

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Addressing the Elusive Polaronic Nature of Multiple Redox States in a π -Conjugated Ladder-Type Polymer

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version: Fazzi D., Negri F. (2021). Addressing the Elusive Polaronic Nature of Multiple Redox States in a π -Conjugated Ladder-Type Polymer. ADVANCED ELECTRONIC MATERIALS, 7(1), 1-11 [10.1002/aelm.202000786].

Availability: This version is available at: https://hdl.handle.net/11585/818068 since: 2021-04-06

Published:

DOI: http://doi.org/10.1002/aelm.202000786

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

D. Fazzi, F. Negri, "Addressing the elusive polaronic nature of multiple redox states in a π -conjugated ladder-type polymer ", Adv. Elec. Mat. **7**, (2021), 2000786.

The final published version is available onlineat: DOI:10.1002/aelm.202000786

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

Addressing the elusive polaronic nature of multiple redox states in a π -conjugated ladder-type polymer.

Daniele Fazzi, *1 Fabrizia Negri²

Dr. Daniele Fazzi Institut für Physikalische Chemie, Department Chemie, Universität zu Köln, Luxemburger Str. 116 D-50939 Köln, Germany.

Prof. Fabrizia Negri Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.

E-mail: dfazzi@uni-koeln.de

Keywords: ladder type polymers, polarons, doping, radicaloids, redox species, brokensymmetry density functional theory

Abstract

Poly(benzimidazole-benzophenanthroline) (**BBL**) is a ladder-type conjugated polymer showing remarkable charge transport properties. Upon doping it displays various conductive regimes, leading to two *insulator-to-conductor* transitions. Such transitions have never been fully characterized, limiting our understanding about its charged states. Open issues are: (i) the electron/hole polaron relaxations, (ii) the structure-function relationships of multiple redox states and their connection with the conductive regimes, (iii) the role of protonation. Such knowledge-gaps are tackled *via* a comprehensive computational investigation of multiple redox species. Polarons show poly-radicaloid character, as revealed by combining brokensymmetry density functional theory, fragment orbital density and multi-reference analysis. Electron/hole polaron relaxations occur on the polymer chain, the former localizing on the benzophenanthroline moieties, while the latter on the benzimidazole units. Modelling of multiple charged species, up to one electron per repeat unit (1eru), reveals a complex *scenario* of *quasi*-degenerate states each featuring different spin multiplicity. Four redox states are responsible for the **BBL** *insulator-to-conductor* transitions. The two high conductive states refer to the electron polaron (0.25eru) and the redox species with 0.75eru. The insulating regimes refer to the bipolaron (0.50eru) and the redox state with 1eru. Protonation is modelled, revealing polaron-like features in the spectroscopic properties.

1. Introduction

Ladder type conjugated polymers (LCPs) belong to the class of high-performance organic functional materials, featuring enhanced mechanical, thermal, chemical and opto-electronic properties with respect to their non-ladder systems.^[1] The unique functionalities of LCPs can be traced back to their molecular structure, which consists of double strand chains connected by condensed π -conjugated units, resulting in a periodic sequence of elements that resembles the shape of a ladder.^[2]

A consequence of such molecular architecture is the suppression of the dihedral angle linking two repeat units, thus leading to *quasi*-flat systems showing high long-range order at the molecular scale. In comparison to classical conjugated polymers, LCPs show a lower *intra*chain torsional disorder, leading to a better π - π stacking and densely packed nanostructures.^[1a] Furthermore, planarity induces an extended π -electron delocalisation, providing small band- and optical-gap, and an overall low structural and electronic entropy.^[3] Following such as simple as powerful structural design-rule a variety of LCPs were synthesised over the last decades. Examples dated back to 1960s are poly(benzimidazolebenzophenanthroline) (**BBL**)^[4] and its derivative **SBBL**, polyquinoxaline (**PQL**) and poly(phenooxazine) (**POL**).^[1a, 5] After these pioneering works, new LCPs belonging to the family of ladder type poly(p-phenylene) (**LPPPs**), poly(p-phenacene)s, poly(thioacenes), and D-A imide-derivatives, were recently proposed.^[6]

Despite their promising structure-property functions, LCPs have never overtook neither replaced traditional π -conjugated polymers as active materials for opto-electronic and energy saving applications. Reasons for that are related to issues encompassing (i) few effective synthetic strategies to construct defect free LCPs, (ii) poor solubility, (iii) complex

protonation states in aqueous media, and (iv) unclear redox mechanisms occurring both in solutions and solid state.

Amongst LCPs, **BBL** is the most investigated and promising one. It was synthesized in 1966 aiming at producing polymer fibres with high mechanical and thermal stability properties.^[4] Results were not promising and in 1982^[7] Kim renewed the attention on **BBL** suggesting it as a candidate for polymeric materials with high mechanical, thermal, chemical and electrical properties.^[8] Kim was amongst the first one documenting chemical doping in **BBL**, finding a remarkable enhancement in the electrical conductivity (σ) upon both oxidation and reduction. Both processes, increased σ of 12 orders of magnitude, from 10⁻¹² Scm⁻¹ (pristine) to 2 Scm⁻¹ (doped).^[8-9]

At the end of 1980s, Murray et al. explored the electrochemical doping of **BBL** in aqueous solutions and solid state films.^[10] Despite a broad set of techniques, e.g., CV, coulometry and spectro-electrochemistry, the complex redox behaviour of **BBL** remained largely unclear. Difficulties arose in understanding the following aspects: (i) the protonation state(s) and relative equilibrium in condensed phases, (ii) the redox processes which lead to multiple CV peaks and to two conductive states showing high and low σ values (a factor of ten between the two), (iii) the quantification of the amount of stored charge(s) per repeat units, and (iv) the spectroscopic and charge transport properties of multiple redox species.

At the end of 1990s Sandreczki et al.^[11] and Sariciftci et al.^[12] were able to perform electron spin resonance (ESR) and FT-IR spectro-electrochemistry experiments, getting insights into the multiple reduction processes of **BBL**. Contradicting conclusions however emerged, concerning the amount of consumed charge(s) per polymer unit during the doping processes, the assignments between the observed multiple redox states, and the two (high *vs.* low) electrical conductive states.^[13]

A plausible description was provided by Sariciftci et al. around 2000,^[14] by coupling CV, FT-IR and electrical conductivity measurements. In accordance to Murray et al.,^[13] they found that the electrical conductivity of **BBL** varied by changing the potential during electrochemical reduction, showing two insulator-to-conductor transitions, thus leading to two conductive states with high (conductive state I: 9x10³ Scm⁻¹ at -600mV in 0.1 M Bu₄NClO₄-acetonitrile electrolyte), and two with low (*conductive state II*: 1.5x10³ Scm⁻¹ at -1000mV) conductivity. As inferred by Sariciftci et al.,^[14] the *two insulator-to-conductor* transitions referred to the presence of *four* reversible redox reactions (in contrast to Murray, who reported only two). Such redox species (named A, B, C, D) were assigned to two conductive and two insulating states, respectively. Sariciftci et al. proposed a multiplecharging reduction scheme in which the total number of consumed electron per repeat unit (eru) was measured as one, and the four redox species were classified as follow:^[14] A, eru = 0.25, conductive state I; B, eru = 0.50, insulator state I; C, eru = 0.85, conductive state II; D, eru = 1, *insulator state II*. FT-IR spectra showed induced absorption vibration (IRAV) bands tentatively assigned to different negatively charged species, however insights into the structural, vibrational and electronic properties of such hypothesized polaronic states were missing.

Despite such breakthrough in characterizing the complex redox behaviours of **BBL**, only phenomenological observations were reported, while fundamental understanding was lacking. Given such multifaceted electro-chemical and optical properties, **BBL** was broadly studied in the last two decades for different applications including pioneering works of Jenekhe et al.,^[15] on electron transport (n-type) organic field effect transistors ($\mu = 0.03 - 0.1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$),^[16] heterojunction solar cells,^[17] thermoelectric devices,^[18] battery electrodes^[16c, 19] and bipolar high conductive D-A polymer interfaces.^[20] For each application the role of multi redox states (involving either holes or electrons), and different protonated species (ubiquitously present in **BBL**, given its solubility in strong protonic acids) were never fully characterized nor understood.

Pioneering quantum-chemical calculations were reported in 1992 by Kim and Kertesz.^[21] They investigated the structural and electronic properties of neutral and protonated **BBL** within the framework of semi-empirical methods, however the approximated level of theory did not allow them neither to catch the underlying mechanisms, nor to explain the experimental data.

In 2016 Fabiano and Fazzi reported the first join experimental and computational investigation about **BBL** thermoelectric and polaronic properties.^[18] Within the frame of density functional theory (DFT), they showed the presence of low-energy broken-symmetry unrestricted (BS-UDFT) solutions for a negatively charged state, leading to a spatially localized (electron) polaron over the ladder structure. In 2019, Zozoulenko et al.,^[22] reported DFT calculations for multiple charged states of **BBL**, up to two electrons per repeat unit (2eru). Despite Ref.^[22] represents an attempt in modelling multiple negatively charged states of **BBL**, it does not document the underlying DFT instabilities in determining the charged electronic wavefunctions, therefore the claimed state energies, spin and response properties should be revisited.

Recently, we extended the quantum-chemical investigation of single and double negatively charged states (electron polaron and bipolaron^[23]) of **BBL**.^[24] We confirmed that DFT leads to unstable solutions for the charged electronic wavefunction,^[25] given the multi-configurational character and electron correlation effects of charged states. We demonstrated how BS-UDFT might be an effective approach to overcome such issue, well describing the electron polaron/bipolaron localization in terms of spin densities and structural deformations,^[26] and providing a correct assessment of the vibrational and electron transport properties in comparison to experimental data.

Notably, even though **BBL** has been experimentally investigated over the last two decades, fundamental physico-chemical properties remain largely unsolved yet, limiting our basic understanding, therefore restricting potential improvements to the whole class of LCPs. In this work we aimed at filling this knowledge-gap by enlarging the quantum-chemical modelling of **BBL** to a broad set of multi-charged redox states. In particular, (*i*) we extended the investigation from electron to hole charged species, showing their different structural and spin relaxations over the polymer chain, together with their poly-radicaloid character. (*ii*) We modelled multi-negative charged states considering up to one electron per repeat unit (1eru), providing insights into the charging mechanisms and conductive species present upon doping. (*iii*) We predicted the structure-property relationships of protonated and protonated/reduced states, and ultimately, (*iv*) we calculated the response properties of all redox species so far considered, computing their vibrational and electronic spectra, and comparing the results with experimental data.

We were able for the first time to provide a solid understanding and interpretation to the experiments, by assigning the spectroscopic features of multiple redox species underlying the two observed *insulator-to-conductor* transitions,^[14] and by describing the role of protonated states in affecting the vibrational and electronic spectra of **BBL**. As such, the first high conductive state can be assigned to a polaron (0.25eru), while the first insulating state is attributed to a bipolaron (0.50eru). Two other states, bringing 0.75eru and 1eru, are related to the second conductive and insulating state, respectively. Protonated species show clear polaron-like features, detectable *via* IR and UV-Vis spectroscopies as suggested by our computational predictions.

Our study reconciles contradictory observations,^[10, 14, 22] addressing fundamental questions, namely: (*i*) what are the multiple-charging processes observed in **BBL** upon doping, (*ii*) how much charge is stored per polymer repeat unit, (*iii*) what are the polaronic species governing the high and low conductive states during the *insulator-to-conductor* transitions, (*iv*) how

electrons and holes relax over the polymer chain, and (v) what are their main spectroscopic responses.

2. Results and Discussion

2.1 Electronic structure of BBL polarons and bipolarons: electron vs. hole.

Aiming at a full understanding of the charging processing occurring in **BBL** (see chemical structure and conformers in **Figure 1**), we modelled a variety of electronic states differing by the total charge (q) and spin state multiplicity. Charges were referred to be positive or negative, representing hole or electron doping, respectively. The electronic states for single (|q| = 1e) and double (|q| = 2e) charged species were named as: *polaron* - q = ±1e (P+ hole, Pelectron), state multiplicity doublet (D); *bipolaron* - $q = \pm 2e$ (B+, B-), state multiplicities singlet (S) or triplet (T). Multiple redox species, in analogy to the experimental data,^[10, 14] were investigated only for the case of electrons, namely: $q = 3e^{-}$, state multiplicities doublet (D) or quartet (Q), and $q = 4e^{-}$, state multiplicities singlet (S), triplet (T), quintet (Qui), and q $= 5e^{-1}$, state multiplicities Doublet (D), Quartet (Q) and Sextet (Sex) (see Supporting Information). For each electronic state, we optimized the structure and check the stability of the DFT wavefunction. If an instability was found, both electronic and nuclear coordinates were then re-optimized at the broken symmetry (BS) UDFT level, as already reported in Ref 18 and 24a for **BBL**. Generally, the basis of the BS formalisms and its broad application to inorganic, organic and hybrid compounds are specifically reported in Ref^[24]. Further computational details are given in Supporting Information.

