to a random censoring time 𝐶 .
Assuming that his/her censoring is independent of the outcomes and it is the same for each treatment group, let 𝜖𝑖 be the proba-
bility that a patient belonging to the 𝑖th treatment group experience the event of interest (death/failure). Clearly, the probability 𝜖
depends on the censoring scheme adopted in the study and one of the most popular20,22 has been introduced by Latta31 and fur-
ther studied by Rosenberger and Seshaiyer.32 This scheme can be summarized as follows: let 𝑅 be the total recruitment period
and 𝐷 the duration of the trial, subjects arrival times are assumed to be independent and uniformly distributed in [0, 𝑅], while
each patient is subjected to an independent censoring time over (0, 𝐷). In this setting, for any group 𝑖 = 1,… , 𝐾

𝜖𝑖 = 𝜖(𝜃𝑖) = 1 −
𝜃𝑖
𝐷

−
2𝜃2𝑖
𝑅𝐷

exp
{

−𝐷
𝜃𝑖

}

−
𝜃𝑖
𝐷

(

1 − 2
𝜃𝑖
𝑅

)

exp
{

−𝐷 − 𝑅
𝜃𝑖

}

(5)
is a monotonically non increasing function of 𝜃𝑖, following the idea that the longer the expected survival time is, the smaller
the probability for a patient to fail before censoring. Clearly, the likelihood for 𝜽 is modified (see e.g. Lawless33) and, after
𝑛 assignments, the Fisher information matrix becomes M𝜖 = diag (𝜋𝑖𝑛𝜖𝑖𝜃−2𝑖

)

𝑖=1,…,𝐾 and, thus, √𝑛(�̂�𝑛 − 𝜸)
𝑑
←→ N(𝟎𝐾−1,𝚺𝜖),

where 𝚺𝜖 = AM−1
𝜖 A⊤. Accordingly, the NCP becomes 𝜙𝜖(𝝅) = 𝜸⊤𝚺−1

𝜖 𝜸 and, in general, it is hard to obtain a closed-form
expression of both the constrained and unconstrained optimal targets. Nevertheless, solutions can be found numerically with
standard optimization software (R, Matlab).

Under the censoring scheme in (5), Table 7 shows the behaviour of the unconstrained optimal target, denoted by �̃�𝜖 . As in the
uncensored set-up, this target is degenerate and presents similar drawbacks to the one of Theorem 1, both from inferential and
ethical viewpoints.

Therefore, we apply the same constrained optimization framework in (3), in which NCP is maximized under the ethical
constraint reflecting the effectiveness of the treatments. Since the closed-form solution of this target, denoted by 𝝆𝐶𝜖 , is not
available, in what follows we take into account a smoothing transformation of it in order to obtain a continuous target function
implementable via DBCD. In particular, we consider the convolution of 𝝆𝐶𝜖 with a Gaussian kernel (see e.g. Tymofyeyev et
al13) with 𝜎2 = 1.

Table 8 presents the constrained optimal target 𝝆𝐶𝜖 in the same setting, i.e. 𝐾 = 3, 𝑅 = 55 and 𝐷 = 96. We display both
the theoretical and the smoothed version (in italics). The target 𝝆𝐶𝜖 skews the assignments to the best performing treatment
arm and 𝜌𝐶𝜖

1 is increasing in 𝜃1 (see Table 8b), whereas it is decreasing in 𝜃2 (Table 8a). Furthermore, 𝝆𝐶𝜖 and its smoothed
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version substantially coincide: only small differences, of order 10−3, are present. This behaviour was also confirmed by further
computations, not reported here for brevity, and it suggests that the smoothed target should have similar performance to 𝝆𝐶𝜖 .
Hence, from now on we will refer to the smoothed version of the constrained target with 𝝆𝐶𝜖 .

TABLE 7 Unconstrained optimal target �̃�𝜖 , under the right censoring scheme in (5) with 𝑅 = 55 and 𝐷 = 96.
𝜽 �̃�𝜖1 �̃�𝜖2 �̃�𝜖3
(30, 10, 5)⊤ 0.876 0 0.124
(20, 10, 5)⊤ 0.815 0 0.185
(10, 10, 5)⊤ 0.336 0.336 0.328
(10, 7, 5)⊤ 0.673 0 0.327
(10, 5, 5)⊤ 0.674 0.163 0.163

TABLE 8 Theoretical and smoothed (in italics) optimal constrained target for 𝑅 = 55, 𝐷 = 96 and 𝜎 = 1.
(a) Fixed 𝜃1, 𝜃3 and decreasing 𝜃2.

𝜽 𝜌1𝐶𝜖 𝜌2𝐶𝜖 𝜌3𝐶𝜖

(10, 9, 5)⊤ 0.444 0.278 0.278
0.444 0.278 0.278

(10, 7, 5)⊤ 0.594 0.203 0.203
0.594 0.203 0.203

(10, 5, 5)⊤ 0.672 0.164 0.164
0.672 0.164 0.164

(b) Fixed 𝜃2, 𝜃3 and increasing 𝜃1.
𝜽 𝜌1𝐶𝜖 𝜌2𝐶𝜖 𝜌3𝐶𝜖

(10, 8, 4)⊤ 0.552 0.224 0.224
0.550 0.225 0.225

(15, 8, 4)⊤ 0.714 0.143 0.143
0.714 0.143 0.143

(20, 8, 4)⊤ 0.786 0.107 0.107
0.782 0.109 0.109

4.1 Comparisons of optimal targets under an independent right censoring scheme
In the presence of censoring, the following optimal allocations have been derived in the literature. The allocation minimizing
the trace of 𝚺𝜖 can be easily derived from the general result for heteroscedastic models,27 from which we obtain

𝜌𝐴𝜖
1 =

𝜃1
√

𝜖1

√

𝐾 − 1

𝜃1
√

𝜖1

√

𝐾 − 1 +
∑𝐾

𝑘=2
𝜃𝑘
√

𝜖𝑘

and 𝜌𝐴𝜖
𝑖 =

𝜃𝑖
√

𝜖𝑖

𝜃1
√

𝜖1

√

𝐾 − 1 +
∑𝐾

𝑘=2
𝜃𝑘
√

𝜖𝑘

for 𝑖 = 2,… , 𝐾.

The 𝐷-optimal design (𝝆𝐷𝜖 ) minimizing the determinant of 𝚺𝜖 can be obtained as a solution of a non linear system of equations
and it can be found numerically.22 In addition, based on non linear programming, Sverdlov et al22 proposed two optimal allo-
cations, 𝝆𝑁𝑃1 and 𝝆𝑁𝑃 2, adopting the same constrained optimization framework of Tymofyeyev et al.13 In particular 𝝆𝑁𝑃 1 and
𝝆𝑁𝑃 2 were derived by minimizing the total sample size and the total expected hazard, respectively, under the constraints of a min-
imum desired (user-selected) proportion 𝑇 ∈ [0, 𝐾−1] of subjects for each treatment group, and 𝜙𝜖 ≥ 𝑈 , where 𝑈 is a positive
constant. Only 𝝆𝑁𝑃1 admits a closed-form expression, while 𝝆𝑁𝑃 2 can be found numerically (the code was kindly provided by
the corresponding author of Sverdlov et al22). Since both targets are discontinuous functions of the unknown model parameters,
the authors apply a smoothing transformation to the targets using the above-mentioned multivariate Gaussian Kernel.
Remark 3. While 𝝆𝐷𝜖 and 𝝆𝐶𝜖 have their components ordered according to the treatment efficacies, 𝝆𝑁𝑃 1 and 𝝆𝑁𝑃 2 do not
always fulfil this characteristic. Indeed, for 𝜽 = (34, 34, 24)⊤ with 𝑇 = 0.2, 𝑅 = 55, 𝐷 = 96 (namely under scenario IIc of Table
I of Sverdlov et al22), the authors obtain 𝝆𝑁𝑃 1 = (0.3, 0.3, 0.4)⊤ and 𝝆𝑁𝑃 2 = (0.32, 0.32, 0.36)⊤, where the higher proportion
of subjects is treated with the worst treatment. For 𝝆𝐴𝜖 similar considerations of Remark 2 hold: such allocation is ethical as
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long as the reference treatment is also the superior one; whereas if e.g., 𝜽 = (25, 29, 30)⊤ (with 𝑅 = 55 and 𝐷 = 96), then
𝝆𝐴𝜖 = (0.367, 0.310, 0.323)⊤.

We now compare the constrained target in presence of censoring with those mentioned previously by considering 𝐾 = 3,
𝑅 = 55 and 𝐷 = 96. Table 9 reports the theoretical values of 𝝆𝐷𝜖 and 𝝆𝐴𝜖 , the smoothed constrained optimal target 𝝆𝐶𝜖 , 𝝆𝑁𝑃 1

and 𝝆𝑁𝑃 2 with 𝑇 = 0.2. The efficiency criteria described in Section 3.3 have been considered to measure the performance of
the competing targets with respect to statistical and ethical considerations. In particular, the target whose power efficiency’s
values are closest to 1 is 𝝆𝐶𝜖 , except for 𝜽 = (7, 5, 4)⊤, in which the loss wrt 𝝆𝑁𝑃 1 and 𝝆𝑁𝑃 2 is 3.1% and 1.5%, respectively.
The constrained target outperforms the other allocations in terms of ethical efficiency (except in the first scenario in which 𝝆𝐴𝜖

gives nearly the same value). As far as estimation efficiency is concerned, 𝝆𝐶𝜖 shows very good performance in terms of 𝐴𝐴
efficiency, always higher than 90.2%, while 𝐷𝐴 efficiency is slightly lower. Note that, in all the experimental settings of Table 9
except the last one, 𝝆𝑁𝑃 1 and 𝝆𝑁𝑃 2 coincide by allocating the same proportion 𝑇 of patients to the intermediate and the worst
treatments. Finally, the proposed 𝝆𝐶𝜖 is superior to the balanced design in terms of power and ethical efficiency.

