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Abstract. We present a formal semantics for deontic logic based on the
concept of ceteris paribus preferences. We introduce notions of uncon-
ditional obligation and permission as well as conditional obligation and
permission that are interpreted relative to this semantics. We show that
these notions satisfy some intuitive properties and, at the same time,
do not encounter some problems and paradoxes that have been exten-
sively discussed in the deontic logic literature. Moreover, we show how
obligations and permissions can be represented compactly using existing
preference frameworks from the artificial intelligence area of computa-
tional social choice.
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1 Introduction

Artificial agents are used to automate tasks in many different scenarios. Nowa-
days, they are so pervasive and so fast that it is almost impossible for humans to
monitor them in order to predict illegal behaviour. A possible solution is to em-
bed a mapping of the governance into these entities. This will allow to partially
translate legal and ethical requirements into computable representations of legal
knowledge and reasoning. An example comes from obligations and permissions
that are pervasive in law. Obligations are used to impose a requirement while
permissions describe allowances. Both of them are concepts captured in deontic
logic which has been viewed as a promising component of computational models
of legal knowledge and reasoning, on different grounds. On the other side, AI’s
researchers look for modelling legal knowledge and reasoning about it. They can
find in deontic logic a set of formal tools, usually based on modal logic [2, 9],
which could be compositionally integrated with other logical formalism, such
as predicate logic, logic programming, or defeasible logics. By complementing
(computational) logics with deontic logic, it was hoped that a logical formal-
ism would able to capture the specificities of legal language [3, 19]. We leverage
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on preferences, which are central in making decision processes and thus imple-
mented in many frameworks to drive and assist individuals (e.g., recommender
system [32], sentiment analysis [11]). In this regard, a new line of AI’s research
is focused on comparing agents’ preferences in order to understand how similar
they are [20, 22]. The approach is useful in different multi-agent scenarios to
compare agents behaviour with exogenous priorities. Examples of such priorities
can be a moral principle, a legal requirement, a guideline or a business process.
The aim is to understand whether an agent deviates from a desired behaviour
[21, 23]. In this paper, we provide the semantics for a deontic logic based on the
intuitive idea that obligations and permissions consist in preferences over worlds:
strict ones for obligations and weak ones for permissions. Such preferences are
ceteris paribus in the sense that they only concern worlds that are equal in all
remaining circumstances, namely, in all aspects except for those contributing to
the states of affairs that are affirmed to be obligatory or permitted. Thus, deon-
tic propositions are to be evaluated against model-theoretical frames consisting
of sets of worlds over which ceteris paribus preferences are defined. While there
have been various attempts at basing a deontic logic on the idea of preferences
(see for instance [15, 2, 16]), nobody has yet, to the best of our knowledge, ex-
plored the perspective of a ceteris paribus deontic logic. Our formalisation does
not allow for the derivation of deontic paradoxes, but supports some deontic
inferences. In the following pages, we first provide a formal account of the idea
of ceteris paribus preferences, and of the corresponding semantic structures. We
then formalise conditional and unconditional obligations and permissions as ce-
teris paribus preferences, and study their basic logical properties. We illustrate
and discuss both ceteris paribus preferences and deontic operators with the help
of extensive examples. We also show how existing AI formalisms (such as CP-nets
[4]) can be used to represent our idea of ceteris paribus deontic logic.

2 Related work

The idea of ceteris paribus preference was originally introduced by Georg Henrik
Von Wright [29, 31]. He observes that our preferences over states of affairs (as
opposed to preferences over objects) are usually “holistic”, in the sense that they
address the compared situations — denoted by Boolean combination of atoms —
in the circumstances accompanying such states. Ceteris paribus preferences have
recently been the object of renewed interest by logicians, who have developed
ceteris paribus semantics for action and preference [12, 27].

