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ABSTRACT: In the last years, ensemble methods have been widely popular in atmospheric, climate, and ocean dynamics

investigations and forecasts as convenient methods to obtain statistical information on these systems. In many cases,

ensembles have been used as an approximation to the probability distribution that has acquiredmore andmore a central role, as

the importance of a single trajectory, ormember, was recognized as less informative. This paper shows that using results from the

dynamical systems and more recent results from the machine learning and AI communities, we can arrive at a direct estimation

of the probability distribution evolution and also at the formulation of predictor systems based on a nonlinear formulation. The

paper introduces the theory and demonstrates its application to two examples. The first is a one-dimensional systembased on the

Niño-3 index; the second is a multidimensional case based on time series of monthly mean SST in the Pacific. We show that we

can construct the probability distribution and set up a system to forecast its evolution and derive various quantities from it. The

objective of the paper is not strict realism, but the introduction of thesemethods and the demonstration that they canbe used also

in the complex, multidimensional environment typical of atmosphere and ocean applications.
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1. Introduction

In the last 20 years the evolution of the methodological ap-

proach to atmosphere and ocean forecasting and in general to

investigations of the dynamics of weather and climate has

progressed toward a massive usage of ensemble techniques.

Starting with the pioneering work of Molteni et al. (1996) and

Toth and Kalnay (1993), the generation of ensembles has be-

come the dominant approach in forecasting (Barkmeijer et al.

2013; Schwartz et al. 2019; Bell and Kirtman, 2019) and in

climate projections and scenarios (Kay et al. 2015; Tebaldi and

Knutti 2007; Maher et al. 2019).

The ensemble members are usually generated by perturbing

initial conditions, boundary conditions, or involving different

models and/or resolutions. The objective was to sample as

much as possible the phase space, implicitly recognizing that

the essential information cannot be considered contained in

the single forecasts, but rather in their distribution and vari-

ance. In practice, we are shifting the forecasting problem from

an individual forecast to forecasting the probability distribu-

tion of the variables of interest.

This shift has been empirically motivated and it has yielded

important successes, but it has also significant fundamental

consequences, since we are moving away from the ‘‘trajectory

picture’’ and adopting instead a ‘‘probability picture.’’ The

difference is that we have extensive information on the

dynamics and properties of the trajectories, i.e., the forecast

or single integration, but in reality we know much less about

the properties of the ensemble of trajectories, i.e., the proba-

bility distribution. Recently, some attempts have been made to

apply statistical methods, like revisiting the analog method

(Ding et al. 2019), or using convolutional neural networks to

design a predictive system (Ham et al. 2019). Very recently

Wang et al. (2020) extended the analogmethod by combining it

with a kernel approach that allowed them to design a predic-

tion system for the Niño indices in the Pacific. They showed

that using a kernel as a similarity measure generalizes the

analog concept and includes other measures of similarity

than the linear measure based on the spatial inner product

that is used in linear inverse model (LIM) methods (Penland

and Sardeshmukh 1995).

Of course, there are very good reasons for this. For the at-

mosphere and the ocean, the probability evolution can prob-

ably be formulated theoretically, but with very little chance of

being treated in practice to get feasible calculations and esti-

mates. Furthermore, we do not know much about the prop-

erties of the probability for the atmosphere and its evolution.

In principle, the problem is difficult since it is really the prob-

ability of a field configuration (the temperature, the wind, . . .),

so it needs to be treated with the tools of functional analysis, a

tough problem for nonlinear fluid systems like the atmosphere

and the ocean. Discretized systems are equivalent to systems of

ordinary differential equations and therefore are simpler to

deal with, but the dimensionality quickly becomes a problem.

This problem is made explicit by the attempts to use stochastic

models leading to the Fokker–Planck equation (Navarra et al.

2013; Majda and Qi 2020) that described the evolution of the

probability as a function of the degrees of freedomof the problem,

basically confined it to highly idealizedmodels. Berry et al. (2015)

used nonparametric methods to estimate forecasting models for
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low-dimension systems, showing that it is indeed possible to

estimate the evolution equation for the probability distribution

without having to identify the equation itself in closed form.

Their approach, however, was applied to low-order systems

and used some assumption of stochasticity for the system.

The trajectory picture is not the only one possible for a

system. In a couple of exceptional papers, Koopman (1931)

and Koopman and Neumann (1932) proposed an alternative

approach showing that a system can be equivalently described

by an operator acting on a function space. The Koopman op-

erator picture (Rowley et al. 2009; Budi�sić et al. 2012) shows

that for every dynamical system there is a linear operator

acting on a function space whose spectral properties, namely,

eigenvalues, eigenfunctions and modes, completely charac-

terize the dynamical system. Chaotic dynamical systems may

have a partially or entirely continuous spectrum that in practice

is approximated numerically. The link between the Koopman

operator and the dynamical system is provided by the fact that

the function space on which it operates is the space of the

functions of the state variables of the dynamical system itself.

The function space can be made into a Hilbert space with a

suitable measure.

The explicit expression of the Koopman operator in closed

form, however, was only possible for simple systems amenable

to analytical treatment, until recently a number of results have

improved upon the numerical algorithm by Ulam (1960), in-

troducing the extended dynamic mode decomposition (EDMD)

(Williams et al. 2015a,b; Klus et al. 2016) and the variational

approach of conformation dynamics (VAC) (Noé and Nüske
2013; Nüske et al. 2014).A reviewof thesemethods can be found

in Klus et al. (2018), further information can be found inRowley

et al. (2009), Tu et al. (2014), and McGibbon and Pande (2015).

These results have allowed the development of practical algo-

rithms that can be used to estimate the Koopman operator from

observation and simulation data.

