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DISPLACEMENTS OF AUTOMORPHISMS OF FREE GROUPS I:

DISPLACEMENT FUNCTIONS, MINPOINTS AND TRAIN TRACKS

STEFANO FRANCAVIGLIA

Dipartimento di Matematica of the University of Bologna

ARMANDO MARTINO

Mathematical Sciences, University of Southampton

Abstract. This is the first of two papers in which we investigate the properties of the
displacement functions of automorphisms of free groups (more generally, free products) on
Culler-Vogtmann Outer space and its simplicial bordification - the free splitting complex
- with respect to the Lipschitz metric. The theory for irreducible automorphisms being
well-developed, we concentrate on the reducible case. Since we deal with the bordification,
we develop all the needed tools in the more general setting of deformation spaces, and
their associated free splitting complexes.

In the present paper we study the local properties of the displacement function. In
particular, we study its convexity properties and the behaviour at bordification points,
by geometrically characterising its continuity-points. We prove that the global-simplex-
displacement spectrum of Aut(Fn) is a well-ordered subset of R, this being helpful for
algorithmic purposes. We introduce a weaker notion of train tracks, which we call partial
train tracks (which coincides with the usual one for irreducible automorphisms) and we
prove that, for any automorphism, points of minimal displacement - minpoints - coincide
with the marked metric graphs that support partial train tracks. We show that any
automorphism, reducible or not, has a partial train track (hence a minpoint) either in
the outer space or its bordification. We show that, given an automorphism, any of its
invariant free factors is seen in a partial train track map.

In a subsequent paper we will prove that level sets of the displacement functions are
connected, and we will apply that result to solve certain decision problems.

Note: the two papers where originally packed together in the preprint arxiv:1703.09945.
We decided to split that paper following the recommendations of a referee.
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1. Introduction

1.1. Overview. Let Fn denote the free group of rank n and Out(Fn) = Aut(Fn)/ Inn(Fn)
be the group of outer automorphisms. The natural space upon which this acts is CVn,
Culler-Vogtmann Space, which in turn admits a (non-symmetric) metric, the Lipschitz
metric (see [7], [23]).
The motivation for this paper is to extend the main results of [9], and in particular the

result that for irreducible elements, φ, of Out(Fn), the points that are minimally displaced
by φ in CVn (with respect to the Lipschitz metric) coincide exactly with the points that
support train track representatives for φ.
In order to do this, we need to extend our space to the free splitting complex, FSn - see

[15] and [17] for more details, and a complete exposition. However, our methods rely on
inductive arguments which require us to deal with a more general setting, of a deformation
space and its free splitting complex, as follows.
Let Γ be a free product of groups with a specified free splitting. That is, abusing

notation, Γ is a group G1 ∗ . . . Gk ∗Fr, where the Fr is a free group and the Gi are specified.
This is not, necessarily, the Gruschko decomposition, and we allow the Gi to be freely
decomposable, or even free. Equivalently, we can think of Γ as given by a specific graph
of groups with trivial edge groups. (We shall suppress this here, but we also need to allow
Γ to be disconnected in general).
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The space O(Γ) is then the deformation space of this splitting. That is, the space of
all the simplicial, edge-free trees on which Γ acts with the same elliptic elements as the
defining splitting. We endow these trees with Γ-metrics, and identify two trees when there
is an equivariant isometry between them (or an equivariant homothety if we don’t insist

on having volume 1). The space O(Γ) is the free splitting complex associated to this; the
space of all edge-free, simplicial metric trees whose elliptic elements contain all the elliptic
elements from the original splitting (but may contain more). Again, trees are identified if
they are equivariantly isometric.
More concretely, we work almost entirely with the natural simplicial structure on O(Γ),

since each point is given by a graph of groups and induces a cone on an open simplex
by varying the lengths of edges. Technically, varying the lengths of edges in the graph of
groups produces a simplex if we impose the condition that the volume is one, or if we work
projectively; these correspond to the spaces O1(Γ) and PO(Γ). If the number of edges in
the graph of groups is k, this produces an open k − 1 simplex. In O(Γ) we get a cone
on this open k − 1 simplex. (See 2.14 and 2.25.) Since the cone on an open simplex is
homeomorphic to a open simplex of one dimension higher, we shall abuse notation and
simply refer to simplicies in O(Γ).

One can then view O(Γ) as the simplicial closure of O(Γ); a simplex in O(Γ) has faces
which correspond to collapsing various subgraphs. When such a subgraph carries a hy-
perbolic element, the resulting quotient object defines a tree (graph of groups) with more

elliptic elements, and hence a point of O(Γ). All points of O(Γ) arise in this way. We use

the notation ∂O(Γ) to denote the points in O(Γ) which are not in O(Γ). Since points of
∂O(Γ) can be considered as points at infinity of O(Γ), we often use the notations

∂∞O(Γ) and O(Γ)
∞
.

(See Definitions 2.29 and 2.30 for more details). Any such Γ has an associated group,
Out(Γ) of (outer) automorphisms of the group which preserve the elliptic elements, and
this groups acts on O(Γ) by isometries with respect to the Lipschitz metric.
In the case that Γ = Fn; that is, the trivial splitting of the free group where every

non-identity element is hyperbolic, we obtain O(Γ) = CVn and O(Γ) = FSn, and the
associated automorphism group is Out(Fn).

Any φ ∈ Out(Fn) acts on O(Fn) and induces a displacement function λφ : O(Fn) →
[1,∞)

λφ(X) = Λ(X,φX)

where Λ denotes the (multiplicative, non symmetric) Lipschitz distance.

We extend this function to O(Fn)
∞
.

If X ∈ O(Fn) exhibits a φ-invariant sub-graph A, the collapse of A defines a point
X/A ∈ ∂∞O(Fn), whose displacement is finite, since φ(X/A) is a well defined point, again
in ∂∞O(Fn) (and carrying the same set of hyperbolic/elliptic elements). In other words, if
we let Γ denote the induced free splitting of Fn arising from the collapse of A, then both
X/A and φ(X/A) belong to O(Γ), and hence are at finite Lipschitz distance.
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By setting λφ(X/A) = ∞ for those points X/A ∈ ∂∞O(Fn) whose collapsed part is not

φ invariant, we have λφ defined on the whole O(Fn)
∞

(although some points have infinite
displacement).

The same process works for any Γ in place of Fn and we study these all at the same time.
The advantage of this is that we can apply inductive arguments, which turn out to be key
in understanding the properties of λφ. In particular, we prove that minimally displaced
points are characterised in terms of (partial) train-track maps, and any automorphism has

a minpoint in O(Γ)
∞
, though not necessarily in O(Γ) - Theorem 4.15 and Theorem 7.11.

We also study the (failure of the) continuity of the function λφ on O(Γ)
∞

and charac-
terize the points at which it is not continuous - the ‘jumping’ points, Theorem 5.14 and
Theorem 7.8. We describe some of these results in more detail below.

1.2. Anticipating the results. The main tool for studying λφ is to use good representa-
tives for φ. Namely, given X ∈ O(Fn) (or in any O(Γ)), we need to find the best Lipschitz
maps representing φ (that is to say f : X → X so that f∗ = φ on π1(X)). All maps we use
will be straight, meaning that have constant speed on edges (hence they are determined by
the image of vertices). It is classical that one may always find an optimal map f : X → φX,
whose Lipschitz constant satisfies

Lip(f) = Λ(X,φX).

However the usual proof, by means of Ascoli-Arzelà, is not constructive, nor quantitative.
Our first result is Theorem 3.15 which can be stated as follows, and gives a constructive
proceedure - via a flow - for making a straight map optimal, and crucially adds a quantative
bound to the process.

Theorem (Optimization). Given X, Y ∈ O(Fn) and f : X → Y a Lipschitz
map, there is a Lipschitz map g : X → Y so that Lip(g) = Λ(X, Y ) and so that
d∞(g, f) ≤ vol(X)(Lip(f)− Λ(X, Y )).

The estimate arising from this theorem will be crucial in many proofs. For any straight
map f : X → Y , the tension graph of f , denoted by Xmax, is the sub-graph of X whose
edges are maximally stretched. We introduce the notion of partial train track map as a
straight map f : X → φX such that there is an invariant sub-graph A ⊆ Xmax (not
necessarily proper) so that the restriction of f to A is a train track map in the usual
sense. Our study of displacement functions is based on the use of partial train tracks. The
first result on partial train tracks is that they characterise minimally displaced points (See
Theorem 4.15 for a precise statement):

Theorem. For any automorphism φ, local minima for λφ are global minima and
consist exactly of those points supporting a partial train track.

One of the main problems is that λφ is not continuous at the boundary points of O(Fn).
We say that X ∈ ∂∞O(Fn) has not jumped if there is a sequence Xi → X of points Xi ∈
O(Fn), all contained in a single simplex, such that λφ(Xi) → λφ(X) (precise definitions are
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given in Definition 5.13). In Sections 5 and 7 we give a complete description of jumping and
non-jumping points. For instance, if we set λ(φ) = infX∈O(Fn) λφ(X) we get (Theorem 7.8,
see also Theorem 7.4 for related statements)

Theorem. X ∈ ∂∞O(Fn) has not jumped if and only if λφ(X) ≥ λ(φ).

In particular,

Theorem (Corollary 7.9). For any automorphism φ, if X ∈ ∂∞O(Fn) is a min-
point for λφ (i.e. satisfies λφ(X) = λ(φ)) then X has not jumped.

For any φ we give the notion of partial train track at infinity as points X ∈ ∂∞O(Fn)
which have not jumped and are partial train tracks for the induced automorphism in the
deformation space of X. In Section 7 we prove that partial train tracks at infinity exist
and are min-points. We prove in particular the existence of (non-jumping) min-points in
the bordification of outer space.

Theorem (Theorem 7.11). Any automorphism has a partial train track in

O(Fn)
∞
. Partial train tracks (at infinity or otherwise) are min-points for the

displacement function. In particular, (non-jumping) min-points always exist.

The existence of partial train tracks also give information on invariant free factors:

Theorem (Theorems 7.13). For any automorphism φ, any φ-invariant free factor
of Fn is visible in some partial train track.

And as in the irreducible case, existence of partial train tracks allows one to easily deduce
that for any automorphism we have λ(φn) = λ(φ)n. (Corollary 7.14.)

Remark (Connection with Relative Train Track Maps). There is a connection between
relative train track maps and partial train track maps as follows: given the automorphism,
φ, one constructs a relative train track map as in [5]. Suppose that λ is the maximum
Perron-Frobenius eigenvalue for any stratum, and that the highest stratum in which it
occurs is the rth one. (That is, that the Perron-Frobenius eigenvalue is strictly greater
than that of any higher stratum, and at least as great as that of any lower stratum).
Now collapse the invariant subgraph Gr−1 - the union of all the strata below the rth

stratum. This defines a point of the free splitting complex, where φ admits a representative
supporting an invariant subgraph on which it is train track with expansion factor, λ. By
making the volume of this subgraph sufficiently small, we can ensure that the Lipschitz
constant of every other edge is strictly less than λ, and this is our partial train track at
infinity. It then follows that λ = λ(φ).
However, the important difference between the two objects is that partial train tracks

characterise exactly the minimally displaced set, Theorem 4.15, whereas relative train
tracks do not.
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The objects with which we work are usually not locally compact. This makes all con-
vergence arguments technically difficult. For controlling the convergence and minimisation
processes, in particular those of Section 7, we make crucial use of the following result on
displacements. For any simplex of O(Fn)

∞
define λφ(∆) = infX∈∆ λφ(X). Then we prove;

Theorem(Theorem 7.2). For any Fn (and in fact for any deformation space) the
global simplex-displacement spectrum

spec(Fn) =
{
λφ(∆) : [φ] ∈ Out(Fn),∆ a simplex of O(Fn)

∞
s.t. λφ(∆) < +∞}

is well-ordered as a subset of R. In particular, for any [φ] ∈ Out(Fn) the spectrum
of possible minimal displacements

spec(φ) =
{
λφ(∆) : ∆ a simplex of O(Fn)

∞
such that λφ(∆) < +∞}

is well-ordered as a subset of R.

Finally, we want to mention also Section 6, in which we give a detailed description
of useful convexity properties of displacement functions, for instance proving that the
displacement function is quasi-convex along Euclidean segments - see Lemma 6.2 and
Lemma 6.3.

Acknowledgements: We would like to thank both the Università di Bologna and the
Universitat Politécnica de Catalunya, for their hospitality during several visits.
We would also like to thank the referee of the earlier version of this paper (when it was

a single paper together with [10]) for many very helpful comments, as well of the referee
of the present paper for the very useful comments and suggestions.

2. Setting, notation, and general definitions

2.1. Motivation for new definitions. First, we wish to motivate our definitions and
the general setting. Our aim is to study automorphisms of free groups which are possibly
reducible. (Although our results will apply to free products more generally). If Γ is a
marked graph with π1(Γ) = F a free group, and φ ∈ Out(F ), then φ can be represented
by a simplicial map (that is, a continuous map on the graph, sending vertices to vertices
and edges to edge paths) f : Γ → Γ. That is, f represents φ if there is an isomorphism τ :
Fn → π1(Γ) such that φ = τ−1f∗τ . (The reason we are working with outer automorphisms
is that we do not keep track of basepoints).
If φ is reducible, then it is possible that we may find a collection of disjoint connected

sub-graphs Γ1, . . . ,Γk such that f permutes the Γi’s. (We are guaranteed to find such a
collection in some Γ). In order to study the properties of φ it may help to collapse such
an invariant collection. (In other words, in the study of reducible automorphisms, we are
naturally led to study the simplicial bordification of the Culler-Vogtmann Outer space
CVn.)
If we want to keep track of all the relevant information, we will be faced with the study

of some particular kind of moduli spaces. Namely, moduli spaces of actions on trees with
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possibly non-trivial vertex stabilizers (when we collapse the Γi’s) and the product of such
spaces (when we consider the restriction to φ to the Γi’s.)
The typical topological object we are concerned with is a disjoint union of metric trees,

where G acts with finitely many orbits, but with possibly non-trivial vertex-stabilizers.
Therefore we will develop the paper in this general - free splitting - setting, but the reader
is invited to restrict attention to the case of CVn and its bordification.

2.2. Notation for free splittings. Let G = G1 ∗ · · · ∗ Gp ∗ Fn be any free product of
groups, where Fn denotes the free group of rank n (we allow n to be zero, in that case
we omit Fn). We do not assume that the Gi’s are indecomposable. The theory we are
going to develop is general, but we are mainly interested in the case where G is itself a free
group. (Thus, in general, this free product decomposition is not unique, since G has many
different splittings as a free product.)

Definition 2.1 (Free Splittings). Given a group G, a free splitting G of G is a pair ({Gi}, n)
where {Gi} is a collection of subgroups of G and n is natural a number such that G =
G1∗· · ·∗Gp∗Fn. Two splittings ({G1, . . . , Gp}, n) and ({H1, . . . , Hp},m) ofG are considered
to be of the same type if m = n and, up to reordering factors, each Hi is conjugate to Gi.

Remark 2.2. We admit the trivial splitting G = Fn, (∅, n). That is the splitting with no
free factors groups. In this case our discussion will amount to considering the free group
Fn and the classical Culler-Vogmtann Outer space CVn.

Remark 2.3. Free splittings are also referred to as free factor systems in the literature -
originally introduced in [4], and also used in [15], [16] and [18].
Our point of view here is to take a fixed free factor system - a free splitting - and form

the deformation space of that. This consists of trees equipped with edge-free actions whose
vertex stabilisers are the (conjugacy classes of) the elements of the free factor system. That
is, one can form the space of all trees which give rise to the same free factor system.

One can also form the what is known as the free splitting graph or complex, which
consists of all possible free splittings (and one can also make this relative to a base free
splitting). This relative version is what we have in mind when we come to define our
simplicial bordification (see 2.28).
Note that a “splitting” in general refers to any action on a tree and the induced graph of

groups decomposition, but no confusion should arise since all of the splittings we consider
are “free”, in the sense that the edge stabilisers in the tree are trivial (equivalently, the
splitting which arises is a free factor system).

Definition 2.4 (Sub-splittings). Let G = ({G1, . . . , Gp}, n) and S = ({H1, . . . , Hq}, r) be
two free splittings of G. We say that S is a sub-splitting of G if each Hi decomposes as

Hi = Gi1 ∗ . . . Gil ∗ Fsi ,
and r +

∑
i si = n.

Definition 2.5 (Kurosh rank of a free splitting). The Kurosh rank of the splitting G =
G1 ∗ · · · ∗Gp ∗ Fn is n+ p.
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2.3. G-graphs and G-trees. Given a group G, a simplicial G-tree is a simplicial tree T
endowed with a faithful simplicial action of G. T is minimal if it has no proper G-invariant
sub-tree. In particular, if T is minimal then G acts without global fixed points and T has
no leaves (valence one vertices).
We next define G-trees and G-graphs. For those familiar with Bass-Serre theory, these

are the trees dual to a given splitting and the corresponding graphs of groups.

Definition 2.6 (G-trees and G-graphs). Let G be a group G and G = ({G1, . . . , Gp}, n)
be a splitting of G. A G-tree is a metric simplicial G-tree T such that

• G acts isometrically on T ,
• For every Gi there is exactly one orbit of vertices whose stabilizer is conjugate to
Gi. Such vertices are called non-free. Remaining vertices have trivial stabilizer and
are called free vertices.

• T has trivial edge stabilizers.

A G-graph is a finite connected metric graph of groups X such that

• X is marked; that is, there is a fixed isomorphism between the fundamental group
of X (as a graph of groups) and G.

• X has trivial edge-groups;
• the fundamental group of X as a topological space is Fn;
• the splitting given by the vertex groups is equivalent to G.

We note that Bass-Serre theory gives a correspondence between G-trees and G-graphs.
Two G-trees are equivalent if there is an equivariant isometry between them; there is an

analogous equivalence at the level of G-graphs, which is harder to state but comes down to
what is called a graph of groups morphism, and arises as the quotient map one gets from
an equivariant isometry.

Remark 2.7. Recall that for an action on a (simplicial) tree, every group element either
fixes a point or has an axis of minimal displacement. In the former case the element is
called elliptic, and in the latter case hyperbolic.

Notation 2.8. Throughout the paper, if G has a splitting G which is clear from the
context, then any G-tree is required to be a G-tree. (And the same for graphs.)