Figure 1 reports the positive *vs.* negative polarons (P±(D) - red) and bipolarons (B±(S) - blue, B±(T) - black) stabilization energies (ΔE) for each **BBL** oligomer length (BBL1–8). ΔE is defined as the energy difference between the BS-UDFT and the standard DFT solutions. For P±(D) ΔE is computed as $\Delta E = E(BS-UDFT) - E(UDFT)$, for B±(S) as $\Delta E = E(BS-UDFT)$ -E(RDFT), and for B±(T) as the energy difference between triplet and singlet states, $\Delta E = E(T)$

- E(S). As already discussed in Ref.^[24a], electron polaron P-(D) shows an instability the longer is the **BBL** chain. Starting from BBL4, both *cis* and *trans* conformers show a BS-UDFT solution for P-(D), lower than the respective UDFT solution. For the case of bipolarons,^[24a] the situation is more pronounced than polarons. The instability of the DFT for a singlet bipolaron (B-(S)) is found starting from BBL2, leading to ΔE larger than 1 eV for long oligomers. The triplet bipolaron state (B-(T)) shows ΔE very much similar to the singlet B-(S), differing for less than 10⁻⁴ eV from the latter. The found BS solutions, recall for a multiconfigurational character^[24b,c] and correlation effects of the electronic wavefunction^[27] for **BBL** polarons and bipolarons.

We extended the quantum-chemical investigation to positively charged states, namely hole polarons P+(D) and bipolarons B+(S), B+(T), as shown in <u>Figure 1</u>. For P+(D) *cis* conformers do not show wavefunction instability, while *trans* do show BS solutions for certain lengths (BBL3, 5 and 7). As for electrons, hole singlet bipolaron states B+(S) report wavefunction instability, leading to ΔE larger than 1.5 eV for long oligomers. Contrary to electron bipolarons, hole B+(S) present a BS solution at the monomer level (BBL1) already, with $\Delta E = 0.5$ eV and 1 eV for *cis* and *trans*, respectively. This is a remarkable aspect, because it highlights the multi-reference (MR) and poly-radicaloid character^[28] of the double charged (bipolaron) hole-wavefunction.

In analogy to negatively charged species, the stabilization energies of hole bipolaron triplet states B+(T) are also reported in **Figure 1**, following the same trend as discussed for B-(T). In general, the presence of low energy BS-UDFT solutions, regardless the nature of the charge, highlights a complex electronic structure *scenario* in which static electron correlation (SEC) and MR effects play relevant role.^[29] Despite BS-UDFT is based on a single-determinant approach,^[30] it has been demonstrated that it can qualitatively describe situations in which SEC^[24b-f,31] and MR or poly-radical characters are predominant,^[28,32] providing

reasonable results in comparison to MR methods.^[24b-f,33] Unquestionably, high-level quantum chemical methods, such as quantum Monte Carlo (QMC) techniques combined with the resonating-valence-bond (RVB) theory,^[34] would provide a better description of the electronic structure and correlation effects as compared to BS-UDFT or even wavefunction MR techniques, however such approaches are still too demanding to be applied for polymeric materials. A successful attempt was recently documented for the case of the neutral ground state of acenes, were MR effects were addressed *via* QMC/RVB,^[30] showing that the diradicaloid character is weaker as previously predicted *via* BS DFT, or wavefunction MR and coupled-clusters theories, though present.^[35]

To further stress the importance of electron correlation and MR effects in the description of multiple charged wavefunctions in ladder type systems, and to strengthen the BS-UDFT based approach, we performed a Fractional Occupation electron Density (FOD) analysis for some **BBL** oligomers in their neutral, polaron (q=±1e) and bipolaron (q=±2e) states. As introduced by Hansen et al., ^[36] FOD is a tool to gauge the MR character of a compound. ^[37] FOD number (N_{FOD}) is a measure of how many highly correlated electrons are in the system. The larger is N_{FOD} the higher is the MR character of the system. As a consequence, in the context of HF or DFT approaches, the presence of BS solutions *might* appear.

Table 1 collects the computed N_{FODs} for neutral, polaron and bipolaron states of few **BBL** oligomers. Notably, each electronic state shows high N_{FOD} values (≥ 0.7), which increase by lengthening the chain. The trend confirms a not negligible contribution from SEC in the description of the electronic wavefunction. The high N_{FODs} for the neutral state (<u>Table 1</u>) already indicate a pronounced poly-radical character of **BBL**.^[28] Accordingly, the analysis of the molecular orbitals (MOs) revealed an increase number of *quasi*-degenerate levels the longer is the oligomer chain, together with a high number of occupied MOs with fractional occupations between 0.3 and 1.98 (see Supporting Information).

Charged states, $P\pm(S)$ and $B\pm(D)$ show higher N_{FODs} than the neutral species, with values for holes larger than electrons. The FOD analysis justifies the presence of BS solutions, ^[38] for **BBL** charged species (Figure 1), pointing out the role of SEC/MR effects in determining the electronic wavefunction of charged states.

To explicitly take into account MR effects and to prove their contributions in shaping the charged state electronic wavefunctions, we performed CASSCF/NEVPT2 calculations on a reference system, namely **BBL** monomer unit. Results are detailed in Supporting Information. Notably, CASSCF wavefunction for BBL1 B+(S) undoubtedly indicate a strong contribution of doubly excited determinants (i.e., H,H -> L,L - with H the highest occupied molecular orbital and L lowest one) in the description of the ground state (~40%).

FOD and CASSCF/NEVPT2 calculations corroborate the BS-UDFT analysis for describing the multiple charged states of **BBL**, highlighting the importance of SEC effects in casting the electronic wavefunction of both electron and hole polarons and bipolarons. BS-UDFT solutions (*when found*) can represent an effective approximation to describe the complex MR/poly-radicaloid electronic structures of redox states in large conjugated systems. Such aspect is particularly valid for **BBL**, though we believe it is generally true for the whole class of LCPs.

To understand the relaxation and spatial confinements^[39] of electron *vs.* hole polarons and bipolarons along with the polymer ladder chain, we compared the computed spin densities in **Figure 2**. A long oligomer, i.e., BBL5 as representative of the polymer, is considered. Both electron and hole polarons localize over a portion of the chain. Such aspect is a *physical property* of the system, the reason why can be traced back to the localized nature of the molecular orbitals as described at the DFT BS level.

While electron P-(D) localizes over the benzophenanthroline conjugated segment, hole P+(D) localizes over the benzimidazole moiety (Figure 2), leading to different structural and charge

relaxations. In particular, for P+(D) the spin density is localized around the imide units. Such different relaxations between electron and hole lead to different response properties, as discussed *infra*. Bipolaron states relax over two spatial separated chain segments, for both electrons and holes. The B±(S) spin densities reflect the radical character of bipolaron singlet state wavefunction. Bipolaron triplet states B±(T) relax over the same conjugated segments as $B\pm(S)$ do.

The presence of heterogroups, such as carbonyls and imides, localize the *polaron defects*,^[40] favouring the confinement of the structural deformations and spin densities upon charging. We speculate that other LCPs might show BS DFT solutions for both neutral and charged states, therefore localized structural/spin density relaxations. We believe this is a general characteristic of LCPs, given their ladder structure and high π -electron delocalization, resulting in not negligible long-range electron correlations and MR/poly-radical effects.^[26b] However, the chain length at which the MR/poly-radical character become prominent has to be carefully evaluated for each polymer case, and moreover it should be benchmarked over a wide variety of methods.^[30]

2.2 Electronic structure of BBL multiple negatively charged states.

Multiple negatively charged species cover a crucial role in understanding the variety of redox and charge transport processes occurring in **BBL** upon charging,^[13-14, 20b, 41] as documented in the introduction. Upon reduction **BBL** shows two *insulator-to-conductor* transitions, having two conductive states (high, *conductive state I*: $9x10^3$ Scm⁻¹, and low, *conductive state II*: $1.5x10^3$ Scm⁻¹) and two insulating states. Sariciftci et al. tentatively assigned the multiple redox states to four species proposing the following multiple-charging reduction scheme:^[14]

- **BBL** (pristine, insulator) + $qa = \mathbf{BBL}^{qa}$ (species A, conductive state I)
- **BBL**^{qa} + qb = **BBL**^(qa+qb) (species B, insulating state I)

- **BBL**^(qa+qb) + qc =**BBL**^{<math>(qa+qb+qc)} (species C, conductive state II)</sup></sup>
- **BBL**^(qa+qb+qc) + qd =**BBL**^{<math>(qa+qb+qc+qd)} (species D, insulating state II)</sup></sup>

The total consumed electron per repeat unit (eru) was measured as one $(q_a+q_b+q_c+q_d = 1 \text{ eru})$, and the partial charges transferred at different stages were determined as: $q_a=0.25\text{ eru}$, $q_b=0.25\text{ eru}$, $q_c=0.35\text{ eru}$ and $q_d=0.15\text{ eru}$. In such frame, the high *conductive state I* was refereed to species A (0.25eru), while the low *conductive state II* as species C (0.85eru). The two insulating states were related to species B (0.50eru) and D (1eru), respectively. To model such electron charging scheme, we considered the BBL4 oligomer, both *cis* and *trans* conformers, as a model system. In **Figure 3** are reported the energies of each multiple charged states (panel a) together with the relative spin densities (panel b). The correlation between the experimental redox species (A, B, C, D) and the charged states we modelled, is the following: species A corresponds to a total charge for BBL4 of $q = 1e^-$ (i.e., P-(D)) leading to 0.25eru, species B to $q = 2e^-$ (i.e., B-(S)/B-(T)) giving 0.50eru, species C to $q = 3e^-$ (state multiplicities D or Q) corresponding to 0.75eru, and species D to $q = 4e^-$ (state multiplicities Qui, T or S) with 1eru. We assumed that the experimental species C (measured as 0.85eru) can be approximated to the case of $q = 3e^-$, therefore 0.75eru.

BS solutions are indicated in Figure 3, together with the state spin multiplicity. Notably, almost each state show a BS solution, remarking the role played by SEC and MR effects in governing the electronic wavefunction of such multiple negatively charged states. In BBL4 *cis*, upon charging the energies of all electronic states fall within the thermal activation energy at room temperature ($k_BT \sim 25 \text{ meV}$). For the case of bipolaron, singlet and triplet states, B-(S) and B-(T), are almost degenerate, leading to a $\Delta E(S-T)$ very small ($|\Delta E| \sim 0.008 \text{ eV}$). The same holds for $q = 3e^-$ (i.e., 0.75eru), with doublet and quartet states degenerate, and for $q = 4e^-$ (1eru), with quintet, triplet and singlet states within k_BT . BBL4 *trans* slightly differs from *cis*, however all electronic negatively charged states reside below 0.08 eV of energy difference.

These findings highlight a remarkable aspect of **BBL**: multiple redox states show a variety of spin state multiplicities (e.g., singlet, doublet, triplet, quadruplet, quintet, etc.), and all states (for a given charge) reside within an energy difference of the order of k_BT (or < 0.1 eV). Therefore, for a given redox species, multiple states with different spin multiplicities can become equally accessible and populated by thermal activation. The energetic *scenario* draw in **Figure 3** underlies the complex and multifaceted redox behaviour of **BBL** upon electron doping.

The analysis of the spin densities, is reported in panel b, <u>Figure 3</u>. Similarly to BBL5 (<u>Figure 2</u>), we can recognize that also for BBL4 electron P-(D) is mainly localized over a unit, and bipolarons B-(S) and B-(T) are localized over two. The cases of $q = 3e^-$ (0.75eru) and $4e^-$ (1eru) show localization over three and four units, respectively.

Given the low energy differences between states and the expected DFT energy error, we can say that states with the highest spin multiplicity *usually* feature the lowest energy. Notably, multiple charged states show a localized character, highlighting the polaronic nature of such redox species.

2.3 IR vibrational spectra of BBL polaron, bipolaron and multiple charged species.

Based on such model system, given the energies and spin multiplicities by checking the existence of BS-UDFT solutions, we were finally able to assign the redox species as those observed in the experiments by Murray et al.,^[10] and Sariciftci et al.,^[14] by computing the vibrational and electronic spectra.

In <u>Figure 4</u> are shown the computed IR spectra for each multiple (negative) charged states with respect to the experimental FT-IR spectro-electrochemical measurements from Ref.^[14]. The electron polaron P-(D) for both *cis* and *trans* conformers, shows four peculiar IRAV bands^[42] in the spectral regions 1650 cm⁻¹, 1500 cm⁻¹, 1280 cm⁻¹ and 1200 cm⁻¹ (labelled with * in <u>Figure 4</u>, see Supporting Information for a spectroscopic assignment). The 1650 cm⁻¹ band is associated with the anti-symmetric stretching mode of the two carbonyl groups involved in the polaron structural relaxation (see spin density map, <u>Figure 3</u>). The intensity of such band is higher for the *cis* than the *trans*, given the different directionalities of the carbonyl groups. Another intense IRAV band is located around 1280-1300cm⁻¹ being related to the CN stretching coupled with the CH rocking mode.

The computed IR spectra well reproduce the experimental one (despite the high signal-tonoise ration of the latter),^[14] and allowed us to assign the high *conductive state I*, species A (0.25eru), to the electron polaron P-(D) state.