An intuitive semantics and a simple axiomatisation are provided by the so-
called standard deontic logic or SDL [7], built on the basis of the so-called old
system of deontic logic by [28], (for a discussion of SDL, see [17, 18]). In SDL,
to be obligatory means to be true in all ideal (perfectly good) worlds, and to be
permissible means to be true in at least one ideal world. This idea is captured by
a serial accessibility relation R over possible worlds, to be understood an ideality
relation: for every world u there exists at least one world v, such that uRv (v
is ideal, relatively to u). In such a semantics frame, ϕ is obligatory in a world u
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if and only if ϕ is true in every world v such that uRv, and ϕ is permitted in a
world u if and only if there exists a world v such that ϕ is true in at v and uRv.

As it has been often remarked, SDL gives rise to several apparently counter-
intuitive implications, the so-called deontic paradoxes (for a recent discussion,
see [2], for an analysis from the perspective of legal theory, see also [33, 13]).
First of all, as legal theorist Alf Ross critically observed [26], the obligation of
a certain proposition should not entail the obligation of the disjunction of that
proposition and any other arbitrary proposition. Other paradoxes have to do
with the so-called contrary to duty obligations, namely, with obligations that
emerge when other obligations are violated, and whose content may contradict
obligations holding when no violation takes place. The classical examples are
represented by Forrester’s gentle murderer paradox, Roderick Chisholm [6] and
by Marek Sergot and Henry Prakken [24]. Various solutions have been proposed
to address contrary to duty obligation, often involving technical complexities
and sometimes giving rise to additional problems [5].

A further problematic aspect of SDL concerns conditional or rather contex-
tual obligations, namely, assertions to the effect that a certain proposition ϕ is
obligatory under a certain condition ψ. Neither a conditional of classical propo-
sitional logic. i.e., ϕ → Oψ, nor the embedment of a such a conditional within
a deontic operator. i.e., O(ϕ→ ψ), appear to provide fully convincing solutions.
This issue has spawn the development of dyadic deontic logic, which capture
deontic conditionality through a special conditional operator. Dyadic deontic
logic was initiated by Georg Von Wright [30], while a semantics for it was first
proposed by Bengt Hansson [14].

Technical solutions have been proposed to deal with deontic conditionals
and contrary to duty obligations (see [24, 5]). These solutions, however, gener-
ally require a more complex logical framework and a less intuitive semantics,
in comparison with SDL. Recently, [3] noticed how preference logics and AI
preference representation languages are both concerned with reasoning about
preferences on combinatorial domains and how in both areas the key notion of
ceteris paribus principle appeared for interpreting preference statements[27].

3 Background

In this section, we provide a formal definition of the relevant concepts, and then
we discuss them and exemplify their application.

3.1 Ceteris paribus Preferences

To capture the idea of a holistic preference, von Wright considers a set of atoms
Atm = {p1, . . . , pn}, each describing an elementary and independent state of a
complete situation, or world. Von Wright [31] observes that the set Atm does not
need to account for all states that can exist in the real world. It is rather limited
to the “preference horizon of a given subject at a given time”, namely, to the
“states which the subject takes into consideration as constituting accompanying
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circumstances when he contemplates his preference or not-preferences between
states”. We first present the basic elements of the formal semantics, namely, the
concepts of preference model and ceteris paribus preference.

Let Atm be a countable set of atomic propositions and let Lit = Atm ∪{¬p :
p ∈ Atm} be the corresponding set of literals.

Definition 1 (Preference model). A preference model is a tuple M = (W,�)
such that: W = 2Atm is the set of worlds, and � is a complete preorder4 on W .

Elements of W are denoted by w, v, . . .. We also define ≺ and ≈ as the strict
order and indifference relations induced from �. The class of preference models
is denoted by P. A weak preference model differs from a preference model as it
does not necessarily include all valuations of propositional variables. Specifically,
W is a subset of all the possible set of worlds. In particular:

Definition 2 (Weak preference model). A weak preference model is a tuple
M = (W,�) such that W ⊆ 2Atm is the set of worlds, and � is a complete
preorder on W .

Let us introduce the following concepts of circumstantial indistinguishability
and circumstantial preference.

Definition 3 (Circumstantial Indistinguishability). Let M = (W,�) be a
preference model, let w, v ∈ W and let X be a finite set of atomic propositions.
We say that w ≡X v iff ∀p ∈ X : p ∈ w iff p ∈ v.

w ≡X v means that w and v are indistinguishable, with regard to the circum-
stances (the atoms) in X.