Example 2.9. If X is a finite connected graph of groups with trivial edge-groups, then
denote the splitting induced by the vertex groups of X by G. It is clear that G is a splitting
for π1(X), X is a G-graph, and the Bass-Serre tree associated to X is a G-tree.
Definition 2.10 (Core graph). A core-graph is a graph of groups whose leaves have non-
trivial vertex-group. Given a graph X we define core(X) to be the maximal core sub-graph
of X. (If the vertex groups are all trivial, so that X is simply a graph, then a core graph
has no valence one vertices). Note that core(X) is obtained by recursively cutting edges
ending at leaves.

Given a splitting G = ({Gi}, n) of a group G and T a G-tree, the quotient X = G\T
is a connected G-graph. T is minimal if and only if X is a finite core graph. Since in



DISPLACEMENT OF AUTOMORPHISMS I 9

the paper we are dealing with both G-graphs and G-trees, we introduce what we call the
tilde-underbar notation.

Notation 2.11 (Tilde-underbar notation). Let G be a splitting of a group G. If X is a

G-graph, then X̃ denotes its universal covering, which is a G-tree. As usual, if x ∈ X then

x̃ will denote a lift of x in X̃.
We will also often want to lift “loops”; that is, given an element of π1(X) - the funda-

mental group of X as a graph of groups - we lift the loop to a line in the universal cover.
Concretely, this requires a description of the loop as a sequence of edges and vertex group
elements which can be mirrored in the Bass-Serre tree; note that edges “downstairs” are
orbits of edges, so the vertex group element serves to determine which edge “upstairs” in
the orbit to follow. Similarly, we may lift paths, using the same process.
Equivalently, a lift of a group element is the axis, and the collection of lifts is the orbit

of this axis (if one forgets basepoints, then there is no favourite lift, and one just has the
orbit, of which one chooses a component.)
For subsets, A ⊆ X, we wil usually mean a collection of edges and vertex groups - that

is, the entire vertex group is a part of A if at all. We can lift A by taking all the lifts of
the loops realised in A, and if A is connected we usually refer to a component of this as a
“lift” of A.
Conversely, if T is a minimal G-tree we denote by T the quotient G-graph. We mirror

this notation for points and subsets.

Hence, X̃ = X for both graphs and trees.

Definition 2.12 (X-graphs, trees and forests). Let G be a splitting of a group G.

• If X is a G-graph (resp. G-tree), then a X-graph (resp. X-tree) is just a G-graph
(resp. tree). Unless otherwise specified, given a finite connected graph of groups X
with trivial edge-groups, an X-graph is a G-graph (and an X-tree is a G-tree).

• If Γ = ⊔Γi is a disjoint finite union of finite graphs of groups with trivial edge-
groups, a Γ-graph is a disjoint finite union X = ⊔Xi of Γi-graphs (and a Γ-forest
is a union of Γi-trees).

• A Γ-sub-forest Ã of a Γ-forest X̃ is the lift of a sub-graph of a Γ-graph X. Here
sub-graphs and lifts are “full” in the sense that if a sub-graph contains a vertex, it
contains the entire vertex group, as a sub-graph of groups — and “lift” means the

full pre-image under the map from X̃ → X.
• A sub-graph A of a Γ-graph is non-trivial if the fundamental group (as a graph-
of groups) of any of its components contains a hyperbolic element. That is, if it
contains a non-trivial element which is not just a vertex group element. A non-
trivial Γ-sub-forest of a Γ-forest is a sub-forest obtained as a lift of a non-trivial
sub-graph.

Definition 2.13 (Immersed loops). A path γ in a G-graph X is called immersed if it is

has a lift γ̃ in X̃ which is embedded. (Note that γ might not be topologically immersed in
X near non-free vertices.)
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2.4. Outer spaces. We briefly recall the definition of the outer space of a group G cor-
responding to a splitting G, referring to [9, 14] for a detailed discussion of definitions and
general properties.

Definition 2.14 (Outer space). Let G be a group and G be a splitting of G. The (pro-
jectivized) outer space of G, relative to the splitting G = ({G1, . . . , Gp}, n), consists of
(projective) classes of minimal, simplicial, metric G-trees, X with no redundant vertex
(that is, no valence two vertex is allowed to be free) and such that the G-action is by
isometries.
We use the notation O(G;G) or simply O(G) to denote the outer space of G relative to

G. We use PO(G;G) (or simply PO(G)) to denote the projectivized outer space.
For X ∈ O(G) we define its (co-)volume vol(X) as the sum of lengths of edges in G\X.

On occasion, we will need to work with the co-volume one slice of O(G), which we denote
by O1(G).
Remark 2.15. If G is the trivial splitting of G = Fn, then O(G) = CVn.

We stress here that the distinction between O(G) and PO(G) is not crucial in our setting
as we will mainly work with scale-invariant functions.

Remark 2.16. The equivalence relation that defines PO(G) is the following: X and Y
are equivalent if there is an homothety (isometry plus a rescaling by a positive number)
X → Y conjugating the actions of G on X and Y . In particu;ar, since G acts isometrically
on a metric G-tree, the inner automorphisms of G act trivially on O(G) and PO(G).
Remark 2.17. If G has a the simple splitting G = G1, then O(G) consists of a single
element: a point stabilized by G1, and in this case the equivalence relation is trivial.

Remark 2.18. If X ∈ O(G), the quotient X is a metric core G-graph. Conversely, if X is

a core metric G-graph with no redundant vertex, then X̃ ∈ O(G).
In the paper we will work with both graphs and trees. Strictly speaking we have defined

O(G) as a space of trees, but we it will be often convenient to use graphs X so that

X̃ ∈ O(G). Clearly the two viewpoints are equivalent and we shall have occasion to
abuse notation and switch between graphs and trees. However, when we wish to make the
distinction clear, we will add a “gr” subscript to indicate that we are working with graphs.
To illustrate:

Ogr(G) = {G-graph X : X̃ ∈ O(G)}
The spaces Ogr(G) and O(G) are naturally identified via X ↔ X̃.

Notation 2.19. If X is a finite connected graph of groups with trivial edge-groups, and
S is the splitting of π1(X) given by vertex-groups, then we set

O(X) = O(π1(X),S).
Clearly, ifX is a metric core graph of groups with no redundant vertices, then X̃ ∈ O(X).

Definition 2.20. We define Γ and O(Γ) as follows:
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• Γ = ⊔Γi will always mean that Γ is a finite disjoint union of connected finite
graphs of groups Γi, each with trivial edge-groups and non-trivial fundamental
group Hi = πi(Γi), each Hi being equipped with the splitting given by the vertex-
groups.

• Then O(Γ) is defined to be the product of the O(Γi). That is, a point in O(Γ) is
a tuple of minimal, simplicial, edge-free isometric actions of the corresponding Hi

on metric trees, up to equivariant isometry. The elliptic elements are precisely the
vertex groups in Γ.

• There is a natural action of R+ on O(Γ) given by scaling each component by the
same amount. The quotient of O(Γ) by such action is the projective outer space of
Γ and it is denoted by PO(Γ). (Thus PO(Γ) is not the product of the PO(Γi)’s.)

• The notion of co-volume extends to Γ-trees: If X = (X1, . . . , Xk) ∈ O(Γ) we set
vol(X) =

∑
i vol(Xi), and O1(Γ) denotes the co-volume 1 slice of O(Γ).

• We tacitly identify X = (X1, . . . , Xk) ∈ O(Γ) with the labelled disjoint union
X = ⊔iXi. So an element of O(Γ) can be interpreted as a metric Γ-forest (See
Definition 2.12).

Remark 2.21. If X is a G-tree, then O(X) = O(G). In other words, O(G) is a particular
case of O(Γ) with connected Γ. In the following we will therefore develop the theory for
general O(Γ), as this includes the “connected” case O(G) (and in particular, the CVn case).

Definition 2.22 (Rank). The Kurosh rank of a finite graph of groups with trivial edge-
groups is the Kurosh rank of the splitting1 induced on its fundamental group by the vertex-
groups. If Γ = ⊔Γi we set

rank(Γ) =
∑

i

rank(Γi).

By definition, the rank is a natural number greater or equal to one. Note the the rank
of a graph of groups X is simply the rank of its fundamental group as a topological space
plus the number of non-free vertices.
We will also consider moduli spaces with marked points.

Notation 2.23. Let G be a splitting of G. The moduli space of G-trees with k labelled
points p1, . . . , pk (not necessarily distinct) is denoted by O(G;G, k) or simply O(G, k). If
X is a finite graph of groups with trivial edge-groups we set O(X, k) = O(π1(X), k). If
Γ = ⊔si=1Γi, given k1, . . . , ks ∈ N we set

O(Γ, k1, . . . , ks) = ΠiO(Γi, ki).

Notation 2.24. Let X be a finite, connected graph of groups with trivial edge-groups and
let G be the splitting of π1(X) given by vertex groups. Let A ⊆ X be a non-trivial sub-
graph (Definition 2.12). Then A induces a sub-splitting SA of G where the factor groups
are either the fundamental groups of the components of A, or vertex groups in X \ A.

1See Definition 2.5.
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• We denote by X/A the graph of groups where components of A are collapsed to
points (a point for each component), and a vertex group is inserted - the funda-
mental group of the collapsed component.

• We denote by O(X/A) the outer space O(π1(X),SA).
• We extend this definition to the case of Γ = ⊔iΓi as in Definition 2.20 and A ⊆ Γ, by
considering the splittings induced by A on any component Γi, and we use notations
Γ/A and O(Γ/A) for the resulting (disjoint union of) graphs and its outer space.

• We borrow the same notation when speaking of Γ-forests (or G-forests) and non-
trivial sub-forests.

2.5. Simplicial structure. The simplicial structure we are going to use is the one familiar
to experts - see [6] and [14]. Since we want to study the simplicial bordificiation of our
outer spaces, we need to introduce faces “at infinity” and a suitable notation for distinguish
them from usual finitary faces. Faces “at infinity” of O(G), will be in fact simplices in the
outer space of some sub-splitting of G.
Definition 2.25 (Open simplices). Given a G-tree X, the open simplex ∆X is the set of
G-trees equivariantly homeomorphic to X. If X is a G-graph, then we agree that ∆X is
the set of graphs obtained by quotients of elements of ∆X̃ . The Euclidean topology on ∆X

is given by assigning a G-invariant positive length LX(e) to each edge e of X. Therefore,
if X has k orbits of edges, then ∆X is isomorphic to the standard open (k − 1)-simplex if
we work in PO(G) or O1(G), and to the positive cone over it if we work on O(G).
Since the positive cone of a k − 1-simplex is homeomorphic to an open k-simplex, we

shall abuse notation and simply refer to simplices in O(Γ).

Given two elements X, Y in the same simplex ∆ ⊂ O(G) we define the Euclidean

sup-distance dEuclid∆ (X, Y ) (d∆(X, Y ) for short)

dEuclid∆ (X, Y ) = d∆(X, Y ) = max
e edge

|LX(e)− LY (e)|.

Such definitions extend to the case of Γ = ⊔iΓi. We refer the Definition 2.20.

Definition 2.26 (Euclidean topology). If X = (X1, . . . , Xk) ∈ O(Γ), the simplex ∆X is
the set of Γ-forests equivariantly homeomorphic to X (component by component). The
Euclidean topology and distance on ∆X are defined by

d∆(X, Y ) = sup
i
d∆Xi

(Xi, Yi).

We note that the simplicial structure of PO(Γ) is not the product of the structures of
PO(π1(Γi)).

Definition 2.27 (Faces and closed simplices). Let X be a Γ-graph and let ∆ = ∆X be
the corresponding open simplex. Let F ⊂ X be a forest whose trees each contains at most
one non-free vertex. The collapse of F in X produces a new Γ-graph, whence a simplex
∆F . Such a simplex is called a face of ∆.
The closed simplex ∆ is defined by

∆ = ∆ ∪ {all the faces of ∆}.
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2.6. Simplicial bordification. There are two natural topologies on O(Γ), the simplicial
one and the equivariant Gromov topology, which are in general different. Here we will
mainly use the simplicial topology. We notice that if ∆ is an open simplex, then the
simplex ∆ is not the standard simplicial closure of ∆, because not all its simplicial faces
are faces according to Definition 2.27. This is because some simplicial faces of ∆ are not
in O(Γ) as defined. Such faces are somehow “at infinity” and describe limit points of
sequences in O(Γ). We now give precise definitions to deal with these limit points.
It will be convenient to start with describing the free splitting complex, relative to Γ.

Definition 2.28 (Free Splitting Complex). Let Γ be as in Definition 2.20. That is, Γ is a
finite disjoint union of graphs of groups. Then the free splitting complex relative to Γ is
the set of tuples of minimal, simplicial, isometric, edge-free, actions on Hi-trees, where the
set of elliptic elements includes all the vertex groups of Γ, and up to equivariant isometry.

We denote this set, O(Γ).

As in, Definition 2.25, by varying the edge lengths on a given (tuple of) trees we can

produce an simplex in O(Γ). (Recall that we are abusing notation and calling the positive
cone on an open simplex, an open simplex).

Definition 2.29 (Simplices and Faces). Let ∆ be an open simplex in O(Γ).

• ∆ is the closure of ∆ in O(Γ), as in Definition 2.27,
• ∂O∆ = ∂O∆ is the set-difference, ∆ \∆. We call this the finitary boundary of ∆.
The finitary faces of ∆ are the faces which appear in ∂O∆.

• ∆
∞

is the closure of ∆ in O(Γ),
• ∂∞∆ = ∂∞∆ is the set-difference, ∆

∞ \∆.

Let X be a Γ-graph and ∆ = ∆X . Let A be a proper subgraph of X having at least a

component which is not a tree with at most one non-free vertex. Equivalently, Ã contains
the axis of a hyperbolic element.
Let Y be the graph of groups obtained by collapsing each component of A to a point

(different components to different points). Then, Y ∈ O(X/A). The corresponding simplex
∆Y is a simplicial face of ∆X obtained by setting the edge-lengths of A to zero. Note that
∆Y belongs to O(X/A) and not to O(X). However, the simplicial topology naturally
defines a topology on ∆X ∪∆Y , which we still name simplicial topology.
Also note that any point in ∂∞∆ is obtained by collapsing such a sub-graph, A. We may,

in general, assume that all the components of A are core-graphs (each component contains
the axis of a hyperbolic element), if we are willing to replace ∆ with a finitary face of ∆.

Definition 2.30 (Boundary at infinity). We define the boundary at infinity and the sim-
plicial bordification of O(Γ) as

∂∞O(Γ) =
⋃

∆ simplex

∂∞∆.

Note that,
O(Γ)

∞
:= O(Γ) = O(Γ) ∪ ∂∞O(Γ).
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Remark 2.31. Note that all these operations can be carried out in the projective spaces,
with the definitions essentially unchanged.

Remark 2.32. We note that when Γ = Fn, that is the splitting of the free group where
every non-trivial element is hyperbolic, then we get that O(Γ) is simply Culler-Vogtmann

space, CVn and the bordification, O(Γ) is the free splitting complex, FSn.
2.7. Horoballs and regeneration. We recall Definition 2.20.

Definition 2.33 (Horoballs). Given X ∈ ∂∞O(Γ), Hor(X) is the set of marked metric
trees, Y ∈ O(Γ), such that X is obtained from Y by collapsing a proper family of core
sub-graphs. We set Hor(X) = X for X ∈ O(Γ), by convention (and use Hor(X) for
graphs).

In other words, a metric graph Y is in the horoball of X if X is obtained from Y by
setting to zero the length of edges of a proper family of core sub-graphs. On the other
hand, Hor(X) can be regenerated from X as follows.
Suppose X ∈ ∂∞O(Γ). Thus there is a Γ-graph Y and a sub-graph A = ⊔iAi ⊂ Y whose

components Ai are core-graphs, and such that X = Y /A. Let vi be the non-free vertex
of X corresponding to Ai. In order to recover a generic point Z ∈ Hor(X), we need to
replace each vi with an element V i ∈ O(Ai). Moreover, in order to completely define the
marking on Z, we need to know where to attach to V i the edges of X incident to vi, and

this choice has to be done in the universal covers Ṽi. No more is needed. Therefore, if ki
denotes the valence of the vertex vi in X, we have

Hor(X) = ΠiO(Ai, ki).

(Note that some ki could be zero, e.g. if Ai is a connected component of Y .) There is a
natural projection Hor(X) → O(A) which forgets the marked points. We will be mainly
interested in cases when we collapse A uniformly, for that reason we will use the projection
to PO(A):

π : Hor(X) → PO(A)

where Hor(X) is intended to be not projectivized.
Note that if [P ] ∈ PO(A), then π−1(P ) is connected because it is just Πi(A

ki
i ). Since

O(A) is connected (as a product of connected spaces), then Hor(X) is connected.

Remark 2.34. Note that the same graph of groups X can be considered as a point at
infinity of different spaces. If we need to specify the space in which we work, we shall write
HorΓ(X) (or HorG(X).)

2.8. The groups Aut(Γ) and Out(Γ). We are going to introduce the groups of auto-
morphisms that preserve splittings, and their generalizations to the case of non-connected
graphs.

Definition 2.35 (Automorphism-groups of splittings). Let G be endowed with the split-
ting G : G = G1∗· · ·∗Gp∗Fn. The group of automorphisms ofG that preserve the set of con-
jugacy classes of theGi’s is denoted by Aut(G;G). We set Out(G;G) = Aut(G;G)/ Inn(G)2.

2Clearly Inn(G) ⊂ Aut(G;G).
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The group Aut(G,G) acts onO(G) by changing the marking (i.e. the action), and Inn(G)
acts trivially. Hence Out(G;G) acts on O(G;G). If X ∈ O(G;G) and φ ∈ Out(G;G) then
φX is the same metric tree as X, but the action is (g, x) → φ(g)x. The action is simplicial
and continuous w.r.t. both simplicial and equivariant Gromov topologies.

We now extend the definition of Aut(G,G) to the case of Γ = ⊔iΓi. We denote by Sk

the group of permutations of k elements.

Definition 2.36 (Splitting isomorphism-groups). Let G and H be two isomorphic groups
endowed with splitting G : G = G1 ∗ . . . Gp ∗ Fn and H : H = H1 ∗ . . . Hp ∗ Fn. The set of
isomorphisms from G to H that map each Gi to a conjugate of one of the Hi’s is denoted
by Isom(G,H;G,H). If splittings are clear from the context we write simply Isom(G,H).