It was further recognized that the adjoint of the Koopman

operator is the Perron–Frobenius operator (Lasota and Mackey

1994; Beck and Schlögl 1995). The Perron–Frobenius operator is
very interesting because it acts on the space of densities of the

state space of the system. So whereas the Koopman operator

provides information on the evolution of functions of the state

(sometimes referred to as observables), its adjoint, the Perron–

Frobenius operator evolves densities of trajectories of the state

space. Both operators can be estimated using databased tech-

niques. In this paper we will describe the connection between

the Koopman and Perron–Frobenius operator (collectively

known as transfer operators) and then we will examine some

examples using the algorithms of Klus et al. (2019).

2. Transfer operators

A deterministic dynamical system can be defined by an or-

dinary differential equation of the form

dx

dt
5F(x) , (1)

where x 5 (x1, x2, ..., xn) is a vector of dimension n; we can

identify ‘‘states,’’ the x vectors, and ‘‘observables,’’ g(x),

basically any function of the states. The Koopman operator

K evolves the functions of the states in time,

Kg(x)5 g[U
t
(x)] ,

where Ut is the operator associated with F that evolves the

state for a fixed lag time t. Note that the Koopman operator

(and consequently also its eigenvalues) implicitly depends on

the chosen lag time. For the sake of simplicity, we will, how-

ever, omit this dependency and simply write K. This operator

is linear, even if the underlying dynamics is nonlinear. The

operator contains all the information of the dynamical system

and it constitutes an alternative formulation to the ‘‘trajectory

picture.’’ In this ‘‘operator picture’’ we can use all the ma-

chinery developed for the analysis of linear operators, with the

complication that this operator is infinite-dimensional even for

finite-dimensional dynamical systems.

The adjoint of the Koopman operator is acting on the dual

space of the observables. It can be shown (Mezić 2005) that

it acts on measures (densities) that can be interpreted as

probabilities,

r
t
(x)5Pr

0
(x)5 r[U

t
(x)] .

The probability of finding the system in phase space volume Dx
at time t is then given by rt(x)Dx. If the initial probability dis-

tribution is highly localized around a certain state x0, then it can

be interpreted as the conditional probability of finding the

system in the state x given that it was at x0 at t5 0. In general it

describes the absolute probability for the states.

These two operators describe completely the underlying

dynamical system, so that every dynamical system induces a

natural measure or density that describes the behavior of sets

of trajectories under the transformation of the dynamical

system. They are linked by a duality relation

hKg
1
, g

2
i5 hg

1
,Pg

2
i,

where h�,�i is an appropriate inner product.

An alternative formulation is given in terms of the infini-

tesimal generator of K, with

Kg(x)5 eLtg(x) ,

where the operator L is given by

Lg5�
n

i51

F
i

›g

›x
i

and for the Perron–Frobenius operator

Pr(x)5 eL
ytr(x) ,

where Ly is the adjoint of L. The sum of L and its adjoint is

given by

(L1Ly)g52�
n

i51

›F
i

›x
i

g .

So if a dynamical systems is volume preserving in the phase

space, i.e.,
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�
n

i51

›F
i

›x
i

5 0,

then the generator is skew adjoint and the Koopman and

Perron–Frobenius operators can be characterized by the same

generator. In the case that the dynamical system does not

preserve volume, for instance for dissipative systems, there is a

difference and the two operators will have different generators.

This property is depending on the measure that is being used,

for instance the Lorenz attractor is dissipative with respect to

the standard Lebesgue measure, but it is ergodic and measure

preserving with respect to the measure defined by the proba-

bility distribution on the attractor.

A unitary operator has the property that the eigenvalues mi

are all of modulus 1, distributed on the unit circle. For eigen-

values inside the unit circle it holds that jmij # 1 and, if the

system is ergodic, the eigenfunction of the Koopman operator

corresponding to the eigenvalue 1 is a constant function and

the associated eigenfunction of the Perron–Frobenius operator

is the steady-state probability distribution. Transfer opera-

tors associated with complex dynamical systems might have

continuous spectra. The analysis of such problems, however,

is more challenging and beyond the scope of this paper.

Numerically, we are computing transfer operators projected

onto finite-dimensional spaces. See Giannakis (2019) for a

more detailed discussion.

It is interesting to remark that in the case of a stochastic

system, the infinitesimal generator of the Perron–Frobenius

operator is the Fokker–Planck equation, whereas the infini-

tesimal generator of the Koopman operator is the Kolmogorov

backward equation.

The definitions can be easily extended to the temporally

discrete case,

x(t1 t)5 x(t)1 tF(x) .

The eigenfunctions are the same and the eigenvalues trans-

form from m for the discrete case to l 5 log(m)/t for the

continuous case.

A comprehensive analysis of the mathematical properties of

transfer operators can be found in Giannakis (2019), where the

relations between the ergodic properties of the dynamical

system and the spectrum of transfer operators are discussed

in detail.

In meteorology and/or climate in the past 20 years the usage

of ensemble methods has steadily increased and they are now a

standard procedure. The underlying assumption is that we can

sample the phase space of the system and estimate the prob-

ability distribution of the variable of interest. There is an im-

plied realization that the focus of the forecast is shifted from

the target of obtaining the ‘‘right’’ trajectory that more closely

follows the real evolution of the real atmosphere/ocean system

to that of obtaining the distribution of probabilities of various

outcomes.

The single integration from a specific initial condition is

now less important, because we recognize the fact that the

sensitivity to initial conditions and in general to the multiple

nonlinear processes present in the system is causing the in-

formation to be shifted from a single trajectory to their

collective behavior and properties. The collective behavior is

completely described by the probability distribution.

The problem can now be formulated considering that every

law governing the evolution of the atmosphere and ocean can

be reduced to the abstract form (1), where x represents the

variable after discretization and F(x) represents the inter-

actions and processes that regulate the time evolution. A

single trajectory is evolved by the time evolution operatorU

so that

x(t)5U
t
x
0

and its inverse

x(2t)5U
2t
x
0
.

