Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca Ca2+ as cofactor of the mitochondrial H+-translocating F1FO-ATP(hydrol)ase This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication: #### Published Version: Nesci S., Pagliarani A. (2021). Ca2+ as cofactor of the mitochondrial H+-translocating F1FO-ATP(hydrol)ase. PROTEINS, 869(5), 477-482 [10.1002/prot.26040]. Availability: This version is available at: https://hdl.handle.net/11585/817907 since: 2021-04-03 Published: DOI: http://doi.org/10.1002/prot.26040 Terms of use: Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website. This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version. (Article begins on next page) This is the final peer-reviewed accepted manuscript of: Ca²⁺ as cofactor of the mitochondrial H⁺-translocating F₁F₀-ATP(hydrol)ase. Nesci S, Pagliarani A. Proteins, 89: 477–482. The final published version is available online at: http://dx.doi.org/10.1002/prot.26040 # Rights / License: The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website. This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) When citing, please refer to the published version. Ca²⁺ as cofactor of the mitochondrial H⁺-translocating F₁F_O-ATP(hydrol)ase Salvatore Nesci, Alessandra Pagliarani Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia Via Tolara di Sopra 50, 40064 Bologna, Italy. Corresponding author: salvatore.nesci@unibo.it Running title: H⁺-translocation driven by ATP hydrolysis by the Ca²⁺-activated F₁F₀-ATPase Abstract The mitochondrial F₁F₀-ATPase in the presence of the natural cofactor Mg²⁺ acts as the enzyme of life by synthesizing ATP, but it can also hydrolyze ATP to pump H⁺. Interestingly, Mg²⁺ can be replaced by Ca²⁺, but only to sustain ATP hydrolysis and not ATP synthesis. When Ca²⁺ inserts in F₁, the torque generation built by the chemomechanical coupling between F₁ and the rotating central stalk was reported as unable to drive the transmembrane H+ flux within F_O. However, the failed H+ translocation is not consistent with the oligomycin-sensitivity of the Ca²⁺-dependent F₁F₀-ATP(hydrol)ase. New enzyme roles in mitochondrial energy transduction are suggested by recent advances. Accordingly, the structural F₁F₀-ATPase distortion driven by ATP hydrolysis sustained by Ca²⁺ is consistent with the permeability transition pore signal propagation pathway. The Ca²⁺activated F₁F₀-ATPase, by forming the pore, may contribute to dissipate the transmembrane H⁺ gradient created by the same enzyme complex. Keywords: Ca²⁺ cofactor; F₁F₀-ATPase; mitochondria; H⁺ pump; oligomycin; permeability transition pore; bioenergetics. ## 1. Introduction The mitochondrial F₁F₀-ATPase is a multisubunit complex arranged in dimers or oligomers and placed at the edge of the cristae of the inner mitochondrial membrane (IMM) 1. The monomer is formed by two domains, named F₁ and F₀ functionally and structurally linked to a stator (lateral stalk) and a rotor (central stalk). The F₁ portion, namely the hydrophilic domain that protrudes in the mitochondrial matrix, has a conspicuous lollipop shape formed by α_3 , β_3 , γ , δ , and ϵ subunits. An alternated arrangement of α and β subunits forms a globular hexamer around the γ subunit (Fig. 1A). The structure functions as a reversible rotary molecular motor which can build or hydrolyze ATP depending on the rotation direction, which in turn is driven by the transmembrane proton-motive force (Δp). In vitro the y subunit of F₁-ATPase was shown to rotate within the surrounding $\alpha_3\beta_3$ subunits, synthesizing or hydrolysing ATP in three separate catalytic sites on the α/β subunit interface. The catalytic sites are alternated with the non-catalytic sites, which can only bind adenine nucleotides ². During the kinetic reactions, the three non-equivalent conformation β_E (empty), β_{DP} (which hosts ADP) and β_{TP} (contains ATP or ADP) of the catalytic sites, with increasing affinity for ATP, change their conformation and binding properties every 120° with