Definition 4 (Circumstantial Preference). Let M = (W,�) be a preference
model, let w, v ∈W and let X be a finite set of atomic propositions. We introduce
the following abbreviations: w �X v, iff w ≡X v and w � v, respectively w ≺X
v, iff w ≡X v and w ≺ v.

w �X v means that v is at least as good as w, the two worlds being indistin-
guishable relative to X. w ≺X v means that v is better than w, the two worlds
being indistinguishable relative to X. On the basis of the notions of circumstan-
tial equivalence and preference, we can characterise the notions of ceteris paribus
(all-the-rest-being equal) preference relatively to an atom set X.

Definition 5 (Ceteris Paribus Preference). A world w is ceteris paribus
at least as good as or ceteris paribus better than a world v relative to X, if
respectively v �Atm\X w or v ≺Atm\X w.

The former definition concerns indistinguishability and preference relatively to
all atoms not in X, i.e., relatively to Atm \X.

4 That is a binary relation on W which is reflexive, transitive and complete.
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3.2 CP-net

CP-nets [4] are a compact representation of conditional preferences over ceteris
paribus semantics.

Definition 6. A CP-net over a set of binary variables V is a tuple N = (G,CPT ),
where G = (V,E) is a directed graph and CPT = {CPT (Vi)|Vi ∈ V } is a set of
conditional preference tables (CP-tables). An edge (Vi, Vj) ∈ E represents that
preferences over Dom(Vi) depend on the value of Vj.

For each variable Vi ∈ V,, given the assignment to its parents, a CP-table
CPT (Vi) represents the preference order over the values of the domain of Vi.
For instance, CPT (A) = {a ≺ ā} represents the strict preference over the values
of a variable A, i.e., ā is more preferred than a. Each preference order in a CP-
table is also called a CP-statement. A CP-net induces a preference graph over
all the possible outcomes: each node corresponds to an outcome, that is, a com-
plete assignment of values to variables. Moreover, a directed edge between a pair
of outcomes (oj , oi), which differ only in the value of one variable, means that
oj � oi. A worsening flip is a change in the value of a variable to a less preferred
value according to the CP-statement for that variable. A more recent extension,
namely CP-net with indifference [1], takes into account indifference and models
lack of information using incomparability. The qualitative compact representa-
tion of ceteris paribus scenario and the algorithms developed for inference, make
CP-net an interesting and useful tool to represent our model.

4 Ceteris paribus Obligations and Permissions

On the basis of the notions introduced in the previous section, we shall now
address obligations and permission. Basically, deontic propositions (assertions
of obligations and permissions) can be interpreted over semantic structures of
ceteris paribus preferences. The basic idea of this paper is that the semantics
of obligations and permissions can be captured by viewing obligations as strict
ceteris paribus preferences and permissions as weak ceteris paribus preferences.
We first introduce a formalisation and then illustrate it with examples.

4.1 Unconditional obligations and permissions: formalisation

We call ceteris paribus Deontic Logic - CPDL the resulting deontic logic of
obligation and permission interpreted with respect to the ceteris paribus seman-
tics presented in the previous section. The logic also has the so-called universal
modal operator that, as we will show in Section 5, allows us to capture factual
detachment of obligations.

Definition 7. LCPDL(Atm) is a modal language which includes atomic propo-
sitions p, q, . . . ∈ Atm, standard Boolean operators and the modal operators
O,P,U. The language is such that:
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– if p ∈ Atm, then p ∈ LCPDL

– if ϕ,ψ ∈ LCPDL, then ¬ϕ,ϕ ∧ ψ ∈ LCPDL

– if ϕ,ψ ∈ LCPDL, then Oϕ,Pϕ,Uϕ ∈ LCPDL.