Definition 2.37 (Aut(Γ)). For Γ = ⊔ki=1Γi as in Definition 2.20, we set

Aut(Γ) = {φ = (σ, φ1, . . . , φk) : σ ∈ Sk and φi ∈ Isom(Hi, Hσi)}.
The composition of Aut(Γ) is component-wise, defined as follows. Given φ = (σ, φ1, . . . , φk)

and ψ = (τ, ψ1, . . . , ψk) we have

ψφ = (τσ, ψσ(1)φ1, . . . , ψσ(k)φk)

Remark 2.38. Not all permutations appear. For instance, if the groups Hi are pairwise
non-isomorphic, then the only possible σ is the identity.

Definition 2.39 (Inn(Γ) and Out(Γ)). We set:

Inn(Γ) = {(σ, φ1, . . . , φk) ∈ Aut(Γ) : σ = id, φi ∈ Inn(Hi)}

Out(Γ) = Aut(Γ)/ Inn(Γ).

Example 2.40. If X is a G-graph and f : X → X is a homotopy equivalence which
leaves invariant a core subgraph A, then f |A induces and element of Aut(A), and its free
homotopy class an element of Out(A).

The group Out(Γ) acts on O(Γ) as follows. If X = (X1, . . . , Xk) ∈ O(Γ), then each
Xi is an Hi-tree. If (σ, φ1, . . . , φk) ∈ Aut(Γ) then Xσ(i) becomes an Hi-tree via the pre-
composition of φi : Hi → Hσ(i) with the Hσ(i)-action. We denote such an Hi-tree by
φiXσ(i). With that notation we have φ(X1, . . . , Xn) = (φ1Xσ(1), . . . , φkXσ(k)). (We remark
that despite the left-positional notation, this is a right-action.) Since Inn(Γ) acts trivially
on O(Γ), then the Aut(Γ)-action descends to an Out(Γ)-action.

3. Straight maps, gate structures, and optimal maps.

In this section we describe the theory of maps between trees (or graphs) representing
points in outer spaces. We will simultaneously deal with the “connected” case O(G) (for
instance the classical CVn) and the general case O(Γ).
In this section G,G and Γ will be as in Definitions2.6 and 2.20.
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3.1. Straight maps. Now we will mainly work with trees.

Definition 3.1 (O-maps in O(G)). Let X, Y ∈ O(G). A map f : X → Y is called an O-
map if it is Lipschitz-continuous and G-equivariant. The Lipschitz constant of f is denoted
by Lip(f).

We recall that we tacitly identify X = (X1, . . . , Xk) ∈ O(Γ) with the labelled disjoint
union ⊔iXi. Hence, if X, Y ∈ O(Γ), a continuous map f : X → Y is a collection of
continuous maps fi : Xi → Yσ(i), where σ ∈ Sk.

Definition 3.2 (O-maps in O(Γ)). Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two
elements of O(Γ). A map f = (f1, . . . , fk) : X → Y is called an O-map if for each i the map
fi is an O-map from Xi to Yi. (No index permutation here. Compare with Definition 4.1.)

Definition 3.3 (Straight maps3). Let X, Y be two metric trees. A Lipschitz-continuous
map f : X → Y is straight if it has constant speed on edges, that is to say, for any
edge e of X there is a non-negative number λe(f) such that for any a, b ∈ e we have
dY (f(a), f(b)) = λe(f)dX(a, b). If X, Y ∈ O(G) then we require any straight map to be
an O-map. A straight map between elements of O(Γ) is an O-map whose components are
straight. If X, Y are metric graphs, we understand that f : X → Y is a straight map if its
lift to the universal covers is straight.

Remark 3.4. O-map always exist and the images of non-free vertices is determined a
priori by equivariance (see [9]). For any O-map f there is a unique straight map denoted
by Str(f), which is homotopic, relative to vertices, to f . We have Lip(Str(f)) ≤ Lip(f).

Definition 3.5 (λmax and tension graph). Let f : X → Y be a Str-map. We set

λ(f) = λmax(f) = max
e
λe(f) = Lip(f).

We define the tension graph of f by

Xmax(f) = {e edge of X : λe(f) = λmax}.
If there are no ambiguities on the map, we write λmax instead of λmax(f) and Xmax for
Xmax(f).

Definition 3.6 (Stretching factors). For X, Y ∈ O(Γ) we define

Λ(X, Y ) = min
f :X→Y O-map

Lip(f)

The theory of stretching factors is well-developed in the connected case (i.e. for CVn or
general free products), but one can readily see that connectedness of trees plays no role,
and the theory extends without modifications to the non-connected case. In fact, Λ is
well-defined, (see [7, 9]for details) and it satisfies the multiplicative triangular inequality:

Λ(X,Z) ≤ Λ(X, Y )Λ(Y, Z)

3In previous papers of the authors, a straight map is called PL-map. As a referee pointed out, piece-
wise linearity is a well-established notion in literature, which is slightly different from our notion (we don’t
allow subdivisions). For that reason we decided to change our previous terminology.
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It can be used to define a non-symmetric metric dR(X, Y ) = log(Λ(X, Y )) and its sym-
metrized version dR(X, Y ) + dR(Y,X) (see [7, 8, 9] for details) which induces the Gromov
topology. The group Out(Γ) acts by isometries on O(Γ).
Moreover, there is an effective way to compute Λ, via the so-called “sausage-lemma”

(see [7, Lemma 3.14],[8, Lemma 2.16] for the classical case, and [9, Theorem 9.10] for the
case of trees with non-trivial vertex-groups). We briefly recall here how it works.
Let X, Y be metric Γ-graphs. Any non-elliptic element γ ∈ π1(Γ) (i.e. an element not

in a vertex-group) is represented by an immersed loop γX in X and one γY in Y (see

Definition 2.13). The loop γX (or, rather, its lift to X̃) is usually called axis of γ in X (or

in X̃) and corresponds to the points of minimal translation of γ in X̃. The lengths LX(γX)

and LY (γY ) are then the minimal translation lengths of the element γ acting on X̃ and Ỹ ,
respectively. (So LX(γX) = LX(γ) and LY (γY )) = LY (γ).) We can define the stretching

factor of γ as LY (γ)/LX(γ). Then Λ(X̃, Ỹ ) is the minimum of the stretching factors of all
non-elliptic elements. (Recall we are using the tilde-underbar notation 2.11.)

Theorem 3.7 (Sausage Lemma [9, Theorem 9.10]). Let X, Y,∈ Ogr(Γ). The stretching
factor Λ(X, Y ) is realized by a loop γ ⊂ X having one of the following forms:

• Embedded simple loop O;
• embedded “infinity”-loop ∞;
• embedded barbel O— O;
• singly degenerate barbel •—O;
• doubly degenerate barbel •—•.

(the • stands for a non-free vertex.) Such loops are usually named “candidates”.

Remark 3.8. The stretching factor Λ(X, Y ) is defined on O(Γ) (or in the co-volume slice
O1(Γ)) and not in PO(Γ). However, we will mainly interested in computing factors of type
Λ(X,φX) (for [φ] ∈ Out(Γ)) and that factor is scale invariant.

Definition 3.9 (Gate structures). Let X be any graph. A turn is a pair of germs of edges
incident to the same vertex.
A gate structure on X is an equivalence relation on germs of edges, generated by (and

in fact equal to) some collection of turns. Equivalence classes of germs are called gates.
A turn is illegal if the two germs are in the same gate, it is legal otherwise. An immersed
path in X is legal if it has only legal turns.
We can also consider gate structures on trees, where we require that the gate structures

are equivariant, and hence descend to a gate structure on the quotient graph.
If X = (X1, . . . , Xk) ∈ O(Γ) we require the equivalence relation to be Hi-invariant on

each Xi.

Any straight map induces a gate structure as follows.

Definition 3.10 (Gate structure induced by f). Given X, Y ∈ O(Γ) and a straight map
f : X → Y , the gate structure induced by f , denoted by

∼f
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is defined by declaring equivalent two germs that have the same non-degenerate f -image.

Remark 3.11 (See [9]). Let X, Y ∈ O(Γ) and be f : X → Y a straight map. If v is a
non-free vertex of X and e is an edge incident to v, then e and ge are in different gates for
any id 6= g ∈ Stab(v). (If e is collapsed by f , then it is not equivalent to any other edge
by definition.)

Definition 3.12 (Optimal maps). Given X, Y ∈ O(Γ), a map f : X → Y is weakly
optimal if it is straight and λ(f) = Λ(X, Y ).
A map f : X → Y is optimal if each vertex of Xmax has at least two gates in Xmax with

respect to the gate structure induced by f .

Proposition 3.13. A straight map between two Γ-forests is weakly optimal if and only if
there is a periodic embedded legal line in the tension graph (i.e. a legal immersed loop in
the quotient graph). In particular, optimal maps are weakly optimal.

Proof. First note that the Lipschitz constant of any straight map f from X to Y provides
an upper bound for the stretching factor of a loop. Hence, for any loop, γ,

LY (γ)

LX(γ)
≤ Λ(X, Y ) ≤ Lip(f).

Let f : X → Y be our straight map. Suppose first that we have an embedded legal line,

L ⊆ X̃max. To say that L is periodic means that L is the axis of a hyperbolic element, g.
Moreover, the axis of g in Y is contained in f(L), and since L is legal, the axis is exactly
equal to f(L) (as f |L is an embedding). Hence the stretching factor for g is exactly the
Lipschitz constant for f . Thus,

Λ(X, Y ) ≤ Lip(f) =
LY (g)

LX(g)
≤ Λ(X, Y ).

Thus f is weakly optimal.
Conversely, suppose that f : X → Y is weakly optimal. By the Sausage Lemma 3.7, we

may find a loop, γ, whose stretching factor equals Λ(X, Y ). Then,

Λ(X, Y ) =
LY (γ)

LX(γ)
= Lip(f).

Let L be the axis of γ in X̃. If either (i) L is not legal or, (ii), L is not a subset of X̃max,

then LY (γ)
LX(γ)

< Lip(f). Thus L is our required line.

�

In general optimal maps are neither unique nor do they form a discrete set, even if
Xmax = X, as the following example shows. (If Xmax 6= X then one can use the freedom
given by the lengths of edges not in Xmax to produce examples.)

Example 3.14 (A continuous family of optimal maps with Xmax = X). Consider G = F2.
Let X be a graph with three edges e1, e2, e3 and two free vertices P,Q, as in Figure 1. Set
the length of e2 to be 2, name x the length of e1, and 1+ δ that of e3. The parameters x, δ
will be determined below. For any t ∈ [0, 1] consider the point Pt at distance 1 + t from
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P along e2, and the point Qt at distance 1 − t from P along e3. Pt divides e2 in oriented
segments at, ct. Qt divides e3 into bt, dt. Consider the straight map f : X → X defined as

P

Q

Pt Qt

at bt

ct dt

e1

e2 = atct
e3 = btdt
ft(e1) = āte1c̄tātbt
ft(e2) = ctd̄t
ft(e3) = ctd̄tb̄tatctd̄t
Length(at) = 1 + t
Length(bt) = 1− t
Length(ct) = 1− t
Length(dt) = δ + t
Length(e1) = x
Length(e2) = 2
Length(e3) = 1 + δ

Figure 1. A continuous family of optimal maps with Xmax = X. The red
dashed line is f(e1) and the blue line is f(e3) (f(e2) is not depicted).

in the figure, sending P to Pt and Q to Qt. If we collapse e3, and we homotope Pt to P
along a, this corresponds to the automorphism e1 7→ e1e2, e2 7→ e2.
The following direct calculation shows that if we set δ = 1+2

√
2 and x = 2

√
2, the map

ft is optimal for any t and all the three edges are stretched by the same amount.

The edges e1 and e2 are in different gates at P and e1 and e3 are in different gates at Q.
In order to check that ft is optimal it suffices to check that every edge is stretched by the
same amount.

λe1(ft) =
x+ 4

x
λe2(ft) =

1 + δ

2
λe3(ft) =

4 + 2δ

1 + δ
.

In particular they do not depend on t. If we set x = 2
√
2 and δ = 1 + 2

√
2 we get

λe1(ft) =
2
√
2 + 4

2
√
2

λe2(ft) =
2 + 2

√
2

2
λe3(ft) =

6 + 4
√
2

2 + 2
√
2

which are all equal to 1 +
√
2. �

However, given a straight map, we can choose an optimal map which is in some sense
the closest possible. Given two O-maps f, g : X → Y we define

d∞(f, g) = max
x∈X

dY (f(x), g(x)).
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Theorem 3.15 (Optimization). Let X, Y ∈ O(Γ) and let f : X → Y be a straight map.
There is a map4 weakopt(f) : X → Y which is weakly optimal and such that

d∞(f,weakopt(f)) ≤ vol(X)(λ(f)− Λ(X, Y ))

Moreover, for any weakly optimal map ϕ : X → Y and for any ε > 0 there is an optimal
map g : X → Y such that d∞(g, ϕ) < ε.

Proof of Theorem 3.15. By arguing component by component, we may assume without loss
of generality that Γ is connected, hence that we can work in O(G). For this proof it will be
convenient to work with both graphs and trees. (Recall the tilde-underbar Notation 2.11:
X = G\X, and similarly for vertices and edges). By Remark 3.11 a non-free vertex will
never be considered one-gated.
Let us concentrate on the first claim.
Let λ = Λ(X, Y ). Since straight maps are uniquely determined by their value on vertices,

we need only to define weakopt(f) (and g) on vertices of X. By Remark 3.4 the image
of non-free vertices is fixed. We define straight maps ft for t ∈ [0, λf − λ] by moving the
images of all one-gated vertices of Xmax(ft), in the direction given by the gate, so that

d

dt
λ(ft) = −1.

Let us be more precise on this point. We define a flow which is piecewise linear, depending
on the geometry of the tension graph at time t. The key remark to have in mind is that
if an edge is not in Xmax(f), then it remains in the complement of the tension graph for
small perturbations of f . Therefore, we can restrict our attention to the tension graph.
Suppose we are at time t. We inductively define sets of vertices and edges as follows:

• V0 is the set vertices of Xmax(ft) which are one-gated in Xmax(ft);
• E0 is the set of edges of Xmax(ft) incident to vertices in V0. We agree that such
edges contain the vertices in V0 but not others. (If an edge has both vertices in V0
then it contains both, otherwise it contains only one of its vertices.)

Having defined V0, . . . , Vi and E0, . . . , Ei , we define Vi+1 and Ei+1 as follows:

• Vi+1 is the set of one-gated vertices of Xmax(ft) \ ∪ij=0Ej;

• Ei+1 is the set of edges of Xmax(ft) \ ∪ii=0Ei incident to vertices in Vi+1. (As above
such edges contain vertices in Vi+1 but not others.)

We notice that since G\X is a finite G-graph, we have only finitely many sets Vi, say
V0, . . . , Vk (each one formed by finitely many G-orbits).

Lemma 3.16. If ft is not weakly optimal, then Xmax(ft) \ ∪ki=0Ei is a (possibly empty)
collection of vertices, that we name terminal vertices.

Proof. Note that no vertex in Xmax(ft) \ ∪ki=0Ei can be one-gated, hence any vertex in
Xmax(ft) \ ∪ki=0Ei is either isolated or has at least two gates in Xmax(ft) \ ∪ki=0Ei. Thus if

4We describe an algorithm to find the map weakopt(f), but the algorithm will depend on certain choices,
hence the map weakopt(f) may be not unique in general.
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there is an edge e in Xmax(ft) \ ∪ki=0Ei, the component of Xmax(ft) \ ∪ki=0Ei containing e
must also contain an immersed legal loop and so ft is weakly optimal. �

By convention we denote the set of terminal vertices by V∞.

Remark 3.17. Any e ∈ Ei has by definition at least one endpoint in Vi, and the other
endpoint is in some Vj with j ≥ i.

Our flow is defined by equivariantly moving the images ft(v) of vertices in Xmax(ft). We
need to define a direction and a speed s(v) ≥ 0 for any ft(v).
For i < ∞ each vertex in Vi has a preferred gate: the one that survives in Xmax(ft) \

∪i−1
j=0Ej (i.e. the unique gate of the map ft|Xmax(ft) such that some edge of that gate is in

Xmax(ft) \ ∪i−1
j=0Ej). That gate gives us the direction in which we move ft(v).

The idea is the following. Since a vertex in V0 is one-gated, we can define the flow so
as to reduce the Lipschitz constant for every edge in E0 (shrinking the image of each E0

edge). Similarly, every vertex in V1 is one gated in Xmax(ft) \ E0, so we define the flow
to reduce the Lipschitz constants of edges in E1 and so on. We have only to set speeds
properly.

Lemma 3.18. There exists G-equivariant speeds s(v) ≥ 0 such that if we move the images
of any v at speed s(v) in the direction of its preferred gate, then for any edge e ∈ Xmax(t)

d

dt
λe(ft) ≤ −1.

Moreover, for any i, and for any v ∈ Vi, either s(v) = 0 or there is an edge e ∈ Ei incident
to v such that

d

dt
λe(ft) = −1.

Proof. We start by choosing a total order on the set orbits of vertices of Xmax(ft) (i.e. on
the set of vertices of Xmax(ft)) with the only requirement that orbits of vertices in Vi are
bigger than those in Vj whenever i > j. This define a partial order on vertices by declaring
w > v when w > v. Now, we define speeds recursively starting from the the biggest vertex
and going down through the order.
The speed of terminal vertices is set to zero. Let v be a vertex of Xmax(ft) and suppose

that we already defined the speed s(w) for all w > v.
The vertex v belongs to some set Vi. For any edge e ∈ Ei emanating from v let ue be

the other endpoint of of e, and define a sign σe(ue) = ±1 as follows: σe(ue) = −1 if the
germ of e at ue is in the preferred gate of ue, and σe(ue) = 1 otherwise. (So, for example,
σe(ue) = 1 if ue is terminal, and σe(ue) = −1 if v = ue, or if ue ∈ Vi.)
With this notation, if we move f(v) and f(ue) in the direction given by their gates, and

at speeds s(v) and s(ue) respectively, then the derivative of λe(ft) is given by

−
(
s(v)− σe(ue)s(ue)

LX(e)

)
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If ue > v we already defined its speed. We set

s(v) = max{0,max
ue>v

{LX(e) + σe(ue)s(ue)},max
ue=v

LX(e)

2
}

where the maxima are taken over all edges e ∈ Ei emanating from v. Note that there
may exist some such edge with ue < v. (By Remark 3.17 in this case ue ∈ Vi (same i as v),
σe(ue) = −1 and the derivative of λe will be settled later, when defining the speed of ue.)
With the speeds defined in this way, we are sure that for any edge e we have d/dtλe(ft) ≤

−1 and, if s(v) 6= 0, then the edges that realize the above maximum satisfy d/dtλe(ft) =
−1. �

The first consequence of this lemma is that if we start moving then λ(ft) decreases.
Locally in t, when we start moving, the tension graph may lose some edges. However, the
above lemma ensures that any vertex v with s(v) 6= 0 is incident to an edge e which is
maximally stretched and d/dtλe = −1. Hence such an edge remains in the tension graph
when we start moving. Since d/dtλe ≤ −1 for any edge in the tension graph, it follows
that when we start moving, the tension graph stabilizes. So our flow is well defined in
[t, t+ ǫ] for some ǫ > 0. If at a time t1 > t some edge that was not previously in Xmax(ft)
becomes maximally stretched, then we recompute speeds and we start again. A priori we
may have to recompute speeds infinitely many times t < t1 < t2 < . . . but the control
on d/dtλ(ft) ensures that sup ti = T ≤ λf − λ. Since the speeds, s(v), are uniformly
bounded (one can take the number of edges in G\X multiplied by the maximum length
of an edge, as an upper bound) the flow has a limit for t → T . More precisely, for any
monotone sequence tn → T as above, and any vertex v, the sequence ftn(v) must be a
Cauchy sequence and hence convergent, since all our trees are complete. Thus we can
define fT (v) = limn→∞ ftn(v) for each vertex. This is enough to define a straight map, and
then we can restart our flow from T . Therefore the set of times s ∈ [0, λf − λ] for which
the flow is well-defined for t ∈ [0, s] is closed and open and thus is the whole [0, λf − λ].