TABLE 9 Comparisons of optimal targets in presence of censoring for 𝐾 = 3 treatments in different experimental scenarios
wrt power efficiency 𝐸𝜙(𝝆), ethical efficiency 𝐸𝑒(𝝆), 𝐷𝐴 efficiency 𝐸𝐷𝐴

(𝝆), and 𝐴𝐴 efficiency 𝐸𝐴𝐴
(𝝆). Censoring scheme in (5)

with 𝑅 = 55 and 𝐷 = 96.

𝜽 𝝆 𝐸𝜙(𝝆) 𝐸𝑒(𝝆) 𝐸𝐷𝐴
(𝝆) 𝐸𝐴𝐴

(𝝆)

(30, 20, 8)⊤

𝝆𝐴𝜖 = (0.625, 0.274, 0.101)⊤ 0.787 0.834 0.922 1
𝝆𝐷𝜖 = (0.450, 0.389, 0.161)⊤ 0.798 0.752 1 0.891
𝝆𝐶𝜖 = (0.684, 0.158, 0.158)⊤ 0.915 0.832 0.818 0.902
𝝆𝐵 0.762 0.644 0.888 0.702
𝝆𝑁𝑃 1 = 𝝆𝑁𝑃2 = (0.6, 0.2, 0.2)⊤ 0.900 0.787 0.884 0.929

(30, 10, 8)⊤

𝝆𝐴𝜖 = (0.731, 0.150, 0.119)⊤ 0.875 0.813 0.841 1
𝝆𝐷𝜖 = (0.472, 0.293, 0.235)⊤ 0.646 0.632 1 0.788
𝝆𝐶𝜖 = (0.792, 0.104, 0.104)⊤ 0.904 0.854 0.744 0.973
𝝆𝐵 0.485 0.533 0.950 0.584
𝝆𝑁𝑃 1 = 𝝆𝑁𝑃2 = (0.6, 0.2, 0.2)⊤ 0.788 0.720 0.958 0.931

(12, 5, 4)⊤

𝝆𝐴𝜖 = (0.663, 0.188, 0.149)⊤ 0.840 0.791 0.892 1
𝝆𝐷𝜖 = (0.452, 0.302, 0.246)⊤ 0.665 0.661 1 0.849
𝝆𝐶𝜖 = (0.734, 0.133, 0.133)⊤ 0.873 0.833 0.799 0.969
𝝆𝐵 0.528 0.583 0.959 0.670
𝝆𝑁𝑃 1 = 𝝆𝑁𝑃2 = (0.6, 0.2, 0.2)⊤ 0.817 0.750 0.943 0.980

(7, 5, 4)⊤

𝝆𝐴𝜖 = (0.527, 0.263, 0.210)⊤ 0.727 0.834 0.953 1
𝝆𝐷𝜖 = (0.397, 0.329, 0.274)⊤ 0.665 0.789 1 0.935
𝝆𝐶𝜖 = (0.586, 0.207, 0.207)⊤ 0.770 0.853 0.903 0.981
𝝆𝐵 0.628 0.762 0.984 0.853
𝝆𝑁𝑃 1 = (0.519, 0.200, 0.281)⊤ 0.801 0.823 0.931 0.964
𝝆𝑁𝑃 2 = (0.576, 0.200, 0.224)⊤ 0.785 0.847 0.907 0.976

𝝆𝐴𝜖 , 𝐴𝐴 optimal design; 𝝆𝐷𝜖 , 𝐷𝐴 optimal design; 𝝆𝐶𝜖 , smoothed version of the optimal constrained target; 𝝆𝐵 , balanced
design; 𝝆𝑁𝑃 1 and 𝝆𝑁𝑃 2, Sverdlov et al22 optimal targets (with minimum allocation proportion for each arm 𝑇 equal to 0.2).
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4.2 RAR implementation under censoring
As in Section 3.4, we wish to implement DBCD to target the optimal constrained allocation by taking into account delayed
responses and staggered entries. Indeed, in trials with time-to-event outcomes the response of patients to a given treatment is
often unavailable before the randomization of the next subject. However, it has been shown34 that DBCD is quite insensitive to
delayed responses under widely satisfied conditions that hold for exponential responses.20

We run 10000 trials to evaluate the operating characteristics of the optimal constrained design for 𝐾 = 3 in several illustrative
examples. In this case, initial data for the RAR procedure were collected by allocating subjects with equal probabilities until
two events were observed in each treatment arm. After that, at each step, subject 𝑗 is randomized to treatment 𝑖 with probability
Ψ𝑗𝑖 (as in Section 3.4). We studied the convergence of the allocation proportion to the desired target and we estimated the power
of the Wald and log-rank (LR) tests. The proportion of responses observed during the recruitment, i.e. the observations used in
RAR (%𝑜𝑏𝑠) and the percentage of patients allocated with RAR (%𝑅𝐴𝑅) will be reported in the Tables.

Table 10 shows the results under the experimental scenarios of Table 8a for different choices of the sample size. In these
scenarios %𝑜𝑏𝑠=86% and the proportion of patients allocated with RAR varies from 88% for 𝑛 = 150 to 92-93% for 𝑛 = 300.
As 𝑛 grows, the convergence to 𝝆𝐶𝜖 improves and the standard deviations become smaller. For 𝑛 ≥ 150 at least 83.7% of power
is guaranteed for both tests in all the scenarios, while for 𝑛 ≥ 250 the simulated average power is always higher than 0.977.

TABLE 10 Simulation results for different sample sizes and scenarios of Table 8a. Estimates of model parameters �̂�𝑛, simulated
allocation proportions 𝝅𝑛 (their standard deviation in square brackets) and average power of Wald’s test (W) and log-rank (LR)
test, 𝑅 = 55, 𝐷 = 96 and 10000 iterations.

𝑛 %𝑅𝐴𝑅 𝜽⊤ �̂�⊤

𝑛 𝝆𝐶𝜖 𝝅⊤
𝑛 W LR

150 88%
(10, 9, 5)

(9.8, 8.9, 5.0)

(0.444, 0.278, 0.278)⊤
(0.40, 0.33, 0.27) [.110, .088, .051] 0.885 0.875

200 90% (9.9, 8.9, 5.0) (0.40, 0.32, 0.28) [.100, .079, .041] 0.962 0.875
250 91% (9.9, 8.9, 5.0) (0.40, 0.32, 0.28) [.092, .073, .036] 0.987 0.986
300 92% (9, 9, 8.9, 5.0) (0.40, 0.32, 0.28) [.088, .069, .034] 0.995 0.996
150 88%

(10, 7, 5)

(9.9, 6.9, 5.0)

(0.594, 0.203, 0.203)⊤
(0.48, 0.27, 0.25) [.107, .069, .052] 0.837 0.842

200 90% (9.9, 6.9, 5.0) (0.48, 0.27, 0.25) [.095, .0.6, .044] 0.938 0.931
250 91% (9.9, 6.9, 5.0) (0.49, 0.26, 0.25) [.088, .054, .041] 0.977 0.975
300 92% (9.9, 6.9, 5.0) (0.49, 0.26, 0.25) [.084, .050, .039] 0.992 0.991
150 89%

(10, 5, 5)

(9.9, 5.0, 5.0)

(0.672, 0.164, 0.164)⊤
(0.55, 0.23, 0.22) [.089, .054, .046] 0.944 0.947

200 90% (10.0, 5.0, 5.0) (0.56, 0.22, 0.22) [.075, .044, .037] 0.985 0.985
250 92% (10.0, 5.0, 5.0) (0.57, 0.22, 0.21) [.065, .038, .032] 0.996 0.996
300 93% (10.0, 5.0, 5.0) (0.58, 0.21, 0.21) [.058, .033, .029] 0.999 0.999

The skewness in favour of the best performing treatment is achieved by DBCD, but, as is well-known (see Hu et al34 and
reference therein), the convergence to the desired target is affected by delayed responses. To further investigate this aspect, we
implement DBCD under experimental scenarios of Table 8b, for 𝑛 = 100 and 𝑛 = 250. We fixed 𝜃2 = 8 and 𝜃3 = 4 and the
duration of the trial (namely 𝐷 = 96) and we choose two different lengths of the recruitment period 𝑅; results are summarized
in Table 11. Since 𝜖1 is decreasing in 𝜃1 and in 𝑅 (i.e. the censoring in the data is higher for longer survival times and clearly
longer recruitment period), it stands out how the effect on the convergence of an increasing sample size is a minor matter wrt
the length of the recruitment, whose effect is as important as 𝜃1 increases. If the recruitment is longer, it is more likely that
the number of responses observed, and used to allocate the next patient, is higher, resulting in a better convergence rate. From
𝑅 = 55 to 𝑅 = 75, the gain in terms of %𝑜𝑏𝑠 is between 3% and 5%. An additional issue is related to %𝑅𝐴𝑅, which, is smaller
for longer survival times. Because of the combination of these factors, better convergence is achieved when 𝜃1 = 10, whereas,
since for increasing 𝜃1 the target is more unbalanced in favour of treatment 1, DBCD procedure is slower in approaching 𝝆𝐶𝜖 . On
the other hand, standard deviations are smaller for higher 𝑛 and shorter 𝑅. With regard to power of the tests, all these scenarios
present values > 90%. Furthermore, note that, even if the convergence to the desired target is affected by delayed responses,
when the superiority of the best treatment is pronounced (e.g., 𝜃1 = 15 or 20), the simulated allocation proportion of subjects
assigned to it is always more than twice wrt that of the other treatments.
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TABLE 11 Simulation results for 𝑛 = 100, 250 and 10000 iterations. Estimates of model parameters �̂�𝑛, simulated allocation
proportions 𝝅𝑛 (their standard deviation in square brackets) and average power of Wald’s (W) and log-rank (LR) tests, different
𝑅 and 𝐷 = 96 for 𝜃2 = 8 and 𝜃3 = 4.