Formulas Oϕ and Pϕ have to be read, respectively, “ϕ is obligatory” and
“ϕ is permitted”. Formula Uϕ has to be read “ϕ is universally true”. The truth
conditions for the formulas in the language LCPDL(Atm) are defined as follows:

Definition 8 (Truth Conditions). Let M = (W,�) be a preference model
and let w ∈W . Then:

M,w |= p⇐⇒ p ∈ w
M,w |= ¬ϕ⇐⇒M,w 6|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒M,w |= ϕ and M,w |= ψ

M,w |= Oϕ⇐⇒ ∀v, u ∈W : if M,v |= ϕ and v �Atm\Atm(ϕ) u then M,u |= ϕ

M,w |= Pϕ⇐⇒ ∀v, u ∈W : if M,v |= ϕ and v ≺Atm\Atm(ϕ) u then M,u |= ϕ

M,w |= Uϕ⇐⇒ ∀v ∈W : M,v |= ϕ

where Atm(ϕ) denotes the set of atoms from Atm occurring in ϕ.
In other words, Oϕ means that, for every two possible worlds that are Atm \

Atm(ϕ)-indistinguishable and that disagree about the truth value of ϕ, the world
in which ϕ is true is better than the world in which ϕ is false. Pϕ means that,
for every two possible worlds that are Atm \Atm(ϕ)-indistinguishable and that
disagree about the truth value of ϕ, the world in which ϕ is true is at least as
good as the world in which ϕ is false. We say that the formula ϕ ∈ LCPDL(Atm)
is valid relative to the class of preference models P, denoted by |=P ϕ, iff, for
every preference model M and for every world w in M , we have M,w |= ϕ.
We say that the formula ϕ ∈ LCPDL(Atm) is satisfiable relative to the class of
preference models iff, there exists a preference model M and a world w in M ,
such that M,w |= ϕ.

4.2 Conditional obligations and permissions: formalisation

In this section we extend the logic CPDL by operators of conditional obligation
and conditional permission. We call CPDL+ the resulting logic.

Definition 9. LCPDL+(Atm) is a modal language which includes atomic propo-
sitions p, q, . . . ∈ Atm, standard Boolean operators and the modal operators
O,P,U. The language is such that:

– if p ∈ Atm, then p ∈ LCPDL+

– if ϕ,ψ ∈ LCPDL+ , then ¬ϕ,ϕ ∧ ψ ∈ LCPDL+

– if ϕ,ψ ∈ LCPDL+ , then Oϕ,Pϕ,O(ψ|ϕ),P(ψ|ϕ),Uϕ ∈ LCPDL+ .

Formulas O(ψ|ϕ) and P(ψ|ϕ) have to be read, respectively, “under condi-
tion ψ, ϕ is obligatory ” and “under condition ψ, ϕ is permitted”. The truth
conditions for the formulas in the language LCPDL+(Atm) are the ones given
in Definition 8 plus the following two extra truth conditions for the conditional
obligation operator and the conditional permission operator:
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Definition 10 (Truth conditions (cont.)). Let M = (W,�) be a preference
model and let w ∈W . Then:

M,w |= O(ψ|ϕ)⇐⇒ ∀v, u ∈ ||ψ||M : if M,v |= ϕ and

v �Atm\Atm(ϕ) u then M,u |= ϕ

M,w |= P(ψ|ϕ)⇐⇒ ∀v, u ∈ ||ψ||M : if M,v |= ϕ and

v ≺Atm\Atm(ϕ) u then M,u |= ϕ

where ||ψ||M = {w ∈ W : M,w |= ψ} is the truth set of ψ relative to the
preference model M .

The definitions of validity and satisfiability for the formulas in LCPDL+(Atm)
relative to preference models are analogous to the definitions of validity and
satisfiability for the formulas in LCPDL(Atm) relative to preference models.

5 Properties

In this section, we study the logical properties of the operators of unconditional
and conditional obligation and permission introduced above as well as the re-
lationship with CP-nets. Our model does not produce several well-known para-
doxes in deontic logic. If we restrict our model to obligations and permissions
that are stated only on atoms, then we can show that the induced preference
model can be represented compactly by a CP-net with indifference [1].

Proposition 1. Let C be a set of obligations and permissions. Let M = (W,�)
be the minimal preference model induced by C and N = (G,P ) be the CP-net
induced by C. Then, M and N are isomorphic.