With these speeds, we have d/dt(λ(ft)) = −1. Therefore for t = λ(f) − λ, and not
before, we have λ(ft) = λ hence ft is weakly optimal. We define

weakopt(f) = fλ(f)−λ.

We prove now the claimed estimate on d∞(f, ft). The d∞-distance between straight
maps is bounded by the d∞-distance of their restriction to vertices.
We first estimate the speed at which the images of vertices move. Let S be the maximum

speed of vertices, i.e. S = maxv |s(v)|. Let v be a fastest vertex. Since it moves, it belongs
to Vs for some s <∞. Let v = v1, v2 . . . , vm be a maximal sequence of vertices such that:

(1) s(vi) > 0 for i < m;
(2) there is an edge ei between vi and vi+1 such that ei ∈ Ea if vi ∈ Va;
(3) σei(vi+1) = 1 for i+ 1 < m;
(4) d/dt(λei(ft)) = −1.

By the above lemma, we have that either s(vm) = 0 or σem−1
(vm) = −1. Moreover, by

(2)−(3) and Remark 3.17 we have that vi < vi+1 and therefore the edges ei are all distinct.
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Let γ be the path obtained by concatenating the ei’s. By (2)− (3), γ is a legal path in
the tension graph. So let

L =
∑

i

LX(ei) = LX(γ) Lt =
∑

i

LY (ft(ei)) = LY (ft(γ)).

Since the ei’s are in the tension graph and by condition (4) we have

Lt = λ(ft)L
d

dt
Lt = −L

On the other hand − d
dt
Lt ≥ S because by (3) the contributions of the speeds of vi do

not count for i = 2, . . . ,m − 1 and f(vm) either stay or moves towards f(v1). It follows
that

S ≤ L ≤ vol(X).

It follows that for any vertex v we have

dY (f(v), ft(v)) ≤
∫ t

0

∣∣∣∣
d

ds
fs(w)

∣∣∣∣ ds ≤
∫ t

0

S = tS ≤ t vol(X)

hence
d∞(weakopt(f), f)) = d∞(fλ(f)−λ, f) ≤ (λ(f)− λ) vol(X).

We prove the last claim of Theorem 3.15. If ϕ is optimal then we are done. Otherwise,
there is some one-gated vertex inXmax. We start moving the one-gated vertices as described
above, by an arbitrarily small amount. Let g be the map obtained, clearly we can make
d∞(g, ϕ) arbitrarily small. Since ϕ is optimal, we must have λ(g) = λ(ϕ). It follows that
there is a core sub graph of Xmax which survives the moving. In particular, every vertex
of Xmax(g) is at least two-gated, hence g is optimal. �

Definition 3.19. We denote by opt(f) any optimal map obtained from weakopt(f) as
described in the proof of Theorem 3.15.

We want to stress the fact that Theorem 3.15 holds in a general context for X, Y metric
one-dimensional complexes where the notions of straight and optimal maps are generalized
in the obvious way.

Proposition 3.20. Let A,B be metric one-dimensional simplicial complexes and let f :
A→ B a straight map. Then there is a weakly optimal map weakopt(f) which is homotopic
to f relatively to ∂A, such that

d∞(f,weakopt(f)) ≤ vol(A)(Lip(f)− Lip(weakopt(f))).

Moreover, for any ε > 0, there is an optimal map g : A → B homotopic to f relatively to
∂A such that d∞(g,weakopt(f)) < ε.

The proof is basically the same as that of Theorem 3.15 and it is left to the reader. (We
do not use this generalization in what follows, and simply register the result as it may be
interesting to the reader.)
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Let X, Y ∈ O(Γ) and let f : X → Y be an optimal map. Let v be a vertex of X
having an f -illegal turn τ = (e1, e2). Since f(e1) and f(e2) share an initial segment, we
can identify an initial segment of e1 and e2. We obtain a new element X ′ ∈ O(Γ), with an
induced map, still denoted by f , from X ′ to Y . This is a particular case of Stallings fold
([24]). We refer to [9] for further details.

Definition 3.21. We call the above operation a simple fold directed by f . By a
folding path directed by f we mean a sequence (X0, f0), . . . , (Xn, fn), where f0 = f , and
(Xi+1, fi+i) is obtained by a simple fold directed by fi.

We finish this section by proving the existence of optimal maps with an additional
property, that will be used in the sequel.

Definition 3.22 (Minimal optimal maps). Let X, Y ∈ O(Γ). An optimal map f : X → Y
is minimal if its tension graph consists of the union of axes of maximally stretched elements
it contains. In other words, if any edge e ∈ Xmax is contained in the axis of some element
in π1(Xmax) which is maximally stretched by f .

Note that not all optimal maps are minimal, as the following illustrates.

Example 3.23. Let X be the graph consisting of two barbels joined by an edge, as in
Figure 2. All edges have length one except the two lower loops that have length two.

1 1
1 1

1

1 1

2 2

x y

f(x) f(y)

Figure 2. A non-minimal optimal map. The dots f(x) and f(y) are not
vertices, all other crossings are. The red line is the image of the left “bar-
edge” of the top barbell.

Let f : X → X be the straight map that exchanges the the top and bottom barbells
(preserving left and right) and maps x to the middle point of the lower left loop, and y to
the middle point of the lower right loop (see the figure).
The restriction of f to the lower barbell is 1-Lipschitz (each loop is shrunk and the bar

is the same length as its image), while the stretching factor of all top edges is two. Hence
the tension graph Xmax is the top barbel. The map is optimal because all vertices of Xmax

are two gated, but the “bar-edges” of the top barbel are not in the axis of any maximally
stretched loop. This is because the only legal loops in Xmax are the two lateral loops of
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the barbell. Clearly this map can be homotoped to a map with smaller tension graph. As
the next theorem shows this is always the case for non-minimal optimal maps. �

Theorem 3.24. Let X, Y ∈ O(Γ) and let f : X → Y be an optimal map. If f locally min-
imizes the tension graph amongst all optimal maps X → Y , then f is minimal. Moreover,
given g : X → Y optimal, for any ε > 0 there is a minimal optimal map f : X → Y with
d∞(g, f) < ε.

Proof. The first claim clearly implies the second, because the tension graph is combina-
torially finite, hence the set of possible tension graphs is finite and we can always locally
minimize it.
We will prove the contrapositive, that if f is not minimal then we can decrease the

tension graph by perturbations as small as we want. The spirit is similar to that of the
proof of Theorem 3.15.
As above, connectedness plays no role an we can work in O(G) without loss of generality.

We will work with graphs rather than trees. For the ease of the reader we omit the
underlines, and we declare that X, Y are G-graphs. Also we choose an orientation on
edges, using the classical bar-notation to indicate the inverse.
At the level of graphs, the non-minimality of f translates to the fact that there is an

edge α in the tension graph which is not part of any legal loop in Xmax.
Let x be the terminal vertex of the oriented edge α. We say that a path starting at

x is α-legal, if it is a legal path in the tension graph, whose initial edge, e, is not in the
same gate as α. We say a loop at x is α-legal if, considered as paths, both the loop and
its inverse are α-legal.
If the terminal vertex of α admits an α-legal loop and the initial point of α also admits an

α-legal loop, then we can form the concatenation of these loops with α to get a legal loop
in the tension graph crossing α and contradicting our hypothesis. (Note that an α-legal
loop need not be legal as a loop; that is, the lift of the loop to the tree need not be a legal
line. We simply require that the loops can be concatenated in this way with α to form a
legal loop.)
Hence, by reversing the orientation of α if necessary, we may assume that the endpoint

x (rather than the initial point) admits no α-legal loops.
We will show that it is possible to move the f -image of x a small amount (and possibly

some other vertices) so that we obtain an optimal map with smaller tension graph. Let
ε be small enough so that if an edge is not in Xmax, than it remains outside the tension
graph for any perturbation of f by less than ε.
From now on, we restrict ourselves to the tension graph. We say that a vertex v is

legally seen from x if there is an α-legal path γ from x to v. Note that in this case v is free.
Indeed, otherwise the path γ followed by its inverse can in fact be turned into an α-legal

loop thanks to the action of the vertex group (γγ has a legal “lift” to X̃ defined by using
the action of the stabilizer of ṽ). Since v is free, we can move f(v).
We want to chose a direction to move the images of vertices α-legally seen from x. First,

the direction we choose for f(x) is given by the gate of α. That is, we move f(x) so as to
reduce the length of f(α). For any vertex, v, α-legally seen from x, via a path γ, we move
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f(v) backwards via the last gate of γ. That is, we move f(v) so as to retrace γ. Note that
this direction depends only on v and not on the choice of γ. This is because, were there to
be another α-legal path from x to v, γ′, then the concatenation γγ′ would define an α-legal
loop at x unless the terminal edges of γ, γ′ lie in the same gate. Hence directions are well
defined.
Observe that if the initial point x0 of α is legally seen from x, and γ is an α-legal path

from x to x0, then the last edge of γ must be in the same gate as α, because otherwise the
concatenation of γ and α would form a legal loop containing α. It follows that, whether
x0 can be legally seen from x or not, in either case the length of f(α) decreases when we
move x and possibly x0.
Next we move by ε all the images of vertices legally seen from x, in the directions given

above. Consider an edge, β (not equal to α or its inverse) in the tension graph. If neither
vertex of β is α-legally seen from x, then the image of β is unchanged and it remains in
the tension graph. Otherwise, suppose that the initial vertex of β is α-legally seen from x,
via a path γ, whose terminal edge is η. If η and β are in different gates, then the terminal
vertex of β is also α-legally seen from x and both vertices are moved the same amount,
such that the length of the image of β remains unchanged. If, conversely, η and β are in
the same gate then either the length of the image of β is reduced (if the terminal vertex is
not α-legally seen) or it remains unchanged (if it is. For instance if η = β.) Moreover, by
our above observation, the length of the image of α must strictly decrease. In particular,
α itself is no longer in the tension graph.
On the other hand, since the tension graph has no one-gated vertices, there is at least

one α-legal path emanating from x, an so some part of the tension graph survives. Since f
is optimal, our assumption on ε implies that the new map is optimal and it has a tension
graph strictly smaller than f . �

4. Displacement function and train track maps for automorphisms

For the rest of the section we fix G,G and Γ = ⊔iΓi as in Definitions2.6 and 2.20. (Recall
that CVn is a particular case of O(Γ).) If not specified otherwise, φ = (σ, φ1, . . . , φk) will
be an element of Aut(Γ) - recall Definition 2.37.
This section is devoted to the study of train track maps, and related objects, from a

metric point of view. In particular, we prove that the points which are minimally displaced
by φ are exactly those admitting a partial train track map for φ, see Definition 4.11. (In
the irreducible case, this amounts to showing that points of minimal displacement are
precisely train track maps, in the usual sense. We broaden the class of maps to allow for
the reducible case as well.)
The spirit of our analysis is that of [3, 9]. We will recall the main facts proved in [9]

for irreducible elements of Out(G), and generalize such facts to the case of Out(Γ). Con-
nectedness does not really play a crucial role, and most of the arguments of [9] transfer
without requiring embellishment. The main contribution of this section is to generalize
from irreducible to reducible automorphisms.
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Definition 4.1 (Maps representing φ). Let X ∈ O(Γ) and φ = (σ, φ1, . . . , φk) be an
automorphism. We say that a (straight) map f : X → X represents φ if f maps Xi to
Xσ(i), by a map we denote by fi which is equivariant in the following sense:

For each i = 1 . . . , k the map

fi : Xi → Xσ(i),

is equivariant with respect to the isomorphism φi : Hi → Hσ(i). This means that for
each x ∈ Xi and each h ∈ Hi we have,

fi(h · x) = φi(h) · fi(x)
.
We also require that each fi is a is a straight map. We say that f is optimal if each fi

is optimal.

If X is a Γ-graph, then a map f : X → X represents φ if it has a lift f̃ : X̃ → X̃
representing φ.

Note that a map f : X → X representing φ can be viewed as an O-map f : X → φX.

Definition 4.2 (Displacements). For any [φ] ∈ Out(Γ) we define the function

λφ : O(Γ) → R by λφ(X) = Λ(X,φX).

If ∆ is a simplex of O(Γ) we define

λφ(∆) = inf
X∈∆

λφ(X)

If there is no ambiguity we write simply λ instead of λφ. Finally, we set

λ(φ) = inf
X∈O(Γ)

λφ(X)

Definition 4.3 (Minimally displaced points). For any automorphism φ we define sets:

Min(φ) = {X ∈ O(Γ) : λ(X) = λ(φ)}

LocMin(φ) = {X ∈ O(Γ) : ∃U ∋ X open s.t. ∀Y ∈ U λ(X) ≤ λ(Y )}
Remark 4.4 (Fold-invariance of Min(φ)). A fold directed by a weakly optimal map does
not increase λ. This is because the fold naturally induces a map with the same Lipschitz
constant, and it is easy to see that a legal loop in the tension graph for the original map
becomes a legal loop for the folded map in the tension graph. See [9] for more details.
In particular, Min(φ) is invariant by folds directed by weakly optimal maps.

Definition 4.5 (Reducibility). An automorphism φ is called reducible if there is an X ∈
O(Γ) and f : X → X representing φ having a proper, non-trivial, f -invariant Γ-sub-forest
(See Definition 2.12).
We say φ is irreducible if it is not reducible.
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Remark 4.6. In the connected case, if G = Fn then this definition coincides with the
usual definition of irreducibility. For irreducible automorphisms we have Min(φ) 6= ∅, but
the converse is not true in general. (See [9] for more details.)

Remark 4.7. If φ is irreducible, then any closed simplex has a min-point for λ. (See for
instance [9, Section 8]. See also Proposition 5.6 below.) In [3, 9] automorphisms so that
Min(φ) 6= ∅ and λ > 1 are called hyperbolic.

Definition 4.8 (Train track between trees). Let ∼ be a gate structure on a (not necessarily
connected) tree X. A map f : X → X is a train track map w.r.t. ∼ if

(1) any vertex has at least two gates w.r.t. ∼;
(2) f maps edges to legal paths (in particular, f does not collapse edges);
(3) for any vertex v, if f(v) is a vertex, then f maps inequivalent germs at v to in-

equivalent germs at f(v).

We already defined the gate structure ∼f induced by a straight map (Definition 3.10).

Definition 4.9 (Gate structure 〈∼fk〉). Let X be a (not necessarily connected) tree, and
let f : X → X be a map whose components are straight. We define the gate structure
〈∼fk〉 as the equivalence relation on germs generated by all ∼fk , k ∈ N.

Lemma 4.10. Let φ ∈ Aut(Γ), X ∈ O(Γ) and ∼ be a gate structure on X. Let f : X → X
be a straight map representing φ. If f : X → X is a train track map w.r.t. ∼, then relation
∼ is stronger than (i.e. it contains) 〈∼fk〉. In particular if f is a train track map w.r.t.
some ∼ then it is a train track map w.r.t 〈∼fk〉.
See [9, Section 8] for a proof (where it is proved in the connected case, but connectedness

plays no role).
Now we give a definition of partial train track map representing an automorphism.

Our definition is given at once for both reducible and irreducible automorphisms. In
the irreducible case coincides with the standard one. For reducible automorphisms there
already exist notions of relative and absolute train tracks (see [5]). Our notion is different
from that of relative train tracks; absolute train tracks are train tracks in our setting but
not vice versa.5

The main motivation for this new definition is that it well-behaves with respect to the
displacement function, as we will see that it characterise minimally displaced points.

Definition 4.11 (Partial train track maps for automorphisms). Let [φ] ∈ Out(Γ). Let
X ∈ O(Γ) and let f : X → X be a straight map representing φ. Then we say that f is a

• partial train track map with one-step gates if there is a (not necessarily
proper) f -invariant Γ-sub-forest A ⊆ Xmax(f) such that
(1) f |A is a train track map w.r.t. ∼f , and
(2) A is homotopically non-trivial; that is, A contains the axis of a hyperbolic

element.

5Our present definition of partial train track map coincides with the notion of optimal train track map
given in [9] for irreducible automorphisms in the connected case.
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• partial train track map if there is a (not necessarily proper) f -invariant, homo-
topically non-trivial, G-sub-forest A ⊆ Xmax(f) such that f |A is a train track map
w.r.t. 〈∼fk〉.

At level of graphs, a map X → X is said a partial train track if it is the projection of a

partial train track map X̃ → X̃ (that is, if there is a non-trivial invariant sub-graph of the
tension graph so that f restricted to that graph is a train-track map). We stress the fact
that no requirements are made outside the tension graph.