𝑅 𝑛 %𝑜𝑏𝑠 %𝑅𝐴𝑅 𝜃1 �̂�⊤

𝑛 𝝆𝐶𝜖 𝝅⊤
𝑛 W LR

55
100 86% 85%

10

(9.8, 7.8, 3.9)

(0.550, 0.225, 0.225)⊤
(0.45, 0.30, 0.25) 0.910 0.904
[.131, .102, .065]

250 86% 91% (9.9, 7.9, 4.0) (0.45, 0.29, 0.26) 1.000 1.000
[.096, .070, .038]

75
100 89% 87% (9.8, 7.7, 3.9)

(0.552, 0.224, 0.224)⊤
(0.47, 0.30, 0.24) 0.907 0.896
[.142, .111, .068]

250 90% 92% (9.9, 7.9, 4.0) (0.47, 0.28, 0.25) 0.999 1.000
[.102, .074, .039]

55
100 81% 84%

15

(14.9, 7.8, 3.9)

(0.714, 0.143, 0.143)⊤
(0.55, 0.24, 0.21) 0.996 0.995
[.117, .081, .059]

250 81% 90% (15.0, 7.9, 4.0) (0.57, 0.22, 0.21) 1.000 1.000
[.076, .046, .036]

75
100 85% 85% (14.9, 7.7, 3.9)

(0.716, 0.142, 0.142)⊤
(0.59, 0.21, 0.20) 0.996 0.994
[.119, .081, .059]

250 86% 92% (15.0, 7.9, 4.0) (0.61, 0.20, 0.19) 1.000 1.000
[.073, .044, .034]

55
100 76% 82%

20

(20.1, 7.8, 3.9)

(0.782, 0.109, 0.109)⊤
(0.60, 0.20, 0.20) 0.999 0.999
[.106, .068, .060]

250 77% 90% (20.0, 7.9, 4.0) (0.62, 0.19, 0.19) 1.000 0.999
[.065, .038, .034]

75
100 81% 84% (20.1, 7.7, 3.9)

(0.786, 0.107, 0.107)⊤
(0.64, 0.19, 0.17) 1.000 0.999
[.100, .067, .055]

250 82% 91% (20.0, 7.9, 4.0) (0.66, 0.17, 0.17) 1.000 0.999
[.060, .035, .031]

The impact of the magnitude of the treatment effects on the convergence is additionally supported by the results in Table 12
which correspond to a set-up of a very rapid fatal disease. In this case the estimated allocation proportions are really close to
the target, ensuring that 60% of patients or more receive the best treatment. These results show that, for small values of 𝜽, our
proposal has better performance even for small-moderate sample sizes, particularly common in clinical trials for rare diseases.

TABLE 12 Simulation results for different sample sizes, 10000 iterations and 𝜽 = (3, 2, 1)⊤. Estimates of model parameters
�̂�𝑛, simulated allocation proportions 𝝅𝑛 (their standard deviation in square brackets) and average power of the Wald (W) and
log-rank (LR) tests, 𝑅 = 55, 𝐷 = 96.

𝑛 %𝑜𝑏𝑠 %𝑅𝐴𝑅 �̂�⊤

𝑛 𝝆𝐶𝜖 𝝅⊤
𝑛 W LR

150 96% 93% (3.0, 1.9, 1.0)

(0.634, 0.183, 0.183)⊤
(0.61, 0.20, 0.19) [.114, .074, .053] 0.998 0.999

200 96% 94% (3.0, 2.0, 1.0) (0.61, 0.20, 0.19) [.093, .058, .042] 1.000 1.000
250 96% 95% (3.0, 2.0, 1.0) (0.62, 0.19, 0.19) [.080, .048, .037] 1.000 1.000
300 96% 95% (3.0, 2.0, 1.0) (0.62, 0.19, 0.19) [.072, .042, .034] 1.000 1.000

Finally Table 13 shows the simulate average type I errors, for the Wald and log-rank (LR𝛼) tests. Both of them are very close
to the significance level, that was set to 0.05. Better convergence rate is achieved by the second scenario 𝜽 = (4, 4, 4)⊤ as in this
case the proportion of data used in the RAR procedure is greater than 90%, while in the first scenario is not higher than 81%.
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TABLE 13 Simulation results of type I error for the Wald (W𝛼) and log-rank (LR𝛼) tests (𝝆𝐶𝜖 = 𝝆𝐵). Estimates of model
parameters �̂�𝑛 and simulated allocation proportions 𝝅𝑛 (their standard deviation in square brackets), with 𝑅 = 55, 𝐷 = 96;
10000 iterations.

𝑛 %𝑜𝑏𝑠 %𝑅𝐴𝑅 𝜽⊤ �̂�⊤

𝑛 𝝅⊤
𝑛 W𝛼 LR𝛼

150 80% 86%
(12, 12, 12)

(11.8, 12.0, 12.0) (0.32, 0.35, 0.33) [.085, .075, .079] 0.048 0.061
200 81% 88% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.080, .070, .071] 0.051 0.057
250 81% 89% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.075, .066, .066] 0.047 0.054
300 81% 90% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.072, .064, .064] 0.047 0.053
150 92% 91%

(4, 4, 4)

(3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.095, .077, .083] 0.048 0.056
200 92% 92% (3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.089, .071, .072] 0.048 0.055
250 93% 93% (3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.084, .068, .068] 0.047 0.055
300 93% 94% (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.081, .066, .066] 0.046 0.054

4.3 Robustness of our methodology to model misspecifications and sensitivity analysis
In this section we investigate the performance of the optimal constrained target when the distribution of the survival times is
Weibull (Weib), log-logistic (LL) or log-normal (LN) to take into account different shapes of the hazard function. In particular
we consider Weib with parameters 𝑠 = 0.8 and 1.25 (monotone increasing and decreasing hazard, respectively), LL distribution
with 𝑠 = 0.5 and the LN distribution with 𝑠 = 0.8 (non-monotone hazards).

As it is well-known, in both conventional and adaptive designs, wrong parametric assumptions often lead to power loss and
type I error inflation of parametric tests.35 In our robustness studies, besides the log-rank test, we consider the performance of
the Wald test based on the correctly specified distribution of the survival times (as also suggested by Sverdlov et al35). More
specifically, we compute the test statistic by analysing the final dataset with the distribution according to which the survival
times were generated and we report the average power/type I error of Wald’s test (W̃ and W̃𝛼). We summarize in Table 14 the
simulation results under different models for the survival times for the DBCD targeting 𝝆𝐶𝜖 and the CRD intending to target 𝝆𝐵 ,
taking into account 𝑛 = 250 patients. These results show that our proposal is - in general - slightly more powerful and it results
in a fewer average number of deaths than the balanced design even when the event time distribution is non exponential. The
maximum loss of power wrt the one under the exponential model for 𝝆𝐶𝜖 occurs under a monotone increasing hazard function
(−12% and −10% for W̃ and LR respectively) which is, at the same time, associated to a smaller average number of events in
the study (−3 deaths). Conversely, when survival times follow a Weib with 𝑠 = 1.25, higher values of power are present. In
the case of non-monotone hazard functions an improvement in terms of power is combined with a substantial reduction in the
number of deaths in the trial. The type I error is around the nominal level in most of the scenarios considered; a slight inflation
is observed in the case of non-monotone hazards. We conclude that our procedure is quite robust to model misspecification in
all the considered experimental set-ups for both the log-rank test and the parametric test W̃.

Another form of model misspecification may occur when the patients’ accrual rate is non-uniform; to take into account several
recruitment patterns we consider the Beta distribution.35 The cases Beta (1, 5) and Beta (5, 1) (right/left skewed) encompass
situations in which the accrual rate decreases/increases over time respectively. On the other hand, Beta (1∕5, 1∕5) represents
scenarios with accelerated recruitment at the beginning and at the end of the trial and Beta (5, 5) refers to studies in which the
highest recruitment rate occurs in the middle of the trial. Table 15 shows the simulating operating characteristics of the DBCD
targeting 𝝆𝐶𝜖 and the CRD targeting 𝝆𝐵 . We report the average proportion of patients whose outcomes are observed during
the recruitment, the simulated average power of the Wald test/type I error and the total average number of events for 𝑛 = 250
patients. The power of the Wald test is similar across the five recruitment patterns with a maximum loss of 1.2% corresponding
to the left-skewed Beta distribution. On the other hand, under Beta(1∕5, 1∕5) a slight increase in power is observed. The type I
error rate is close to 0.05 showing that our proposal is also robust to misspecification of the recruitment pattern.