Proof. Due to lack of space, we introduce and explain the inducing notion in what
follows. The minimal preference model induced by C is the one which satisfies C
and has the less restrictive constraints. First, for each permission in C, introduce
a weak order among worlds that differ only for the consequent of the permission,
ceteris paribus the antecedent of the permission. For each obligation, introduce
a strict order over the worlds that differ only for the consequent of the obligation
ceteris paribus the antecedent of the obligation. For all the worlds that are not
explicitly compared we introduced a weak order among them. The induced CP-
net is built as follows: to each atom vi ∈ Atm there is a corresponding variable
Vi ∈ V such that Dom(Vi) = {vi, v̄i}.

Each conditional obligation O(vi|vj) ∈ N introduces a directed edge (Vi, Vj)
in the dependency graph G, such that Vi becomes a parent of Vj . It induces
a strict order over Dom(Vj) given the assignment of Vi such that CPT (Vj) =
{vi : v̄j ≺ vj , v̄i : vj ≺ v̄j}. Similarly, each conditional concession P (vi|vj) ∈ N
induces a weak order over Dom(Vj) such that CPT (Vj) = {vi : v̄j � vj , v̄i : vj �
v̄j}. Notice that in our model, as well as in SDL, everything that is not explicitly
forbidden is permitted, i.e., in general ¬O(vi) → P (v̄i). Thus, a variable with
indifference over its domain is introduced for each atom that is not explicitly
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a consequent of any obligation/permission. To show the isomorphism, consider
the bijection between the set of worlds W and the set of all the outcomes in the
partial orders. We can show that there is a bijection between edges of the partial
order and the ordering relations among worlds in preference model. From the
subset of worlds that satisfy all the obligations we can move to less preferred
worlds by changing one literal at a time until we visit all the possible worlds.
This corresponds to visit all the outcomes in the partial order starting from the
subset of optimal outcomes using the definition of worsening flip of CP-net.

Proposition 2. For all ϕ ∈ LCPDL+(Atm):

|=P Oϕ↔ O(>|ϕ)

|=P Pϕ↔ P(>|ϕ)

This highlights that unconditional obligation and permission do not need to be
added as primitives in the language of the logic CPDL+, as they are definable
from conditional obligation and permission.

Example 1 (Running example). Let us introduce a running example concerning
the presence of cats, dogs, and fences in beach houses (developing the example
from [24]). The set of atoms is Atm = {c, d, f}, where: c represents whether
there is a cat; d represents whether there is a dog and f represents whether there
is a fence. Mary is the mayor of the town. For safety reasons, she has ordered
that there should be fences when there are dogs, and that, on the contrary, there
should be no fences when there are no dogs. Cats are allowed with no restric-
tions. It is easy to check that the following preferences verify P(c), O(d|f) and
O(¬d|¬f): w{c,d,f} ≈ w{d,f}, w{c,d} ≈ w{d}, w{c,f} ≈ w{f}, w{} ≈ w{c}, w{c,d} ≺
w{c,d,f}, w{d} ≺ w{d,f}, w{c,f} ≺ w{c}, w{f} ≺ w{}

Following Proposition 1, Mary’s obligations and concessions can be repre-
sented using the CP-net with indifference depicted in Figure 1a which compactly
represents the partial order depicted in Figure 1b. Following Proposition 1, to
each atom there is a corresponding variable, thus we have V = {C,D, F} repre-
senting respectively whether there is cat, a dog and a fence, Dom(C) = {c, c̄},
Dom(D) = {d, d̄} and Dom(F ) = {f, f̄}. Due to obligations and permission,
variables C,D are independent while variable F depends on D. Moreover, obli-
gations define the strict orders over Dom(D), Dom(F ). From Proposition 2, the
unconditional permission P (c) is defined as P(>|c) and introduces indifference
over Dom(C).