If we have an ensemble of initial conditions distributed according

to a probability distribution r0(x), then the probability den-

sity at time t is given by (Gaspard et al. 1995; Gaspard and

Tasaki 2001)

r
t
(x)5

ð
d(x2U

t
y)r

0
(y) dy

5

����›(U2t
x)

›x

����r0(U2t
x)5 (Pr

0
)(x) ,

and this relation defines P, the Perron–Frobenius operator.

There are no other assumptions on the probability, but if we

require that the trajectories are conserved locally, i.e., no tra-

jectory disappears suddenly in any volume of the phase space,

then the probability obeys the Liouville equation (Poincaré
1906; Gaspard 2007).

3. Transfer operators and data

a. Estimating transfer operators from data

Transfer operators are a well-defined concept, but their

abstract definition has made them elusive to analytical in-

vestigation, except in very simple cases. However, it was

shown inWilliams et al. (2015a,b) and Klus et al. (2018, 2019)

that transfer operators can be estimated from data, obser-

vations, or simulations, using the EDMD. Assuming such a

dataset is available describing a time-evolving system from

an initial time t 5 0 to a final time t 5 T, we can organize the

data as follows:

Z5 [z
1
, z

2
, . . . , z

m
]. (2)

Here, the vectors zi of length n describe the system at different

times, from t5 0 for i5 1 to t5T for i5m, with a discrete time

interval of t. The conceptual picture here is that we take the

data to represent the sampled evolution of the system ac-

cording to an unknown dynamical equations.

This organization of the data is similar to the basic data

organization used in many other methods, from the linear

inverse methods, LIM, (Penland and Sardeshmukh 1995;

Penland 1996) to simple EOF calculation or more advanced

methods such as singular spectra analysis (Vautard and Ghil

1989). These methods rely on various forms of regression
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and assume a stochastic component for the dynamics. The

time covariance matrix constructed from the data, often

with some lags included, is the central component and it can

be defined from the data matrix (6) as

C
zz
5ZZT .

The dimension of the covariance matrix is given by the spatial

length of the data and so usually space reduction is needed

before implementing these methods. However, the Gram

matrix

G
zz
5ZTZ

has the dimension of the length of the time series, irrespective

of the length of the vectors, usually grid points that can easily

be in the thousands. The covariance matrix contains the

covariance information for each spatial degree of freedom,

usually grid points, whereas the Gram matrix elements are

basically overlap integrals of the spatial field at different time

levels, measuring the degree of similarity between them. In

what follows we will show that using the Grammatrices we can

get useful information from large datasets.

The vectors can be two- or even three-dimensional fields,

like temperature or geopotential, expressed as vectors of grid

points. The vectors are elements of a finite dimensional space

that we will define the ‘‘state space’’ and the vectors themselves

are called ‘‘states.’’

Then we can define the evolution data matrix (defined here

for lag one, but other lags can be considered) as the shifted

matrix,

Y5 [z
2
, z

3
, . . . , z

m11
].

It can be shown that the auxiliary matrix eigenvalue

problems

(G
zz
1 n�I)

21
G

zy
vK 5mvK,

(G
zz
1n�I)

21
G

yz
vP 5mvP (3)

can be used to determine eigenvalues and eigenfunctions of the

Perron–Frobenius and Koopman operators, respectively; see

Klus et al. (2019). Here, � is a (Tikhonov) regularization pa-

rameter which can be added to ensure that the inverse exists.

Alternatively, a pseudoinverse calculation can be used. The

continuous eigenvalues can be obtained as l5 log(m)/t, where

t is the time interval between two successive states of the

time series.

If the standard inner product is used, thenGzz5 ZTZ is the

Gram matrix of the data matrix Z, whereas Gzy 5 ZTY is the

Grammatrix of the data matrix Z and the shifted data matrix

Y. The elements of the Gram matrix are estimating the

similarity or correlation between the state vectors at dif-

ferent times,

G
zz
5

hz
1
, z

1
i . . . hz

1
, z

m
i

..

.
1 ..

.

hz
m
, z

1
i . . . hz

m
, z

m
i

2
664

3
775 (4a)

and

G
zy
5

hz
1
, z

2
i . . . hz

1
, z

m11
i

..

.
1 ..

.

hz
m
, z

2
i . . . hz

m
, z

m11
i

2
664

3
775. (4b)

The choice of the function that gives the similarity measure

determines the class of functions that we use to approximate

the transfer operators. Using the standard inner product for a

measure of similarity in (9) corresponds to restricting the

function space over which we approximate the transfer op-

erator to just linear functions. In this case the Gram matrix

contains the same information as the covariance matrix that

is used in estimation methods based on autocorrelation like

LIM. In fact it can be shown that in this case this approach is

equivalent to LIM (Tu 2013; Tu et al. 2014).

b. A generalization of similarity using kernels

Limiting the approximation of the transfer operators to

linear functions is a strong constraint on the approximation.

To improve the approximation we have to use a richer set of

functions to allow for a better estimation of the transfer op-

erators. This can be achieved by considering a more general

similarity measure than the linear inner product, defining a

function, usually called kernel, such that the similarity between

vector x and y is given by a two-argument function k(x, y). The

case in which this function can be expressed as an appropriate

inner product of one-argument functions,

k(x, y)5 hf(x),f(y)i,

is particularly important.

Such methods have been extensively investigated in classi-

fication and machine learning problems and the properties

of several classes of kernels have been identified. The major

mathematical result is that the kernels generate aHilbert function

space (of finite or infinite dimension) that enjoys nice properties,

the so-called reproducing kernel Hilbert space (RKHS).