The IR spectra of bipolarons show a red shift of the 1650 cm⁻¹ band for both *cis* and *trans* conformers (toward 1635 cm⁻¹). Such band represents the anti-symmetric stretching of the carbonyl groups belonging to the two repeat units where the bipolaron is localized (see spin density map, **Figure 3**). To note, it is also the global intensification of all bands in the regions 1600 cm⁻¹, 1500 cm⁻¹ and 1300 cm⁻¹. For the case of **BBL** *trans* we can observe a gradual intensification of the band around 1350 cm⁻¹ (see **Figure 4**). Good agreement with the experimental data (see Supporting Information) is observed, allowing us to refer species B (0.50eru) i.e. the *insulator state*, as the electron bipolaron. Very little differences can be seen by comparing the computed IR spectra for singlet B-(S) and triplet B-(T) bipolarons (see Supporting Information).

Upon extra charging, towards $q = 3e^{-}$ and $4e^{-}$, with 0.75eru and 1eru respectively, the computed IR spectra change as follow: (i) a gradual red shift of the 1650 cm⁻¹ band toward 1600 cm⁻¹, and (ii) an intensification of the IR bands around 1500 cm⁻¹ and 1400-1350 cm⁻¹ regions. We can assign the calculated IR bands to the experimental ones observed for species C and D (see Supporting Information), therefore referring species C (*conductive state II*) to the charging case of $q = 3e^{-}$, and species D (*insulator state II*) to $q = 4e^{-}$. Differences between the computed IR spectra for each state spin multiplicity are very minors and reported in Supporting Information.

At the current stage it is difficult to discriminate between *cis* and *trans* conformers by comparing the calculated *vs*. experimental IR spectra. Experimentally samples are not pure *cis* or *trans* isomers, every chain containing a statistical distribution of both by virtue of the condensation polymerization method used.^[1b] Even though the detailed spectroscopic assignment will be the subject of another study, we can already observe some specific vibrational fingerprints.

For redox species A, the intense IR band at 1650 cm⁻¹ and the spectral shape around 1500 cm⁻¹ can be better assigned to conformer *cis*. For the redox species C (i) the sharp intense band around 1400 cm⁻¹ in the experimental data (here assigned to a quinoidal mode on a benzophenantroline unit coupled with the CN stretching) can be attributed to the *trans* conformer, and (ii) the two intense experimental bands around 1500 cm⁻¹ region can be interpreted as a superposition of bands belonging to both *cis* and *trans*. For redox species D, we can recognize the IR bands at 1600 cm⁻¹ for both **BBL** *cis* and *trans*, together with the intense band at 1350 cm⁻¹.

The good correlation between the theoretical and experimental data directly validates our BS DFT approach in describing the electronic structure and response properties of multiple charged states in LCPs.^[24] Moreover, we were able to assign for the first time all redox species (A, B, C, D) as previously identified experimentally,^[14] however never characterized. Summarizing, we can refer the high *conductive state I* (species A) to the electron P-(D) doublet state, and the low *conductive state II* (species C) to the case with a total charge q = 3e- for BBL4, i.e., 0.75eru, being either a doublet or a quartet electronic state (Figure 3). The two *insulating states* can be assigned to bipolarons (either B-(S) or B-(T)), and to a state with a total charge q = 4e⁻ for BBL4 (i.e., 1eru) showing either quintet, triplet or singlet state multiplicity (Figure 3).

Given the current experimental data-set available in literature,^[14] it is difficult to discriminate amongst different **BBL** conformers and state multiplicities playing during the multi-electron

doping processes. Further experimental data, such as electron spin resonance spectroscopy, would be required.

2.4 Electronic spectra of BBL polaron, bipolaron and multiple charged species.

A possible way to get insights into the nature of multiple redox states upon electron doping, can be by analysing the electronic transitions of charged species.

In Figure 5 is reported the comparison between the computed vertical electronic transitions, for each multiple charged state, between **BBL** *cis* and *trans*. It can be noted that the comparison **BBL** *cis* vs. *trans* leads to markedly different electronic spectroscopic responses. The excitation energies of **BBL** *trans* for the polaron ($q = 1e^{-}$), bipolaron ($q = 2e^{-}$), $q = 3e^{-}$ and $q = 4e^{-}$ are generally lower in energy, showing broader spectra, than the *cis*. The negatively charged species of **BBL** *trans* show dipole active excited states in the mid-IR region, while for **BBL** *cis* such low-energy excited states, though present, are optically forbidden (or with negligible oscillator strength, see Supporting Information).

While polaron and bipolaron show similar electronic transitions, within each conformer, the case for $q = 3e^{-}(0.75eru)$ and $4e^{-}(1eru)$ differ, leading to more intense oscillator strengths and broader absorption bands.

Spectro-electrochemical data reported by Murray et al.,^[10] and recent UV-Vis spectra recorded upon electron chemical doping,^[18, 20b] well match the theoretical predictions of the excited state for the P-(D) species. In Ref^[10] are reported also the UV-Vis spectra by changing the reduction potential. Evidences of an enhancement in the band intensities around 2.5-2.3 eV, and further below at 1.3 eV, well match the computed electronic spectra for **BBL** *trans*, **Figure 5**. The published data document the presence of an absorption band starting at 900 nm (1.3 eV), which increases its intensity by increasing the redox potential. For the case of **BBL** *trans*, we indeed predicted low-lying excited states (< 1eV) for both electron polarons and bipolarons.

As reported before for the IR spectra, the active species present in solution or in thin films are most likely a mixture of **BBL** *cis* and *trans* conformers.

Regardless specific assignments, given the differences in the computed electronic transitions for multiple redox states, we envisage that UV-Vis spectro-electrochemistry – around 2-1.5 eV and down to 1.3-0.3 eV spectral regions – can be a valuable tool to discriminate amongst **BBL** conformers *and* between different electronic redox states playing upon electron charging, as clearly shown in Figure 5.

2.5 Role of protonation in BBL neutral and charged species.

A relevant question still has to be answered in literature regards the effects of protonation, and the mutual presence of protonated and reduced states as induced by doping, in affecting **BBL** structural and spectroscopic properties.^[8, 10] This aspect is very relevant in the literature of **BBL** and other LCPs, being such polymers processed by using strong protonic acids to favour their solubility and processability. As a consequence, a fraction of protonated species is inevitably present in the active material, eventually affecting the opto-electronic properties. **Figure 6** compares the computed IR and UV-Vis spectra for the following three cases of BBL4 *cis*: a protonated oligomer (1H+ per repeat unit, named 4H+), a charged oligomer with $q = 4e^{-}$ (1eru) and a protonated/charged oligomer (4H+/4e-). The protonated species shows an intense IR band at 1000 cm⁻¹ (see * Figure 6). Such transition, associated to the CH rocking coupled with the NH rocking localised on one benzophenantroline unit, is always present in any IR spectrum of *pristine* **BBL**, as published so far.^[8, 14] On the contrary, as evident from our calculations, such band is *not* related to a pristine species, rather to a (partially) protonated species. The computed IR spectra of neutral **BBL** *cis* and *trans* (see Figure 4) in fact do not show any intense IR band around 1000 cm⁻¹.

Notably, the intensity of the IR band associated to the protonated species is orders of magnitude higher than the band intensities of the neutral species in the same spectral region. We speculated that even low concentrations of protonated species in *pristine* samples can lead to an intense IR band at 1000 cm⁻¹ (as reported in Ref.^[8, 14]). To note, it is also the broadening of the IR spectrum of BBL4 protonated species (4H+) in the region of the carbonyl bands (see * at 1700 cm⁻¹ in **Figure 6**), shifting the frequencies towards high wavenumbers. Such spectral spread was already reported in early experimental data by Kim,^[8] however never carefully investigated. We can prove that the broadening at 1700 cm⁻¹ is due to the presence of a protonated species (see Supporting Information).

In Figure 6 are shown also the computed electronic transitions (TDDFT data) for the protonated (4H+), charged ($q = 4e^-$, 1eru) and protonated/charged (4H+/4e⁻) species. The protonated (4H+) species shows a distinctive absorption band around 1.2 eV, leading to a spectrum remarkably different then the charged or protonated/charged species. Such low-energy band is the S₀->S₁ transition, described (see Supporting Information) as single excitations from singly occupied to unoccupied orbitals localized over few units. Unfortunately, we could not find experimental data to corroborate our calculations. We otherwise believe our theoretical spectroscopic predictions may serve as a valuable tool for both theoreticians and experimentalists to characterize the multiple redox *and* protonated species of **BBL**, present in solution or solid state.^[10] Spin densities for each protonated and charged case are reported as insets in Figure 6 too, showing the localization of the spins, therefore the polaronic nature of such multiple redox/protonated species.

3. Conclusion

LCPs gained a renewed interest owing to their remarkable chemical, mechanical, optoelectronic, and energy-conversion properties. Amongst LCPs, **BBL** is the most investigated one, showing the highest electron mobility ($0.1 \text{ cm}^2/\text{Vs}$), electrical conductivity (1.7 Scm^{-1}) and thermo-electric power factor ($0.43 \mu \text{Wm}^{-1}\text{K}^{-2}$). Such outstanding figures-of-merit are achieved *via* (electro)-chemical doping, leading to a series of multiple redox states whose structural, electronic and optical responses have never been comprehensively rationalised. Despite the numerous reports on **BBL**, the understanding of fundamental electronic and chemical-physical properties remains poor. We filled such knowledge-gap through an extended quantum-chemical investigation modelling the multiple charged states of **BBL**, assessing their structural, spin and spectroscopic properties.

We found that the electronic wavefunction of charged states (e.g., polarons, bipolarons, and multiple redox states) shows remarkable electron correlation effects and multi-configurational characters, features that we addressed *via* a combined use of BS-UDFT and FOD calculations, as well supported by multi-reference (MR) wavefunction methods.

Holes (i.e., oxidised species) showed higher MR/radicaloid character than electrons (reduced species). MR wavefunction calculations corroborated such aspect, reporting a strong contribution of double excitations in the description of the **BBL** ground state hole bipolaron wavefunction.

Comparing the electron and hole states, we found that the structural and spin-density relaxations of polaron, bipolaron and multiple redox states showed distinctive differences. Electrons relax upon the benzophenanthroline segments, while holes localize over the benzimidazole moieties. Both polarons are spatially localized, allowing **BBL** to host multiple charges, a property that can be exploited for thermo-electric and electrode-battery applications. Upon electro-chemical doping **BBL** shows multiple conductive regimes, leading to two *insulator-to-conductor* transitions, as reported in literature. We modelled such complex redox *scenario* by mimicking the multiple charged states of **BBL** up to 1eru. We found a variety of spin state multiplicities (e.g., singlet, doublet, triplet, quartet, quintet, etc.) by varying the charge accommodated on the chain, revealing a wide range of *quasi*-degenerate electronic states all lying within k_BT , or below 0.1 eV. Notably, given a certain charge, states with different spin multiplicities can be thermally populated.

The multiple redox states can be represented as follow: the polaron as $0.25 \text{eru} (q=1e^{-})$, the bipolaron as $0.50 \text{eru} (q=2e^{-})$, and the multiple redox states as $0.75 \text{eru} (q=3e^{-})$ and $1 \text{eru} (q=4e^{-})$.

We were able to assign the conductive/insulating regimes observed in literature to specific multiple charged states of **BBL**, by comparing the computed IR vibrational spectra to the experimental ones. We found that the high *conductive state I* can be related to the polaron (doublet), the low *conductive state II* to the redox species with 0.75eru (being either doublet or quartet), the two *insulating states* to the bipolaron (either singlet or triplet), and to the redox case with 1eru (either quintet, triplet or singlet).

Furthermore, we assigned the main intense IRAV bands of the polaronic species to the antisymmetric stretching of the carbonyl groups (1650 cm⁻¹), and to the quinoidal mode localized over the benzophenantroline units and coupled with the imide moieties. A blue shift of the 1650 cm⁻¹ band is predicted, by moving from polaron (0.25eru), to bipolaron (0.50eru) and up to 1eru charged state. This clear assignment would allow future experimental and quantitative monitoring of the doping levels and conductive species upon doping.

We evaluated the electronic transitions of multiple redox states, finding that **BBL** *cis* and *trans* conformers show remarkable variations in the excited states. The latter shows lowenergy optical allowed transitions, otherwise not active in the *cis*.

Finally, we addressed the role of protonation in **BBL**. Protons, localized on the imide units, induce a polaron-like spin density. A peculiar vibrational signature of protonated species is the intense IR band at 1000 cm⁻¹. Moreover, protonated species shows a distinctive electronic absorption band, leading to an absorption spectrum remarkably different then the charged or protonated/charged cases.

Our theoretical predictions and computed vibrational and electron spectra of multiple charged **BBL** species may serve as valuable tools for both theoreticians and experimentalists to further characterize the complex redox and protonation behaviour of **BBL** (and other LCPs), both in solution and solid state. Our study finally reconciles contradictory experimental and computational observations, shedding light onto the structure-property functions of **BBL**, so far the most prominent polymer amongst LCPs.

4. Experimental Section/Methods

Detailed information concerning each aspect of the quantum-chemical calculations are reported in Supporting Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

D.F. acknowledges the Deutsche Forschungsgemeinschaft (DFG) for a grant (FA 1502/1-1 "Molecular Understanding of Thermo-Electric Properties in Organic Polymers") and the Regional Computing Centre (RRZK) of Universitaet zu Koeln, for providing computing time and resources on the HPC RRZK CHEOPS. F. N. acknowledges the financial support of University of Bologna (RFO).

> Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Figure 1. Top panel, chemical structures of *cis* and *trans* BBL conformers. Bottom panels: stabilization energy ΔE (see definition in the main text) for polaron doublet P(D) (red), bipolaron singlet B(S) (blue) and triplet B(T) (black) states by changing the oligomer size n (n = #number of unit, 1-8), for electron (left) and hole (right). DFT functional: ω B97X-D, basis set: 6-31G*. Negative energies refer to BS-UDFT calculations (P±(D), B±(S)), or UDFT calculations (B±(T)). Reproduced with permission.^[24] Copyright 2019, RSC. Data for electrons are readapted from Ref^[24].

Figure 2. Electrons (top) and holes (bottom) spin densities (ρ) calculated at the BS-UDFT level of theory (ω B97X-D/6-31G*), for polarons doublet (P(D)), bipolaron singlet (B(S)), and UDFT for bipolaron triplet (B(T)) states. Spin densities were calculated as $\rho \square \rho^\square \square \rho^\square$ at isovalues of 0.001Å³ Data refer to BBL5 *trans*.

Figure 3. Top panels: calculated energy difference for electronic negatively charged states, as defined by the total charge q. Polaron, q=1e⁻, doublet (D). Bipolaron, q=2e⁻, singlet (S) or triplet (T). q=3e⁻, doublet (D) or quadruplet (Q). q=4e⁻, quintet (Qui), triplet (T) or singlet (S). Broken-symmetry (BS) solutions are indicated, when found. Total negative charges per BBL4, correspond to eru, namely: q=1e⁻ (0.25eru), q=2e⁻ (0.50eru), q=3e⁻ (0.75eru) and q=4e⁻ (1eru). Both *cis* (left) and *trans* (right) conformers are reported. Bottom panel: computed spin densities for each negative charged state. Level of theory (ω B97X-D/6-31G*).

Figure 4. Top panel, theoretical IR spectra for BBL4 *cis* (left) and *trans* (right) computed for neutral (green line) and different negative charged states, namely: $q=1e^-$ (0.25eru) species A, $q=2e^-$ (0.50eru) species B, $q=3e^-$ (0.75eru) species C, and $q=4e^-$ (1eru) species D. Labels * mark relevant IRAV modes. Computed frequencies (ω B97X-D/6-31G*) were rescaled by a scaling factor 0.93 to match experimental data. Bottom panel: experimental FT-IR spectro-electrochemistry data, Reproduced and readapted with permission.^[14] Copyright 2019, ACS. Redox species A (0.25eru), B (0.50eru), C (0.85eru) and D (1eru).

Figure 5. Computed electronic vertical transition energies (unscaled values) at the timedependent TD-DFT (ω B97X-D/6-31G*) for electron polaron (P(D)), bipolaron (B(S), B(T)), q=3e⁻ (doublet, D) and q=4e⁻ (quintet or singlet) states. BBL4 *cis* (left) and *trans* (right) conformers are reported. Spectra were obtained as convolution of Lorentzian functions.

Figure 6. Left panel, computed IR spectra (scaling factor 0.93) for BBL4 *cis* protonated (4H+), charged (q = 4e⁻, 1eru) and protonated/charged $(4H+/4e^{-})$ species (all quintet state multiplicity), together with the spin densities. Right panel, relative computed TD-DFT vertical transition energies (unscaled values).

Table 1. FOD numbers (N _{FOD}) of neutral, electron/hole polarons ($P\pm(D)$) and bipolarons
B±(S) BBL <i>cis</i> and <i>trans</i> oligomers (n=1,4). A label (*) identified those species where a BS-
UDFT solution was found.

		NFOD						
BBLN		N (S)	P+ (D)	P- (D)	B+ (S)	B- (S)		
1	cis	0.6835	1.507	0.768	2.153*	0.867		
	trans	0.6628	1.630	0.763	2.483*	0.869		
2	cis	1.339	2.275	1.879*	3.136*	2.389*		
	trans	1.307	2.235	1.749*	3.284*	2.170*		
3	cis	1.993	2.970	2.631	3.869*	3.213*		
	trans	1.950	2.900*	2.509	3.804*	3.053*		
4	cis	2.640	3.622	3.329*	4.538*	4.029*		
	trans	2.593	3.547	3.206*	4.470*	3.808*		

References

[1] a) J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi, L. Fang, *Chem. Sci.* 2017, *8*, 2503; b)
U. Scherf, *J. Mater. Chem.* 1999, *9*, 1853; c) R. S. Sprick, A. Thomas, U. Scherf, *Polym. Chem.* 2010, *1*, 283; d) E. Khodabakhshi, C. Ramanan, J. J. Michels, S. Bonus, D. Hertel, K.
Meerholz, M. Forster, U. Scherf, P. W. M. Blom, *Adv. Elec. Mater.* 2020, *6*, 2000082; e) R.
Lu, Y. Han, W. Zhang, X. Zhu, Z. Fei, T. Hodsden, T. D. Anthopoulos, M. Heeney, *J. Mater. Chem. C* 2018, *6*, 2004; f) I. Belaish, D. Davidov, H. Selig, M. R. McLean, L. R. Dalton, *Adv. Mater.* 1989, *11*, 387; g) W. Graupner, J. Partee, J. Shinar, G. Leising, U. Scherf, *Phys. Rev. Lett.* 1996, *77*, 2033.

[2] A.-D. Schlüter, *Adv. Mater.* **1991**, *3*, 282.

[3] Y. Yin, S. Zhang, D. Chen, F. Guo, G. Yu, L. Zhao, Y. Zhang, *Polym. Chem.* **2018**, *9*, 2227.

[4] R. L. V. Deusen, *Polym. Lett.* **1966**, *4*, 211.

[5] L. Yu, M. Chen, L. R. Dalton, *Chem. Mater.* **1990**, *2*, *6*, 649.

[6] a) A. Vogel, M. Forster, L. Wilbraham, C. L. Smith, A. J. Cowan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, *Faraday Discuss.* **2019**, *215*, 84; b) J. Lee, B. B. Rajeeva, T. Yuan,

Z. H. Guo, Y. H. Lin, M. Al-Hashimi, Y. Zheng, L. Fang, *Chem. Sci.* **2016**, *7*, 881; c) Y.

Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang, W. Hu, J. Mater. Chem. A 2019, 7, 20891.

[7] H. Sihirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, *J. Chem. Soc., Chem. Commun.* **1977**, 578-580.

[8] O.-K. Kim, Journal of Polymer Science: Polymer Letters Edition 1982, 20, 663.

[9] O.-K. Kim, Molecular Crystals and Liquid Crystals 1984, 105:1, 161.

[10] K. Wilbourn, R. W. Murray, *Macromolecules* **1988**, *21*, 89.

[11] T. Zheng, F. Badrun, I.M. Brown, D.J. Leopold, T.C. Sandreczki, *Synthetic Metals* **1999**, *107*, 39.

[12] T. Yohannes, H. Neugebauer, S. Luzzati, M. Catellani, S. Yi., S. A. Jenekhe, N. S. Sariciftci, *Synthetic Metals* **2001**, *119*, 319.

[13] K. Wilbourn, R. W. Murray, J. Phys. Chem. 1988, 92, 3642.

[14] T. Yohannes, H. Neugebauer, S. Luzzati, M. Catellani, S. A. Jenekhe, N. S. Sariciftci, *J. Phys. Chem. B* **2000**, *104*, 9430.

[15] a) H. Antoniadis, M. A. Abkowitz, J. A. Osaheni, S. A. Jenekhe, M. Stolka, Chem.

Mat. 1994, 6, 1, 63; b) M. M. Alam, S. A. Jenekhe, J. Phys. Chem. B 2002, 106, 11172.

[16] a) A. Babel., S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656; b) A. L. Briseno, F.

S. Kim, A. Babel, Y. Xia, S. A. Jenekhe, J. Mater. Chem. 2011, 21, 16461; c) H. Sun, J.

Gerasimov, M. Berggren, S. Fabiano, J. Mater. Chem. C 2018, 6, 11778.

[17] S. A. Jenekhe, S. Yi, App. Phys. Lett. 2000, 77, 2635.

[18] S. Wang, H. Sun, U. Ail, M. Vagin, P. O. Persson, J. W. Andreasen, W. Thiel, M.

Berggren, X. Crispin, D. Fazzi, S. Fabiano, Adv. Mater. 2016, 28, 10764.

[19] a) J. Wu, X. Rui, C. Wang, W.-B. Pei, R. Lau, Q. Yan, Q. Zhang, *Adv. Ener. Mater.* **2015**, *5*, 1402189; b) J. Xie, W. Chen, Z. Wang, K. C. W. Jie, M. Liu, Q. Zhang, *Chem. Asian*

J. **2017**, *12*, 868.

[20] a) X. L. Chen, S. A. Jenekhe, *Macromolecules* **1997**, *30*, 1728; b) K. Xu, H. Sun, T.-P. Ruoko, G. Wang, R. Kroon, N. B. Kolhe, Y. Puttisong, X. Liu, D. Fazzi, K. Shibata, C.-Y.

Yang, N. Sun, G. Persson, A. B. Yankovich, E. Olsson, H. Yoshida, W. M. Chen, M.

Fahlman, M. Kemerink, S. A. Jenekhe, C. Müller, M. Berggren, S. Fabiano, *Nat. Mater.* 2020, 19, 738.

[21] S. Y. Hong, M. Kertesz, Y. S. Lee, O.-K. Kim, *Macromolecules* **1992**, 25, 5424.

[22] S. Ghosh, V. Gueskine, M. Berggren, I. V. Zozoulenko, J. Phys. Chem. C 2019, 123, 15467.

[23] a) I. Zozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, M. Berggren, *ACS Appl. Polym. Mater.* **2019**, *1*, *1*, 83; b) J. L. Brédas, G. B. Street, *Acc. Chem. Res.* **1985**, 18, 309; c) J. Li, G. D'Avino, A. Pershin, D. Jacquemin, I. Duchemin, D. Beljonne, X. Blase, *Phys. Rev. Mater.* **2017**, *1*, 025602.

[24] a) D. Fazzi, S. Fabiano, T.-P. Ruoko, K. Meerholz, F. Negri, J. Mater. Chem. C 2019, 7, 12876. b) P. M. Lahti, A. S. Ichimura, J. A. Sanborn, J. Phys. Chem. A 2001, 105, 251-260.
c) V. Bachler, G. Olbrich, F. Neese, K. Wieghardt, Inorg. Chem., 2002, 41, 4179-4193. d) Noodleman, L. J. Chem. Phys. 1981, 74. 5737. e) Noodleman, L.; Davidson, E. R. Chem. Phys. 1986, 109, 131. f) Ovchinnikov, A. A.; Labanowski, J. K. Phys. Rev. A 1996, 53, 3946.
g) Adamo, C.; Barone, V.; Bencini, A.; Totti, F.; Ciofini, I. Inorg. Chem. 1999, 38, 1996.

[25] J. P. Perdew, A. Savin, K. Burke, *Phys. Rev. A* 1995, *51*, 4531.

[26] a) S. Wang, D. Fazzi, Y. Puttisong, M. J. Jafari, Z. Chen, T. Ederth, J. W. Andreasen, W. M. Chen, A. Facchetti, S. Fabiano, *Chem. Mat.* **2019**, *31*, 3395; b) M. Bendikov, H. M.

Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416.

[27] S. Yamanaka, T. Kawakami, H. Nagao, K. Yamaguchi, *Chem. Phys. Lett.* **1994**, *231*, 25.

[28] G. Salvitti, F. Negri, A. J. Perez-Jimenez, E. San-Fabian, D. Casanova, J. C. Sancho-Garcia, *J. Phys. Chem. A* **2020**, *124*, 3590.

[29] a) J. L. Bao, L. Gagliardi, D. G. Truhlar, *J. Phys. Chem. Lett.* **2018**, *9*, 2353; b) C. M. Marian, A. Heil, M. Kleinschmidt, *WIREs Comput. Mol. Sci.* **2018**, *9*, 1.

[30] N. Dupuy, M. Casula, J. Chem. Phys. 2018, 148, 134112.

[31] a) F. Neese, J. Phys. Chem. of Solids **2004**, 65, 781; b) F. Neese, Coord. Chem. Rev. **2009**, 253, 526.

[32] D. Fazzi, E. V. Canesi, F. Negri, C. Bertarelli, C. Castiglioni, *Chem. Phys. Chem.* **2010**, *11*, 3685.

[33] S. Canola, J. Casado, F. Negri, *Phys. Chem. Chem. Phys* **2018**, *20*, 24227.

[34] a) M. Casula, C. Attaccalite, S. Sorella, J. Chem. Phys. 2004, 121, 7110; b) K. Nakano,

C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo, G. Mazzola, A. Zen, S. Sorella, *J. Chem. Phys.* **2020**, *152*, 204121.

[35] F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller, R. Shepard, H. Lischka, *Angew. Chem. Int. Ed.* **2013**, *52*, 2581.