4.4 Redesign of KEYNOTE-010 clinical trial
In this section we illustrate the application of the constrained optimal target by redesigning the KEYNOTE-010 clinical trial8
(registered at ClinicalTrials.gov, number NCT01905657). The aim of this Phase II/III study was to compare two doses of pem-
brolizumab (MK-3475) versus docetaxel in patients with non-small cell lung cancer and whose tumors were assessed as being
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PD-L1 positive. Between Aug 2013 and Feb 2015, 1034 participants were enrolled and were randomly allocate with a 1:1:1 ratio,
with a central interactive voice-response system, to receive treatment A (pembrolizumab 2 mg/kg), treatment B (pembrolizumab
10 mg/kg) or treatment C (docetaxel). Among primary endpoints (overall survival and progression-free survival) we were inter-
ested in the overall survival in the intent-to-treat population. At the cut-off date, after 23 months, median overall survival was 10.4
months in group A, 12.7 months in group B, and 8.5 months in group C. In designing this study, the authors assumed exponen-
tial distribution for overall survival, so that we run 10000 trials with 𝑛 = 1034 patients with 𝜽 = (𝜃𝐴, 𝜃𝐵 , 𝜃𝐶 )⊤ = (15, 18, 12)⊤,
adopting the above-mentioned censoring scheme with 𝑅 = 18 and 𝐷 = 23. The DBCD procedure has been implemented to
target the optimal allocations 𝝆𝐶𝜖 , 𝜌𝐴𝜖 , 𝜌𝐷𝜖 and 𝜌𝑁𝑃 1 (with 𝑇 = 0.2) and we included the CRD to target 𝝆𝐵 , as sequential ana-
logue to the equal allocation adopted the original trial. Results are presented in Table 16, in which, for sake of comparison, we
have also reported the simulated average efficiencies (see Section 3.3), number of deaths, total observed survival time, number
of patients assigned to the inferior and to the superior treatment and the total expected hazard in the study (H=∑𝐾

𝑖=1 𝑁𝑖𝑛∕𝜃𝑖).
In all the procedures, %𝑜𝑏𝑠 and %𝑅𝐴𝑅 were 60% and 90-91% respectively. The optimal constrained design presents the high-
est degree of skewness in favour of the best performing treatment arm (B in this case) wrt to the other designs and the ethical
property of Remark 1 does not hold for 𝑁𝑃 1 and the 𝐴𝐴 allocations (see also Remark 3). All the procedures present similar
statistical properties of power and estimation efficiency. Nevertheless, our proposal is superior in terms of ethical characteris-
tics, resulting in 4-8 fewer deaths, longer total survival time, lower average hazard and higher ethical efficiency compared to the
other designs. In addition, nInf and nSup highlight the potential advantages in adopting the optimal constrained design in which
from 20 up to 74 fewer patients are assigned to the inferior treatment, whereas 428 patients receive the superior treatment, so
that 24-83 more patients are injected with treatment B with the maximum gain achieved wrt the balanced design.

Note that this result provide further significance to the ethical definition of Remark 1. Given the gravity of the outcome, a
response-adaptive procedure targeting 𝝆𝐶𝜖 would provide a better trade-off between statistical power and patients’ benefits.

TABLE 14 Simulated average power/type I error of the Wald test (W̃ and W̃𝛼) based on the correctly specified model and
the log-rank test (LR and LR𝛼), average number of deaths (Deaths; with their standard deviations in brackets) for the DBCD
targeting 𝝆𝐶𝜖 and the CRD (intended to target 𝝆𝐵) for 𝑛 = 250 and 10000 iterations.

𝜽 = (10, 7, 5)⊤ 𝜽 = (12, 12, 12)⊤

Model 𝝆𝐶𝜖 𝝆𝐵 𝝆𝐶𝜖 𝝆𝐵

W̃ LR Deaths W̃ LR Deaths W̃𝛼 LR𝛼 Deaths W̃𝛼 LR𝛼 Deaths
Exp 0.977 0.975 229 (4) 0.970 0.972 231 (4) 0.047 0.054 218 (5) 0.044 0.051 218 (5)
Weib, 𝑠 = 0.8 0.859 0.870 226 (5) 0.842 0.870 228 (4) 0.050 0.052 213 (5) 0.044 0.050 213 (5)
Weib, 𝑠 = 1.25 0.999 0.998 230 (4) 0.999 0.998 232 (4) 0.049 0.054 221 (5) 0.048 0.053 221 (4)
LL, 𝑠 = 0.5 0.996 0.985 218 (5) 0.996 0.983 221 (5) 0.061 0.055 203 (6) 0.060 0.051 203 (6)
LN, 𝑠 = 0.8 0.999 0.996 221 (5) 0.999 0.995 223 (5) 0.062 0.057 206 (6) 0.067 0.055 206 (6)

TABLE 15 Simulated average power/type I error of the Wald test (W and W𝛼), average percentage of observation during the
recruitment period (%𝑜𝑏𝑠; only for the DBCD procedure), average number of deaths (Deaths; with their standard deviations in
brackets) for the DBCD targeting 𝝆𝐶𝜖 and the CRD (intended to target 𝝆𝐵) under different recruitment patterns, 𝑛 = 250 patients
and 10000 iterations.

𝜽 = (10, 7, 5)⊤ 𝜽 = (12, 12, 12)⊤

Recruitment 𝝆𝐶𝜖 𝝆𝐵 𝝆𝐶𝜖 𝝆𝐵

%𝑜𝑏𝑠 W Deaths W Deaths %𝑜𝑏𝑠 W𝛼 Deaths W𝛼 Deaths
Uniform 86% 0.977 229 (5) 0.970 231 (4) 81% 0.047 218 (5) 0.045 218 (5)
Beta (1, 5) 95% 0.974 230 (4) 0.974 231 (4) 91% 0.048 219 (5) 0.045 219 (5)
Beta (5, 1) 59% 0.965 230 (5) 0.972 231 (4) 48% 0.052 217 (5) 0.045 217 (5)
Beta (1∕5, 1∕5) 67% 0.980 229 (5) 0.975 231 (4) 64% 0.054 218 (5) 0.048 218 (5)
Beta (5, 5) 89% 0.972 230 (4) 0.972 231 (4) 81% 0.052 219 (5) 0.045 219 (5)
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TABLE 16 Redesign of KEYNOTE-0108 clinical trial
Statistical properties Ethical characteristics

W LR 𝐸𝜙 𝐸𝐷𝐴
𝐸𝐴𝐴

Deaths TS nInf nSup H 𝐸𝑒

𝝅𝐴𝜖
𝑛 = (0.30, 0.34, 0.36)⊤ 0.89 0.90 0.74 0.97 0.98 445 6533 365 354 70 0.83

[.028, .031, .029]
𝝅𝐷𝜖
𝑛 = (0.34, 0.36, 0.30)⊤ 0.88 0.89 0.73 0.99 0.91 441 6569 311 376 71 0.84

[.020, .019, .019]
𝝅𝐶𝜖
𝑛 = (0.31, 0.41, 0.28)⊤ 0.88 0.88 0.76 0.98 0.94 437 6595 291 428 69 0.86

[.053, .079, .035]
𝝅𝐵
𝑛 = (0.33, 0.34, 0.33)⊤ 0.88 0.89 0.72 0.98 0.87 444 6546 345 345 71 0.83

[.007, .007, .007]
𝝅𝑁𝑃 1
𝑛 = (0.29, 0.39, 0.32)⊤ 0.89 0.89 0.77 0.96 0.91 441 6570 333 404 70 0.85

[.057, .065, .047]

5 CONCLUSIONS AND FUTURE RESEARCH

The design of multi-arm clinical experiments is complex, especially when different objectives are involved. The proposed opti-
mal constrained target guarantees a valid trade-off between the inferential goal of maximizing the power of Wald’s test of
homogeneity and the ethical demand of preserving subjects’ care, whereas some targets for time-to-event outcomes could lead
to undesirable allocation proportions, as we pointed out in this paper.

In addition, we implement our proposal via DBCD methodology. To assess the simulated operating characteristics of the
design, we considered several experimental settings. In the uncensored model, we assumed that responses are available immedi-
ately and the convergence rate to the target is excellent. In the presence of censored observations we have also included delayed
responses and staggered entries, which could seriously slowed down the convergence of the design. To assess such an impact,
we run simulation studies directed to illustrate how the convergence is related to the complex interplay between sample size,
survival times, length of recruitment and duration of the trial. Overall, the optimal constrained design reaches a good rate of
convergence, provided that a sufficient amount of responses are observed throughout the recruitment phase to let the adaptive
procedure work. Moreover, even in experimental scenarios with slower convergence, a fair degree of skewness in favour of
the most promising treatment is achieved. The practical applicability of our proposal has been also highlighted by performing
robustness studies to model misspecification and by redesigning a real lung cancer trial. Authors are working on developing a
user-friendly interface (R-based Shiny Web application) to implement the procedure, which will be available in the future.