A full description of kernels and their properties can be

found in Schölkopf and Smola (2001) and Steinwart and

Christmann (2008). Many possible kernels have been investi-

gated. The linear kernel used in standard correlation turns out

to be a special case of the polynomial kernel,

k(x, y)5 (hx, yi1 c)p,

where p is an integer and c a nonnegative constant. A popular

choice is the Gaussian kernel

k(x, y)5 [exp(2jjx2 yjj2/2s2)]/
ffiffiffiffiffiffi
2p

p
s

� �
,

but other kernels are based on exponentials, sigmoid, tran-

scendental, or trigonometric functions. Kernels have been

classified as characteristic kernels and universal kernels; see,

e.g., Muandet et al. (2017). A characteristic kernel will pre-

serve the probability distribution of the state space in the

RKHS and a universal kernel will generate RKHSs that will

be capable to approximate all continuous functions of the

state variables. The polynomial kernels are neither of those,

1230 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Unauthenticated | Downloaded 03/31/21 06:22 AM UTC



whereas the Gaussian kernel is both universal and charac-

teristic and therefore it is the choice made in this paper.

The choice of the kernel functions is of course of great im-

portance and there is certainly room for further analysis, but

for this paper we would like to select a kernel that gives us a

good fidelity of the probability aspect of the data and it is

amenable also to some analytical calculation. Furthermore, the

Gaussian kernel is positive definite and limited between zero

and one, whereas other kernels, like the polynomial kernel,

require some sort of normalization since they can have very

large values.

Similarly important is the choice of the parameters of the

kernel. There is no guiding principle for this selection, but in

the case of the Gaussian kernel very small or very large values

of s will make the entry in the Gram matrix uniform, de-

stroying the data information. It is clear then that s must be of

the same order as the distances between the data snapshot

(jjx2yjj2). An empirical choice that is oftenmade is themedian

of the distribution of the distances (Flaxman et al. 2016), that

has been shown to give good results heuristically. We have

selected a somewhat similar choice and we have selected s to

be such that the standard deviation of the distribution of the

distances is 1. The choice could be refined in specific appli-

cations by cross-validation methods to arrive at an optimal,

but problem dependent, choice. For the introduction of the

method in this paper we have refrained from doing so.

c. Kernels and the Gram matrix

Using a kernel the Gram matrix is then given by

G
zz
5

k(z
1
, z

1
) . . . k(z

1
, z

m
)

..

.
1 ..

.

k(z
m
, z

1
) . . . k(z

m
, z

m
)

2
664

3
775,

andGyz is defined analogously. Themain property of this space

is the reproducing property: every function in the RKHS can

be calculated using the kernel via the RKHS inner product

f (x)5 hf (�), k(�, x)i,

where h�,�i is the inner product of the RKHS. We can thus

define the canonical feature map f(x) 5 k(�, x) and obtain

k(x, y)5 hf(x),f(y)i.

Furthermore, we can define the so-called feature matrix F by

F5 [f(z
1
),f(z

2
), . . . ,f(z

m
)]

5 [k(�, z
1
), k(�, z

2
), . . . , k(�, z

m
)].

In what follows, we will sometimes use the notation fj(x) 5
[f(zj)](x) 5 k(x, zj). Every state x can be represented in the

RKHS by f(x) (Fig. 1). The reproducing property looks like a

generalization of the distribution function like the Dirac delta,

linking local properties to global integrals.

The matrix eigenvalue problem (8) approximates the cor-

responding operator eigenvalue problem. The eigenfunctions

are then given by

uP 5FG21
zz v

P 5Fu , (Perron–Frobenius)

uK 5FvK , (Koopman)

where v are the eigenvectors of the auxiliary eigenvalue

problem (3). The values at the training data points can then

be obtained by evaluating the eigenfunctions in z1, ..., zm.

The feature matrix F evaluated in Z becomes the Gram

matrix Gzz.

4. The spectrum of transfer operators

The linear nature of the Koopman operator leads to the

possibility of its analysis using spectral methods (Rowley

et al. 2009; Mezić 2013). We have some freedom in the se-

lection of the function space on which the transfer operators

are acting and in what follows we will choose that both the

Koopman operator and its adjoint, the Perron–Frobenius

operator, will be defined on the Hilbert space of square-

integrable functions L2. There is a freedom to select the

measure for the Hilbert space, for an ergodic and measure-

preserving system the invariant measure may be a choice,

but others are possible.

The relationship between the eigenvaluesm of the Koopman

operator for a fixed lag time t and the eigenvalues l of the

generator is given by m 5 elt. That is, as described above, l 5
log(m)/t. We can thus make predictions for all possible times t,

not just multiples of t.

As a consequence, every function g (observable) of the state

vector x can be written as

g(x, t)5�
i

a
i
eli tu

i
(x) ,

yielding the time evolution of the observable, where the ai are

the coefficients that express the initial value of the observables

on the span of the eigenfunctions

FIG. 1. Schematic of the relations among the state space, the feature

mapping, the observables, and the RKHS.
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g(x
0
)5 g(x, 0)5�

i

a
i
u

i
(x) .

The evolution of probability densities can be obtained from

the Perron–Frobenius operator and its eigenfunctions in a

similar way:

r(x, t)5�
i

b
i
eli tuP

i (x) .

Once again the bi are the coefficients of the initial density

expanded in the Perron–Frobenius eigenfunctions, obtained

from the projection of the initial probability distribution

r(x
0
)5 r(x, 0)5�

i

b
i
uP

i (x) .

a. Observables

The vector-valued observable defined by g(x, t) 5 [g1(x),

g2(x), ..., gk(x)]
T can be expressed in terms of the first N

Koopman eigenfunction uN as

g
k
(x, t)5�

N

i50

a
ki
eli tu

i
(x)

5�
i

a
ki
eli t�

j

y
ij
f

j
(x)

5�
i j

a
ki
eli ty

ij
f

j
(x)

because the eigenfunctions can be written in terms of the

features as

u
l
(x)5�

M

j50

y
lj
f
j
(x) ,

where ylj is the jth component of the lth eigenvector of the

empirical estimates.

Introducing the matrix A 5 aij, the diagonal matrix D(t)

having as diagonal elements [el0 t, el1 t, . . . , elNt], and letting uN

be the row vector of the first N Koopman eigenfunctions, we

can write the evolution of the coefficients of the observables in

matrix form as

g(x, t)5AD(t)uT
N(x) .