[36] S. Grimme, A. Hansen, Angew. Chem. Int. Ed. 2015, 54, 12308.

[37] C. A. Bauer, A. Hansen, S. Grimme, *Chem. Eur. J.* **2017**, *23*, 6150.

[38] S. Canola, Y. Dai, F. Negri, *Computation* **2019**, *7*, 68.

[39] a) I. H. Nayyar, E. R. Batista, S. Tretiak, A. Saxena, D. L. Smith, R. L. Martin, J.

Chem. Theo. Comput. 2013, 9, 1144; b) M. Anderson, C. Ramanan, C. Fontanesi, A. Frick, S.

Surana, D. Cheyns, M. Furno, T. Keller, S. Allard, U. Scherf, D. Beljonne, G. D'Avino, E. von Hauff, E. Da Como, *Phys. Rev. Mater.* **2017**, *1*, 055604; c) D. Fazzi, M. Caironi, C.

Castiglioni, J. Am. Chem. Soc. 2011, 133, 19056.

[40] N. A. Deskins, M. Dupuis, *Phys. Rev. B* **2007**, *75*, 195212.

[41] A. L. Briseno, S. C. B. Mannsfeld, P. J. Shamberger, F. S. Ohuchi, Z. Bao, S. A. Jenekhe, Y. Xia, *Chem. Mat.* **2008**, *20*, 4712.

[42] a) W. J. Kendrick, M. Jirásek, M. D. Peeks, G. M. Greetham, I. V. Sazanovich, P. M. Donaldson, M. Towrie, A. W. Parker, H. L. Anderson, *Chem. Sci.* **2020**, *11*, 2112; b) S. Kahmann, D. Fazzi, G. J. Matt, W. Thiel, M. A. Loi, C. J. Brabec, *J. Phys. Chem. Lett.* **2016**, *7*, 4438.

TOC

Multiple redox states are responsible for different conductive regimes that **BBL** features upon doping. Polarons are investigated *via* quantum-chemical modelling, revealing the multireference character of their wavefunctions. High conductive regimes are assigned to electron polaron and redox species carrying 0.75 electron per repeat unit. Insulating states refer to bipolaron (0.5eru) and species with 1eru.

Daniele Fazzi^{*1}, Fabrizia Negri²

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

Addressing the elusive polaronic nature of multiple redox states in a \Box -conjugated ladder-type polymer.

Daniele Fazzi, *1 Fabrizia Negri²

COMPUTATIONAL DETAILS

All calculations were performed via an oligomer approach. Oligomers from length n = 1 to 8 were considered. Each structure was optimized by using the hybrid range-separated-corrected DFT functional, namely ω B97X-D combined with double-zeta (and in some cases triple-zeta) split valence polarized Pope's basis set 6-31G* (6-311G*). The choice of ω B97X-D was due to its well-known superior performance in describing charged and excited states in conjugated polymers.¹⁻³ The effects of considering either B3LYP or a double hybrid DFT functional (e.g., B2PLYP), as well as an augmented basis set (e.g., 6-311+G*), were tested previously.⁴ Results did not show improvements with respect to ω B97X-D/6-31G* approach, and similar conclusion regarding the DFT instability in describing charged states can be drawn.

The electronic states investigated here were the neutral ground (q = 0e), the single negatively/positively charged states ($q = \pm 1e$), and the double negatively/positively charged ($q = \pm 2e$) states. Such states are referred to as polaron and bipolaron. A polaron shows a doublet state spin multiplicity (D), while a bipolaron can be either a singlet (S) or a triplet (T) state. Polarons were initially described using the UDFT approach, whereas for bipolarons the singlet was described using the RDFT and triplet the UDFT approaches. For each case, a wavefunction stability check was run using the BS-UDFT scheme. The BS scheme can be computed directly in Gaussian16 code by running a single-point calculations combining the keywords guess=mix and stable=opt. In ORCA code, a similar approach is introduced

by using the following keywords for the %scf block (example below):

```
%scf
guess hcore
HFTyp UHF
STABPerform true
STABRestartUHFifUnstable true
STABNRoots 3
STABMaxDim 3
STABMaxIter 500
end
```

If an instability in the wavefunction was found, both the electronic and nuclear structures were re-optimized following the BS-UDFT potential energy surface (namely, by restarting the calculation with the BS wavefunction obtained in the previous step (guess=read in Gaussian or MORead keyword in ORCA). All calculations were performed with the program package Gaussian16 B.01⁵ and ORCA v4.2.0.

Extra (multiple) charged states were investigated, namely $q = 3e^-$ and $q = 4e^-$. Such states are characterized by different state multiplicities, namely quartet (Q) and doublet (D) for $q = 3e^-$, and quintet (Qui), triplet (T) and singlet (S) for $q = 4e^-$. For each state, broken-symmetry stability check for the DFT wavefunction was performed.

In general, we considered (for each oligomer length) a variety of multiple charged states, encompassing polaron, bipolaron or extra charges up to one charge per repeat unit (depending on the oligomer length).

Specifically, we considered the following charged cases:

- BBL1: $q=0, \pm 1, \pm 2$
- BBL2: $q=0, \pm 1, \pm 2$
- BBL3: $q=0, \pm 1, \pm 2, -3$
- BBL4: $q=0, \pm 1, \pm 2, -3, -4$
- BBL5: q= 0, ±1, ±2, -3, -4, -5

- BBL6-8: $q=0, \pm 1, \pm 2$

Focus of the computational investigation was the modelling of hole/electron polaron (±1), bipolaron (±2) for all BBL oligomers, and multiple charged (i.e., negative) states for some of them, specifically for BBL4 considered to be the reference model system (as discussed in the main text) for the interpretation of the experimental spectro-electrochemical data. FOD and CASSCF/NEVPT2 calculations (with def2-TZVP basis set) were performed by using ORCA v 4.2.0.

- 1. U. Salzner and A. Aydin, J. Chem. Theory Comput., 2011, 7, 522568-2583.
- 2. R. Baer, E. Livshits and U. Salzner, Annu. Rev. Phys. Chem., 2010, 61, 85-109.
- 3. U. Salzner, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2014, 4, 559601-622.
- 4. D. Fazzi, et al., J.Mater.Chem.C, 2019, 7, 12876-12885.
- 5. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
- G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.
- Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
- Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B.
- Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G.
- Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
- Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
- Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov,
- T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S.
- Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski,
- R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision
- B.01, Gaussian, Inc., Wallingford CT, 2016.

Molecular Orbital (MO) analysis for BBL1-4.

In **Figure S1** are reported the MO energies for BBL1-4, together with the computed HOMO/HOMO-1 and LUMO/LUMO+1 gaps (in eV, see inset) and the FOD number (N_{FOD}). Calculations refer to ω B96X-D/6-31G* data.

FOD calculations were performed by using the standard (as implemented in ORCA) TPSS functional, or ω B96X-D with def2-SVP and/or def2-TZVP, both leading to similar results.

Figure S1

In Figure S2 are reported the MOs (ωB96X-D/6-31G*) for BBL4 *cis* neutral.

Figure S2

List of frontier MOs and respective fractional occupation number for BBL4 *cis* neutral species, as computed in the FOD analysis.

NO OCC

340	1 9864		
3/1	1 9853		
242	1 00/0		
242	1.9040		
343	1.9846		
344	1.9842		
345	1.9838		
346	1.9835		
347	1.9833		
348	1.9832		
349	1.9830		
350	1.9826		
351	1.9637		
352	1.9611		
353	1.9555		
354	1.9492		
355	1.9357		
356	1.9279		
357	1.8510		
358	1.8386		
359	1.8035		
360	1.7611	#	HOMO
360 361	1.7611 0.3312	# #	HOMO LUMO
360 361 362	1.7611 0.3312 0.3128	# #	HOMO LUMO
360 361 362 363	1.7611 0.3312 0.3128 0.2939	# #	HOMO LUMO
360 361 362 363 364	1.7611 0.3312 0.3128 0.2939 0.2840	# #	HOMO LUMO
360 361 362 363 364 365	1.7611 0.3312 0.2939 0.2840 0.0249	#	HOMO LUMO
360 361 362 363 364 365 366	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182	#	HOMO LUMO
360 361 362 363 364 365 366 366 367	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112	#	HOMO LUMO
360 361 362 363 364 365 366 367 368	1.7611 0.3312 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065	##	HOMO LUMO
360 361 362 363 364 365 366 367 368 369	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0062	##	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062	##	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062 0.0054 0.0041	# #	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062 0.0054 0.0041 0.0038	#	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372 373	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062 0.0054 0.0054 0.0041 0.0038 0.0033	# #	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374	1.7611 0.3312 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0054 0.0054 0.0038 0.0033 0.0033	# #	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375	1.7611 0.3312 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0054 0.0038 0.0033 0.0033 0.0033	##	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376	1.7611 0.3312 0.3128 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062 0.0054 0.0038 0.0033 0.0033 0.0033 0.0033	##	HOMO LUMO
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	1.7611 0.3312 0.2939 0.2840 0.0249 0.0182 0.0112 0.0065 0.0065 0.0062 0.0054 0.0038 0.0033 0.0033 0.0033 0.0033 0.0033	##	HOMO LUMO

...

DETAILS OF THE CASSCF/NEVPT2 CALCULATIONS PERFORMED ON BBL1

BBL1 shows stable DFT solutions for the neutral, singly charged P±(D) and electron doubly charged B-(S) states, however a DFT instability was found for the hole bipolaron B+(S) state, leading to a BS-UDFT ground state (Figure 1 main text). Accordingly, the FOD analysis highlights a weak MR character for the neutral (N, N_{FOD} < 0.7) and electron charged (P- and B-, N_{FOD} < 0.8) species (Table 1 main text), while higher MR characters are predicted for the positive charged states, both polaron (P+, N_{FOD} >1.5) and, especially, bipolaron (B+, N_{FOD} >2.0).

We performed CASSCF/NEVPT2 calculations (see Supporting Information) for both electron and hole bipolarons (B-(S) and B+(S)) to clearly address the presence (or not) of MR characters, therefore to correlate such aspects with the appearance (or not) of BS-UDFT solutions. CASSCF wavefunction for BBL1 B+(S) undoubtedly indicate a strong contribution of doubly excited determinants (i.e., H,H -> L,L - with H the highest occupied molecular orbital and L lowest one) in the description of the ground state (~40%), highlighting its pronounced MR character. For such state a low energy BS-UDFT solution was indeed found (Figure 1 main text). On the contrary, the CASSCF wavefunction for the electron bipolaron B-(S) revealed only negligible contributions (< 9%) of doubly excited configurations to the ground state. The latter was found stable at the DFT level, without reporting any BS-UDFT solution (Figure 1 main text).

trans, **BIPOLARON** ($q = \pm 2e$).

Hole bipolaron (q=+2e) species

CASSCF/NEVPT2 with def2-TZVP basis set on top of DFT BS geometry.

CAS space: (10,12) - 10 electrons in 12 orbitals.

Ground state wavefunction composition highlighting the HOMO/LUMO orbitals and the

doubly excited determinant.

ROOT 0:	
0.46762:	2222 20 000000
0.37514:	222202000000
0.01928:	212221000000
0.00892:	222112000000
0.00875:	212211100000
0.00670:	112220100100
0.00592:	221120011000
0.00586:	221211001000
0.00580:	222111010000
0.00473:	221102011000
0.00439:	112202100100
0.00415:	022220000200
0.00412:	202220200000
0.00332:	022202000200
0.00257:	202202200000

Electron bipolaron (q=-2e) species

CASSCF/NEVPT2 with def2-TZVP basis set on top of DFT geometry.

CAS space: (8,9)

Ground state wavefunction composition highlighting the HOMO/LUMO orbitals and the

doubly excited determinant.

ROOT 0: 0.95322: 222200000 0.01376: 222020000 0.00719: 212111000 0.00447: 221110100 0.00366: 222002000

IR SPECTROSCOPIC ASSIGNMENTS

Experimental FT-IR data are taken from T. Yohannes et al., J. Phys. Chem. B 2000, 104,

9430-9437.

Computed frequencies (scaled values are reported, scale factor 0.93, level of theory @B97X-

D/6-31G*) refer to BBL4 *cis*.

Neutral species

v expt.	v theo.	Assignment
cm⁻¹	cm⁻¹	
1703	1711-1705	CO asymmetric stretching
	(six active IR normal modes)	
1500	1543	CC str. + CN str.
1370	1388	CH rocking
1320	1321	quinoidal mode on
		benzimidazole + CN str.
1237	1275	quinoidal mode on
		benzimidazole + CN str.
1171	1171	CH rocking

Charged speciesSpecies A, q = 1e-(0.25eru)

Computed values refer to the BS-UDFT geometry (polaron P-, D-BS state).

ν expt.	v theo.	Assignment
cm ⁻¹	cm ⁻¹	
1649	1640	CO asymmetric stretching
		localized on one
		benzophenantroline unit
		(polaron localisation)
1522	1503	quinoidal mode on
		benzophenantroline + CN
		str.
1255	1273	CH rocking + CN str.
1150	1170	quinoidal mode on
		benzimidazole + CN str.