The problem of testing the null-hypothesis of equality among treatment effects considered in this paper is useful in many
applications. In multi-arm trials a global test comparing all treatments can be carried out prior to making individual pairwise
comparisons.13,21,22 Indeed the overall null-hypothesis is the first stage of multiple comparison methodologies for several step-
wise procedures.25,26 One of the most powerful is the Fisher’s least significant difference method which is a two-step test for
pairwise comparisons; in the first stage the overall null-hypothesis of homogeneity is tested at level 𝛼 and then, in case of rejec-
tion, all the pairs of interest are tested for equality at the same level of significance. As it is well-known, the design should be
tailored on trial objectives: a single global test may be of interest, for instance, in Phase II trials.36 Especially in anticancer
research, due to the dramatic increase of new potential drugs under development, one of the primary Phase II objectives is to
evaluate the effect of new treatments and to identify the one(s) that most warrants additional evaluation in a larger Phase III
study.37,38 Others interesting set-ups concern trials in which the choice of the control treatment is not unique: for instance, stud-
ies in which the new drug has to be compared to placebo, current commercial products, competitors products (see the comments
by Owen and by Bechhofer and Tamhane in the discussion of Hedayat et al39). Finally there are situations such that no treat-
ments with demonstrated efficacy exist and so no standard of care is available to be set as an appropriate/fixed control. This is
particularly related to rapidly emerging novel infectious diseases such as Ebola40 or COVID-19. In these cases clinical studies
must start quickly and the overall null-hypothesis, as a first step, allows to evaluate several candidate treatments at once.

However, in many other experimental set-ups, the interest may not be solely focused on the power to reject the global null. For
instance in the presence of a control treatment, as the pairwise comparisons become relevant, it is important to assess the design
performance in terms of marginal power metrics. By taking into account the null hypothesis of equality among the treatment
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arm with the longest survival time and that of the control arm, the marginal power induced by our proposal is clearly lower wrt
the global one. The lack of marginal power is not generally severe: it may be mild even for moderate sample sizes and tends to
vanish as the sample size grows. This loss has an impact, whilst modest, when determining trial sample size.

A further significant aspect of this work is to provide support to the arguments in favour of unbalanced allocation designs.2,3
Unequal randomization is often more appropriate for patients’ health and more powerful than the balanced design, especially
for heteroscedastic treatment groups, and we showed that the proposed constrained target shares this property. Hence, the
indiscriminate use of the popular equal allocation design in clinical trials should be reconsidered.

The promising performance of this optimization approach lead to further methodological developments to extend its applica-
bility. One of the main directions of future research is to adopt this framework to derive optimal constrained targets for widely
used heteroscedastic models like, e.g., for binary trials. Another interesting issue consists in including covariates/prognostic
factors, to take also into account patients’ heterogeneity.
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APPENDIX

A PROOFS

A.1 Proof of Theorem 1
The following Lemma is preliminary to the proof.
Lemma 4. 𝜙(⋅) is a concave function of the vector of allocation proportions.
Proof of Lemma 4. Let 𝜔𝑖 = (𝜌𝑖𝜃−2𝑖 )∕(

∑𝐾
𝑘=1 𝜌𝑘𝜃

−2
𝑘 ), then 𝜔𝑖 ≥ 0 for 𝑖 = 1,… , 𝐾 and ∑𝐾

𝑖=1 𝜔𝑖 = 1, namely 𝜔 = (𝜔1,… , 𝜔𝐾 )⊤

could be regarded as a pdf of a (non-negative) discrete r.v. 𝜃 with 𝐾 support points 𝜃1 ≥ … ≥ 𝜃𝐾 > 0. So, letting

�̄�𝜔 =
𝐾
∑

𝑖=1
𝜃𝑖 𝜔𝑖 =

∑𝐾
𝑖=1 𝜌𝑖𝜃

−1
𝑖

∑𝐾
𝑖=1 𝜌𝑖𝜃

−2
𝑖

(A1)

and 𝑀𝜔(𝜃2) =
∑𝐾

𝑖=1 𝜃
2
𝑖 𝜔𝑖 =

(

∑𝐾
𝑖=1 𝜌𝑖𝜃

−2
𝑖

)−1, then by (1), it is possible to show that

𝜙(𝝆) =
𝑀𝜔(𝜃2) − �̄�2𝜔

𝑀𝜔(𝜃2)
=

𝑉𝜔(𝜃)
𝑀𝜔(𝜃2)

, (A2)
where 𝑉𝜔(𝜃) is the variance of 𝜃 evaluated w.r.t. 𝜔. Moreover,

𝜙(𝝆) = 1
𝑀𝜔(𝜃2)

𝐾
∑

𝑖=1
(𝜃𝑖 − �̄�𝜔)2𝜔𝑖 =

𝐾
∑

𝑖=1
𝑎𝑖𝜌𝑖, (A3)

where 𝑎𝑖 =
(

1 − �̄�𝜔∕𝜃𝑖
)2, for 𝑖 = 1,… , 𝐾 . Note that, for 𝑖 = 1,… , 𝐾 , 𝜕𝜙(𝝆)

𝜕𝜌𝑖
=
∑𝐾

𝑗=1

𝜕𝑎𝑗
𝜕𝜌𝑖

𝜌𝑗 + 𝑎𝑖 where
𝜕𝑎𝑗
𝜕𝜌𝑖

= 2
(

1 −
�̄�𝜔
𝜃𝑗

)(

− 1
𝜃𝑗

)

𝜕�̄�𝜔
𝜕𝜌𝑖

and 𝜕�̄�𝜔
𝜕𝜌𝑖

=
𝜃−1𝑖

∑𝐾
𝑖=1 𝜌𝑖𝜃

−2
𝑖

(

1 −
�̄�𝜔
𝜃𝑖

)

.

Thus,
𝜕𝜙(𝝆)
𝜕𝜌𝑖

= 𝑎𝑖 −
2
𝜃𝑖

(

1 −
�̄�𝜔
𝜃𝑖

) 𝐾
∑

𝑗=1

{

𝜌𝑗𝜃−1𝑗
∑𝐾

𝑖=1 𝜌𝑖𝜃
−2
𝑖

(

1 −
�̄�𝜔
𝜃𝑗

)

}

= 𝑎𝑖,

and
𝜕2𝜙(𝝆)
𝜕𝜌2𝑖

= −
2𝑀𝜔(𝜃2)

𝜃2𝑖

(

1 −
�̄�𝜔
𝜃𝑖

)2

,
𝜕2𝜙(𝝆)
𝜕𝜌𝑖𝜕𝜌𝑗

= −
2𝑀𝜔(𝜃2)

𝜃𝑖𝜃𝑗

(

1 −
�̄�𝜔
𝜃𝑖

)(

1 −
�̄�𝜔
𝜃𝑗

)

.

Thus, the Hessian matrix is given by

𝐻𝜙(𝝆) = −2𝑀𝜔(𝜃2)
[(

1 −
�̄�𝜔
𝜃1

)

,… ,
(

1 −
�̄�𝜔
𝜃𝐾

)]⊤ [(

1 −
�̄�𝜔
𝜃1

)

,… ,
(

1 −
�̄�𝜔
𝜃𝐾

)]

, (A4)
having one eigenvalue equal to 0 (with multiplicity 𝐾 − 1) and a non-null eigenvalue given by its trace, i.e. 𝑡𝑟{𝐻𝜙(𝝆)} =

−2𝑀𝜔(𝜃2)
∑𝐾

𝑖=1

(

1 − �̄�𝜔
𝜃𝑖

)2
< 0, which implies the concavity of NCP.
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Proof of Theorem 1
Let 𝐶𝑉𝜔(𝜃) be the coefficient of variation of 𝜃 evaluated with respect to 𝜔, by (A2) the NCP can be rewritten as 𝜙(𝝆) =

𝑉𝜔(𝜃)
(

𝑉𝜔(𝜃) + �̄�2𝜔
)−1 =

(

1 + 1
𝐶𝑉 2

𝜔 (𝜃)

)−1
.

Within the class of pdfs with a given mean �̄�𝜔, the variance 𝑉𝜔(𝜃) is maximized by the one that assigns all the mass of
probability to the extremes, in this case 𝜃1 and 𝜃𝐾 . So let 𝑃 (𝜃 = 𝜃𝐾 ) = 𝜔∗ = 1 − 𝑃 (𝜃 = 𝜃1), then �̄�𝜔 = 𝜃1(1 − 𝜔∗) + 𝜃𝐾 𝜔∗

and 𝑉𝜔(𝜃) = (𝜃1 − 𝜃𝐾 )2𝜔∗(1 − 𝜔∗). Thus, 𝐶𝑉 2
𝜔 (𝜃) =

[

𝜃1(1 − 𝜔∗) + 𝜃𝐾 𝜔∗]−2(𝜃1 − 𝜃𝐾 )2𝜔∗(1 − 𝜔∗), where 𝜕𝐶𝑉𝜔

𝜕𝜔∗ = 0 ⇔ 𝜔∗ =

𝜃1∕(𝜃1 + 𝜃𝐾 ). In such a case, 𝜔∗ = 𝜌𝐾
𝜃2𝐾

(

𝜌1
𝜃21

+ 𝜌𝐾
𝜃2𝐾

)−1, thus 𝜌𝐾 = 𝜃𝐾∕(𝜃1 + 𝜃𝐾 ) = 1 − 𝜌1 and, from (A2), 𝜙(�̃�) =
(

𝜃1−𝜃𝐾
𝜃1+𝜃𝐾

)2.
As regards statement i), every allocation �̃� such that ∑𝑗

𝑖=1 �̃�𝑖 = 𝜃1
𝜃1+𝜃𝐾

= 1 −
∑𝐾

𝑖=ℎ �̃�𝑖 is optimal. Indeed, in this case
�̄�𝜔 =

(

∑𝐾
𝑖=1

�̃�𝑖
𝜃2𝑖

)−1
∑𝐾

𝑖=1
�̃�𝑖
𝜃𝑖
= 2𝜃1𝜃𝐾

𝜃1+𝜃𝐾
and thus, from (A3), 𝜙(�̃�) =

(

1 − �̄�𝜔
𝜃1

)2 𝜃1
𝜃1+𝜃𝐾

+
(

1 − �̄�𝜔
𝜃𝐾

)2 𝜃𝐾
𝜃1+𝜃𝐾

=
(

𝜃1−𝜃𝐾
𝜃1+𝜃𝐾

)2.
The proof of (ii) is straightforward. Moreover, since the Hessian matrix in (A4) is negative semi-definite we have to check

the stationary points. By setting the partial derivatives of the Lagrangian 𝐿(𝝆, 𝜆) = 𝜙(𝝆) − 𝜆
(