the rotation of the rotor 3. In addition, the F₁F₀-ATPase catalytic and non-catalytic sites in their different conformations can also bind metal divalent cations 1. In mammals, the membrane-embedded domain is composed by the a subunit, the transmembrane α -helices of b subunit, the c_n subunits (n= eight in mammals) which arranged as a cylindric palisade form the c-ring, A6L subunit, and the supernumerary subunits e, f, g, DAPIT (Diabetes-Associated Protein in Insulin-sensitive Tissue), 6.8 KDa proteolipid (PL) (Fig. 1A) ⁴. The H⁺ translocation sector arises from a/c-ring interactions by forming two asymmetric halfchannels with unexpected horizontal membrane-intrinsic α-helices in the a subunit. These two halfchannels are mutually offset, while the H⁺ binding sites are located on the C-terminal α-helix of each c subunit 5. In the mammalian F₁F₀-ATPase the a and A6L membrane subunits are encoded by the mitochondrial DNA. The central stalk within the F₁ domain contains the y subunit, which joined to the δ and ε subunits, forms a sort of foot which interacts with the loop region of c-ring. The lateral or peripheral stalk joins the two F_0 and F_1 enzyme domains (Fig. 1A). The *b* subunit spans the complete length of the lateral stalk and interacts with OSCP, F6 and d subunits which belong to the soluble enzyme section. All these subunits connect the soluble stator subunits with α_{TP} subunit of F_1 domain. In addition, the top of α_{TP} , α_{DP} , α_E and the β_{DP} and β_E are only linked with OSCP. Some subunits of the lateral stalk, namely the membrane embedded portion of b, f and A6L subunits 6 and the supernumerary subunits, are transmembrane subunits 4 . The lateral stalk shows a spectacular flexibility that plays the role of resisting the torque generation of the rotor by coupling F_1 catalysis to H^+ translocation 7,8 . The H*-translocating F_1F_0 -ATPase sustains either ATP synthesis or hydrolysis 9 . In the "forward" mode the Mitchell's proton motive force Δp created by mitochondrial respiration drives ATP formation from ADP and Pi. In the so-called "*reverse*" mode, the phosphorylation potential generated by ATP breakdown is exploited by the enzyme complex to pump H* and energize the IMM when the Δp drops 10 . Both ATP synthase and hydrolase activities are opposite F_1F_0 -ATPase functions that depend on the bioenergetic state of mitochondria. The bi-functional ATP synthesis/hydrolysis mode coupled to H* translocation of F_1F_0 -ATPase is a mechanism unique in biology sustained by the natural cofactor Mg²⁺. The F_1F_0 -ATPase can replace Mg²⁺ by Ca²⁺ losing the ATP synthesis function, but preserving the F_1F_0 -ATP(hydrol)ase activity 11 . High Ca²⁺ concentrations in mitochondria activate of F_1F_0 -ATPase by direct Ca²⁺ binding to the $\alpha_3\beta_3$ globular hexamer that dissociates ATP hydrolysis from H+ pumping. In this case F_1 was reported to become uncoupled from F_0 domain 12 . However, this assumption becomes questionable on considering the recent cryo-EM enzyme structure and structure activity relationship data on the effect of small molecules 13 and specific F_1 and F_0 domain inhibitors 11,14 . So, in search for a different interpretation of the findings up to now obtained, experimental and literature data 15 were combined to draw a pattern of the mechanism involved. #### 2. Materials and Methods ## 2.1. Preparation of the mitochondrial fractions and F₁F₀-ATPase activity assays Swine hearts (*Sus scrofa domesticus*) were collected at a local abattoir and transported to the lab. From homogenized heart tissue and then subjected to differential centrifugation ¹¹ the mitochondrial preparations, obtained in a divalent cation-free medium, were characterized as described in ¹⁴. To evaluate the mitochondrial F_1F_0 -ATPase activities, the mitochondrial preparations obtained as described by Nesci et al. ¹¹, were added to the reaction system that contained 3 mM ATP and 2 mM Ca^{2+} or Mg^{2+} in 75 mM ethanolammine–HCl buffer, pH 8.8. The enzyme