On the other hand the eigenfunctions can be expressed in

terms of the features, where VN is the matrix of the ylj coeffi-

cients restricted to the retained eigenfunctions

~u5 [u
1
,u

2
, . . . ,u

N
]5FV

N
(5)

to obtain

g(�, t)5AD(t)VT
NF

T . (6)

The coefficient matrixA can then be obtained from (6) at t5 0.

Evaluating g in all training data points Z, we obtain

g(Z)5AVT
NGzz

,

so we have

A5g(Z)(VT
NGzz

)
21

,

where thematrix g(Z) is defined as the values of the observable

at every data point, g(Z) 5 [g(z1), g(z2),. . . , g(zm)].

b. Probability

The probability density of the states can be expanded in the

Perron–Frobenius eigenfunctions uP in a similar way, taking

now into account the fact that it is an scalar function and not

necessarily a vector observable as before. The probability r(x, t)

can then be expressed in terms of the first N Perron–Frobenius

eigenfunctions. The approximation cannot guarantee a positive

definite distribution at all truncations, but it is achieved in the

limitN/ ‘.We organize the row vector of functions ~u as in the

previous case (15),

~uP 5 [u
1
,u

2
, . . . ,u

N
]5FVP

N ,

then we can set

r(x, t)5�
N

i50

b
i
eli tuP

i (x) , (7)

and using the column vector B that contains as elements the

coefficients bi, the diagonal matrix of the eigenvalues D(t)

as above, and uP
N the row vector of the first N Perron–

Frobenius eigenfunctions, we can write the evolution of

the coefficients of the probability distribution in matrix

form as

r(x, t)5BTD(t)(~uP)
T
5BTD(t)(VP

N)
T
FT .

If we project (20) at t 5 0 on the Perron–Frobenius ei-

genfunctions uP
i (x) one at the time we get a set of equations

that can be used to obtain the expansion coefficients bi of the

initial condition,

r(x, t)uP
k (x)5�

N

i50

b
i
eli tuP

k (x)u
P
i (x), k5 1, 2, . . . ,N . (8)

Let r(x, 0) denote the probability at time t 5 0. The vector B

can then be obtained from (8), calculating the values of the

initial probability distribution on the data points Z; i.e.

r(Z, 0)G
zz
VP

N 5BT(VP
N)

T
G

zz
VP
N ,

where Gzz is the Gram matrix of the data. So we have

BT 5 r(Z, 0)G
zz
VP
N (VP

N)
T
G

zz
VP
N

h i21

.

The expectation value with respect to the probability density

can then be written as

E[f (x)]5
1

R(t)

ð
f (x)r(x, t)dx,

where the integration extends over all state variables, dx5 dx1,

dx2... and R(t) is a normalization factor for the (unnormalized)

probability density that will be time dependent for systems

converging to a stationary state, given by

R(t)5

ð
r(x, t)dx.
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TheB vector we can now be used together with (7) to write the

expectation values of any function at any time

E[f (x)]5
1

R(t)

ð
BTD(t)(VP

N)
T
f (x)F(x)T dx .

Because f(x) is a scalar, we can transform it into

E[f (x)]5
1

R(t)
Q(t)

ð
f (x)F(x)T dx

5
1

R(t)
Q(t)S , (9)

where the vector Q(t) is defined as

Q(t)5BTD(t)(VP
N)

T

and we have introduced a column vector S, the structure vector, as

S
i
[f ]5

ð
f (x)f

i
(x)dx . (10)

The vector Q contains the information coming from the dy-

namics as it is represented from the data. The normalization

factor can then be obtained from

R(t)5Q(t)

ð
F(x)dx .

c. The structure matrix for the Gaussian kernel

For the Gaussian kernel the structure vector can be com-

puted explicitly. In this case the features are

f
i
(x)5 exp[2(x2 z

i
)
2
/(2s2)]/

ffiffiffiffiffiffi
2p

p
s

� �
,

so for the expected value of the kth component of the state

vector xk, S is given by

S
i
[xk]5

ð
xk exp[2(x2 z

i
)
2
/(2s2)]/(

ffiffiffiffiffiffi
2p

p
s) dx5 zki

and similarly for the variance h(xk)2i then

S
i
[(xk)

2
]5 (zki )

2
1 2s2

and the cross-variances, hxkxli

S
i
[xkxl]5 zki z

l
i .

From the matrix S we can derive the evolution of expected

values of the state vector.

5. Application to the one-dimensional Niño-3 time series

We start with the simplest example that consists of a one-

dimensional monthly means time series, in this case the Niño-3
index time series1 based on data from Rayner et al. (2003);

see Fig. 2. The data are anomaly monthly means values from

January 1870 to December 2018 for a total of 1788 data

points. In this case the vector entries in the data matrix are

just numbers so the data matrix Z itself is a one-dimensional

vector,

Z
NINO3

5 [z
1
, z

2
, . . . , z

m
].

In this case the zero lag and one-lag time covariance that are

the basic blocks of a LIM approach are numbers, but on the

other hand the spatial Gram matrices will be 1788 3 1788 and

its elements are the similarity between every monthly anomaly

with all the others. Now, if we choose as measure of similarity

in the Gram matrices (4a) and (4b) the inner product in state

space (in this case it is just the product of every monthly

anomaly with every other monthly anomaly) the approximated

Koopman operator eigenvalue problem (3) will have only one

eigenvalue whose value will be proportional to the one-lag

covariance.

On the other hand, if we use a nonlinear measure for the

similarity, using one of the kernels described in section 4b then

the eigenvalue problem for theKoopman or Perron–Frobenius

operators will have in general many different eigenvalues and

eigenfunctions, in fact for the Gaussian kernel it is usually of

full order. The consequence is that now we have many more

functions available for the approximation of the operators

opening up the possibility of improving the approximation

itself.