Charged species

Species B, q = 2e- (0.50eru)

Computed values refer to the BS-UDFT geometry (bipolaron B-, S-BS state).

v expt. cm ⁻¹	v theo. cm ⁻¹	Assignment
1614	1635	CO asymmetric stretching
		localized on two units
		(bipolaron localisation)
not reported	1501	quinoidal mode on
		benzophenantroline + CN
		str.
1278	1272	quinoidal mode on
		benzimidazole + CN str.
1219	1241	
1099	1169	CH rocking + CN str.
1028		spurious bands associated to
		a protonated species
		(see manuscript)

Charged species

Species C, q = 3e- (0.75eru)

Computed values refer to the BS-UDFT geometry (Quartet, Q-BS state).

ν expt.	v theo.	Assignment
cm ⁻¹	cm ⁻¹	
not reported	1627	CO asymmetric stretching
		localized on one unit
1509	1500	quinoidal mode on
		benzophenantroline + CN
		str.
1369	1360	CH rocking on benzimidazole
		+ CN str. + quinoidal mode
		on benzophenantroline
1070	1169	CH rocking on
		benzophenantroline

Charged species

Species D, q = 4e-(1eru)

Computed values refer to the UDFT geometry (Quintet, Qui).

v expt.	v theo.	Assignment
cm ⁻¹	cm ⁻¹	
1593	1620	CO asymmetric stretching
		localized on two units
not reported	1469	quinoidal mode on
		benzophenantroline + CN
		str.
1363	1359	CH rocking on benzimidazole
		+ CN str.
not reported	1170	CH rocking on
		benzophenantroline

COMPUTED IR SPECTRA FOR EACH STATE SPIN MULTIPLICITIES

Figure S3

COMPARISON BETWEEN COMPUTED EXCITED STATES FOR cis AND trans

CONFORMER (case of BBL4).

Here below are reported the computed (TDDFT, ω B97X-D/6-31G*) excitation energies for each species of BBL4, *cis* and *trans* conformers (most stable state is shown). BS indicates the use of a BS wavefunction on top of a BS optimized geometries.

BBL4 cis, P- (D) – TD-BS-UDFT

Excited	State	1	1.1476	eV	1080.34	nm	f= 0.0055	<s**2>=0.850</s**2>
Excited	State	2	1.2288	eV	1008.97	nm	f= 0.0074	<s**2>=0.855</s**2>
Excited	State	3	1.2994	eV	954.20	nm	f= 0.0001	<s**2>=0.787</s**2>
Excited	State	4	1.5893	eV	780.13	nm	f= 0.0001	<s**2>=2.766</s**2>
Excited	State	5	1.5988	eV	775.50	nm	f= 0.0001	<s**2>=2.765</s**2>
Excited	State	6	1.6874	eV	734.77	nm	f= 0.0000	<s**2>=2.776</s**2>
Excited	State	7	1.9242	eV	644.35	nm	f= 0.0288	<s**2>=0.818</s**2>
Excited	State	8	2.1633	eV	573.13	nm	f= 0.4991	<s**2>=1.062</s**2>
Excited	State	9	2.4098	eV	514.50	nm	f= 0.1844	<s**2>=1.996</s**2>
Excited	State	10	2.4643	eV	503.12	nm	f= 0.1822	<s**2>=2.045</s**2>
Excited	State	11	2.5176	eV	492.47	nm	f= 2.3441	<s**2>=1.363</s**2>
Excited	State	12	2.6086	eV	475.29	nm	f= 0.1113	<s**2>=1.277</s**2>
Excited	State	13	2.6391	eV	469.80	nm	f= 0.0018	<s**2>=2.376</s**2>
Excited	State	14	2.6619	eV	465.77	nm	f= 0.0088	<s**2>=2.365</s**2>
Excited	State	15	2.7034	eV	458.63	nm	f= 0.2845	<s**2>=1.087</s**2>
Excited	State	16	2.7099	eV	457.52	nm	f= 0.2046	<s**2>=1.611</s**2>
Excited	State	17	2.8442	eV	435.92	nm	f= 0.0050	<s**2>=2.732</s**2>
Excited	State	18	2.8529	eV	434.59	nm	f= 0.4027	<s**2>=0.916</s**2>
Excited	State	19	2.8924	eV	428.65	nm	f= 0.1354	<s**2>=0.920</s**2>
Excited	State	20	2.9215	eV	424.38	nm	f= 0.1566	<s**2>=0.994</s**2>
Excited	State	21	2.9422	eV	421.40	nm	f= 0.0915	<s**2>=2.290</s**2>
Excited	State	22	2.9668	eV	417.90	nm	f= 0.0911	<s**2>=1.490</s**2>
Excited	State	23	2.9802	eV	416.03	nm	f= 0.0044	<s**2>=1.792</s**2>
Excited	State	24	3.0491	eV	406.63	nm	f= 0.0000	<s**2>=2.721</s**2>
Excited	State	25	3.0576	eV	405.50	nm	f= 0.0048	<s**2>=2.598</s**2>

BBL4 cis, B- (S) – TD-BS-UDFT

Excited	State	1	1.2779 eV	970.20 nm	f= 0.0091	<s**2>=1.134</s**2>
Excited	State	2	1.2781 eV	970.06 nm	f= 0.0033	<s**2>=1.133</s**2>
Excited	State	3	1.5925 eV	778.56 nm	f= 0.0001	<s**2>=3.043</s**2>
Excited	State	4	1.6210 eV	764.86 nm	f= 0.0001	<s**2>=3.042</s**2>
Excited	State	5	1.9724 eV	628.58 nm	f= 0.0130	<s**2>=1.091</s**2>
Excited	State	6	1.9731 eV	628.36 nm	f= 0.0773	<s**2>=1.091</s**2>
Excited	State	7	2.0845 eV	594.79 nm	f= 0.0002	<s**2>=1.063</s**2>
Excited	State	8	2.0846 eV	594.77 nm	f= 0.0018	<s**2>=1.063</s**2>
Excited	State	9	2.1717 eV	570.92 nm	f= 0.5858	<s**2>=1.276</s**2>
Excited	State	10	2.1770 eV	569.52 nm	f= 0.0120	<s**2>=1.276</s**2>
Excited	State	11	2.4866 eV	498.60 nm	f= 0.8740	<s**2>=1.961</s**2>
Excited	State	12	2.5034 eV	495.26 nm	f= 0.0071	<s**2>=2.383</s**2>
Excited	State	13	2.5827 eV	480.06 nm	f= 2.2723	<s**2>=1.885</s**2>
Excited	State	14	2.6489 eV	468.05 nm	f= 0.0209	<s**2>=1.521</s**2>
Excited	State	15	2.6655 eV	465.14 nm	f= 0.0005	<s**2>=2.820</s**2>
Excited	State	16	2.6933 eV	460.35 nm	f= 0.0006	<s**2>=2.481</s**2>

Excited	State	17	2.7032 e	V 458.66	nm f	E= 0.0927	<s**2>=1.367</s**2>
Excited	State	18	2.7067 e	V 458.07	nm f	E= 0.0029	<s**2>=1.485</s**2>
Excited	State	19	2.7367 e	V 453.04	nm f	E= 0.6569	<s**2>=1.354</s**2>
Excited	State	20	2.7417 e	V 452.22	nm f	E= 0.0136	<s**2>=1.554</s**2>

BBL4 cis, q=3e- (D) – TD-BS-UDFT

Excited	State	1	1.1842	eV	1046.95	nm	f= 0.0086	<s**2>=1.919</s**2>
Excited	State	2	1.5807	eV	784.38	nm	f= 0.0001	<s**2>=3.822</s**2>
Excited	State	3	1.8712	eV	662.59	nm	f= 0.0224	<s**2>=1.915</s**2>
Excited	State	4	1.9328	eV	641.47	nm	f= 0.0546	<s**2>=1.882</s**2>
Excited	State	5	1.9984	eV	620.43	nm	f= 0.0343	<s**2>=1.875</s**2>
Excited	State	6	2.0760	eV	597.22	nm	f= 0.0023	<s**2>=1.849</s**2>
Excited	State	7	2.0810	eV	595.79	nm	f= 0.0192	<s**2>=1.906</s**2>
Excited	State	8	2.1351	eV	580.70	nm	f= 0.9879	<s**2>=2.057</s**2>
Excited	State	9	2.1587	eV	574.34	nm	f= 0.0213	<s**2>=2.060</s**2>
Excited	State	10	2.1767	eV	569.59	nm	f= 0.1321	<s**2>=2.048</s**2>
Excited	State	11	2.4421	eV	507.70	nm	f= 0.3599	<s**2>=2.895</s**2>
Excited	State	12	2.5707	eV	482.30	nm	f= 2.2852	<s**2>=2.472</s**2>
Excited	State	13	2.6622	eV	465.71	nm	f= 0.1269	<s**2>=2.853</s**2>
Excited	State	14	2.6713	eV	464.13	nm	f= 0.1080	<s**2>=2.167</s**2>
Excited	State	15	2.6750	eV	463.48	nm	f= 0.0793	<s**2>=2.033</s**2>
Excited	State	16	2.6866	eV	461.50	nm	f= 0.0288	<s**2>=2.065</s**2>
Excited	State	17	2.6950	eV	460.06	nm	f= 0.2610	<s**2>=2.725</s**2>
Excited	State	18	2.7469	eV	451.36	nm	f= 0.3780	<s**2>=2.156</s**2>
Excited	State	19	2.7858	eV	445.06	nm	f= 0.0132	<s**2>=2.049</s**2>
Excited	State	20	2.8100	eV	441.22	nm	f= 0.0004	<s**2>=1.078</s**2>
Excited	State	21	2.8829	eV	430.06	nm	f= 0.0165	<s**2>=3.713</s**2>
Excited	State	22	2.9353	eV	422.39	nm	f= 0.0415	<s**2>=1.931</s**2>
Excited	State	23	2.9749	eV	416.77	nm	f= 0.0717	<s**2>=3.395</s**2>
Excited	State	24	2.9938	eV	414.14	nm	f= 0.0245	<s**2>=2.641</s**2>
Excited	State	25	3.0727	eV	403.50	nm	f= 0.1824	<s**2>=2.677</s**2>
Excited	State	26	3.1228	eV	397.03	nm	f= 0.0003	<s**2>=0.894</s**2>
Excited	State	27	3.1727	eV	390.78	nm	f= 0.0253	<s**2>=2.784</s**2>
Excited	State	28	3.2007	eV	387.37	nm	f= 0.1060	<s**2>=2.558</s**2>
Excited	State	29	3.2900	eV	376.85	nm	f= 0.0096	<s**2>=2.309</s**2>
Excited	State	30	3.3172	eV	373.77	nm	f= 0.0375	<s**2>=2.678</s**2>

BBL4 cis, q=4e- (Qui) – TD-BS-UDFT

Excited	State	1	1.9728 eV	628.48 nm	f= 0.0795	<s**2>=6.171</s**2>
Excited	State	2	1.9761 eV	627.43 nm	f= 0.0244	<s**2>=6.165</s**2>
Excited	State	3	1.9910 eV	622.71 nm	f= 0.0360	<s**2>=6.165</s**2>
Excited	State	4	1.9922 eV	622.34 nm	f= 0.0171	<s**2>=6.160</s**2>
Excited	State	5	2.1023 eV	589.75 nm	f= 1.6080	<s**2>=6.328</s**2>
Excited	State	6	2.1384 eV	579.79 nm	f= 0.0394	<s**2>=6.332</s**2>
Excited	State	7	2.1441 eV	578.27 nm	f= 0.0010	<s**2>=6.349</s**2>
Excited	State	8	2.1475 eV	577.33 nm	f= 0.0000	<s**2>=6.336</s**2>
Excited	State	9	2.6240 eV	472.50 nm	f= 2.3877	<s**2>=6.232</s**2>
Excited	State	10	2.6325 eV	470.98 nm	f= 0.5982	<s**2>=6.349</s**2>
Excited	State	11	2.6334 eV	470.81 nm	f= 0.0004	<s**2>=6.299</s**2>
Excited	State	12	2.6697 eV	464.42 nm	f= 0.0000	<s**2>=6.329</s**2>
Excited	State	13	2.6706 eV	464.26 nm	f= 0.0441	<s**2>=6.303</s**2>
Excited	State	14	2.7037 eV	458.57 nm	f= 0.0469	<s**2>=6.311</s**2>
Excited	State	15	2.7753 eV	446.73 nm	f= 0.0352	<s**2>=6.357</s**2>
Excited	State	16	2.8258 eV	438.76 nm	f= 0.0006	<s**2>=6.354</s**2>
Excited	State	17	2.9739 eV	416.90 nm	f= 0.0124	<s**2>=6.876</s**2>
Excited	State	18	2.9740 eV	416.89 nm	f= 0.0487	<s**2>=6.888</s**2>
Excited	State	19	3.0314 eV	409.00 nm	f= 0.0023	<s**2>=7.261</s**2>
Excited	State	20	3.0565 eV	405.65 nm	f= 0.2085	<s**2>=6.674</s**2>
Excited	State	21	3.0639 eV	404.66 nm	f= 0.0098	<s**2>=6.584</s**2>