Here some more remarks are needed, since the metric theory of train tracks maps, first
introduced in [5], does not have a completely standard treatment. That is, train tracks
can be defined topologically, from a simplicial viewpoint, and a metric is subsequently
introduced. Our point of view is to always have a metric, and deduce the topological
properties from certain minimizing conditions. Additionally, it should be noted that the
standard definition requires train track maps (or representatives in general) to send vertices
to vertices, whereas we do not. While this condition is extremely useful, and can often be
recovered, our arguments are based on continuous deformations where it is more natural
to relax this condition. These are sometimes called simplicial train-tracks and are useful
for computation purposes. This is not a big issue as the closure of any simplex containing
a partial train track also contains a simplicial one. (See [9].)
In the case that φ is irreducible there is not much difference between topological and

metric train track maps. Indeed if f : X → X is a topological train track map repre-
senting φ, then one can rescale the edge-lengths of X so that f is a train track map for
Definition 4.11. And the same holds true if f has no proper invariant sub-graphs. This
is because train track maps do not collapse edges, hence edge-lengths can be adjusted so
that every edge is stretched by the same amount. In particular, the following two results
are proved in [9] for irreducible automorphisms and Γ connected. The proofs for general
automorphisms are essentially the same (details are left to the reader).

Lemma 4.12. Let [φ] ∈ Out(Γ), X ∈ O(Γ), and f : X → X be a straight map representing

φ. Then f is partial train track if and only if there is an embedded periodic line L in X̃max

such that fk(L) ⊆ X̃max and fk|L is injective for all k ∈ N (here A = ∪kfk(L) is the
invariant sub-forest). In particular if f is partial train track then

(1) fk is a partial train track;
(2) Lip(f) = Λ(X,φX) (hence f is weakly optimal);
(3) Lip(f)k = Lip(fk) = Λ(X,φkX).

Corollary 4.13. Let φ ∈ Aut(Γ), X ∈ O(Γ), and f : X → X be a map representing

φ. Suppose that there is an embedded periodic line L in X̃ such that fk|L is injective for

all k ∈ N. Suppose moreover that ∪kfk(L) = X̃. Then there is X ′ obtained by rescaling
edge-lengths of X so that Str(f) : X ′ → X ′ is a train track map.

In general, if ∪kfk(L) is just an f -invariant subtree Y of X, we can adjust edge lengths
so that every edge of Y is stretched the same, but we cannot guarantee a priori that
Y ⊂ Xmax.
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Definition 4.14 (Train track sets). For any [φ] ∈ Out(Γ) we define:

TT(φ) = {X ∈ O(Γ) : ∃f : X → X partial train track}
TT0(φ) = {X ∈ O(Γ) : ∃f : X → X partial train track with one-step gates}

If we need to specify the map we write (X, f) ∈ TT(φ) or (X, f) ∈ TT0(φ).
6

Theorem 4.15. Let [φ] ∈ Out(Γ). Then

TT0(φ) = TT(φ) = Min(φ) = LocMin(φ)

where the closure is made with respect to the simplicial topology.

Proof. If φ is irreducible and Γ connected, the proof is given in [9] and goes through the
following steps:

(1) TT0(φ) ⊆ TT(φ) ⊆ Min(φ) ⊆ LocMin(φ).
(2) If X locally minimizes λφ in ∆X , and f : X → X is an optimal map representing

φ then Xmax contains a homotopically non-trivial f -invariant sub-forest, A.
(3) TT0(φ) is dense in LocMin(φ).
(4) TT(φ) is closed.

We now adapt the proof so that it works also for φ reducible and general Γ. Clearly
Min(φ) ⊆ LocMin(φ). By Lemma 4.10 TT0(φ) ⊆ TT(φ). We now show that TT(φ) ⊆
Min(φ), arguing by contradiction. If X ∈ TT(φ) and λφ(X) > λ(φ) then there is Y ∈ O(Γ)
such that λφ(Y ) < λφ(X). By Lemma 4.12 Λ(X,φkX) = λφ(X)k but then

λφ(X)k = Λ(X,φkX) ≤ Λ(X, Y )Λ(Y, φkY )Λ(φkY, φkX)

= Λ(X, Y )Λ(Y, φkY )Λ(φkY, φkX) ≤ Λ(X, Y )Λ(Y,X)λφ(Y )k

thus (
λφ(X)

λφ(Y )
)k is bounded for any k, which is impossible if

λφ(X)

λφ(Y )
> 1.

Thus we have
TT0(φ) ⊆ TT(φ) ⊆ Min(φ) ⊆ LocMin(φ).

Lemma 4.16. Suppose (X, f) locally minimizes λφ in ∆X . Then there is a hmotopically
non-trivial A ⊆ Xmax which is f -invariant.

Proof. For every ǫ > 0, consider the ǫ-neighbourhood of X in ∆X . For each point in
this neighbourhood, f induces a map on it via rescaling. We optimize that map by using
Theorem 3.15, and consider the tension graph, Aǫ with respect to that optimal map. By
abuse of notation, we think of Aǫ as a subgraph of X (since all we have done is rescale
edges). Aǫ is homotopically non-trivial because of Proposition 3.13.
Now for each (sufficiently small) ǫ, choose a particular Xǫ in the ǫ-neighbourhood of X,

such that

• Xǫ minimizes λφ in the ǫ-neighbourhood of X in ∆X (we allow that Xǫ could be X
and in particular, we have that λφ(X) = λφ(Xǫ)), and

6We remark that, since in the irreducible case our present definition of train track map corresponds to
that of optimal train track map of [9], the two definitions of TT and TT0 coincide with those given in [9].
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• the tension graph, Aǫ is smallest, with respect to inclusion, amongest all possible
choices, subject to the previous condition.

In particular, since there are only finitely many subgraphs, by taking sufficiently small
ǫ we may assume that A := Aǫ does not depend on ǫ.
Let gǫ denote the optimal map on Xǫ (obtained as above) and fǫ denote the map on X

obtained by rescaling gǫ. (That is, gǫ is simply the optimization — via Theorem 3.15 —
of f , when thought of as a map on Xǫ, and fǫ is gǫ, thought of as a map on X.)
Then it is clear, by Theorem 3.15, that limǫ→0 d∞(fǫ, f) = 0 and hence fǫ → f , uniformly.
If Aǫ (thought of as a subgraph of Xǫ) contains an edge e whose image (under gǫ) is not

in Aǫ, then by shrinking (the orbit of) such an edge, either we reduce λφ(X) = λφ(Xǫ) —
which is impossible — or we reduce the tension graph — which is also impossible. Thus
A = Aǫ is gǫ and hence fǫ invariant.
But now the fact that fǫ → f , implies that A is f -invariant. Moreoever, by Theorem 3.15,

for sufficiently small ǫ, Aǫ — hence A — will be a subgraph of Xmax since d∞(gε, f) → 0.
�

Lemma 4.17. LocMin(φ) ⊆ TT0(φ). More precisely, let X ∈ O(Γ) and fix f : X → X an
optimal map representing φ. Suppose X has an open neighbourhood U such that for any
Y ∈ U obtained from X by a sequence of simple folds directed by f , we have λφ(X) ≤ λφ(Y ).
Then there is a sequence Yn ∈ U , all contained in the same simplex, with Yn → X and

Ỹn ∈ TT0, each equipped with a partial train track map, fn such that fn → f uniformly.

Proof. The proof is basically the same as in [9]. When Y obtained from X by folds
directed by f , then we let fY denote the induced optimal map. First we remark that if Y
is obtained from X by folds directed by f then λφ(Y ) ≤ λφ(X) and by minimality of X
we have λφ(Y ) = λφ(X). We consider the gate structure induced by fY . We call a vertex
of Ymax foldable if it has at least two edges of Ymax in the same gate.
Locally, by using arbitrarily small folds in Xmax, directed by f , we find Y ∈ U such that

(1) λφ(Y ) = λφ(X);
(2) the simplex ∆ = ∆Y maximizes the dimension among simplices reachable from X

via folds directed by f ;
(3) Y minimizes Ymax among points of ∆ satisfying (1);
(4) Y maximizes the number of orbit of foldable vertices of Ymax among points of ∆

satisfying (1), (3).

Let A ⊆ Ymax be a homotopically non-trivial fY -invariant sub-forest given by Lemma 4.16.
We claim that fY |A is a train track map with one-step gates. Indeed, otherwise there is
either an edge e or a legal turn τ in A having illegal image. Let v be the vertex of τ .

• If fY (e) contains an illegal turn η then by folding (the orbit of) it a little, we would
reduce the tension graph, contradicting (3). (Note that η ⊂ Ymax because A ⊆ Ymax

is fY -invariant, thus by folding η we do not change simplex of O(Γ) thanks to (2).)
• If fY (τ) is an illegal turn η then we fold it a little. Either Ymax becomes one-gated at
v, and in this case the optimization process reduces the tension graph, contradicting
(3), or v was not foldable at Y and becomes foldable, thus contradicting (4).
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Finally, note that given such an Y , the sequence Yn can be chosen in ∆Y . �

In particular, since Min(φ) is clearly closed, we now have:

LocMin(φ) ⊆ TT0(φ) ⊆ TT(φ) ⊆ Min(φ) = Min(φ) ⊆ LocMin(φ)

hence all inclusions are equalities.

Lemma 4.18. TT(φ) = TT(φ).

Proof. Let X ∈ TT(φ) = Min(φ). Let f : X → X be an optimal map representing φ. By
Lemma 4.17 there is Yn → X and fn → f so that (Yn, fn) ∈ TT0(φ). By Lemma 4.12
there is an embedded periodic line Ln in (Yn)max such that fkn(Ln) ⊂ (Yn)max is embedded
for all k ∈ N .
We will argue that, up to taking subsequences, there is a single embedded periodic line

L which is fn-legal for all n. (More precisely, there is a single hyperbolic element whose
axis in each Yn is both legal and contained within the tension graph of Yn. We can think
of this as a single topological line, since the Yn all belong to the same simplex.)
First of all, we may assume that each fn has the same (topological) tension graph. Next

we claim that, for some n, the line Ln is fm-legal for infinitely many m.
Suppose this is not the case. Then for each n, there is a turn crossed by Ln which is

fm-illegal for infinitely many m; this is because each Ln only crosses finitely many orbits
of turns, so one of these orbits must be illegal for infinitely many m (recall that gate
structures are equivariant) since otherwise Ln would be fm-legal for infinitely many m.
Starting with Y1, we can now define a subsequence Yn as follows: Let τ1 be a turn in L1

which is illegal for infinitely many m. Now choose the first Y2 where τ1 is f2-illegal and
let τ2 be a turn crossed by L2 such that there are infinitely many m where both τ1 and τ2
are fm-illegal. (If there were no such turn, then amongst the infinitely many Ym where τ1
is illegal, we would get infinitely many m in which L2 is fm-legal and we would be done.)
We may continue in this fashion to obtain (after renumbering) a sequence Yn such that τn
is a turn crossed by Ln (hence is fn-legal) and all the turns τ1, . . . , τn−1 are fn-illegal.
By the equivariance of the fn, the τn must all be in distinct orbits. If there were infinitely

many of the τn we should be able to find a non-free vertex, v, and two edges e1, e2 so that
the turn defined by e1, e2 is in the same orbit as some τr (for some r) and the turn defined
by ge1, he2 is in the orbit of some τs (for some s), where g, h are group elements stabilising
v and g 6= h. (That is, if we project to the quotient graph, then τr and τs look the same.
The fact that they are in different orbits now implies that they are based at a non-free
vertex as described.)
But now for some (almost all) Ym, both τr and τs are fm-illegal, which contradicts

the fact that fm is equivariant and the action on the edge set is free. Therefore the
process of choosing our subsequence must terminate at some point, at which time we will
have produced a single embedded periodic line L which is fm-legal for infinitely many m.
Without loss of generality, we may assume that L is fn-legal for all n.
Since fn → f and the maps are all straight, L ⊂ Xmax and fk(L) ⊂ Xmax. Moreover,

if fk were not injective on L for some k, then we could find ε > 0 and points p, q with
dX(p, q) = ε and fk(p) = fk(q). Now the fact that fn → f would contradict the fact that
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fkn |L is a homothety of ratio λ(φ). Thus fk|L is embedded for any k, f is a partial train
track map and so X ∈ TT(φ). �

This completes the proof of Theorem 4.15. �

We end this section by proving a lemma which is basically a rephrasing of Lemma 4.17
with a language which will be more usable. (For example we will use it in forthcoming
part II of the present paper.)

Definition 4.19 (Exit points). Let [φ] ∈ Out(Γ). A point X ∈ O(Γ) is called an exit point
of ∆X if for any neighbourhood U of X in O(Γ), there exists an optimal map f : X → X,
representing φ, a point XE ∈ U , and a folding path (Definition 3.21) directed by f ,
X = X0, X1, . . . , Xm = XE in U , such that ∆Xi

is finitary face of ∆Xi+1
, ∆X is a proper

face of ∆XE
, and such that

λφ(XE) < λφ(X)

(strict inequality).

Remark. The idea is that an exit point is one which allows one to decrease the displace-
ment by arbitrarily small folds. The complication is that a simple fold may not be sufficient,
so we allow folding paths.
The principal application of this is as below; when X does not admit a partial train

track representing φ, but is minimally displaced within its simplex, then it will be an exit
point. This idea of folding to decrease the displacement goes back to [5].

Lemma 4.20. Let [φ] ∈ Out(Γ) and X ∈ O(Γ) such that λφ(X) is a local minimum for
λφ in ∆X . Suppose X /∈ TT(φ).
Then, for any open neighbourhood U of X in O(Γ), there exists an optimal map f :

X → X, representing φ, points Z,X ′ ∈ U , and a folding path, X = X0, . . . , Xm =
Z,Xm+1, . . . , Xn = X ′, directed by f and such that:

• X0, . . . , Xm ∈ U ∩∆X ,
• λφ(Z) = λφ(X),
• ∆X is a proper face of ∆X′,
• λφ(X ′) < λφ(X).

(See Figure 3.)
In particular X is an exit point of ∆X .
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Figure 3. Graphical statement of Lemma 4.20
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Proof. Let’s prove the first claim. Since X /∈ TT(φ), by Theorem 4.15 there is a neigh-
bourhood of X in ∆X which is contained in the complement of TT0(φ). Without loss
generality we may assume that U ∩∆X is contained in such neighbourhood.
Let f : X → X be an optimal map representing φ. If there is a non-trivalent foldable

vertex in Xmax then we set Z = X and we are done. Otherwise, consider Z ∈ U ∩ ∆X

obtained from X by a fold directed by f (we still denote by f : Z → Z the map induced
by f). We have λ(Z) ≤ λ(X). Since λ(X) is a local minimum in ∆X , we must have
λ(Z) = λ(X). Let A ⊂ Zmax be an f -invariant sub-graph given by Lemma 4.16. Since
Z /∈ TT0(φ), the restriction f |A is not a train-track with one-step gates. That is, f : Z → Z
is not a partial train track map with one-step gates.
It follows that by using folds directed by optimal maps we can either

a) reduce the tension graph; or
b) increase the number of foldable vertices; or
c) create a non-trivalent foldable vertex.

So far Z is generic. We choose Z ∈ U ∩∆X so that, in order:

(1) it locally minimizes the tension graph;
(2) it locally maximizes the number of foldable vertices among points satisfying (1).

For such a Z the only possibility that remains in the above list of alternatives is c),
which therefore admits a fold directed by an optimal map into a simplex of strictly larger
dimension.
We continue this process inductively, and we get the result due to the fact that the

simplicial dimension of O(Γ) is bounded.
�

5. Behaviour of λ at bordification points

For the rest of the section we fix G,G and Γ = ⊔iΓi as in Definitions2.6 and 2.20. We
also fix φ ∈ Aut(Γ) and if there is no ambiguity we understand that

λ = λφ.

In this section we discuss the behaviour of λ at boundary points of outer space, that is to
say, when we reach points in ∂∞O(Γ). As above, we remind the reader that the results of
this section hold true in particular for CVn and its simplicial bordification.
We will see that the function λ is not continuous and we will provide conditions that

assure continuity along particular sequences. We will also focus on the behaviour of λ on
horoballs. In this section we will often work with Γ-graphs. We recall that we are denoting
by X the Γ-graph corresponding to X ∈ O(Γ).
Points near the boundary at infinity have some sub-graph that is almost collapsed. This

is usually referred to as the “thin” part of outer space. We introduce now more quantified
notions of “thinness”.

Definition 5.1 (ε-thinness). Let ε > 0. A point X ∈ O(Γ) is ε-thin if there is a nontrivial
loop γ in X such that LX(γ) < ε vol(X).
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Definition 5.2 ((M, ε)-collapsed points). Let M, ε > 0. A point X ∈ O(Γ) is (M, ε)-
collapsed if there is a non-trivial loop γ in X such that LX(γ) < ε vol(X) and for any other
loop η such that LX(η) ≥ ε vol(X) we have LX(η) > M vol(X).

Definition 5.3 (ε-thin part). Let ε > 0. For any X ∈ O(Γ) we define Xε the ε-thin part of
X as the sub-forest formed by the union of the axes of elements γ with LX(γ) < ε vol(X).
(Note that Xε is a core graph.)

Definition 5.4 (φ-invariance). Let X ∈ O(Γ). A Γ-sub-forest A ⊂ X is called φ-invariant
if there is a straight map f : X → X representing φ such that f(A) ⊆ A. The quotient, A
is called a φ-invariant subgraph of X.

We now state some easy facts, the first of which can be found in [3].

Proposition 5.5. For any C > λ(φ) there is ε > 0 such that for any X ∈ O(Γ), if
λφ(X) < C and Xε 6= ∅ then X contains a non-trivial7 φ-invariant subgraph.

For a proof in the case Γ is connected see [9, Section 8] (connectedness plays in fact no
role).
However, we will need a slightly more precise statement, in order to be able to determine

a particular invariant subgraph.

Proposition 5.6. Let C ≥ 1 and M > 0. Let D be the maximal number of orbits of edges
for any tree in O(Γ).
Let ε = 1/2min{M/CD, 1/D}. Then, for X ∈ O(Γ), if λφ(X) < C and X is (M, ε)-
collapsed, then Xε is not the whole X and it is φ-invariant.

Proof. By definition any edge in Xε is shorter than ε vol(X). Thus we have vol(Xε) <
ε vol(X)D. In particular, since εD < 1 then Xε 6= X (and thus there exists a loop η with
LX(η) > ε vol(X), whence LX(η) > M vol(X)), since X is (M, ε)-collapsed).
Let f : X → X be an optimal straight map representing φ. By picking a maximal tree

in X, we may find a generating set of the fundamental group of (each component of) Xε

whose elements have length at most 2 vol(Xε). For any such generator, γ, we have that
LX(f(γ))/LX(γ) ≤ C and hence, LX(f(γ)) ≤ CLX(γ) ≤ 2C vol(Xε) < 2CDε vol(X) ≤
M vol(X). But since X is (M, ε)-collapsed, we get that LX(f(γ)) < ε vol(X). Hence f(γ)
is homotopic to a loop in Xε.
Varying γ we deduce that Xε is φ-invariant. �

Proposition 5.7. Let X ∈ Ogr(Γ) and φ ∈ Aut(Γ). Suppose that A ⊂ X is a φ-invariant
core graph. Then λφ|A(A) ≤ λφ(X).