The interpretation is that in the linear similarity case the

approximation obtained to the Koopman operator is essen-

tially the same as in a LIM approach, providing here another

interpretation of the LIM procedure as an attempt to get an

approximation to the Koopman operator using only linear func-

tions. Note that the Koopman framework does not need to as-

sume the presence of a stochastic component, even if stochastic

system can also be treated within the Koopman approach.

FIG. 2. Niño-3 time series.

1 https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3.
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Then we can see that solving the eigenvalue problem (3) is a

similar step to the determination of the empirical normal

modes of Penland and Sardeshmukh (1995) from the time

lagged covariance matrix appropriately scaled. When we use a

Gaussian kernel with bandwidth s 5 0.5, the eigenvalue

problems for Koopman and Perron–Frobenius operators be-

come nontrivial and we get many eigenvalues shown in Fig. 3.

There is an eigenvalue of magnitude one corresponding to the

invariant density and all other eigenvalues are smaller than

one, this implies that there is a stationary state corresponding

to eigenvalue of unitary size and the remaining eigenvalues are

describing decaying eigenfunctions toward that state. We can

also see that there are about only 20 eigenvalues large enough

to contribute to the time evolution, as most of the others are

really numerically zero. The figure also shows the position of the

eigenvalues in the complex plane. Most of eigenvalues are real,

but there a few that have nonzero imaginary part, indicating an

oscillatory component. The G matrices are real, so complex eigen-

values and their relative eigenfunctions come in conjugate pairs.

In this one-dimensional case we can compute explicitly

the eigenfunctions of the Koopman and Perron–Frobenius

operators. The eigenfunctions are going to be weighted by

the empirical probability density of the data (Fig. 4). Figure 5

shows the eigenfunctions. The probability distribution relaxes

to the lowest eigenfunctions as time progresses, indicating that

this eigenfunction is a stationary state for this system.

The positive values (Fig. 6) show a similar behavior. In gen-

eral the stationary state is reached between 6 and 12 months

depending on the initial condition, at that point everymemory of

the initial condition is lost and the probability distribution can-

not be distinguished from the average value over the history of

the time series. We can see then the transfer operators, in this

case the Perron–Frobenius operator, provide another estimation

of the predictability limit for the equatorial sea surface tem-

perature (SST) as expressed by the Niño-3 index. The value,

between 6 and 12 months, is consistent with estimates from

seasonal forecasting systems and other empirical estimates.

The other transfer operator, the Koopman operator, on the

other hand, can be used to predict the evolution of observables

and, of course, of the simplest observable, the state vector

itself, in this case the value of the Niño-3 index. We show in

Fig. 7 the forecast of the Niño-3 index from various starting

points using theKoopman eigenfunctions. For comparison, it is

shown the autoregression forecast that can be considered as the

simplest approximation of the Koopman operator, namely,

approximating it with just linear functions. Improving the ap-

proximation with a larger class of functions by use of the kernel

yields a richer behavior.

6. The Koopman operator for the Pacific SST

We describe as an example in this section the application

of transfer operator theory to the evolution of the equatorial

Pacific SST. The SST data are obtained from ERA5 (Copernicus

Climate Change Service 2017).2

The dataset is composed of anomaly monthly means fields

from January 1979 to December 2018 for a total of 468 snap-

shots, normalized by the total standard deviation. The anom-

alies have been computed with respect to the month by month

climatology obtained from the entire time series 1979–2018

and no other preprocessing has been applied, i.e., no de-

trending has been performed. The resolution of 0.258 translates
into 67 796 ocean grid points, taking into account the land-sea

mask. Therefore in principle every grid point represents a

degree of freedom, showing a typical high-dimensional prob-

lem. In more precise terms the issue here is that the we are

observing the variability of a field that has an infinite number of

degrees of freedom. Another way of saying this is that we need

an infinite set of numbers to exactly specify a configuration of

the SST field, in a real application we realize a discretization

that approximates the field with a finite number of points. We

can organize the data according to (2), obtaining an array of

size 67 796 3 468 and carry out the calculation as described in

FIG. 3. (top) Magnitude and (bottom) real and imaginary part of

the eigenvalues of the Perron–Frobenius operator for the Niño-3
monthly time series.

FIG. 4. Empirical probability density for Niño-3. It has been
estimated using a kernel density estimator from Scikit-Learn

(Pedregosa et al. 2011).

2 They cover the equatorial Pacific zone with a resolution of

0.258. The selected region extends from 158N to 158S and from 408E
to 1108W.
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the previous sections. Note that because the algorithm is using

Grammatrices rather than covariance matrices the calculation

is feasible.

For computational convenience we have done a preliminary

EOF analysis on the anomaly data, keeping a smaller number

of EOF modes. The calculations below have been performed

with 31 modes, retaining 92% of the variance. After this

transformation the state vectors x consist of the coefficients of

the EOF for every monthly mean anomaly. There is little

change in keeping more modes. This reduction is not essential

to the calculation and the algorithms work fine even using the

full original data in the gridpoint representation or using the

entire spectrum of 468 EOFs.

The spectrum of the transfer operator is shown in Fig. 8.

We have used here a Gaussian kernel (left panel) with a

bandwidth determined from the standard deviation of the

distribution of squared norms of the data vectors’ Euclidean

distances jjzi – zjjj2. The distribution of the eigenvalues of the

spectrum indicates that the approximated transfer operator

is almost unitary, except for a few eigenvalues with norm

smaller than one inside the unit circle. In contrast, the usage

of a polynomial kernel of order one (on the left), that cor-

responds to using the ordinary covariance matrix, shows a

much poorer approximation. It is interesting to note that in

the polynomial case only 31 eigenvalues are different from

zero, that corresponds to the maximum number of degrees

of freedom of the covariance matrix, i.e., the number of

EOF modes retained.