activity was spectrophotometrically detected and evaluated after subtraction of the non-specific ATP hydrolysis in the blank¹⁶. The sensitivity of the F_1F_0 -ATPase activity, either sustained by Mg^{2+} or by Ca^{2+} , to the specific F_1F_0 -ATPase inhibitor oligomycin witnessed the functional and structural coupling between the two sectors F_1 and F_0 ¹⁴. #### 2.2. Protein model The structural details of the protein arrangement in the F_1F_0 -ATPase subunits were obtained by the Chem3D program of ChemOffice Professional 19.1.1 software ¹⁷ using the deposited structures in PDB. #### 2.3. Calculations and statistics In each set of experiments, the data represent the mean \pm SD of the number of analyses carried out on at least three distinct mitochondrial preparations. The coupling index was calculated as the ratio between the total F_1F_0 -ATPase activity and the oligomycin-sensitive F_1F_0 -ATPase activity, being the latter obtained from the difference between the total F_1F_0 -ATPase activity and the enzyme activity detected in the presence of 3mg/mL oligomycin, a dose which ensured maximal inhibition of the F_1F_0 -ATPase ¹⁸. The differences between the enzyme activity data in differently treated mitochondria were evaluated by one way ANOVA followed by Student-Newman-Keuls' test when F values indicated significance ($P \le 0.05$). The significance of the difference between the mean coupling index of the Mg^{2+} -dependent F_1F_0 -ATPase and the Ca^{2+} -dependent F_1F_0 -ATPase was evaluated by Student's t test ($P \le 0.05$). Percentage data were t-arcsin-transformed before statistical analyses to ensure normality. # 3. Results and Discussion The catalytic and non-catalytic subunits of the F₁F₀-ATPase show specific amino acid residues and secondary structure motifs required for the molecular interaction with adenine nucleotides and divalent cations. An eight amino acids sequence, GXXXXGKT, conserved in all ATPases 19 is the basic structural feature of the P-loop, known as a phosphate binding loop, on α and β subunits (Fig. 1B). The motif interacts with Mg²⁺ and phosphate (Pi) groups of ATP by coordinating β-Pi and y-Pi to exchange the terminal γ-Pi when the ATP is synthesized or hydrolysed. The positions and specific amino acid composition in the pig sequence are $_{158}GGAGVGKT_{165}$ and $_{169}GDRGTGKT_{176}$ in the β and α subunits, respectively. T_{165} is the only residue that plays a key role in coordinating Mg²⁺ in the β subunits of enzyme during ATP hydrolysis, while T_{176} of α subunits could bind the cofactor. Similarly to Mg²⁺, Ca²⁺ can also bind to all the catalytic sites and probably also to the non-catalytic sites ⁴. The relative affinities for divalent cations and ATP in the reverse reaction of ATP hydrolysis are modulated by mutagenesis of these specific residues of β subunits ²⁰. However, Ca²⁺, which has higher steric hindrance than Mg²⁺, can change the coordination geometry of the Mg²⁺-binding site from the octahedral bipyramide which binds six ligands up to allow eight ligands when Ca2+ is inserted in replacement of Mg^{2+ 21}. Therefore, the rigid octahedral complex changes to a less rigid geometry with irregular bond distances and angles and variable coordination number. This flexible arrangement may explain the non-competitive Ca²⁺ inhibition of the Mg²⁺-activated F₁F₀-ATPase ¹⁴. The Ca^{2+} -dependent F_1F_0 -ATP(hydrol)ase is capable of sustaining torque generation of the rotor. The rotational motion was found to be similar to that induced by Mg²⁺ in the F₁-ATPase ²². Ca²⁺ binding could have the functional consequence to prevent the building of the transmembrane H* gradient, as shown by ACMA fluorescence quenching 23. However, these results cannot exclude that the rotation driven by ATP hydrolysis stimulated by Ca²⁺ ²² is coupled to H⁺ translocation. The Mg²⁺activated F₁F₀-ATPase can display H⁺ flow across F₀ in the absence of adenine nucleotides bound to F₁. This uncoupled proton leakage, known as "proton slip", is associated