Proof. Let f : X → X be a straight map representing φ. Since A is φ-invariant, f(A) ⊂ A
up to homotopy. By passing to the universal covering we see that f |A : A → X retracts
to a map fA : A → A representing φ with Lip(fA) ≤ Lip(f), hence λφ|A(A) ≤ Lip(fA) ≤
Lip(f) = λφ(X). �

7In the sense of Definition 4.5.
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Theorem 5.8 (Lower semicontinuity of λ). Fix φ ∈ Aut(Γ) and X ∈ Ogr(Γ). Let
(Xi)i∈N ⊂ ∆X be a sequence such that there is C such that for any i, λφ(Xi) < C. Suppose
that Xi → X∞ ∈ ∂∞∆X which is obtained from X by collapsing a sub-graph A ⊂ X. Then
φ induces an element of Aut(X/A), still denoted by φ.

Moreover λφ(X∞) ≤ lim infi→∞ λφ(Xi), and if strict inequality holds, then there is a
sequence of minimal optimal maps fi : Xi → Xi representing φ such that eventually on i
we have (Xi)max ⊆ core(A).

Proof. LetM be the “systole” of X∞, that is to say the shortest length of simple non-trivial
loops in X∞. For any M/ vol(X) > ε > 0, eventually on i, Xi is (M/2 vol(X), ε)-collapsed
and (Xi)ε = core(A). By Proposition 5.6 A is φ-invariant, thus φ ∈ Aut(X/A).
For any loop γ the lengths LXi

(γ) and LXi
(φ(γ)) converge to LX∞

(γ) and LX∞
(φ(γ))

respectively. Therefore, if γ is a candidate in X∞ that realizes λφ(X∞), we have that
λφ(Xi) ≥ LXi

(φ(γ))/LXi
(γ) → λφ(X∞) whence the lower semicontinuity of λ.

On the other hand, by Theorems 3.24 and 3.15, for any i there is a minimal optimal
map fi : Xi → Xi representing φ. Let γi be a candidate that realizes λφ(Xi), i.e. a fi-legal
candidate in (Xi)max. Since X is combinatorically finite, we may assume w.l.o.g. that
γi = γ is the same loop for any i. We have

λφ(Xi) =
LXi

(φ(γ))

LXi
(γ)

→ LX∞
(φ(γ))

LX∞
(γ)

Thus if LX∞
(γ) 6= 0 we have λφ(X∞) = lim inf λφ(Xi). It follows that if there is a jump

in λ at X∞, then any legal candidate is contained in A. Since fi is minimal this implies
that core(A) contains the whole tension graph. �

Remark 5.9. A comment on Theorem 5.8 is required. To avoid cumbersome notation, we
have decided to denote by φ both the element of Aut(X) and the one induced in Aut(X/A).
So when we write λφ(X∞) we mean Λ(X∞, φX∞) as elements in O(X/A). In particular,
λφ = infX λφ(X) can be different if computed in O(X) or in O(X/A). When this will be
crucial we will specify in which space we take the infimum.
Moreover, if φ|A is the restriction of φ to A, then λφ|A is calculated in the space O(A).

While the simplex ∆X∞
is a simplicial face of ∆X , ∆A ∈ O(A) does not have the same

meaning. One could argue that ∆A is the simplex “opposite” to ∆X∞
in ∆, but φ does

not necessarily produce an element of Aut(X/(X \ A)) as the complement of A may be
not invariant.

Clearly, if A ⊂ X is φ-invariant then λφ(X/A) < ∞. On the other hand, if A is not
φ-invariant, its collapse makes λ explode. Thus we can extend the function λ as follows.

Definition 5.10. Let X∞ ∈ ∂∞Ogr(Γ). We say that λφ(X∞) = ∞ if X∞ is obtained from
a Γ-graph X by collapsing a sub-graph A ⊂ X which is not φ-invariant. (Note that X∞

since is not in O(Γ), then A must have some non-trivial component).

In general, the function λ is not uniformly continuous with respect to the Euclidean
metric, even in region where it is bounded, and so we cannot extend it to the simplicial
closure of simplices. However we see now that the behaviour of λ is controlled on segments.
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We recall the description of horoballs given in 2.7. Suppose that X∞ is obtained from a
Γ-graph X by collapsing a φ-invariant core sub-graph A = ∪iAi. Let ki be the number of
germs of edges incidents to Ai in X \A. Then Hor(X∞) is a product of outer spaces with
marked points O(Ai, ki).

Notation 5.11. We denote π : Hor(X∞) → PO(A) the projection that forgets marked
points.

Note that we chosen X∞ to not be projectivized and PO(A) to be projectivized. For any
Y ∈ PO(A) if Z ∈ π−1(Y ), then there is a scaled copy of Y in Z. We denote by volZ(Y )
the volume of Y in Z. With this notation in place, we can now prove a key regeneration
lemma.

Lemma 5.12 (Regeneration of optimal maps). Fix φ ∈ Aut(Γ) and X ∈ Ogr(Γ). Let
X∞ ∈ ∂∞∆X be obtained from X by collapsing a φ-invariant core sub-graph A. Then, for
any straight map fA : A → A representing φ|A, and for any ε > 0 there is Xε ∈ ∆X such
that

λφ(Xε) ≤ max{λφ(X∞) + ε,Lip(fA)}.
More precisely, for any Y ∈ POgr(A) and map fY : Y → Y representing φ|A, for any

map f : X∞ → X∞ representing φ, for any X̂ ∈ π−1(Y ), and for any ε > 0; there is
0 < δ = δ(f, fY , X∞,∆X̂), such that for any Z ∈ ∆X̂ ∩ π−1(Y ), if volZ(Y ) < δ there is a
straight map fZ : Z → Z representing φ such that fZ = fY on Y and

Lip(fZ) ≤ max{λφ(X∞) + ε,Lip(fY )}
(hence the optimal map opt(fZ) satisfies the same inequality8).

Proof. We denote by σ : X → X∞ the map that collapses A. If Ai is a component of A,
we denote by vi the non-free vertex σ(Ai). Let ki be the valence of vi in X∞. For any vi
let E1

i , . . . , E
ki
i be the half-edges incident to vi in X∞.

Let Yi be the components of Y ∈ POgr(A). Points in ∆X̂∩π−1(Y ) are built by inserting a
scaled copy of each Yi at the vi as follows. (Now we need to pass to the universal coverings.)

For every half-edge Ej
i of X∞ we choose a lift in X̃∞. The tree

˜̂
X is given by attaching

Ẽj
i to a point ỹji of Ỹi, and then equivariantly attaching any other lift of the Ej

i . At the

level of graphs this is equivalent to choosing yji ∈ Yi. Two different choices at the level
of universal coverings differ, at the level of graphs, by closed paths in Yi and based at
yji . The choice of the simplex ∆X̂ fixes such ambiguity. Moreover for any two graphs in

π−1(Y ) ∩∆X̂ the points yji are attached to the same edge of Yi. Let Z ∈ π−1(Y ) ∩∆X̂ .

Given fY : Y → Y , consider its lift to Ỹ and set z̃ji = f̃Y (ỹ
j
i ). There is a unique

embedded arc γ̃ji from z̃ji to ỹji . Let Li be the number of edges crossed γji ; so Li is an
integer by including partial edges crossed in the count. Li depends only on fY and the
choices of ỹji , hence it depends only on fY and ∆X̂ .

8We notice that while fZ = fY on Y , this may no longer be true for opt(fZ)
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Now, given f : X∞ → X∞, there exists a continuous map g : Z → Z representing φ,
which agrees with fY on Y and which is obtained by a perturbation of f on edges of X∞.
Namely on Ej

i when we consider the path f(Ej
i ) we need to lift this from a path in X∞

to a path in Z by “filling in the missing parts”. That is, we can consider f(Ej
i ) to be

a sequence of edges in Z whose completion to a path requires insertion of suitable paths
which lie entirely in (the lifts of) Y , along with the path γji which tells us where to “attach”

f(Ej
i ).

An accurate and detailed discussion on the properties of such a map will be carried on
in [10].
For the present purpose it is sufficient to note that there is a constant C such that g

can be obtained so that Lip(Str(g)) ≤ max{Lip(f) + C volZ(Y ),Lip(fY )}. Moreover the
constant C depends only on the Li’s, the paths added to “fill in the missing parts”, and
the edge-lengths of X∞. Hence it depends only on fY ,∆X̂ , X∞. (We are using volZ(Y ) as
a crude estimate for the maximum length of an edge in Y .)
The result follows by setting δ < ε/C and fZ = Str(g). �

Definition 5.13. Fix φ ∈ Aut(Γ). Let X∞ ∈ ∂∞∆ ⊂ ∂∞O(Γ). We say that X∞ has not
jumped in ∆ if there is a sequence of points Xi ∈ ∆ such that Xi → X∞ and λφ(X∞) =
limi λφ(Xi). We say that X∞ ∈ ∂∞O(Γ) has not jumped if there is a simplex ∆ intersecting
Hor(X∞) such that X∞ has not jumped in ∆.

The above definition is for points in ∂∞O(Γ). By convention, we say that X has not
jumped for any X ∈ O(Γ).
Notice that even if X∞ has not jumped, there may exist a simplex ∆ intersecting

Hor(X∞) such that X∞ has jumped in ∆. This is because if A is the collapsed part
and φ|A does not have polynomial growth, then we can choose a point in O(A) with arbi-
trarily high λφ|A . Moreover, even if X∞ has not jumped in ∆ it may happen that X∞ is
not a continuity point of λ. For example if the collapsed part A has a sub-graph B which
is not invariant, then the collapse of B forces λ to increase due to Proposition 5.6, and
thus we can approach X∞ with arbitrarily high λ.
Also, note that if λ > 1 at some point X, then λ is in fact unbounded on ∆X . This

is because if X contains a loop which is not φ-invariant, then by collapsing that loop we
force λ to explode. On the other hand, if any loop is φ-invariant then by Theorem 3.7 we
get λ = 1.

Theorem 5.14. Let φ ∈ Aut(Γ). Let X ∈ Ogr(Γ) containing an invariant sub-graph A.
Let X∞ = X/A and C = core(A). Then

λφ|C (∆C) ≤ λφ(∆X).

Moreover the following are equivalent:

(1) X∞ has not jumped in ∆X ;
(2) λφ(X∞) ≥ λφ(∆X);
(3) λφ(X∞) ≥ λφ|C (∆C).
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In particular, λφ(X∞) cannot belong to the (potentially empty) interval (λφ|C (∆C), λφ(∆X)).
Moreover, points realising λφ(∆X) do not jump in ∆X .

Proof. The first claim is a direct consequence of Proposition 5.7. Let Xi ∈ ∆X with
Xi → X∞ without jump. Then

λφ(∆X) ≤ λφ(Xi) → λφ(X∞) hence (1) ⇒ (2).

If λφ(X∞) ≥ λφ(∆X), then first claim implies (3), so (2) ⇒ (3).
Finally, suppose λφ(X∞) ≥ λφ|C(∆C). For any ε > 0 there is Cε ∈ ∆C and a straight

map fCε
: Cε → Cε representing φ|C such that Lip(fCε

) < λφ|C (∆C) + ε. By Lemma 5.12
there is a point Xε ∈ X and a map fε : Xε → Xε representing φ such that Xε → X∞ as
ε → 0 and Lip(fε) ≤ λφ(X∞) + ε. This, plus lower semicontinuity (Theorem 5.8), implies
λφ(Xε) → λφ(X∞). So (3) ⇒ (1).
The final statement is now a consequence of the fact that (2) ⇒ (1). �

Lemma 5.15 (Constant before jumping). Let φ ∈ Aut(Γ). Let X ∈ Ogr(Γ) be a point
with a φ-invariant sub-graph A. Let X∞ = X/A and let C = core(A). Let

Xt = (1− t)X∞ + tX

and let Ct be the metric version of C in Xt. If λφ(X∞) < lim inf λφ(Xt) then for small
enough t > 0, the function λφ(Xt) is locally constant on t; more precisely we have

λφ(Xt) = λφ|C (C1).

In particular, this is the case if displacement has jumped in ∆ = ∆X along the segment
XX∞.

Proof. By Theorem 5.8 for t small enough there is an optimal map ft : Xt → Xt whose
tension graph is contained in Ct. Since Ct is φ-invariant, ft(Ct) ⊂ Ct up to homotopy.
Since the vertices of (Xt)max are at least two gated, f((Xt)max) ⊂ Ct. Therefore λφ|C (Ct) =
Lip(ft) and λφ(Xt) = Lip(ft) = λφ|C (Ct) = λφ|C (C1) (where the last equality follows from
the fact that [Ct] = [C1] ∈ POgr(C)).
The last claim follows because by Theorem 5.14, and since X∞ has jumped in ∆, we

have

λφ(X∞) < λφ|C (∆C) ≤ λφ(∆) ≤ λφ(Xt)

hence λφ(X∞) < lim inft λφ(Xt). �

Lemma 5.16. Let φ ∈ Aut(Γ). Let X ∈ ∆ ⊆ Ogr(Γ) be a point with a φ-invariant sub-
graph A. Let X∞ = X/A and let C = core(A). Suppose that the displacement jumps at
X∞ along all segments of ∆. Then

(I) ∀Y ∈ ∆C ⊆ O(C) there is XY ∈ ∆ such that λφ|C (Y ) = λφ(X
Y ) > λφ(X∞);

(II) λφ|C (∆C) = λφ(∆) ≥ λ(X∞);
(III) if X∞ does not jump9 in ∆ then it is a minpoint of ∆, i.e. λφ(X∞) = λφ(∆).

9See Example 5.19 for an explicit case of a non-jumping min-point that jumps along segments.
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Proof. (I). For any Y ∈ ∆C , let A
Y be a metric version of A so that core(AY ) = Y and

let XY
∞ be a graph obtained by inserting a copy of AY in the collapsed part of X∞. Since

X∞ jumps along segments, by Lemma 5.15 there is a point XY in the segment XY
∞X∞ so

that λφ(X
Y ) = λφ|C (Y ). Inequality λφ(X

Y ) > λφ(X∞) follows from lower semicontinuity
and jumping.
(II). Point (I) implies λφ|C (∆C) ≥ λφ(∆) and λφ|C (∆C) ≥ λ(X∞); Proposition 5.7 gives

λφ|C (∆C) ≤ λφ(∆).
(III). By Theorem 5.14, if X∞ does not jump, then λφ(X∞) ≥ λφ(∆), and point (II)

concludes. �

Theorem 5.17. Let φ ∈ Aut(Γ). Let ∆ be a simplex of Ogr(Γ). Then there is a min-point

Xmin in ∆
∞

(i.e. a point so that λφ(Xmin) = λφ(∆); note that Xmin does not jump in ∆
by Theorem 5.14).
Moreover, suppose that Xmin is maximal in the following sense: if X ′ ∈ ∆

∞
such that

λφ(X
′) = λφ(Xmin) = λφ(∆), and ∆Xmin

⊆ ∆X′

∞
, then ∆Xmin

= ∆X′ . (Xmin is maximal
with respect to the partial order induced by the faces of ∆). Then:

• λφ(Xmin) = λφ(∆Xmin
) = λφ(∆);

• any point P , such that ∆Xmin
⊆ ∆P

∞ ⊆ ∆
∞
, satisfies λφ(P ) ≥ λφ(∆) (hence P

does not jump in ∆ by Theorem 5.14);
• for any ǫ > 0, there exist points Z,W such that:

– Z ∈ ∆,
– ∆Xmin

⊆ ∆W
∞ ⊆ ∆

∞
,

– λφ(W ), λφ(Z) ≤ λφ(∆) + ǫ,
– λφ is continuous along the Euclidean segments, ZW andWXmin, and any point
P along these segments satisfies the following: λφ(∆) ≤ λφ(P ).

(We allow degeneracies, meaning that Xmin could equal W , or even Z).

Proof. We start by proving the existence of an Xmin.
Supose first that at every point of ∆

∞
, there is a segment in ∆ to that point such that

λφ is continuous along the segment. Then the statement is clear, since we can choose a
minimizing sequence in ∆, whose displacements tend to λφ(∆). This sequence has a limit
point, Xmin whose displacement is bounded above by λφ(∆) by Theorem 5.8. But the
continuity along the segment implies that λφ(Xmin) ≥ λφ(∆), and so λφ(Xmin) = λφ(∆).

Thus we may assume that there is some point X∞ ∈ ∆
∞

whose displacement jumps
along all segments in ∆.

Lemma 5.18. For any such point X∞ there exists a point in Hor(X∞)∩∆
∞

that realises
λφ(∆). (Possibly X∞ itself realises the displacement.)

Proof. We argue by induction on the rank of Γ. In rank 1 there is nothing to prove. Since
λφ jumps at X∞ along segments, then λφ(X∞) < ∞. Let X∞ be obtained by some X by
collapsing a φ-invariant sub-graph A, and let C = core(A).
By induction there is Y ∈ ∆C

∞
such that λφ|C (Y ) = λφ|C (∆C). Let AY be a metric

graph so that core(AY ) = Y (we are replacing the core part C = core(A) with Y ). Let
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X tY
∞ be the graph obtained by inserting a volume-t copy of AY in the collapsed part of

X∞. Note that X tY
∞ ∈ Hor(X∞) ∩∆

∞
. By Proposition 5.7

(1) λφ(X
tY
∞ ) ≥ λφ|C (Y ) = λφ|C (∆C)

and by Lemma 5.16, point (II),

(2) λφ|C (∆C) = λφ(∆) ≥ λφ(X∞).