It must be clarified that we cannot plot the eigenfunctions

themselves, as they are high-dimensional functions and in ef-

fect what we are plotting here are the values that the respective

eigenfunctions take on the data points. The eigenvalues are

located on the unit circle, but we can order them by their re-

spective period, from the slowest to the fastest. Most of the

eigenvalues have small growth/decay rates and it is not possible

to identify a definite ground state as in the case of the Niño-3
index. There are eigenfunctions both growing and decay-

ing and so in general there is no asymptotic state to which

FIG. 5. First four (top) Perron–Frobenius eigenfunctions and (bottom) Koopman

eigenfunctions for the Niño-3 time series. The Koopman eigenfunctions have been re-

weighted by
ffiffiffiffiffiffi
rE

p
for convenience, where rE denotes the density of the time series data (Fig. 2)

computed by a kernel density estimation; see Fig. 4. The asymptotic state (N5 0) is the lowest

one with eigenvalue 1; the other modes are progressively decaying at higher rates.
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they relax with time. Figure 9 shows some examples of

eigenfunctions. We have plotted here the values of the ei-

genfunctions at the data points, because of their complex

nature we are plotting the amplitude. We can interpret the

stable ground state at zero growth rate (N 5 0) as a normal

state and we can notice large deviations corresponding to

years of large anomalies. The corresponding eigenfunctions

are a very slow, trend-like evolution of the system, until we

reach the sixth or seventh eigenfunctions, with periods al-

most decadal, where we can notice stable fluctuations of

decreasing time scale. These are nonlinear fluctuations, with

sharp transitions between states, very different from simple

oscillations. Higher eigenfunctions (N . 20) result in fast

time scales at annual or biannual scale.

FIG. 6. Evolution of the probability for the Niño-3 index time series for various initial conditions of negative

anomalies. The panels show the evolution starting at values of the index equal to (bottom left) 0.0, (middle

left)21, (top left)22.0, (bottom right) 2.0, (middle right) 1.5, (top right) 1.0. The time units in the legend are

months.
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According to the analysis of Giannakis (2019), the ab-

sence of a realization to the ground state seems to indicate

that the system is ergodic. It is interesting to compare with

the case of the Niño-3 index that was clearly showing

instead a dissipative nature. It is reasonable to assume that

the full multidimensional field is the main physical system

we are considering, so we have to be careful to conclude

from low-dimensional slices of the field properties of the

entire field.

A linear predictor can be constructed from the Koopman

operator eigenfunctions (Korda andMezić 2019), by considering

the state itself to be an observable expressed as a linear

combination of the Koopman eigenfunctions. For a predic-

tion starting in January of a given year, the Koopman ei-

genfunctions have been calculated using the data up to the

preceding December. The verification data have also been

projected on the different EOF sets for each starting date.

The EOFs have been also calculated only in this selected

FIG. 7. Forecast of the Niño-3 index time series for various initial conditions. The Koopman forecast and the

forecast based on the autocorrelation of the time series are shown. Time units are months.

FIG. 8. Eigenvalues of the Koopman operator for (left) a Gaussian kernel and (right) a polynomial kernel

of order one with no shift. The eigenvalues within the circle have norm smaller than unity. In the poly-

nomial kernel case there are only 31 eigenvalues different from zero, as most of them are concentrated in

the origin.
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period. We have retained 31 EOF modes, corresponding to

about 92% of the variance. The initial conditions are then

obtained by expanding the initial state on the resulting Koopman

eigenfunctions using the expansion described in section 4a.We

use the spatial correlation coefficient over the entire area as a

verificationmeasure. The verification data are projected on the

same EOFs obtained from the training period.

The results are shown in Figs. 10–13 for a number of selected

cases. There is some freedom in selecting the truncation

limit for the expansion in the nonlinear Gaussian kernel

case where we get a large number of eigenfunctions.

Because we can order the eigenfunctions according to their

time scale we have selected the truncation based on the last

time period retained in the eigenfunctions. For the case of

FIG. 9. Real and imaginary part of the Koopman eigenfunctions at the data points.

FIG. 10. Anomaly correlation coefficients between the observed SST and the predicted SST reproduced via a linear expansion on the

Koopman eigenfunctions. Here they are shown for January initial-condition cases. (left) TheGaussian kernel; (right) a polynomial kernel

equivalent to a standard covariance matrix.
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polynomial linear kernel, essentially similar to a linear in-

verse model, we have kept all the available eigenfunctions

that correspond to the number of SVD modes retained. A

number of selected cases have been chosen from the late

1990s onward. The dashed lines indicate the skill for a persis-

tence forecast. For the sake of clarity, we are showing only two

cases, but they are fairly representative of the behavior of other

cases. In general there is a gain of predictability when the

FIG. 11. As in Fig. 10, but for April starting dates.

FIG. 12. As in Fig. 10, but extending the truncation in the nonlinear kernel case to 146 eigenfunctions, corresponding to periods up to

3 months. The linear panel is the same as in the preceding figure, reproduced for convenience. The dashed lines indicate the persistence

skill score for selected cases.
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forecast has skill. This is just a preliminary illustration of the

capability of the method, since a full analysis of the perfor-

mance and design of a predictive system based on the

Koopman eigenfunctions is beyond the scope of the present

paper, but we think it is useful to give an initial flavor of the

potential of the method.

Figure 10 shows the results for the January start dates. The

case for a linear polynomial kernel (right panel in Fig. 10)

corresponds to a LIM where we have retained all the 31

eigenfunctions that correspond to nonzero eigenvalues.

We can see that in general the Gaussian kernel is yield-

ing a better reproducibility of the evolution of the state

relative to the linear case. In a few cases the reproducibility

is quite significant up to 6–8 months. Some hints of the

seasonal dependence can be obtained from Fig. 11 that

shows similar results for the April start dates. This is a

more difficult case compared to the January and we are

losing some predictability.

FIG. 13. As in Fig. 12, but for April starting dates.