with a free-wheeling of the central stalk under non-physiological conditions ¹⁰. In addition, the proton slip is abolished by F_O inhibitors (e.g. oligomycin), but it is insensitive to F₁ inhibitors. Conversely, the Ca²⁺-dependent F₁F₀-ATP(hydrol)ase activity was shown to inhibited by various F₁ inhibitors ¹⁴ and insensitive to other Ca- ATPase inhibitors ²⁴. Since the F₁F₀-ATPase in the presence of Ca²⁺shows a four orders of magnitude lower enzyme activity than the Mg²⁺-activated F₁F_O-ATPase (Fig. 2A), ATP hydrolysis sustained by Ca²⁺ may be unable to support a significant H⁺ pumping to energize the membrane. Moreover, the Ca²⁺-activated F₁F₀-ATPase is now generally recognized to play an important role in the permeability transition pore (PTP) formation and opening $^{25-29}$, which can dissipate the Δp ¹¹. The loss of F₁F₀-ATPase structural-functional integrity emerges as the most likely event involved in the decreased oligomycin sensitivity when the F₁ catalysis is not coupled to H⁺ transport by F₀ ³⁰. However, the Ca²⁺-dependent F₁F₀-ATP(hydrol)ase is inhibited by oligomycin ²⁴. A similar behaviour was described in pea stem mitochondria, where, since the Ca-ATPase activity was fully sensitive to oligomycin, ATP hydrolysis could be coupled to H⁺ translocation ³¹. In swine heart mitochondria oligomycin displays a higher inhibition efficiency on the Ca²⁺-activated F₁F₀-ATPase than on the Mg^{2+} -activated F_1F_0 -ATPase, as shown by the lower IC_{50} value (Fig. 2B). The coupling index (the ratio between the total F₁F₀-ATPase activity and the oligomycin-sensitive F₁F₀-ATPase activity) is statistically similar, namely 94.7±1.8% and 91.6±3.7% in presence of Mg²⁺ and Ca²⁺, respectively. Therefore oligomycin blocks H⁺ translocation coupled to ATP hydrolysis irrespective of the divalent cation (Fig. 2C). Consistently, these data suggest that mechanochemical coupling of Ca2+dependent F₁-ATP(hydrol)ase works as a rotary chemical motor to drive H⁺ translocation in the F₀ domain ^{11,16}. The fact that the H⁺-pumping activity driven by Ca²⁺ may not energize IMM is not surprising, being supported by the new "bent-pull" model of the c-ring gated channel 32 and by the cryo-EM maps of the enzyme exposed to Ca²⁺ ⁴. The lack of apparent H⁺ translocation with Ca²⁺dependent F₁F₀-ATP(hydrol) as e may be rather due to H⁺ backflow through the open PTP ³³. Indeed, different Ca²⁺ F₁F₀-ATPase states during ATP hydrolysis were not identified in the Mg²⁺-activated F₁F₀-ATPase. Moreover recent data show that the PTP opens when the Ca²⁺-enzyme in disassembled conformation has the peripheral stalk twisted and the F₁ detached from F₀ ⁴ (Fig. 3). In all likelihood, oligomycin inhibits ATP hydrolysis sustained by Ca2+ in the first conformational stages of the Ca^{2+} -dependent F_1F_0 -ATP(hydrol) as when F_1 is still coupled to F_0 . Indeed, oligomycin, venturicidin, and DCCD, which block H⁺ translocation by binding to the c-ring, can reduce the calcein quenching rate ³⁴, while small-molecules obtained from the oligomycin structure target the c subunits and inhibit the PTP 35 . Previous experiments in our lab showed that DCCD, which specifically blocks H+ translocation by covalently binding to the c subunit carboxylic groups which constitute H+ binding sites and inhibits ATP hydrolysis, more promptly reacts and binds to the Ca²⁺-activated F₁F₀-ATPase than the Mg²⁺-activated F₁F₀-ATPase 11 . Moreover, in inside-out submitochondrial particles the oligomycin sensitive ATP hydrolysis was shown to be similarly affected by Δp when the enzyme activity is sustained by Ca²⁺ or by Mg²⁺ 11 . Therefore, most likely, when the activating cation is Ca²⁺, H+ translocation may be masked by the high ionic conductance of the open PTP. To sum up, the H⁺-translocating Ca²⁺-dependent F_1F_0 -ATP(hydrol)ase is a (mono)functional mode of the mitochondrial F-type ATPase complex. The F_1 domain which hydrolyzes ATP in the presence of Ca²⁺ drives the mechanical-power transmission which results in F_0 