Thus, by Theorem 5.14, for any t, X tY
∞ does not jump in ∆. If the displacement jumps

at X∞ along the segment X1Y
∞ X∞, then10 by Lemma 5.15 for small enough t we have

λφ(X
tY
∞ ) = λφ|C (Y ) = λφ(∆). Otherwise, by (1) and (2) above we have λφ(X∞) ≤ λφ(∆) ≤

λφ(X
tY
∞ ), and this plus non-jumping, force λφ(X∞) = λφ(∆). In any case, we found a point

in Hor(X∞) that realises λφ(∆). �

Lemma 5.18 proves the first claim of Theorem 5.17. Now choose Xmin to be maximal, as
in the statement of Theorem 5.17 (always under the assumption that Xmin is a minimizing
point), and we shall verify the list of properties.
If Xmin does not minimise the displacement in its simplex, then there is a point X ′ ∈

∆Xmin
such that λφ(X

′) < λφ(Xmin) = λφ(∆). In particular X ′ jumps in ∆. Lemma 5.18

tells us that there is a point X ′′ ∈ Hor(X ′)∩∆
∞

such that λφ(X
′′) = λφ(∆) but this would

contradict our maximality assumption.
In general, for any P ∈ ∆

∞
with ∆Xmin

⊆ ∆P
∞ ⊆ ∆

∞
, if P jumps in ∆, then by

Lemma 5.18 there is P ′ ∈ Hor(P ) ∩ ∆
∞

such that λφ(P
′) = λφ(∆). By our maximality

assumption, this cannot happen. So P does not jump in ∆ and by Theorem 5.14 we have
λφ(P ) ≥ λ(∆).
We check now the last property. If there is a segment in ∆ to Xmin along which λφ is

continuous, we are done by taking W = Xmin and Z sufficiently close to Xmin. Hence we
may assume that λφ jumps along all segments to Xmin.
In this case, we do the construction of Lemma 5.18 with X∞ = Xmin. That is, we set Wt

to be the graph X tY
∞ . The maximimality assumption ensures both that λφ is continuous

along the segment W1Xmin and, that λφ is continuous along any segment from a point in
∆ to some Wt. By choosing points sufficiently close to each other, we may ensure that
λφ(Z), λφ(Wt) ≤ λ(∆) + ǫ.

�

Example 5.19. [A non-jumping point which jumps along segments] Let F2 = 〈a, b〉 and
φ ∈ Aut(F2) be any iwip (so λφ > 1). For n ≥ 2, let F2n+2 = 〈a0, b0, a1, b1, . . . an, bn〉. For
any i, φ induces φi ∈ Aut(〈ai, bi〉) by identifying 〈ai, bi〉 with 〈a, b〉. For any i > 0 choose
a non-trivial wi ∈ 〈ai−1, bi−1〉 and define ψ ∈ Aut(F2n+2) by setting ψ|〈a0,b0〉 = φ0, and for
i > 0, ψ(ai) = φi(ai)wi and ψ(bi) = φi(bi)wi.
In order to understand the displacement of the simplex, we can just give each ai, bi the

projective length coming from the mimimum displacement of φi, but leave ourselves free

10Even if X∞ is supposed to jump along all segments in ∆, it may not jump along some segment in the
boundary, and XtY

∞
may belong to the boundary.
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to choose the volume of the pair {ai, bi}, i ≤ n − 1. This freedom allows us to impose
the extra condition that wi be as short as we like, thus showing that λψ ≤ λφ + ǫ, for any
ǫ > 0. Hence, λφ = λψ.
Let R be the rose whose petals are labelled ai, bi and let ∆ = ∆R. For any X ∈ ∆, the

displacement of ψ is strictly bigger than λφ and the minimum is attained at the graph X∞

corresponding to the collapse of ai, bi, i = 0, . . . , n − 1, with length of petals an, bn given
by a train track for φn. Nonetheless, X∞ jumps along all segments; in more detail, the
stretching factor for the loop a1 (for example) is strictly bigger than λφ for any X ∈ ∆.
Now if we consider the segment from X to X∞, the stretching factor for a1 is constant
along this segment, except for the discontinuity at X∞, because on this segment the thin
part is shrunk uniformly to zero.
Hence the displacement of ψ|〈a0,b0,...,an−1,bn−1〉 equals λφ and it is attained at a boundary

point. Point W of Theorem 5.17 corresponds to the collapse of petals a0, b0, . . . , an−2, bn−2

from a graph ZW of ∆ whose petals an, bn are stretched by ψ more than any other.

6. Convexity properties of the displacement function

We recall that we are using the terminology “simplex” in a wide sense, as ∆X is a
standard simplex if we work in PO(Γ) and the cone over it if we work in O(Γ). (Remember
we use Definition 2.20 for Γ.)
The displacement function λ is scale invariant on O(Γ) so it descends to a function on

PO(Γ). In order to control the value of λ on segments in terms of its value on vertices, we
would like to say that λ is convex on segments. A minor issue appears with projectivization;
if ∆ is a simplex of O(Γ), then its euclidean segments are well defined, and their projections
on P(O(Γ)) are euclidean segments in the image of ∆. However, the linear parametrization
is not a projective invariant (given X, Y , the points (X + Y )/2 and (5X + Y )/2 are in
different projective classes).
It follows that convexity of a scale invariant function is not well-defined. In fact if σ is a

segment in ∆, π : ∆ → P∆ is the projection, and f is a convex function on σ, then f ◦π−1

may be not convex. It is convex only up to reparametrization of the segment π(σ). Such
functions are called quasi-convex, and this notion will be enough for our purposes.

Definition 6.1. A function f : [A,B] → R is called quasi-convex if for all [a, b] ⊆ [A,B]

∀t ∈ [a, b] f(t) ≤ max{f(a), f(b)}.
Note that quasi-convexity is scale invariant.

Lemma 6.2. For any [φ] ∈ Out(Γ) and for any open simplex ∆ in O(Γ) the function
λ = λφ is quasi-convex on segments of ∆. Moreover, if λ(A) > λ(B) then λ is strictly
monotone near A.

Proof. Let X be a Γ-graph such that ∆ = ∆X . We use the Euclidean coordinates of ∆
labelled with edges of X, namely a point P in ∆ is given by a vector whose eth entry is
the length of edge e in P . In the same way, to any reduced loop η in X we associate its
occurrence vector, whose eth entry is the number of times that η passes through the edge
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e. We will denote by η both the loop and its occurrence vector. With this notation, the
length function is bilinear:

LX(γ) = 〈X, γ〉
(where 〈, 〉 denotes the standard scalar product on R

k.)
Let σ be a segment in ∆ with endpoints A,B. Let γ be a candidate. We consider both

γ and φγ as loops in X. Up to switching A and B, we may assume that

〈A, φγ〉
〈A, γ〉 ≥ 〈B, φγ〉

〈B, γ〉 .

Such a condition is scale invariant, and since λ is scale invariant, up to rescaling B we
may assume that 〈B, γ〉 > 〈A, γ〉. We now parametrize σ in [0, 1]:

σ(t) = At = Bt+ (1− t)A

We are interested in the function:

Fγ(t) =
〈At, φγ〉
〈At, γ〉

=
〈Bt+ (1− t)A, φγ〉
〈Bt+ (1− t)A, γ〉 =

〈A, φγ〉+ t〈B − A, φγ〉
〈A, γ〉+ t〈B − A, γ〉

A direct calculation shows that the second derivative of a function of the type f(t) =
(a+ tb)/(c+ td) is given by 2(ad− bc)d/(c+ td)3.
So the sign of F ′′

γ (t) is given by
(
〈A, φγ〉〈B, γ〉 − 〈B, φγ〉〈A, γ〉

)(
〈B − A, γ〉

)

which is non-negative by our assumption on A,B. Hence Fγ(t) is (weakly)-convex and
therefore quasi-convex:

Fγ(t) ≤ max{Fγ(A), Fγ(B)}.
Now, by the Sausage Lemma 3.7 we have:

λφ(At) = max
γ

Fγ(t) ≤ max{max
γ

Fγ(A),max
γ

Fγ(B)}

= max{λφ(A), λφ(B)}.
Finally, since there are finitely many lengths of candidates, there is a candidate γo such

that for t sufficiently small we have λφ(At) = Fγo(t). By convexity, if Fγo is not strictly
monotone near A, then it must be locally constant, and thus F ′′

γo(t) = 0. Hence

λφ(A) = λφ(A0) =
〈A, φγo〉
〈A, γo〉

=
〈B, φγo〉
〈B, γo〉

≤ λφ(B).

�

Lemma 6.3. Let [φ] ∈ Out(Γ), let λ = λφ, and let ∆ be a simplex in O(Γ). Let A,B ∈ ∆
∞

be two points that have not jumped in ∆. Then for any P ∈ AB

λ(P ) ≤ max{λ(A), λ(B)}
Moreover, if λ(A) ≥ λ(B), then λ|AB is continuous at A.
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Proof. Let X be a graph of groups so that ∆X ⊆ ∆
∞

contains the interior of the segment
AB. By Lemma 6.2, the function λ is quasi-convex on the interior of AB as a segment
in O(X). Let {Ai} and {Bi} sequences in ∆ such that A = limAi and B = limBi with
limλ(Ai) = λ(A) and limλ(Bi) = λ(B). Such sequences exists because of the non-jumping
hypothesis. For all points P in the segment AB, there is a sequence of points Pi in the
segment AiBi such that Pi → P . By Lemma 6.2 we know

λ(Pi) ≤ max{λ(Ai), λ(Bi)},
and by lower semicontinuity (Theorem 5.8) of λ and the non-jumping assumption, such an
inequality passes to the limit. In particular, if λ(A) ≥ λ(B), then λ(P ) ≤ λ(A) for any
P ∈ AB.
Now suppose that P j → A is a sequence in the segment AB. Then by lower semiconti-

nuity Theorem 5.8 applied to the space O(X) on the segment, AB, we have

λ(A) ≥ lim
j
λ(Pj) ≥ λ(A).

�

We end this section with an estimate of the derivative of functions like the Fγ(t) defined
as in Lemma 6.2, which will be used in the sequel. As above, we use the formalism
〈X, γ〉 = LX(γ).

Lemma 6.4. Let X be a Γ-graph and let ∆ = ∆X be its simplex in O(Γ). Let A,B ∈ ∆
∞
.

Let γ be a loop in X which is not collapsed neither in A nor in B and set

C = max{LA(γ)
LB(γ)

,
LB(γ)

LA(γ)
}

Let φ be any automorphism of Γ. Suppose that 〈B,φγ〉
〈B,γ〉

≥ 〈A,φγ〉
〈A,γ〉

. Let At = tB + (1− t)A be

the linear parametrization of the segment AB in ∆ and define Fγ(t) =
〈At,φγ〉
〈At,γ〉

. Then

0 ≤ F ′
γ(t) ≤ C

〈B, φγ〉
〈B, γ〉

In particular, for any point P in the segment AB we have

λφ(P ) ≥
〈P, φγ〉
〈P, γ〉 ≥ 〈B, φγ〉

〈B, γ〉 − Cλφ(B)
||P − B||
||A− B||

where ||X − Y || denotes the standard Euclidean metric on ∆.

Before the proof, a brief comment on the statement is desirable. First, note that the
constant C does not depend on φ. Moreover, by taking the supremum where γ runs over
all candidates given by the Sausage Lemma 3.7, then C does not even depend on γ. Finally
if γ is a candidate that realizes λφ(B), then we get a bound of the steepness of Fγ which
does not depend on φ nor on γ but just on λφ(B) and ||A− B||.
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Proof. We have

Fγ(t) =
〈At, φγ〉
〈At, γ〉

=
〈Bt+ (1− t)A, φγ〉
〈Bt+ (1− t)A, γ〉 =

〈A, φγ〉+ t〈B − A, φγ〉
〈A, γ〉+ t〈B − A, γ〉

and a direct calculation show that

(3) F ′
γ(t) =

〈B, γ〉〈A, γ〉
(〈At, γ〉)2

(〈B, φγ〉
〈B, γ〉 − 〈A, φγ〉

〈A, γ〉

)

The first consequence of this equation is that the sign of F ′
γ does not depend on t, and since

〈B,φγ〉
〈B,γ〉

≥ 〈A,φγ〉
〈A,γ〉

, then F ′
γ ≥ 0. Moreover, since 〈At, γ〉 is linear on t, we have 〈B,γ〉〈A,γ〉

(〈At,γ〉)2
≤ C.

Therefore we get

F ′
γ(t) ≤ C

〈B, φγ〉
〈B, γ〉

and the first claim is proved. For the second claim, note that the parameter t is nothing
but ||A− At||/||A− B|| and thus

Fγ(1)− Fγ(t) ≤ (1− t)C
〈B, φγ〉
〈B, γ〉 =

||B − At||
||B − A|| C

〈B, φγ〉
〈B, γ〉 .

If P = At, we have Fγ(1) =
〈B,φγ〉
〈B,γ〉

and Fγ(t) =
〈P,φγ〉
〈P,γ〉

. By taking in account λφ(B) ≥ 〈B,φγ〉
〈B,γ〉

and λφ(P ) ≥ 〈P,φγ〉
〈P,γ〉

we get the result. �

7. Existence of minimal displaced points and train tracks at the

bordification

The first question that naturally arises in the study of the displacement function of auto-
morphisms is about the existence of min-points. The existence of points that minimize the
displacement is proved in [9, Theorem 8.4] for irreducible automorphisms. The philosophy
of the proof works in the general case, but we are forced to pass to the boundary at infinity
— whence taking in account possible jumps. The notion of “train track at infinity” will be
introduced in order for deal with such situations. A second issue that appears in general
case is that, since the bordification of O(Γ) is not locally compact, one cannot use com-
pactness for claiming that minimizing sequences have accumulation points. We overcome
that difficulties first by using a Sausage Lemma trick as in [9], and then by proving that
the set of all possible simplex-displacements form a well-ordered subset of R.
As a product of this machinery we have also other interesting results, such as the fact

that the collection of partial train tracks detect all invariant free factors.
We use the terminology of Definitions2.6 and 2.20 for G,G and Γ.

Lemma 7.1 (Sausage lemma trick). For any Γ, for any X ∈ O(Γ)
∞

the set {λφ(X) :
[φ] ∈ Out(Γ)} is discrete11. In other words, given X, all possible displacements of X with
respect to all automorphisms (hence markings) run over a discrete set (plus possibly ∞).

11We include the possibility that λφ(X) = ∞; e.g. if X has a collapsed part which is not φ-invariant.
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Proof. This proof is similar to that of [9, Theorem 8.4], we include it for completeness.
By the Sausage Lemma 3.7, λφ(X) = Λ(X,φX) is computed by the ratio of translation
lengths of candidates (we include the possibility that λφ(X) = ∞, e.g. if X has a collapsed
part which is not φ-invariant). The possible values of LX(φγ) (with γ any loop in X) form
a discrete set just because X has finitely many orbits of edges. Candidates are in general
infinitely many in number, but there are only finitely many lengths arising from them.
Thus the possible values of Λ(X,φX) runs over a discrete subset of R. �

Theorem 7.2. For any Γ the global simplex-displacement spectrum

spec(Γ) =
{
λφ(∆) : [φ] ∈ Out(Γ),∆ a simplex of O(Γ)

∞
such that λφ(∆) < +∞}

is well-ordered as a subset of R. In particular, for any [φ] ∈ Out(Γ) the spectrum of possible
minimal displacements

spec(φ) =
{
λφ(∆) : ∆ a simplex of O(Γ)

∞
such that λφ(∆) < +∞}

is well-ordered as a subset of R.

Proof. Recall that we defined λφ(∆) as infX∈∆ λφ(X). For this proof we work with co-
volume one graphs (so we are in Ogr1(Γ)). In any simplex we use the standard Euclidean
norm, denoted by || · ||.
We argue by induction on the rank of Γ (See Definition 2.22). Clearly if the rank of Γ

is one there is nothing to prove. We now assume the claim true for any Γ′ of rank smaller
than Γ.
We will show that any monotonically decreasing sequence in spec(Γ) has a (non trivial)

sub-sequence which is constant, whence the original sequence is eventually constant itself.
This implies that spec(Γ) is well-ordered. For the second claim, since spec(φ) is a subset
of a well-ordered set, it is well-ordered.
We follow the line of reasoning of [9, Theorem 8.4]. Let λi ∈ spec(Γ) be a monotonically

decreasing sequence. Note that displacements are non-negative so λi converges to some
number L ∈ R. For any i we chose φi and a simplex ∆i such that λi = λφi(∆i) (those exist

by definition of spec(Γ)). By Theorem 5.17 there exists Xi ∈ ∆i
∞

such that λφi(Xi) =
λφi(∆i) and λφi(Xi) = λφi(∆Xi

). In particular, up to replacing ∆i with ∆Xi
we may assume

∆i = ∆Xi
. Since the displacement is scale invariant, point Xi can be chosen in Ogr1(Γ)

∞
.

Up to possibly passing to sub-sequences we may assume that there is [ψi] ∈ Out(Γ) such
that ψiXi belongs to a fixed simplex ∆. Therefore, by replacing φi with ψiφiψ

−1
i we may

assume that the Xi all belong to the same simplex ∆.12 So we have

λφi(Xi) = λφi(∆Xi
) = λi ց L ∆Xi

= ∆i = ∆.

Up to sub-sequences, Xi converges to a point X∞ in the simplicial closure of ∆. We
show now that λφi(X∞) < +∞ eventually on i.

12Note that Xi may be a boundary point of O(Γ) and that we have made no assumption about jumps,
so Xi may jump.
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If X∞ ∈ ∆ (the finitary closure), then it follows from the fact that λφi(Xi) < +∞.
Otherwise X∞ ∈ ∂∞∆. In this case, let M be the length of the shortest loop in X∞. For
any ε > 0, Xi is eventually (M, ε)-collapsed (because X∞ is not in a finitary face of ∆
and Xi → X∞). For ε small enough, and eventually on i, the ε-thin part (Xi)ε is the
core-subgraph of Xi which is collapsed in order to reach the deformation space O(X∞)
where X∞ lives.
Since λi → L, in particular λi < L + 1 eventually on i. Thus, if ε is small enough to

satisfy the hypothesis of Proposition 5.6 (with C = L+ 1) then (Xi)ε is φi-invariant. This
implies that λφi is not infinite on O(X∞), and in particular λφi(X∞) < +∞ as claimed.

Since Xi is a min-point for the function λφi on ∆Xi
= ∆, by Lemma 6.2 the function

λφi either is constant on the segment XiX∞ or it is not locally constant near X∞. By
Lemma 5.15 in the latter case X∞ has not jumped w.r.t. λφi along the segment XiX∞.
Therefore we have the following three cases, and up to subsequences we may assume

that we are in the same case for any i:

(1) λφi is constant and continuous on XiX∞;
(2) λφi is constant on the interior ofXiX∞ and there is a jump atX∞, hence λφi(X∞) <

λφi(Xi) by lower semicontinuity Theorem 5.8;
(3) λφi is monotone increasing on the segment XiX∞, and continuous at X∞.