FIG. 14. The evolution of the variance of the some of the EOFs. The variance is normalized with respect to the

initial variance.
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Using a nonlinear kernel produces a larger space for the

estimation of Koopman operator, than in the linear case. In

the linear case we are limited by the number of SVD modes

retained and we have already used the maximum number

possible in the Figs. 10 and 11, but in the case of the nonlinear

kernel we can use a larger number of eigenfunctions for our

predictions. Figure 12 shows the case where we have retained

146 eigenfunctions in the nonlinear case, corresponding to

periods up to 2–3 months.We note some improvement for the

prediction, both for January and April dates. The improve-

ments are not uniform and they are not present in some cases,

interestingly in the April case there is a sort of improvement

at month 6–7 of the forecasts.

7. The Perron–Frobenius operator and the probability of
the Pacific SST

The evolution of the probability can be obtained from the

Perron–Frobenius operator eigenfunctions. The initial proba-

bility is assumed to be a Gaussian centered at the monthly

value of the SST:

r
i
(x, 0)5

1ffiffiffiffiffiffi
2p

p
d
exp 2

(x2 z
i
)
2

2d2

" #
,

where zi is the ith initial condition, in this case assumed to be

the monthly mean for that month, and d is a measure of the

uncertainty of the initial condition, assumed here constant for

all EOF components for simplicity.

The expected values of observables can then be obtained

easily from the results of section 4b. Using (28) we can compute

the variance for a single component using the structurematrix in

(30) during the evolution for each initial condition. Figure 14

shows such an evolution for four EOF components separately

for each January initial condition. We can see how the variance

for each component grows with time, in some cases the ampli-

fication of the variance is very large, indicating an initial condi-

tion that tends to generate a large amplification of perturbations.

We can examine now the total variance, defined as the sum

of the variances of each component EOF, defined as expecta-

tion values

Var
SST

5�
k

E (xk)
2

h i

FIG. 15. Total variance for each starting date in (top) January and (bottom) September after 3

months (blue bars) and 6 months (orange bars).

FIG. 16. Ratio of total variance to initial variance starting from January 1984 after (top) 3 and

(bottom) 6 months.
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for each initial condition. Figure 15 shows the variance after 3

and 6 months for each starting date in detail. There is a sea-

sonal difference between January and September. The inter-

annual variability in the evolution of the total variance is

greater in September than in January. Certain years show a

visible reduction of the total variance at month 6, after an

initial increase at month 3, such as 1997 and 1982.

In this analysis we have shown the variance using the EOF

coefficients, but we can also use the Perron–Frobenius op-

erator to obtain the expectation value of the variance

point by point. The expected value on the grid can be

obtained from the representation of the data in terms of

the EOFs as

SST(lon, lat, t)5�
i

x
i
(t)f

i
(lon, lat),

where (lon, lat) are longitude and latitude, the xi (t) the EOF

coefficients and fi are the EOF patterns. Then the expectation

value of the variance at the point SST (lon, lat, t) is given by

E[SST(lon, lat, t))

E

�
�
i

x
i
(t)f

i
(lon, lat)�

j

x
j
(t)f

j
(lon, lat)

�
5

�
i

E[x
i
(t)x

j
(t)]f

i
(lon, lat)f

j
(lon, lat),

where the E[xi(t)xj(t)] are the expectation values of the co-

variances of the (i, j)th EOF coefficients at time t.

We can therefore look at the geographical distribution of the

total variance in time starting from different initial conditions.

Figure 16 shows such a ratio for January 1984. This is one of the

states that has one of the largest growth of the total variance in

general, we can see here that after 6 months the integrated

variance has increased 20%. Regional differences are stronger.

In the east Pacific, north and south of the equator the local

variance at later months is almost double the initial variance.

After 6 months a clear bipolar pattern has emerged with the

maximum amplification in the east and indeed a smaller vari-

ance in the west Pacific.

The situation is different for January 1983 (Fig. 17). In this

case we have a relatively weak initial amplification of the

variance in the west Pacific, but already at month 3 a tendency

for a decreasing variance in the east appears. It becomes very

pronounced at month 6 with a drastic decrease of the variance

in the central Pacific south of the equator.

8. Conclusions

We have presented here some examples of the application of

Koopman methods to atmospheric and climate data that show

very interesting potential. A complete physical interpretation of

these results requires further investigation, but it is possible to

say at this point that the Perron–Frobenius modes are sensitive

enough to identify regimes and/or states of active dynamics.

The Koopman approach also makes it possible to estimate the

transfer operators for complex systems extending Hilbert space

methods to this area. In particular, it is possible to estimate

empirically the evolution equation for the probability distribu-

tion even for complex systems. There is also a potential for using

these techniques for establishing the dissipative and/or conser-

vative character of a physical system based on data, either from

observation or numerical simulations, offering a new approach

to the classification of such systems. Thesemethods are based on

theGrammatrices rather thanon covariancematrices as inmany

other prior studies, and as such are applicable also to large high-

dimensional datasets. The potential that these methods give to

estimate the evolution of the covariance matrix without the re-

course to the calculation of ensembles of trajectories is particu-

larly interesting. We are currently looking in another paper to

the application of these ideas to data assimilation problems.
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FIG. 17. Ratio of total variance to initial variance starting from January 1983 after (top) 3 and

(bottom) 6 months.

1242 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Unauthenticated | Downloaded 03/31/21 06:22 AM UTC



APPENDIX

Notation and Definitions Used

x 2 R
n State of the system

F Right-hand side of the ODE

k, f Kernel and associated feature map

F Feature matrix

Ut Evolution operator to time t associated with F

K Koopman operator

P Perron–Frobenius operator

L, Ly Koopman generator and its adjoint

Gxx Gram matrices for data matrices X

Gxy Gram matrices for data matrices X and Y

u Eigenfunction of the Koopman operator

uP Eigenfunction of the Perron–Frobenius operator

m Eigenvalue of the Koopman or Perron–Frobenius

operator

l Eigenvalue of the generators of the operators

rE(x) Empirical probability distribution of Niño-3 anomalies

Si[ f ] Structure vector for the expected value of the function f
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