∑𝐾
𝑖=1 𝜌𝑖 − 1

)

equal to zero, we
obtain a system of 𝐾 equations 𝑎𝑖 = 𝜆 for 𝑖 = 1,… , 𝐾 , which admits solutions if and only if 𝑎1 = ⋯ = 𝑎𝐾 . Notice that, for
every 𝑖 = 1,… , 𝐾 − 1,

𝑎𝑖 ≥ 𝑎𝑖+1 ⇔
(

�̄�𝜔
𝜃𝑖

+
�̄�𝜔
𝜃𝑖+1

)

≤ 2 or 𝜃𝑖 = 𝜃𝑖+1 (A5)
and, since 𝜃𝐾 < �̄�𝜔 < 𝜃1, from 𝑎1 = 𝑎𝐾 we obtain

(

1 −
�̄�𝜔
𝜃1

)2

=
(

1 −
�̄�𝜔
𝜃𝐾

)2

⇔ �̄�𝜔 = 2
(

1
𝜃𝐾

+ 1
𝜃1

)−1

=
2𝜃1𝜃𝐾
𝜃1 + 𝜃𝐾

. (A6)
Clearly, from (A5), if 𝜃𝑖 = 𝜃𝑖+1 then 𝑎𝑖 = 𝑎𝑖+1. Furthermore, if ∃ 𝑗 ∈ {1,… , 𝐾 − 1} such that 𝜃1 = … = 𝜃𝑗 > 𝜃𝑗+1 ≥ … ≥ 𝜃𝐾
then 𝑎1 = 𝑎2 = … = 𝑎𝑗 ; since 𝜃𝑖 ≠ 𝜃1 for 𝑖 = 𝑗 + 1,… , 𝐾 , from (A5) follows that 𝑎𝑖 = 𝑎1 ⇔ �̄�𝜔

(

1
𝜃1
+ 1

𝜃𝑖

)

= 2 ∀ 𝑖 =
𝑗 + 1,… , 𝐾. By substituting �̄�𝜔 in (A6), then 𝜃𝑖 = 𝜃𝐾 , for every 𝑖 = 𝑗 + 1,… , 𝐾.
On the other hand, if ∃ ℎ ∈ {2,… , 𝐾} such that 𝜃1 ≥ … ≥ 𝜃ℎ−1 > 𝜃ℎ = … = 𝜃𝐾 , then 𝑎ℎ = … = 𝑎𝐾 . Clearly, 𝜃𝑖 ≠ 𝜃𝐾 for
𝑖 = 1,… , ℎ − 1 and therefore, from (A5), 𝑎𝑖 = 𝑎𝐾 ⇔ �̄�𝜔

(

1
𝜃𝑖
+ 1

𝜃𝐾

)

= 2. Thus, by substituting �̄�𝜔, it follows that 𝜃1 = 𝜃𝑖 for
every 𝑖 = 1,… , ℎ − 1.

A.2 Proof of Theorem 2
The following Lemma is preliminary to the proof.
Lemma 5. Given a non-degenerate target 𝝆 (i.e. such that 𝜌𝑗 > 0 for every 𝑗), we have

(i) If �̄�𝜔 ∈
[

2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1
, 2𝜃1𝜃2
𝜃1+𝜃2

]

, then ∃ 𝑖 ∈ {2,… , 𝐾 − 1} such that
𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑖 ≤ 𝑎𝑖+1 ≤ ⋯ ≤ 𝑎𝐾 (A7)

In particular, if �̄�𝜔 ∈
[

𝜃2,
2𝜃1𝜃2
𝜃1+𝜃2

]

, then 𝑖 = 2; whereas, if �̄�𝜔 ∈
[

2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1
, 𝜃𝐾−1

]

, then 𝑖 = 𝐾 − 1.

(ii) If �̄�𝜔 ∈
[

2𝜃1𝜃2
𝜃1+𝜃2

, 𝜃1
)

then 𝑖 = 1, i.e.
𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝐾 . (A8)

(iii) If �̄�𝜔 ∈
(

𝜃𝐾 ,
2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1

]

, then 𝑖 = 𝐾 , i.e
𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝐾 . (A9)

Notice that 2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1
≤ 𝜃𝐾−1 and 2𝜃1𝜃2

𝜃1+𝜃2
≥ 𝜃2.

Moreover,
(iv) if �̄� = 𝑎1, then (A8) and (A9) are impossible and, therefore, (A7) holds with 𝑎𝐾 > 𝑎1;
(v) if �̄� > 𝑎1 then (A9) is impossible;

(vi) if �̄� > 𝑎1 ≥ 𝑎2, then (A8) and (A9) are impossible and, therefore, (A7) holds with 𝑎𝐾 > 𝑎1.
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Proof of Lemma 5. Clearly from (A5), 𝑎𝑖 ≥ 𝑎𝑖+1 ⇐⇒
(

�̄�𝜔
𝜃𝑖
+ �̄�𝜔

𝜃𝑖+1

)

≤ 2. Thus, if �̄�𝜔 ∈ [𝜃𝐾−1, 𝜃2], then ∃ 𝑖 ∈ {2,… , 𝐾 − 1} such
that 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑖 ≤ 𝑎𝑖+1 ≤ ⋯ ≤ 𝑎𝐾 .
Moreover, if �̄�𝜔 ∈ (𝜃2, 𝜃1) and

(

�̄�𝜔
𝜃1

+ �̄�𝜔
𝜃2

)

≤ 2 (i.e. 𝜃2 < �̄�𝜔 ≤ 2𝜃1𝜃2
𝜃1+𝜃2

), then 𝑎1 ≥ 𝑎2 ≤ 𝑎3 ≤ … ≤ 𝑎𝐾 , (namely (A7) holds with
𝑖 = 2), while if �̄�𝜔 ∈ (𝜃2, 𝜃1) and

(

�̄�𝜔
𝜃1

+ �̄�𝜔
𝜃2

)

> 2 (i.e. 2𝜃1𝜃2
𝜃1+𝜃2

< �̄�𝜔 < 𝜃1), then 𝑎1 < 𝑎2 ≤ 𝑎3 ≤ … ≤ 𝑎𝐾 , namely (A7) holds with
𝑖 = 1. Furthermore, if �̄�𝜔 ∈ (𝜃𝐾 , 𝜃𝐾−1) and

(

�̄�𝜔
𝜃𝐾

+ �̄�𝜔
𝜃𝐾−1

)

≤ 2 (i.e. 𝜃𝐾 < �̄�𝜔 ≤ 2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1
), then 𝑎1 ≥ 𝑎2 ≥ … ≥ 𝑎𝐾−1 ≥ 𝑎𝐾 ,(namely

(A7) holds with 𝑖 = 𝐾), whereas if if �̄�𝜔 ∈ (𝜃𝐾 , 𝜃𝐾−1) and
(

�̄�𝜔
𝜃𝐾

+ �̄�𝜔
𝜃𝐾−1

)

> 2 (i.e. 2𝜃𝐾𝜃𝐾−1

𝜃𝐾+𝜃𝐾−1
< �̄�𝜔 < 𝜃𝐾−1), then 𝑎1 ≥ 𝑎2 ≥ … ≥

𝑎𝐾−1 < 𝑎𝐾 , namely (A7) holds with 𝑖 = 𝐾 − 1. The rest of the proof is straightforward.
The behaviour of the sequence {𝑎𝑖, 𝑖 = 1,… , 𝐾} will be used for the proof of Theorem 2.
Proof of Theorem 2
Maximization problem (3) can be address via Lagrange multipliers with 𝐿(𝝆, 𝜆1,… , 𝜆𝐾 ) = 𝜙(𝝆) −

∑𝐾−1
𝑖=1 𝜆𝑖(𝜌𝑖+1 − 𝜌𝑖) −

𝜆𝐾
(

∑𝐾
𝑖=1 𝜌𝑖 − 1

)

. By setting 𝜕𝐿(𝝆, 𝜆1,… , 𝜆𝐾 )∕𝜕𝜌𝑖 = 0 for 𝑖 = 1,… , 𝐾 we obtain
⎧

⎪

⎨

⎪

⎩

𝑎1 + 𝜆1 = 𝜆𝐾
𝑎𝑖 − 𝜆𝑖−1 + 𝜆𝑖 = 𝜆𝐾 , 𝑖 = 2,… , 𝐾 − 1,
𝑎𝐾 − 𝜆𝐾−1 = 𝜆𝐾

namely, by summing all the equations, 𝜆𝑖 = ∑𝑖
𝑗=1(�̄� − 𝑎𝑗) (𝑖 = 1,… , 𝐾 − 1) and 𝜆𝐾 = �̄� = 1

𝐾

∑𝐾
𝑖=1

(

1 − �̄�𝜔
𝜃𝑖

)2
> 0.