Excited	State	22	3.1414 eV	394.68 nm	f= 0.6020	<s**2>=6.730</s**2>
Excited	State	23	3.2228 eV	384.71 nm	f= 0.0123	<s**2>=6.949</s**2>
Excited	State	24	3.2765 eV	378.41 nm	f= 0.0428	<s**2>=7.061</s**2>
Excited	State	25	3.3293 eV	372.41 nm	f= 0.0025	<s**2>=7.161</s**2>
Excited	State	26	3.3299 eV	372.34 nm	f= 0.0130	<s**2>=6.785</s**2>
Excited	State	27	3.3854 eV	366.23 nm	f= 0.0002	<s**2>=6.433</s**2>
Excited	State	28	3.4258 eV	361.91 nm	f= 0.0449	<s**2>=6.812</s**2>
Excited	State	29	3.5210 eV	352.13 nm	f= 0.0010	<s**2>=6.495</s**2>
Excited	State	30	3.5556 eV	348.71 nm	f= 0.0046	<s**2>=6.400</s**2>

BBL4 trans, P- (D) – TD-BS-UDFT

Excited	State	1	0.9720	еV	1275.60	nm	f= 0.5538	<s**2>=1.073</s**2>
Excited	State	2	1.1415	eV	1086.16	nm	f= 0.1101	<s**2>=1.208</s**2>
Excited	State	3	1.3918	eV	890.82	nm	f= 0.0022	<s**2>=0.946</s**2>
Excited	State	4	1.6345	eV	758.53	nm	f= 0.2407	<s**2>=2.423</s**2>
Excited	State	5	1.6903	eV	733.50	nm	f= 0.1389	<s**2>=2.353</s**2>
Excited	State	6	1.7339	eV	715.06	nm	f= 0.0289	<s**2>=2.612</s**2>
Excited	State	7	1.9736	eV	628.23	nm	f= 0.0261	<s**2>=0.842</s**2>
Excited	State	8	2.0999	eV	590.43	nm	f= 0.9297	<s**2>=1.120</s**2>
Excited	State	9	2.3182	eV	534.83	nm	f= 0.0031	<s**2>=2.555</s**2>
Excited	State	10	2.4074	eV	515.02	nm	f= 0.0238	<s**2>=2.499</s**2>
Excited	State	11	2.5254	eV	490.95	nm	f= 1.0964	<s**2>=0.969</s**2>
Excited	State	12	2.5776	eV	481.01	nm	f= 0.3449	<s**2>=2.309</s**2>
Excited	State	13	2.6102	eV	475.01	nm	f= 0.3450	<s**2>=1.213</s**2>
Excited	State	14	2.7157	eV	456.54	nm	f= 0.0043	<s**2>=1.368</s**2>
Excited	State	15	2.7803	eV	445.94	nm	f= 0.0012	<s**2>=2.117</s**2>
Excited	State	16	2.8088	eV	441.41	nm	f= 0.0008	<s**2>=1.670</s**2>
Excited	State	17	2.8492	eV	435.15	nm	f= 0.0025	<s**2>=2.281</s**2>
Excited	State	18	2.9079	eV	426.37	nm	f= 0.0458	<s**2>=1.230</s**2>
Excited	State	19	2.9542	eV	419.69	nm	f= 0.9844	<s**2>=0.824</s**2>
Excited	State	20	3.0308	eV	409.08	nm	f= 0.0001	<s**2>=2.553</s**2>

BBL4 trans, B- (D) – TD-BS-UDFT

Excited	State	1	1.0841	еV	1143.61	nm	f= 0.6503	<s**2>=1.441</s**2>
Excited	State	2	1.1021	eV	1124.97	nm	f= 0.0000	<s**2>=1.503</s**2>
Excited	State	3	1.6625	еV	745.79	nm	f= 0.0000	<s**2>=2.622</s**2>
Excited	State	4	1.7015	eV	728.67	nm	f= 0.4193	<s**2>=2.614</s**2>
Excited	State	5	1.9622	eV	631.88	nm	f= 0.0890	<s**2>=1.095</s**2>
Excited	State	6	1.9625	eV	631.77	nm	f= 0.0000	<s**2>=1.098</s**2>
Excited	State	7	2.1123	eV	586.97	nm	f= 0.0000	<s**2>=1.413</s**2>
Excited	State	8	2.1432	eV	578.49	nm	f= 0.0047	<s**2>=1.089</s**2>
Excited	State	9	2.1508	eV	576.44	nm	f= 1.0746	<s**2>=1.266</s**2>
Excited	State	10	2.1596	eV	574.10	nm	f= 0.0000	<s**2>=1.226</s**2>
Excited	State	11	2.3033	eV	538.30	nm	f= 0.0000	<s**2>=2.488</s**2>
Excited	State	12	2.4518	eV	505.68	nm	f= 0.1233	<s**2>=2.594</s**2>
Excited	State	13	2.5618	eV	483.98	nm	f= 2.2617	<s**2>=1.298</s**2>
Excited	State	14	2.6228	eV	472.72	nm	f= 0.0000	<s**2>=1.184</s**2>
Excited	State	15	2.6834	eV	462.04	nm	f= 0.0000	<s**2>=1.433</s**2>
Excited	State	16	2.6928	eV	460.43	nm	f= 0.0402	<s**2>=1.454</s**2>
Excited	State	17	2.7894	eV	444.48	nm	f= 0.2113	<s**2>=1.275</s**2>
Excited	State	18	2.7953	eV	443.54	nm	f= 0.0000	<s**2>=1.388</s**2>
Excited	State	19	2.8585	eV	433.73	nm	f= 0.0000	<s**2>=2.755</s**2>
Excited	State	20	2.8655	eV	432.68	nm	f= 0.0088	<s**2>=2.817</s**2>
Excited	State	21	2.9529	eV	419.88	nm	f= 0.0000	<s**2>=2.245</s**2>
Excited	State	22	3.0105	eV	411.84	nm	f= 0.0449	<s**2>=1.778</s**2>
Excited	State	23	3.0500	eV	406.50	nm	f= 0.0000	<s**2>=2.303</s**2>
Excited	State	24	3.0899	eV	401.26	nm	f= 0.2667	<s**2>=1.224</s**2>
Excited	State	25	3.1394	eV	394.93	nm	f= 0.0000	<s**2>=1.405</s**2>
Excited	State	26	3.1774	eV	390.20	nm	f= 0.1572	<s**2>=1.364</s**2>

State	27	3.2263 eV	384.29 nm	f= 0.0000	<s**2>=1.292</s**2>
State	28	3.2793 eV	378.08 nm	f= 0.3047	<s**2>=1.704</s**2>
State	29	3.3369 eV	371.55 nm	f= 0.0000	<s**2>=2.878</s**2>
State	30	3.3449 eV	370.66 nm	f= 0.0735	<s**2>=2.412</s**2>
	State State State State	State 27 State 28 State 29 State 30	State 27 3.2263 eV State 28 3.2793 eV State 29 3.3369 eV State 30 3.3449 eV	State273.2263 eV384.29 nmState283.2793 eV378.08 nmState293.3369 eV371.55 nmState303.3449 eV370.66 nm	State 27 3.2263 eV 384.29 nm f= 0.0000 State 28 3.2793 eV 378.08 nm f= 0.3047 State 29 3.3369 eV 371.55 nm f= 0.0000 State 30 3.3449 eV 370.66 nm f= 0.0735

BBL4 trans, 3e- (D) – TD-BS-UDFT

Excited	State	1	0.9938	eV	1247.56	nm	f= 0.4514	<s**2>=4.187</s**2>
Excited	State	2	1.5820	eV	783.70	nm	f= 0.0320	<s**2>=5.136</s**2>
Excited	State	3	1.8226	eV	680.26	nm	f= 0.8475	<s**2>=4.272</s**2>
Excited	State	4	1.8988	eV	652.95	nm	f= 0.0603	<s**2>=3.904</s**2>
Excited	State	5	1.9525	eV	634.99	nm	f= 0.0013	<s**2>=3.870</s**2>
Excited	State	6	2.0173	eV	614.60	nm	f= 0.5856	<s**2>=4.040</s**2>
Excited	State	7	2.0463	eV	605.88	nm	f= 0.1894	<s**2>=4.101</s**2>
Excited	State	8	2.1112	eV	587.26	nm	f= 0.0174	<s**2>=3.947</s**2>
Excited	State	9	2.1767	eV	569.61	nm	f= 0.4225	<s**2>=4.017</s**2>
Excited	State	10	2.2236	eV	557.58	nm	f= 0.0010	<s**2>=3.992</s**2>
Excited	State	11	2.3529	eV	526.95	nm	f= 0.0208	<s**2>=5.050</s**2>
Excited	State	12	2.5565	eV	484.98	nm	f= 1.4410	<s**2>=4.128</s**2>
Excited	State	13	2.5904	eV	478.63	nm	f= 0.5607	<s**2>=4.163</s**2>
Excited	State	14	2.6460	eV	468.57	nm	f= 0.0309	<s**2>=4.095</s**2>
Excited	State	15	2.6686	eV	464.60	nm	f= 0.0135	<s**2>=4.149</s**2>
Excited	State	16	2.7046	eV	458.41	nm	f= 0.0666	<s**2>=3.967</s**2>
Excited	State	17	2.7738	eV	446.98	nm	f= 0.7374	<s**2>=4.015</s**2>
Excited	State	18	2.8032	eV	442.29	nm	f= 0.0034	<s**2>=4.179</s**2>
Excited	State	19	2.8571	eV	433.95	nm	f= 0.0185	<s**2>=4.508</s**2>
Excited	State	20	2.8972	eV	427.95	nm	f= 0.0026	<s**2>=5.031</s**2>
Excited	State	21	2.9343	eV	422.53	nm	f= 0.0029	<s**2>=4.914</s**2>
Excited	State	22	3.0178	eV	410.84	nm	f= 0.0154	<s**2>=4.527</s**2>
Excited	State	23	3.0733	eV	403.42	nm	f= 0.0401	<s**2>=4.277</s**2>
Excited	State	24	3.1178	eV	397.67	nm	f= 0.0667	<s**2>=4.108</s**2>
Excited	State	25	3.1298	eV	396.14	nm	f= 0.0032	<s**2>=5.039</s**2>
Excited	State	26	3.2002	eV	387.43	nm	f= 0.0045	<s**2>=4.728</s**2>
Excited	State	27	3.2110	eV	386.13	nm	f= 0.0186	<s**2>=4.973</s**2>
Excited	State	28	3.2929	eV	376.52	nm	f= 0.0296	<s**2>=4.490</s**2>
Excited	State	29	3.3617	eV	368.81	nm	f= 0.0059	<s**2>=4.675</s**2>
Excited	State	30	3.4124	eV	363.34	nm	f= 0.0196	<s**2>=4.316</s**2>

BBL4 trans, 4e- (S) – TD-BS-UDFT

Excited	State	1	1.7090	eV	725.49	nm	f= 1.5923	<s**2>=1.805</s**2>
Excited	State	2	1.7520	eV	707.69	nm	f= 0.0000	<s**2>=1.762</s**2>
Excited	State	3	1.9240	eV	644.40	nm	f= 0.3149	<s**2>=2.131</s**2>
Excited	State	4	1.9326	eV	641.53	nm	f= 0.0000	<s**2>=2.153</s**2>
Excited	State	5	1.9975	eV	620.70	nm	f= 0.0000	<s**2>=2.044</s**2>
Excited	State	6	2.0080	eV	617.45	nm	f= 0.0117	<s**2>=2.026</s**2>
Excited	State	7	2.0881	eV	593.76	nm	f= 0.0000	<s**2>=2.129</s**2>
Excited	State	8	2.0973	eV	591.17	nm	f= 1.1994	<s**2>=2.199</s**2>
Excited	State	9	2.3385	eV	530.18	nm	f= 0.0739	<s**2>=1.944</s**2>
Excited	State	10	2.3440	eV	528.94	nm	f= 0.0000	<s**2>=1.908</s**2>
Excited	State	11	2.4937	eV	497.19	nm	f= 0.0000	<s**2>=2.388</s**2>
Excited	State	12	2.5727	eV	481.93	nm	f= 0.6514	<s**2>=1.900</s**2>
Excited	State	13	2.6127	eV	474.55	nm	f= 0.3877	<s**2>=2.399</s**2>
Excited	State	14	2.6431	eV	469.08	nm	f= 0.0000	<s**2>=2.363</s**2>
Excited	State	15	2.6478	eV	468.25	nm	f= 0.0332	<s**2>=2.326</s**2>
Excited	State	16	2.6970	eV	459.72	nm	f= 0.0000	<s**2>=2.150</s**2>
Excited	State	17	2.7227	eV	455.37	nm	f= 1.3577	<s**2>=2.157</s**2>
Excited	State	18	2.7669	eV	448.09	nm	f= 0.0000	<s**2>=2.238</s**2>
Excited	State	19	2.8549	eV	434.28	nm	f= 0.0173	<s**2>=2.552</s**2>