conductance to H⁺. Consistently, the poor H⁺-pumping activity of the Ca²⁺-dependent F_1F_0 -ATP(hydrol)ase fails to energize the IMM, mainly because the same enzyme activity is a key PTP constituent, and most likely the PTP opening prevents and masks Δp formation 33,36 . # 4. Conclusion Since long-time Ca^{2+} has been involved in the F_1F_0 -ATPase modulation in heart mitochondria ³⁷. Most knowledge comes from *in vitro* experiments, mainly due to difficulties in the detection of individual action mechanisms *in vivo* ³⁸. The structural data which cast light on the Ca^{2+} -driven conformational changes of the F_1F_0 -ATPase shoulder the idea that, among the multiple Ca^{2+} actions in mitochondria, the Ca^{2+} intervention in the PTP is one of the most relevant mitochondrial roles of this multitasking cation in physiology and pathology. Conflicts of interest None. # Acknowledgments This work was supported by the CARISBO Foundation Grants n° 2019.0534, Bologna, Italy to SN. #### References - 1 Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J et al. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 2016; 63: 445–456. - 2 Boyer PD. The ATP synthase--a splendid molecular machine. *Annu Rev Biochem* 1997; **66**: 717–749. - 3 Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the cell. *Nat Rev Mol Cell Biol* 2001; **2**: 669–677. - 4 Pinke G, Zhou L, Sazanov LA. Cryo-EM structure of the entire mammalian F-type ATP synthase. *Nat Struct Mol Biol* 2020. doi:10.1038/s41594-020-0503-8. - Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded FO structure. *Crit Rev Biochem Mol Biol* 2020; : 1–13. - 6 Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J *et al.* Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. *Science* 2019; **364**: 1068–1075. - 7 Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. Structure, mechanism, and regulation of the chloroplast ATP synthase. *Science* 2018; **360**: eaat4318. - Junge W, Sielaff H, Engelbrecht S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. *Nature* 2009; **459**: 364–370. - 9 Junge W, Lill H, Engelbrecht S. ATP synthase: An electrochemical transducer with rotatory mechanics. *Trends in Biochemical Sciences* 1997; **22**: 420–423. - 10 Feniouk BA, Mulkidjanian AY, Junge W. Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. *Biochim Biophys Acta* 2005; **1706**: 184–194. - 11 Nesci S, Trombetti F, Ventrella V, Pirini M, Pagliarani A. Kinetic properties of the mitochondrial F1FO-ATPase activity elicited by Ca(2+) in replacement of Mg(2+). *Biochimie* 2017; **140**: 73–81. - 12 Hubbard MJ, McHugh NJ. Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. *FEBS Lett* 1996; **391**: 323–329. - 13 Algieri V, Algieri C, Maiuolo L, De Nino A, Pagliarani A, Tallarida MA *et al.* 1,5-Disubstituted-1,2,3-triazoles as inhibitors of the mitochondrial Ca2+ -activated F1 FO -ATP(hydrol)ase and the permeability transition pore. *Ann N Y Acad Sci* 2020. doi:10.1111/nyas.14474. - 14 Algieri C, Trombetti F, Pagliarani A, Ventrella V, Bernardini C, Fabbri M *et al.* Mitochondrial Ca2+ -activated F1 FO -ATPase hydrolyzes ATP and promotes the permeability transition pore. *Ann N Y Acad Sci* 2019; **1457**: 142–157. - 15 Nesci S, Pagliarani A. Incoming news on the F-type ATPase structure and functions in mammalian mitochondria. *Biochimica et Biophysica Acta Advances* 2021. doi:10.1016/j.bbadva.2020.100001. - 16 Algieri C, Trombetti F, Pagliarani A, Ventrella V, Nesci S. Phenylglyoxal inhibition of the mitochondrial F1FO-ATPase activated by Mg2+ or by Ca2+ provides clues on the mitochondrial permeability transition pore. *Arch Biochem Biophys* 2020; **681**: 108258. - 17 Trombetti F, Pagliarani A, Ventrella V, Algieri C, Nesci S. Crucial aminoacids in the FO sector of the F1FO-ATP synthase address H+ across the inner mitochondrial membrane: molecular implications in mitochondrial dysfunctions. *Amino Acids* 2019; **51**: 579–587. - 18 Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. *Biochim Biophys Acta* 