In the first case λi = λφi(X∞) is a (bounded) converging sequence of displacements of
the single point X∞. By Lemma 7.1, it must be eventually constant.
In the second case we use the inductive hypothesis. Since the displacement is continuous

on O(X), and since we have a jump at X∞, in this case X∞ is a point at infinite of O(X).
Let Ci = (Xi)ε the ε-thin part of Xi. We choose ε as above so that Ci is the φi-invariant
core sub-graph of Xi which is collapsed to reach the deformation space O(X∞). Up to
sub-sequences we may assume that Ci is topologically the same graph for any i. Since λφi
jumps at X∞ along the segment XiX∞, by Lemma 5.15 we have

λi = λφi(Y ) = λφi|Ci
(Ci)

for any Y in the interior of the segment XiX∞.
If Ci would not locally minimise the function λφi|Ci

on its simplex ∆Ci
, then we could

perturb a little Ci and strictly decrease the displacement λφi(Xi) contradicting the fact
that λφi(Xi) = λφi(∆Xi

). So Ci locally minimises the displacement on its simplex. By
quasi-convexity Lemma 6.2, in any simplex local minima are minima. Therefore

λi = λφi|Ci
(Ci) = λφi|Ci

(∆Ci
) ∈ spec(Ci).

By induction spec(Ci) is well-ordered, hence the monotonically decreasing sequence λi must
be eventually constant.
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All that remains is case (3). In this case

λφi(Xi) < λφi(X∞).

Let R > 0 be such that for any face ∆′ of ∆ such that X∞ /∈ ∆′∞, the ball B(X∞, 2R) is
disjoint from ∆′. In other words, if P ∈ B(X∞, 2R) and it is obtained form X by collapsing
a sub-graph P0, then P0 is collapsed also in X∞. Eventually on i, Xi ∈ B(X∞, R). Let Yi
be the point on the Euclidean half-line from X∞ toward Xi, at distance exactly R from
X∞.
The stretching factor Λ(X∞, φiX∞) is realised by some candidates (Theorem 3.7), and

since λφi is strictly decreasing from X∞ to Xi, among such candidates there is at least

one, say γi, whose stretching factor LX(φi(γi))
LX(γi)

locally decreases near X∞ as a function of

X in the segment from X∞ to Xi. Moreover, the function LX(φi(γi))
LX(γi)

is the ratio of two

functions that are linear on X (it is the same function Fγ(t) of the proof of Lemma 6.2);
then its derivative on any Euclidean segment has constant sign, and in particular it is
strictly decreasing from X∞ to Yi.
By Lemma 6.4 applied with A = Yi, B = X∞ (and P = Xi) we have

λφi(Xi) ≥ λφi(X∞)

(
1− C

||Xi −X∞||
R

)
.

where C = max{ LYi
(γi)

LX∞
(γi)

,
LX∞

(γi)

LYi
(γi)

}. Let εi = ||Xi − X∞||. Since there are finitely many

lengths of candidates and by our choice of R, the constant C is uniformly bounded inde-
pendently on i. Since Xi → X∞ we have εi = ||Xi −X∞|| → 0 and thus

(4) λφi(X∞)(1− Cεi) ≤ λφi(Xi) ≤ λφi(X∞).

Since λi ց L, left-hand side inequality tells us that λφi(X∞) is uniformly bounded.
Therefore, by Theorem 7.1, up to sub-sequences we may assume that λφi(X∞) is a constant
not depending on i. Moreover, (4) implies that |λφi(X∞)− λi| → 0, hence λφi(X∞) = L.
Now (4) implies λi ≤ L, and since λi ց L and it is bounded above by L, it must be

constant equal to L. �

We suspect that spec(φ) and spec(Γ) are not only well-ordered but in fact discrete.
However, Theorem 7.2 will be enough for our purposes.

Theorem 7.3 (Existence of minpoints). Let Γ be as in Notation 2.20. Let [φ] be any

element in Out(Γ). Then there exists X ∈ O(Γ)
∞

that has not jumped and such that

λφ(X) = λ(φ).

Proof. Let Xi ∈ O(Γ) be a minimizing sequence for λφ. Without loss of generality we may
assume that the sequence λφ(∆Xi

) is monotone decreasing and Theorem 7.2 implies that
it is eventually constant. Therefore Xi can be chosen in a fixed simplex ∆. Theorem 5.17
concludes. �

An interesting corollary of Theorem 7.3 is that we can characterize (global) jumps ex-
tending equivalence “(3) ⇔ (1)” of Theorem 5.14 from a local to a global statement.
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Theorem 7.4. Let [φ] ∈ Out(Γ). Let X ∈ Ogr(Γ) and let X∞ ∈ ∂∞∆X be obtained from
X by collapsing a φ-invariant core graph A. Then X∞ has not jumped if and only if

λ(φ|A) ≤ λφ(X∞).

Proof. Suppose thatX∞ has not jumped (Definition 5.13). Then there is a simplex ∆ where
X∞ has not jumped, and the claim follows from Theorem 5.14 because λφ|A ≤ λφ|A(∆A).
On the other hand, suppose λ(φ|A) ≤ λφ(X∞). By Theorem 7.3 there is a simplex in

O(A) containing a minimizing sequence for φ|A. Let Aε be an element in that simplex
so that λφ|A(Aε) < λ(φ|A) + ε, and let fA : Aε → Aε be an optimal map representing

φ|A. Note that Aε and A may be not homeomorphic. Let X̂ be a Γ-graph obtained by
inserting a copy of Aε in X∞. (We notice that since Aε may be not homeomorphic to A,
we can have ∆X̂ 6= ∆X . We also notice that such ∆X̂ is not unique as we have plenty of
freedom of attaching the edges of X∞ to Aε.) By Lemma 5.12, for any ε > 0 there is an
element Xε ∈ ∆X̂ and an optimal map fε : Xε → Xε representing φ so that Xε → X∞ and
Lip(fε) ≤ λφ(X∞) + ε, hence λφ(Xε) ≤ λφ(X∞) + ε. Thus X∞ has no jump in ∆X̂ , and
therefore has not jumped. �

Warning: Differences between min-points at infinity and partial train tracks.

By Theorem 4.15 we know that minimally displaced points and partial train tracks coincide.
But some care is needed here, as that theorem is stated for points of O(Γ), and not for
points at infinity. In fact, given φ ∈ Aut(Γ), X ∈ O(Γ), and A ⊂ X a φ-invariant sub-
graph, a priori it may happen that λ(φ) is different if we consider φ as an element of Aut(X)
or of Aut(X/A). That is to say, we may have X∞ = X/A such that λφ(X∞) = λ(φ) but
X∞ is not a train track point in O(X/A).
For instance, consider the case where X = A∪B, with both A and B invariant. Suppose

that λ(φ) = λ(φ|A) > λ(φ|B). Now suppose that λ(φ) = λφ(X) = λφ|A(A) = λφ|B(B).

Collapse A. Then the resulting point X∞ is a min point for φ in O(Γ)
∞

which has not
jumped, but since λ(φ|B) < λ(φ), it is not a min point for φ on O(X/A).
We want to avoid such a pathology. Here we need to make a distinction between λ(φ)

computed in different spaces, so we will specify the space over which we take the infimum.

Lemma 7.5 (Min-points vs relative min-points). Let [φ] ∈ Out(Γ). Let X∞ ∈ O(Γ)
∞

be
such that:

• There is X ∈ O(Γ) such that X∞ is obtained from X by collapsing a (possibly
empty) core sub-graph A in X, and such that X∞ has not jumped in ∆X ;

• λφ(X∞) = infY ∈O(Γ) λφ(Y ).

Suppose moreover that X∞ maximizes the dimension of ∆X∞
among the set of elements in

O(Γ)
∞

satisfying such conditions (such a set is not empty by Theorem 7.3). Then

λφ(X∞) = inf
Y ∈O(X/A)

λφ(Y ).

(Hence it is in TT(φ) ⊂ O(X/A) = O(X∞).)

Proof. If A is empty this is an instance of Theorem 4.15. In general, again by Theorem 4.15,
it suffices to show that X∞ is a partial train track point for φ in O(X∞). Suppose the
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contrary. In this case, nearX∞ there is a pointX ′
∞ ∈ O(X∞) such that λφ(X

′
∞) < λφ(X∞).

Indeed, ifX∞ is not a local min point in ∆X∞
⊂ O(X∞), then we can findX ′

∞ just nearX∞

in ∆X∞
. Otherwise, by Lemma 4.20 there is a pointX ′

∞ obtained formX∞ by folds directed
by optimal maps (and such that dim(∆X′

∞
) > dim(∆X∞

)) such that λφ(X
′
∞) < λφ(X∞).

Let ε = (λφ(X∞)− λφ(X
′
∞))/2.

Since X∞ has not jumped, by Theorem 7.4 we have λ(φ|A) ≤ λφ(X∞). If λ(φ|A) <
λφ(X∞), let A′ ∈ O(A) be a point such that λφ|A(A

′) < λφ(X∞). Now Lemma 5.12 provides
an element of O(Γ) which is displaced less or equal than max{λφ|A(A′), λφ(X

′
∞) + ε},

contradicting the fact that X∞ is a minpoint for λφ in O(Γ). Therefore λ(φ|A) = λ(X∞).

By Theorem 7.3 there is A∞ ∈ O(A)
∞

such that λφ|A(A∞) = λ(φ|A) and which has
not jumped in O(A). Thus A∞ is obtained, without jumps, from a point A′

∞ ∈ O(A) by
collapsing a (possibly empty) invariant core sub-graph B. So A∞ ∈ O(A′

∞/B).
Let Y be a Γ-graph obtained by inserting a copy of A′

∞ in X ′
∞. Let Y ′ be the graph

obtained collapsing B. Y ′ belongs to the simplicial boundary of ∆Y and, since A∞ has
no jump, then so does Y ′. Now, observe that Y ′ ∈ O(Y/B) and A∞ is a φ-invariant
subgraph of Y ′ so that Y ′/A∞ = X ′

∞. Lemma 5.12 provides an element in Y ′
∞ ∈ O(Y/B),

in the same simplex of Y ′, which is displaced no more than λφ|A(A∞) (because λφ(X
′
∞) <

λφ(X∞) = λφ|A(A∞)). Now, Y ′
∞ is a new minpoint for λφ with dim(∆Y ′

∞
) > dim(∆X∞

)
contradicting the maximality hypothesis on X∞. It follows that X∞ is a train track point
in O(X∞) as desired. �

We have just seen that, even if non-jumping min-points are not necessarily partial train
tracks, some of them are. Conversely, we see now non-jumping partial train tracks at the
bordification are always min-points for λφ.

Lemma 7.6. Let φ ∈ Aut(Γ) and let X ∈ O(Γ). If there is k so that there is a constant
A > 0 such that for any n >> 1

Akn ≤ Λ(X,φnX)

then k ≤ λ(φ).

Proof. This follows from the multiplicative triangular inequality. For any Y ∈ O(Γ) we
have Λ(Y, φnY ) ≤ Λ(Y, φY )n. Define a constant C = Λ(X, Y )Λ(Y,X) and notice that we
also have C = Λ(X, Y )Λ(φY, φX). Then,

Akn ≤ Λ(X,φnX) ≤ Λ(X, Y )Λ(Y, φnY )Λ(φnY, φnX) ≤ CΛ(Y, φY )n

whence, for any n (
k

Λ(Y, φY )

)n

≤ C

A
.

This implies k ≤ Λ(Y, φ(Y )). By choosing a minimizing sequence of points Yi we get
k ≤ λ(φ). �

Lemma 7.7. Let φ ∈ Aut(Γ). Let X∞ ∈ Ogr(Γ) which has not jumped. Suppose that there
is a loop γ ∈ X∞ and k > 0 such that LX∞

(φn)(γ) ≥ knLX∞
(γ). Then

k ≤ λ(φ).
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In particular, if X∞ is a partial train track for φ as an element of Aut(X∞), then it is
a min-point for φ as an element of Aut(Γ).

Proof. Let X ∈ Ogr(Γ) so that X∞ is obtained from X by collapsing a core sub-graph
A ⊂ X. Let Xε be a point of X where vol(A) < ε. Let γ be as in the hypothesis. For ε
small enough we have LXε

(γ) ≤ 10LX∞
(γ), and therefore

Λ(Xε, φ
nXε) ≥

LXε
(φnγ)

LXε
(γ)

≥ LX∞
(φnγ)

10LX∞
(γ)

≥ knLX∞
(γ)

10LX∞
(γ)

=
kn

10
.

By Lemma 7.6 we have λ(φ) ≥ k.
For the second claim it suffice to choose let γ a legal candidate that realizes Λ(X∞, φX∞).

So LX∞
(φn(γ)) = λφ(X∞)nLX∞

(γ).
Hence λ(φ) ≥ λφ(X∞) and since X∞ has not jumped λ(φ) ≤ λφ(X∞). �

We are now in position to complete extension of Theorem 5.14 from a local to a global
statement (see Theorem 7.4).

Theorem 7.8. Let φ ∈ Aut(Γ). Let X ∈ O(Γ) and X∞ be such that X∞ is obtained from
X by collapsing a φ-invariant core sub-graph A. Then

λ(φ|A) ≤ λ(φ).

Moreover, if λ(φ|A) = λφ(X∞), then

λ(φ) = λ(φ|A).
In particular X∞ has not jumped if and only if

λ(φ) ≤ λ(X∞).

Proof. Let λ = λ(φ|A). By Lemma 7.5 and Theorem 4.15, there is Â ∈ O(A)
∞

which is a
min-point for φ|A, which has not jumped in O(A), and which is a partial train track for

φ|A as an element of Aut(Â). Let fA be a partial train track map fA : Â→ Â representing

φ|A. Therefore, there is a periodic line γ in Âmax with legal images in Âmax and stretched

exactly by λ. Let now X̂ ∈ O(Γ) be obtained by inserting a copy of Â in X∞. Since Â has

not jumped in O(A), then X̂ has not jumped in O(Γ).

Let f : X̂ → X̂ be any straight map representing φ so that f |A = fA. Therefore fnA(γ)
is immersed for any n and the length of fnA(γ) is λ

n times the length of γ. It follows that
LX̂((φ

n)γ) = λn(LX̂(γ)).
By Lemma 7.7 λ(φ|A) = λ ≤ λ(φ), and the first claim is proved. Moreover, if λ(φ|A) =

λφ(X∞), then
λ(φ) ≤ λ(X∞) = λ(φ|A) = λ ≤ λ(φ)

and therefore all inequalities are equalities. Finally, if X has not jumped then λ(X) ≥ λ(φ)
just because this inequality is true by definition for points in O(Γ) and clearly passes to
limits of non-jumping sequences. The converse inequality follows from the second claim
and Theorem 7.4. �

Note that Theorem 7.8 implies that a posteriori we can remove the non-jumping require-
ment from Theorem 7.3 and Lemma 7.5.
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Corollary 7.9 (Min-points don’t jump). Let φ be any element in Aut(Γ). If X ∈ O(Γ)
∞

is such that λφ(X) = λ(φ), then it has not jumped.

Proof. This is a direct consequence of Theorem 7.8. �

We introduce the notion of partial train track at infinity.

Definition 7.10 (Partial Train track at infinity). Let φ ∈ Aut(Γ). The set TT∞(φ) is

defined as the set of points X ∈ O(Γ)
∞

such that X has not jumped, and X is a partial
train track point for φ in O(X). (Hence λφ(X) = λ(φ) by Lemma 7.7.)

Note that TT(φ) ⊂ TT∞(φ). The main differences are that TT(φ) may be empty, while
any φ has a partial train track in TT∞(φ). On the other hand, TT(φ) coincides with the
set of minimally displaced points, while TT∞(φ) may be strictly contained in the set of
minimally displaced points.
With this definition we can collect some of the above results in the following simple state-

ment, which is a straightforward consequence of Theorems 4.15, 7.3 and Lemmas 7.5, 7.7.

Theorem 7.11 (Existence of partial train tracks at infinity). For any [φ] ∈ Out(Γ),
TT∞(φ) 6= ∅. For any X ∈ TT∞(φ), λφ(X) = λ(φ).

We end this section by discussing some interesting consequences of the theory developed
so far. In particular we show that if φ is reducible then there is a train track showing
reducibility.

Theorem 7.12 (Detecting reducibility). Let φ ∈ Aut(Γ) be reducible. Then there is
T ∈ TT∞(φ) such that either T ∈ ∂∞O(Γ) or there is an optimal map fT : T → T
representing φ such that there is a proper sub-graph of T which is fT -invariant.

Proof. Since φ is reducible there is X ∈ O(Γ), a straight map f : X → X representing φ
and a proper non trivial sub-graph A ⊂ X such that f(A) = A. We can therefore collapse
A and λ won’t explode. By Theorem 7.11 there is a partial train track point Z for φ in
O(X/A)

∞
and a partial train track point Y for φ|A in O(A)

∞
. If λφ|A(Y ) ≤ λφ(Z), then

Z ∈ TT∞(φ)∩∂∞O(Γ) and we are done. Otherwise, since Z has not jumped (as a point of
∂∞O(X/A)), we can regenerate it to a point Z ′ ∈ O(X/A) with λφ(Z

′) < λφ|A(Y ). We now
apply regeneration Lemma 5.12 to Y and Z ′. If Y ∈ ∂∞O(A), then we get a partial train
track for φ in ∂∞O(Γ). If Y ∈ O(A) we get a partial train track for φ in O(Γ) admitting
Y as an invariant sub-graph. �

In fact, the proof of Theorem 7.12 proves more: that the set of partial train tracks detect
any (maximal) invariant free factor system. Roughly, if A is an invariant free factor syetem,
then there is B ⊇ A (possibly B = A) and a partial train track point which shows B as
the fundamental group of an invariant sub-graph. The precise statement is the following.

Theorem 7.13 (Strong reformulation of Corollary 7.12). Let φ ∈ Aut(Γ). Let X be

a Γ-graph having a φ-invariant core sub-graph A. Then there is Z ∈ O(X/A)
∞

and
W ∈ HorO(Γ)(Z) such that the simplex ∆W contains a minimizing sequence for λ. Moreover
if Y is the graph used to regenerate W from Z, then the minimizing sequence can be chosen
with straight maps fi such that fi(Y ) = Y and Lip(fi) → λ(φ).
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Proof. Follows from the proof of Theorem 7.12 (and Lemma 5.12). �

Finally, as in the case of irreducible automorphisms, the existence of partial train tracks
gives the following fact.

Corollary 7.14. For any φ ∈ Aut(Γ) we have λ(φn) = λ(φ)n.

Proof. This follows from Theorem 7.11 and Lemma 4.12. �
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