Case 1 𝜆𝑖 > 0 ∀𝑖 = 1,… , 𝐾 − 1.
In this case 𝜌1 = … = 𝜌𝐾 , namely the corresponding target is 𝝆𝐵 , so that

�̄�𝜔 =

( 𝐾
∑

𝑖=1

1
𝜃2𝑖

)−1 𝐾
∑

𝑖=1

1
𝜃𝑖

(A10)

and, from (A5), 𝑎1 ≥ 𝑎2 since
(

1
𝜃2
− 1

𝜃1

)2
+
∑𝐾

𝑖=3
1
𝜃𝑖

{(

1
𝜃𝑖
− 1

𝜃1

)

+
(

1
𝜃𝑖
− 1

𝜃2

)}

≥ 0.

Condition 𝜆1 > 0, i.e., �̄� > 𝑎1, corresponds to
(

∑𝐾
𝑖=1

1
𝜃2𝑖

)−1
∑𝐾

𝑖=1
1
𝜃𝑖
> 2

(

∑𝐾
𝑖=1

1
𝜃𝑖
− 𝐾

𝜃1

)(

∑𝐾
𝑖=1

1
𝜃2𝑖

− 𝐾
𝜃21

)−1
⇔ 𝑥 > 𝐾−1. Then,

from (𝑣𝑖) of Lemma 5, the sequence {𝑎𝑖, 𝑖 = 1,… , 𝐾} behaves as in (A7), with at least 𝑎𝐾 > 𝑎1. Therefore 𝑖�̄� >
∑𝑖

𝑗=1 𝑎𝑗 for
𝑖 = 2,… , 𝑖, while for 𝑖 > 𝑖, the sequence becomes increasing. Since 𝐾 − 1 > (𝑎1 +… + 𝑎𝐾−1)∕𝑎𝐾 (we recall that 𝑎𝑖 < 𝑎𝐾 for
𝑖 = 1,… , 𝐾 − 1), then (𝐾 − 1)�̄� >

∑𝐾−1
𝑗=1 𝑎𝑗 and therefore 𝜆𝑖 > 0 for 𝑖 = 𝑖 + 1,… , 𝐾 − 1.

Case 2 𝜆1 = 0 and 𝜆𝑖 > 0 ∀𝑖 = 2,… , 𝐾 − 1.
In this case 𝜌2 = ⋯ = 𝜌𝐾 = 𝜁 , so the ensuing optimal target is (1 − [𝐾 − 1]𝜁, 𝜁 ,… , 𝜁) (where, clearly, 𝜁 ∈ [0, 𝐾−1]), which is
admissible iff �̄� = 𝑎1 and

𝑖�̄� >
𝑖

∑

𝑗=1
𝑎𝑗 𝑖 = 2,… , 𝐾 − 1. (A11)

Now, �̄� = 𝑎1 corresponds to

�̄�𝜔 =
2
(

∑𝐾
𝑖=1

1
𝜃𝑖
− 𝐾

𝜃1

)

∑𝐾
𝑖=1

1
𝜃2𝑖

− 𝐾
𝜃21

. (A12)

Moreover, �̄�𝜔 =
1
𝜃1
+ 𝜁

(

∑𝐾
𝑖=1

1
𝜃𝑖
− 𝐾

𝜃1

)

1
𝜃21

+ 𝜁
(

∑𝐾
𝑖=1

1
𝜃2𝑖

− 𝐾
𝜃21

) , so that 𝜁 = 𝑥 and the ensuing target 𝝆𝐶 is admissible provided that 𝑥 ≤ 𝐾−1. From

(𝑖𝑣) in Lemma 5, the sequence of {𝑎𝑖, 𝑖 = 1,… , 𝐾} behaves as in (A7), with at least 𝑎𝐾 > 𝑎1, and we need to check that 𝜆𝑖 > 0
for every 𝑖 = 2,… , 𝐾 − 1.

• If 𝜃1 = 𝜃2, then 𝑎1 = 𝑎2 which contradicts (A11) (clearly, the same reasoning holds in the more general case of a cluster
of several superior treatments).

• If 𝜃1 > 𝜃2 = ⋯ = 𝜃𝐾 , then 𝑎2 = ⋯ = 𝑎𝐾 and, together with �̄� = 𝑎1, implies that 𝑎1 = ⋯ = 𝑎𝐾 which contradicts (A11).
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• If 𝜃1 > 𝜃2 ≥ ⋯ ≥ 𝜃𝐾 with 𝜃2 > 𝜃𝐾 , from (A12) after tedious algebra it follows that
(

�̄�𝜔
𝜃1

+ �̄�𝜔
𝜃2

)

< 2, i.e., 𝑎1 > 𝑎2 and,
combined with �̄� = 𝑎1, it ensures that 𝜆𝑖 > 0 for 𝑖 = 2,… , 𝑖. Moreover for 𝑖 > 𝑖, the sequence {𝑎𝑖} becomes increasing
and, therefore, if (𝐾 − 1)�̄� >

∑𝐾−1
𝑖=1 𝑎𝑖 then 𝜆𝑖 > 0, for 𝑖 = 𝑖 + 1,… , 𝐾 − 1. This condition is trivially satisfied, since

�̄� = 𝑎1 and
(𝐾 − 1)�̄� + 𝑎𝐾 >

𝐾−1
∑

𝑖=1
𝑎𝑖 + 𝑎𝐾 ⇐⇒ (𝐾 − 1)�̄� + 𝑎𝐾 > 𝐾�̄� ⇐⇒ 𝑎𝐾 > �̄� = 𝑎1. (A13)

Case 3 𝜆𝑖 = 0 ∀𝑖 = 1,… , 𝐾 − 1
In such a case, �̄� = 𝑎1 = ⋯ = 𝑎𝐾−1, which clearly implies that 𝑎𝐾 = �̄�. As shown in A.1, this implies that 𝜃1 = ⋯ = 𝜃𝑗 >
𝜃𝑗+1 = ⋯ = 𝜃𝐾 (i.e., there are two clusters of treatments). Thus, every 𝝆�̃� = (𝜌�̃�1 ,… , 𝜌�̃�𝐾 )

⊤ such that ∑𝑗
𝑖=1 𝜌

�̃�
𝑖 = 𝜃1

𝜃1+𝜃𝐾
and

∑𝐾
𝑖=𝑗+1 𝜌

�̃�
𝑖 = 𝜃𝐾

𝜃1+𝜃𝐾
, is optimal. Indeed, in such a case �̄�𝜔 = 2𝜃1𝜃𝐾∕(𝜃1 + 𝜃𝐾 ) and 𝜙(𝝆�̃� ) = �̄� = (𝜃1 − 𝜃𝐾 )2∕(𝜃1 + 𝜃𝐾 )2, that

coincides with the maximum of 𝜙 in the unconstrained optimization. Moreover, adopting 𝝆�̃� , 𝑥 = 𝜃𝐾
(𝐾−𝑗)(𝜃1+𝜃𝐾 )

and therefore,
∑𝑗

𝑖=1 𝜌
�̃�
𝑖 = 1 − 𝑥(𝐾 − 𝑗)=1 −∑𝐾

𝑖=𝑗+1 𝜌
�̃�
𝑖 . Since the components of 𝝆�̃� are ordered according to the magnitude of the treatment

effects, then 𝜌�̃�𝑗 ≤ 𝜌�̃�𝑘 (for 𝑘 = 1,… , 𝑗 − 1) and 𝜌�̃�𝑗+1 ≥ 𝜌�̃�𝑘 (for 𝑘 = 𝑗 + 1,… , 𝐾). Thus, 𝜌�̃�𝑗 ≤ 1−𝑥(𝐾−𝑗)
𝑗

, 𝜌�̃�𝑗+1 ≥ 𝑥(𝐾−𝑗)
𝐾−𝑗

= 𝑥 and,
clearly, 𝑗−1[1 − 𝑥(𝐾 − 𝑗)] ≥ 𝑥, i.e., 𝑥 ≤ 𝐾−1.
Case 4 𝜆1 > 0 and at least one 𝜆𝑖 = 0 for 𝑖 ∈ [2;𝐾 − 1].
Under this scenario, �̄� > 𝑎1 and thus (A9) of Lemma 5 is impossible. Therefore, the sequence {𝑎𝑖, 𝑖 = 1,… , 𝐾} behaves as
in (A7) or (A8). Moreover, 𝜆𝑖 = 0 ⇔ 𝑖 =

∑𝑖
𝑗=1 𝑎𝑗∕�̄� (with 2 ≤ 𝑖 ≤ 𝐾 − 1). Since 𝑎1

�̄�
< 1, then it exists at least one 𝑎𝑙 (with

2 ≤ 𝑙 ≤ 𝑖) such that 𝑎𝑙
�̄�
> 1, i.e. �̄� < 𝑎𝑙, and clearly �̄� < 𝑎𝑙 ≤ 𝑎𝑖 ≤ 𝑎𝑖+1. However, this is impossible since

• if 𝜆𝑖+1 = 0, then (𝑖 + 1)�̄� =
∑𝑖

𝑗=1 𝑎𝑗 + 𝑎𝑖+1 ⇔ �̄� = 𝑎𝑖+1 which contradicts �̄� < 𝑎𝑖+1;
• if 𝜆𝑖+1 > 0, then (𝑖 + 1)�̄� >

∑𝑖
𝑗=1 𝑎𝑗 + 𝑎𝑖+1 ⇔ �̄� > 𝑎𝑖+1 but this is impossible since �̄� < 𝑎𝑖+1.