2014; **1840**: 1882–1891. - 19 Ramakrishnan C, Dani VS, Ramasarma T. A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. *Protein Eng* 2002; **15**: 783–798. - 20 Du Z, Tucker WC, Richter ML, Gromet-Elhanan Z. Assembled F1-(alpha beta) and Hybrid F1-alpha 3beta 3gamma -ATPases from Rhodospirillum rubrum alpha, wild type or mutant beta, and chloroplast gamma subunits. Demonstration of Mg2+versus Ca2+-induced differences in catalytic site structure and function. *J Biol Chem* 2001; **276**: 11517–11523. - 21 Casadio R, Melandri BA. CaATP inhibition of the MgATP-dependent proton pump (H+-ATPase) in bacterial photosynthetic membranes with a mechanism of alternative substrate inhibition. *JBIC* 1996; **1**: 284–291. - 22 Tucker WC, Schwarz A, Levine T, Du Z, Gromet-Elhanan Z, Richter ML *et al.* Observation of calcium-dependent unidirectional rotational motion in recombinant photosynthetic F1-ATPase molecules. *J Biol Chem* 2004; **279**: 47415–47418. - 23 Papageorgiou S, Melandri AB, Solaini G. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. *J Bioenerg Biomembr* 1998; **30**: 533–541. - 24 Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca(2+) in replacement of the natural cofactor Mg(2+). *Biochim Biophys Acta* 2016; **1860**: 345–353. - 25 Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park H-A, Licznerski P *et al.* An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. *Proc Natl Acad Sci USA* 2014; **111**: 10580–10585. - 26 Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S *et al.* Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. *Cell Cycle* 2013; **12**: 674–683. - 27 Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M *et al.* Dimers of mitochondrial ATP synthase form the permeability transition pore. *Proc Natl Acad Sci USA* 2013; **110**: 5887–5892. - 28 Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ *et al.* A mitochondrial megachannel resides in monomeric F1FO ATP synthase. *Nat Commun* 2019; **10**: 5823. - 29 Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C *et al.* Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. *Nat Commun* 2019; **10**: 4341. - 30 Devenish RJ, Prescott M, Boyle GM, Nagley P. The Oligomycin Axis of Mitochondrial ATP Synthase: OSCP and the Proton Channel. *J Bioenerg Biomembr* 2000; **32**: 507–515. - 31 De Col V, Petrussa E, Casolo V, Braidot E, Lippe G, Filippi A *et al.* Properties of the Permeability Transition of Pea Stem Mitochondria. *Front Physiol* 2018; **9**: 1626. - 32 Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. *J Mol Cell Cardiol* 2020; **144**: 109–118. - 33 Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. *Physiol Rev* 2015; **95**: 1111–1155. - 34 Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G *et al.* Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. *EMBO Rep* 2017; **18**: 1077–1089. - 35 Morciano G, Preti D, Pedriali G, Aquila G, Missiroli S, Fantinati A *et al.* Discovery of Novel 1,3,8-Triazaspiro[4.5]decane Derivatives That Target the c Subunit of F1/FO-Adenosine Triphosphate (ATP) Synthase for the Treatment of Reperfusion Damage in Myocardial Infarction. *J Med Chem* 2018; **61**: 7131–7143. - 36 Nesci S. The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. *Medicinal Research Reviews* 2020; **40**: 811–817. - 37 Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. *J Mol Cell Cardiol* 2002; **34**: 1259–1271. - 38 Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. *Biochemistry* 2012; **51**: 2959–2973. Figure 1. Representative structure of F_1F_0 -ATPase monomers in mammalian mitochondria (A). The enzyme subunits are drawn as ribbon representations obtained from modified PDB ID codes: 6TT7. Δp , Mitchell's proton motive force, IMM, inner mitochondrial membrane. The letter colors are the same as those of the subunit to which belong. B) Catalytic binding site of F_1F_0 -ATPase. The ATP substrate and Mg^{2+} cofactor (in ball and stick representation) are located in the β and α subunits, drawn as ribbon model (modified PDB ID code: 6J5J) in β_{TP} and α_{TP} conformation, respectively, which show the position of key amino acid residues that bind Mg^{2+} . The P-loop is in light blue in both subunits. The binding sites are viewed from the γ subunit (upper panel) and between the observer and the γ subunit (lower panel). Figure 2. Effect of divalent cations on ATP hydrolysis by the mitochondrial F_1F_0 -ATPase. A) F-ATPase activities in the presence of Ca^{2+} or Mg^{2+} are shown as bar chart. B) Dose-response curve of oligomycin on the F_1F_0 -ATPase activated by Ca^{2+} or Mg^{2+} expressed as percentage of the enzyme activity in the absence of oligomycin. C) The oligomycin-sensitive ATPase activity () and the oligomycin-insensitive ATPase activity in presence of 3 μ g/ml of oligomycin () are expressed as percentages of the total mitochondrial ATPase activity sustained by Ca^{2+} or Mg^{2+} , respectively. Data expressed as column chart represent the mean \pm SD (vertical bars) from three experiments carried out on different mitochondrial preparations. * indicates significantly different values ($P \le 0.05$). Figure 3. F_1F_0 -ATPase activity raised by Mg^{2+} or Ca^{2+} as cofactors. ATP hydrolysis sustained by Mg^{2+} (i) or Ca^{2+} (ii) is coupled to H^+ translocation. The different size of the two cofactors changes the F_1F_0 -ATPase conformation. Indeed, the transition of the Ca^{2+} -dependent F_1F_0 -ATP(hydrol)ase from the assembled (ii) to the disassembled state (iii) could induce the loss of H^+ -translocation. Consequently, the PTP opens when a retracted e subunit pulls the lyso-phophatidylserine plug out of the e-ring at the inner mitochondrial membrane side, while the e-ring at the matrix side. Figure 1. Representative structure of F1FO-ATPase monomers in mammalian mitochondria (A). The enzyme subunits are drawn as ribbon representations obtained from modified PDB ID codes: 6TT7. Δp , Mitchell's proton motive force, IMM, inner mitochondrial membrane. The letter colors are the same as those of the subunit to which belong. B) Catalytic binding site of F1FO-ATPase. The ATP substrate and Mg2+ cofactor (in ball and stick representation) are located in the β and a subunits, drawn as ribbon model (modified PDB ID code: 6J5J) in β TP and aTP conformation, respectively, which show the position of key amino acid residues that bind Mg2+. The P-loop is in light blue in both subunits. The binding sites are viewed from the γ subunit (upper panel) and between the observer and the γ subunit (lower panel). 455x229mm (300 x 300 DPI) Figure 2. Effect of divalent cations on ATP hydrolysis by the mitochondrial F1FO-ATPase. A) F-ATPase activities in the presence of Ca2+ or Mg2+ are shown as bar chart. B) Dose-response curve of oligomycin on the F1FO-ATPase activated by Ca2+ or Mg2+ expressed as percentage of the enzyme activity in the absence of oligomycin. C) The oligomycin-sensitive ATPase activity (blue) and the oligomycin-insensitive ATPase activity in presence of 3 μ g/ml of oligomycin (red) are expressed as percentages of the total mitochondrial ATPase activity sustained by Ca2+ or Mg2+, respectively. Data expressed as column chart represent the mean \pm SD (vertical bars) from three experiments carried out on different mitochondrial preparations. * indicates significantly different values (P \leq 0.05). 100x197mm (600 x 600 DPI) Figure 3. F1FO-ATPase activity raised by Mg2+ or Ca2+ as cofactors. ATP hydrolysis sustained by Mg2+ (i) or Ca2+ (ii) is coupled to H+ translocation. The different size of the two cofactors changes the F1FO-ATPase conformation. Indeed, the transition of the Ca2+-dependent F1FO-ATP(hydrol)ase from the assembled (ii) to the disassembled state (iii) could induce the loss of H+-translocation. Consequently, the PTP opens when a retracted e subunit pulls the lyso-phophatidylserine plug out of the c-ring at the inner mitochondrial membrane side, while the F1FO destabilization pulls out phospatidylserine at the matrix side. 381x143mm (600 x 600 DPI)