State	20	2.8731	eV	431.53 nm	n f= 0.0000	<s**2>=2.400</s**2>
State	21	2.9295	eV	423.23 nm	n f= 0.0000	<s**2>=2.416</s**2>
State	22	2.9708	eV	417.34 nm	n f= 0.0590	<s**2>=2.172</s**2>
State	23	3.0536	eV	406.03 nm	n f= 0.0000	<s**2>=2.312</s**2>
State	24	3.1121	eV	398.39 nm	n f= 0.0823	<s**2>=2.303</s**2>
State	25	3.2614	eV	380.15 nm	n f= 0.0000	<s**2>=2.712</s**2>
State	26	3.3112	eV	374.44 nm	n f= 0.0269	<s**2>=2.490</s**2>
State	27	3.3423	eV	370.95 nm	n f= 0.0000	<s**2>=2.570</s**2>
State	28	3.3878	eV	365.97 nm	n f= 0.0000	<s**2>=2.876</s**2>
State	29	3.3934	eV	365.37 nm	n f= 0.0065	<s**2>=2.607</s**2>
State	30	3.4680	eV	357.51 nm	n f= 0.0116	<s**2>=2.762</s**2>
	State State State State State State State State State State State	State 20 State 21 State 22 State 23 State 24 State 25 State 26 State 27 State 28 State 29 State 30	State202.8731State212.9295State222.9708State233.0536State243.1121State253.2614State263.3112State273.3423State283.3878State293.3934State303.4680	State202.8731 eVState212.9295 eVState222.9708 eVState233.0536 eVState243.1121 eVState253.2614 eVState263.3112 eVState273.3423 eVState283.3878 eVState293.3934 eVState303.4680 eV	State202.8731eV431.53nmState212.9295eV423.23nmState222.9708eV417.34nmState233.0536eV406.03nmState243.1121eV398.39nmState253.2614eV380.15nmState263.3112eV374.44nmState273.3423eV365.97nmState283.3934eV365.37nmState303.4680eV357.51nm	State202.8731 eV431.53 nmf= 0.0000State212.9295 eV423.23 nmf= 0.0000State222.9708 eV417.34 nmf= 0.0590State233.0536 eV406.03 nmf= 0.0000State243.1121 eV398.39 nmf= 0.0823State253.2614 eV380.15 nmf= 0.0269State263.3112 eV374.44 nmf= 0.0269State273.3423 eV370.95 nmf= 0.0000State283.3878 eV365.97 nmf= 0.0000State293.3934 eV365.37 nmf= 0.0165State303.4680 eV357.51 nmf= 0.0116

IR ASSIGNMENT FOR THE PROTONATED SPECIES

Most intense IR active band as computed (\Box B97X-D/6-31G*) for BBL4 *cis* 4H+ (Quintet state).

v theo.	Assignment
cm ⁻¹	
1692, 1698, 1700, 1704, 1729,	8x CO str.
1729, 1747, 1752	
990	CH rocking coupled with NH
	rocking localised on one
	benzophenantroline

MOS FOR THE PROTONATED BBL4 4H+ SPECIES.

Molecular orbitals (beta) involved in the low-energy electronic transition (S1), as computed at the TD-DFT level (U ω B97X-D/6-31G*, Quintet state) for BBL4 *cis* 4H+ (see Figure 6 of the manuscript).

Virt. Coeff. Occ. 0.67 SOMO?-2 SUMO2+1 -0.47 SOMO?-2 SUMO2+2 0.10 SOMOP-2 SUMOP+3 -0.28 SOMO?-2 SUMO2+5 -0.35 SOMO? SUMOP+1 0.23 SUMO2+2 SOMOP-2

 $S_1: E = 1.12 \text{ eV}, f = 0.0517$

- a) J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi, L. Fang, *Chem Sci* 2017, 8, 2503; b) U. Scherf, *J. Mater. Chem.* 1999, 9, 1853; c) R. S. Sprick, A. Thomas, U. Scherf, *Polymer Chemistry* 2010, 1, 283; d) E. Khodabakhshi, C. Ramanan, J. J. Michels, S. Bonus, D. Hertel, K. Meerholz, M. Forster, U. Scherf, P. W. M. Blom, *Advanced Electronic Materials* 2020, 6, 2000082; e) R. Lu, Y. Han, W. Zhang, X. Zhu, Z. Fei, T. Hodsden, T. D. Anthopoulos, M. Heeney, *Journal of Materials Chemistry C* 2018, 6, 2004; f) D. D. Igal Belaish, Heny Selig, Malcolm R. McLean, Larry Dalton, *Adv. Mater.* 1989, 387; g) J. P. W. Graupner, J. Shinar, G. Leising, and U. Scherf, *Phys Rev Lett* 1996, 77, 2033.
- [2] A.-D. Schlüter, Advanced Materials 1991, 3, 282.
- [3] Y. Yin, S. Zhang, D. Chen, F. Guo, G. Yu, L. Zhao, Y. Zhang, *Polymer Chemistry* **2018**, 9, 2227.
- [4] R. L. V. Deusen, *Polymer Letters* **1966**, 4, 4.
- [5] M. C. Luping Yu, and Larry R. Dalton, *Chem. Mat.* **1990**, 2, 649.
- [6] a) A. Vogel, M. Forster, L. Wilbraham, C. L. Smith, A. J. Cowan, M. A. Zwijnenburg,
 R. S. Sprick, A. I. Cooper, *Faraday Discuss* 2019, 215, 84; b) J. Lee, B. B. Rajeeva, T. Yuan, Z. H. Guo, Y. H. Lin, M. Al-Hashimi, Y. Zheng, L. Fang, *Chem Sci* 2016, 7,

881; c) Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang, W. Hu, *Journal of Materials Chemistry A* **2019**, 7, 20891.

- [7] E. J. L. Hidek Sihirakawa, Alan G. MacDiarmid, Chwan K. Chiang, and Alan J. Heeger, *J. C. S. Chem. Comm.* **1977**, 578.
- [8] O.-K. Kim, Journal of Polymer Science: Polymer Letters Edition 1982, 20, 4.
- [9] O.-K. Kim, *Molecular Crystals and Liquid Crystals* **1984**, 105, 161.
- [10] K. W. a. R. W. Murray, *Macromolecules* **1988**, 21, 8.
- [11] F. B. T. Zheng, I.M. Brown, D.J. Leopold, T.C. Sandreczki, *Synthetic Metals* **1999**, 107, 7.
- [12] H. N. T. Yohannes, S. Luzzati, M. Catellani, S. Yi., S. A. Jenekhe, N. S. Sariciftci., *Synthetic Metals* **2001**, 119, 319.
- [13] K. W. a. R. W. Murray, J. Phys. Chem. 1988, 92, 3642.
- [14] H. N. Teketel Yohannes, Silvia Luzzati, Marinella Catellani, Samson A. Jenekhe, and N. Serdar Sariciftci, *J. Phys. Chem. B* **2000**, 104, 8.
- [15] a) H. Antoniadis, M. A. Abkowitz, J. A. Osaheni, S. A. Jenekhe, M. Stolka, *Chem. Mat.* 1994, 6, 63; b) S. A. J. Maksudul M. Alam, *J. Phys. Chem. B* 2002, 106, 6.
- [16] a) A. B. a. S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 2; b) A. L. Briseno, F. S. Kim, A. Babel, Y. Xia, S. A. Jenekhe, Journal of Materials Chemistry 2011, 21, 16461; c) H. Sun, J. Gerasimov, M. Berggren, S. Fabiano, Journal of Materials Chemistry C 2018, 6, 11778.
- [17] S. A. Jenekhe, S. Yi, *Applied Physics Letters* **2000**, 77, 2635.
- [18] S. Wang, H. Sun, U. Ail, M. Vagin, P. O. Persson, J. W. Andreasen, W. Thiel, M. Berggren, X. Crispin, D. Fazzi, S. Fabiano, *Adv Mater* 2016, 28, 10764.
- [19] a) J. Wu, X. Rui, C. Wang, W.-B. Pei, R. Lau, Q. Yan, Q. Zhang, Advanced Energy Materials 2015, 5, 1402189; b) W. C. Jian Xie, Zilong Wang, Kenneth Choo Wei Jie, Ming Liu, and Qichun Zhang, Chem. Asian J. 2017, 12, 9.
- [20] a) S. A. J. X. Linda Chen, *Macromolecules* 1997, 30, 6; b) K. Xu, H. Sun, T.-P. Ruoko, G. Wang, R. Kroon, N. B. Kolhe, Y. Puttisong, X. Liu, D. Fazzi, K. Shibata, C.-Y. Yang, N. Sun, G. Persson, A. B. Yankovich, E. Olsson, H. Yoshida, W. M. Chen, M. Fahlman, M. Kemerink, S. A. Jenekhe, C. Müller, M. Berggren, S. Fabiano, *Nature materials* 2020, 19, 738.
- [21] M. K. Sung Y. Hong, Yong S. Lee and Oh-Kil Kim, *Macromolecules* 1992, 25, 6.
- [22] S. Ghosh, V. Gueskine, M. Berggren, I. V. Zozoulenko, *The Journal of Physical Chemistry C* **2019**, 123, 15467.
- [23] a) A. S. Igor Zozoulenko, Sandeep Kumar Singh, Viktor Gueskine, Xavier Crispin, Magnus Berggren, ACS Appl. Polym. Mater. 2019, 1, 12; b) G. B. S. J. L. Brédas, Accounts of chemical research 1985, 18, 7; c) J. Li, G. D'Avino, A. Pershin, D.
 Jacquemin, I. Duchemin, D. Beljonne, X. Blase, Physical Review Materials 2017, 1.
- [24] D. Fazzi, S. Fabiano, T.-P. Ruoko, K. Meerholz, F. Negri, *Journal of Materials Chemistry C* **2019**, 7, 12876.
- [25] J. P. Perdew, A. Savin, K. Burke, *Physical Review A* 1995, 51, 4531.
- [26] a) S. Wang, D. Fazzi, Y. Puttisong, M. J. Jafari, Z. Chen, T. Ederth, J. W. Andreasen, W. M. Chen, A. Facchetti, S. Fabiano, *Chem. Mat.* 2019, 31, 3395; b) H. M. D. Michael Bendikov, Kyle Starkey, K. N. Houk, Emily A. Carter, and Fred Wudl, *J. AM. CHEM. SOC.* 2004, 126, 7416.
- [27] T. K. S. Yamanaka, H. Nagao, K. Yamaguchi, *Chemical Physics Letters* 1994, 231, 25.
- [28] G. Salvitti, F. Negri, A. J. Perez-Jimenez, E. San-Fabian, D. Casanova, J. C. Sancho-Garcia, *The journal of physical chemistry*. A **2020**, 124, 3590.
- [29] a) J. L. Bao, L. Gagliardi, D. G. Truhlar, *J Phys Chem Lett* **2018**, 9, 2353; b) C. M. Marian, A. Heil, M. Kleinschmidt, *WIREs Computational Molecular Science* **2018**, 9.
- [30] N. Dupuy, M. Casula, *The Journal of chemical physics* **2018**, 148, 134112.

- [31] D. Fazzi, E. V. Canesi, F. Negri, C. Bertarelli, C. Castiglioni, *Chemphyschem : a European journal of chemical physics and physical chemistry* **2010**, 11, 3685.
- [32] S. Canola, J. Casado, F. Negri, *Physical chemistry chemical physics : PCCP* **2018**, 20, 24227.
- [33] a) M. Casula, C. Attaccalite, S. Sorella, *The Journal of chemical physics* 2004, 121, 7110; b) K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo, G. Mazzola, A. Zen, S. Sorella, *The Journal of chemical physics* 2020, 152, 204121.
- [34] F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller,
 R. Shepard, H. Lischka, *Angewandte Chemie International Edition* 2013, 52, 2581.
- [35] S. Grimme, A. Hansen, Angewandte Chemie 2015, 54, 12308.
- [36] A. H. Christoph Alexander Bauer, and Stefan Grimme, *Chem. Eur. J.* 2017, 23, 6150.
- [37] Y. D. Sofia Canola, Fabrizia Negri, *Computation* **2019**, 7, 68.
- [38] a) I. H. Nayyar, E. R. Batista, S. Tretiak, A. Saxena, D. L. Smith, R. L. Martin, *Journal of Chemical Theory and Computation* 2013, 9, 1144; b) C. R. M. Anderson, C. Fontanesi, A. Frick, S. Surana, D. Cheyns, M. Furno, T. Keller, S. Allard, U. Scherf, D. Beljonne, G. D'Avino, E. von Hauff, and E. Da Como, *Phyicals Review Materials* 2017, 1, 9; c) D. Fazzi, M. Caironi, C. Castiglioni, *Journal of the American Chemical Society* 2011, 133, 19056.
- [39] N. A. Deskins, M. Dupuis, *Physical Review B* 2007, 75.
- [40] S. C. B. M. Alejandro L. Briseno, Patrick J. Shamberger, Fumio S. Ohuchi, Zhenan Bao, Samson A. Jenekhe, and Younan Xia, *Chem. Mat.* 2008, 20, 8.
- [41] a) W. J. Kendrick, M. Jirásek, M. D. Peeks, G. M. Greetham, I. V. Sazanovich, P. M. Donaldson, M. Towrie, A. W. Parker, H. L. Anderson, *Chemical Science* 2020, 11, 2112; b) S. Kahmann, D. Fazzi, G. J. Matt, W. Thiel, M. A. Loi, C. J. Brabec, *J Phys Chem Lett* 2016, 7, 4438.