Case 5 𝜆1 = 0 and at least one 𝜆𝑖 > 0 and 𝜆𝑖+1 = 0 with 𝑖 ∈ {2,… , 𝐾 − 2}
Under this setting, �̄� = 𝑎1 and from Lemma 5 the sequence behaves as in (A7). Since 𝜆𝑖+1 = 0, then

𝑖 =
𝑎2
�̄�

+⋯ +
𝑎𝑖+1
�̄�

. (A14)
From (A14) and 𝜆𝑖 > 0 (i.e. 𝑖 > 𝑎1

�̄�
+ 𝑎2

�̄�
+⋯ + 𝑎𝑖

�̄�
) it follows that �̄� = 𝑎1 < 𝑎𝑖+1 and, given the behaviour of {𝑎𝑖, 𝑖 = 1,… , 𝐾},

also 𝑎𝑖+1 ≤ 𝑎𝑖+2. This scenario is impossible since
• if 𝜆𝑖+2 = 0, then (𝑖 + 2)�̄� = 𝑎1 + ⋯ + 𝑎𝑖+1 + 𝑎𝑖+2, which combined with (A14), gives �̄� = 𝑎𝑖+2 contradicting that

�̄� < 𝑎𝑖+1 ≤ 𝑎𝑖+2;
• if 𝜆𝑖+2 > 0, then (𝑖 + 2)�̄� > 𝑎1 +⋯ + 𝑎𝑖+1 + 𝑎𝑖+2, which combined with (A14), gives �̄� > 𝑎𝑖+2 but this is impossible.

Case 6 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑗 = 0 and 𝜆𝑖 > 0 ∀𝑖 = 𝑗 + 1,… , 𝐾 − 1
Under this setting, the ensuing optimal target is 𝝆�̆� = (𝜌�̆�1 ,… , 𝜌�̆�𝑗 , 𝜈,… , 𝜈)⊤ with 𝜌�̆�𝑖 ≥ 𝜌�̆�𝑖+1 ≥ 𝜈 for 𝑖 = 1,… , 𝑗 − 1 and
∑𝑗

𝑖=1 𝜌
�̆�
𝑖 = 1 − (𝐾 − 𝑗)𝜈 (where, clearly, 𝜈 ≤ 𝐾−1). This target is admissible iff i) �̄� = 𝑎1 = … = 𝑎𝑗 and ii) 𝑖�̄� >

∑𝑖
𝑘=1 𝑎𝑖 for

𝑖 = 𝑗 + 1,…𝐾 − 1.
Condition 𝜆1 = 0 implies �̄� = 𝑎1, so that (A12) holds and, from (𝑖𝑣) of Lemma 5, the sequence {𝑎𝑖, 𝑖 = 1,… , 𝐾} behaves as in
(A7) with 𝑎𝐾 > 𝑎1.

• If 𝜃1 > 𝜃2 then by (A5), 𝑎1 = 𝑎2 ⇔
(

�̄�𝜔
𝜃1

+ �̄�𝜔
𝜃2

)

= 2. Since 𝜃1 > �̄�𝜔 it has to be 𝜃2 < �̄�𝜔, namely 𝑎1 = 𝑎2 ≤ 𝑎3 ≤ … ≤ 𝑎𝐾 ,
which is impossible given that �̄� = 𝑎1. Similar reasoning applies for all the pairs 𝜃𝑖 > 𝜃𝑖+1 for 𝑖 = 2,… , 𝑗 − 1.

• If 𝜃1 = ⋯ = 𝜃𝑗 > 𝜃𝑗+1 ≥ … ≥ 𝜃𝐾 , with 𝑗 ∈ {2,… , 𝐾 − 1}, then 𝑎1 = ⋯ = 𝑎𝑗 and

�̄�𝜔 =
[1 − (𝐾 − 𝑗)𝜈]𝜃−11 + 𝜈

∑𝐾
𝑖=𝑗+1 𝜃

−1
𝑖

[1 − (𝐾 − 𝑗)𝜈]𝜃−21 + 𝜈
∑𝐾

𝑖=𝑗+1 𝜃
−2
𝑖

so that, from (A12), after tedious algebra it follows that 𝜈 = 𝑥 (clearly, 𝑥 ≤ 𝐾−1 in order to be admissible). Finally, we
need to verify ii). These conditions are trivially satisfied following the same arguments of Case 2 (see (A13)).
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Since the components of 𝝆�̆� are ordered according to the magnitude of the treatment effects, then 𝜌�̆�𝑗 ≤ 𝜌�̆�𝑘 (for 𝑘 = 1,… , 𝑗 −1)
and, clearly, 𝜌�̆�𝑗 ≤ 1−𝑥(𝐾−𝑗)

𝑗
(recalling that ∑𝑗

𝑖=1 𝜌
�̆�
𝑖 = 1 − (𝐾 − 𝑗)𝑥). Moreover, given the above-mentioned ordering, 𝑗−1[1 −

𝑥(𝐾 − 𝑗)] ≥ 𝑥, i.e., 𝑥 ≤ 𝐾−1. When 𝜃𝑗+1 = … = 𝜃𝐾 , then 𝑥 = 𝜃𝐾
(𝐾−𝑗)(𝜃1+𝜃𝐾 )

and this is a special case of Case 3. In addition, note
that under 𝝆�̆� ,

𝜙(𝝆�̆� ) = 𝑎1[1 − (𝐾 − 𝑗)𝑥] + 𝑥
𝐾
∑

𝑗=𝑖+1
𝑎𝑖 = �̄� −𝐾�̄�𝑥 +𝐾�̄�𝑥 = �̄�, (A15)

A.3 Proof of Theorem 3
Clearly, when 𝑥 > 𝐾−1, 𝝆𝐶 = 𝝆𝐵 and thus, we will consider only the case 𝑥 ≤ 𝐾−1. Denote by �̄�𝐵𝜔 =

∑𝐾
𝑖=1

1
𝜃𝑖
∕
∑𝐾

𝑖=1
1
𝜃2𝑖

the
expression in (A10). Then, from (A3), 𝜙(𝝆𝐵) = 1

𝐾

∑𝐾
𝑖=1

(

1 − �̄�𝐵𝜔
𝜃𝑖

)2
= 1 − �̄�𝐵𝜔

1
𝐾

∑𝐾
𝑖=1

1
𝜃𝑖
.

• Under statement (i) of Theorem 2, 𝝆𝐶 = (𝜌𝐶1 ,… , 𝜌𝐶𝑗 , 𝑥,… , 𝑥)⊤, and letting �̄�𝐶𝜔 be (A1) under 𝝆𝐶 , then from (A15) follows
that 𝜙(𝝆𝐶 ) = 1

𝐾

∑𝐾
𝑖=1

(

1 − �̄�𝐶𝜔
𝜃𝑖

)2
= 1 − 2�̄�𝐶𝜔

1
𝐾

∑𝐾
𝑖=1

1
𝜃𝑖
+
(

�̄�𝐶𝜔
)2 1

𝐾

∑𝐾
𝑖=1

1
𝜃2𝑖

.
Thus, 𝜙(𝝆𝐵) ≤ 𝜙(𝝆𝐶 ) since −�̄�𝐵𝜔

1
𝐾

∑𝐾
𝑖=1

1
𝜃𝑖
≤ −2�̄�𝐶𝜔

1
𝐾

∑𝐾
𝑖=1

1
𝜃𝑖
+
(

�̄�𝐶𝜔
)2 1

𝐾

∑𝐾
𝑖=1

1
𝜃2𝑖

⇔ (�̄�𝐵𝜔 − �̄�𝐶𝜔 )
2 ≥ 0.

• Under statement (ii) of Theorem 2, then 𝜙(𝝆𝐶 ) = 𝜙(�̃�) =
(

𝜃1−𝜃𝐾
𝜃1+𝜃𝐾

)2 and, clearly, 𝐸𝜙(𝝆𝐶 ) = 1.

Taking now into account the ethical efficiency, denoting by �̄� = 𝐾−1 ∑𝐾
𝑖=1 𝜃𝑖, then 𝐸𝑒(𝝆𝐵) = �̄�

𝜃1
. Under statement (i) of Theorem

2 we obtain 𝐸𝑒(𝝆𝐶 ) = 𝜃−11
{

𝜃1[1 − (𝐾 − 𝑗)]𝑥 + 𝑥
∑𝐾

𝑖=𝑗+1 𝜃𝑖
}

= 𝜃−11
[

𝜃1(1 −𝐾𝑥) +𝐾𝑥�̄�
]

. Thus, 𝐸𝑒(𝝆𝐶 ) ≥ 𝐸𝑒(𝝆𝐵) since
𝜃1(1 −𝐾𝑥) ≥ �̄�(1 −𝐾𝑥) (recalling that 𝜃1 > �̄�). The case under statement (ii) follows easily by similar arguments.
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