The following proposition highlights that if ϕ is obligatory, then it is also
permitted:

Proposition 3. For all ϕ ∈ LCPDL+(Atm):

|=P Oϕ→ Pϕ

Before dealing with deontic paradoxes, let us consider how factual detach-
ment is represented in the context of the logic CPDL+:
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Fig. 1: (a) The CP-net with indifference which represents obligations and per-
missions in Example 1. It is built using Proposition 1. (b) The partial order
induced by the CP-net in Figure 1a. For the sake of readability, we group into
the same nodes some worlds of the preference model. Worlds in the same node
are indifferent, this is due to the indifference over the values of variable C.

C

D

F

c ≈ c̄

d ≺ d̄
d : f̄ ≺ f
d̄ : f ≺ f̄

(a)

cdf

cdf

Most Preferred

cdf

cdf

cdf

cdf

cdf
cdf

(b)

Proposition 4. For all ϕ ∈ LCPDL+(Atm):

|=P (O(ψ|ϕ) ∧ Uψ)→ Oϕ

|=P (P(ψ|ϕ) ∧ Uψ)→ Pϕ

This means that if the condition of a conditional obligation/permission is nec-
essarily true, then the obligation/permission is detached and becomes uncondi-
tional.

Let us consider the well-known Ross’s paradox [26]. In standard deontic logic
(SDL), an obligation to mail a letter (i.e., Om) implies the obligation to mail a
letter or to burn it (i.e., O(m∨b)), something that goes against intuition. As the
following preference model highlights, our logic CPDL does not encounter this
problem.

Example 2. Let Atm = {m, b} with w1 = {m, b}, w2 = {m}, w3 = {b} and
w4 = ∅. Let us suppose the following preference order over the worlds in W :
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w3 � w1, w4 � w2, w3 � w2, w1 � w2, w3 � w4, w1 � w4. We clearly have
M,w1 |= Om ∧ ¬O(m ∨ b).

More generally, it is worth noting that the ceteris paribus obligation opera-
tor is not normal as it does not satisfy Axiom K. In particular, there exists
ϕ,ψ ∈ LCPDL+(Atm) such that the formula (Oϕ ∧ O(ϕ → ψ)) → Oψ is not
valid in CPDL. To show this, it is sufficient to consider the preference model
in Example 2. We have M,w1 |= (Om ∧ O(m → (m ∨ b)) ∧ ¬O(m ∨ b). An
interesting property of the ceteris paribus operators for obligation and permis-
sion concerns aggregation over conjunction. First of all, it is worth noting that,
in the general case, ceteris paribus obligation and permission do not aggregate
over conjunction. More precisely, there exists ϕ,ψ ∈ LCPDL+(Atm) such that:
6|=P (Oϕ ∧ Oψ)→ O(ϕ ∧ ψ), 6|=P (Pϕ ∧ Pψ)→ P(ϕ ∧ ψ)

To show this it is sufficient to consider the following example. (The latter is
proved in an analogous way.)

Example 3. Let Atm = {p, q} and w1 = {p, q}, w2 = {q}, w3 = {p}, w4 = ∅.
Moreover, let us consider the following preference order �: w3 � w1 � w4 � w2.

It is routine exercise to check that M,w1 |= O(p → q), M,w1 |= Oq, but
M,w1 6|= O((p → q) ∧ q). To verify the latter it is sufficient to observe that
w1 � w4 and w4 6� w1.

Nonetheless, if ϕ and ψ are conjunctive clauses (i.e., finite conjunctions of
literals from Lit) whose sets of atoms have empty intersection (i.e., ϕ and ψ are
independent formulas), then the obligation/permission that ϕ and the obliga-
tion/permission that ψ aggregate over conjunction.

Proposition 5. If ϕ,ψ are conjunctive clauses and Atm(ϕ)∩Atm(ψ) = ∅ then:

|=P (Oϕ ∧ Oψ)→ O(ϕ ∧ ψ)

|=P (Pϕ ∧ Pψ)→ P(ϕ ∧ ψ)

Proof. We only prove the former as the latter is proved in an analogous way.
We prove it by reductio ad absurdum. Let us suppose that (i) M,w |= Oϕ ∧
Oψ and (ii) M,w 6|= O(ϕ ∧ ψ). Item (i) means that ∀v, u ∈ W : if M,v |=
ϕ and v ≡Atm\Atm(ϕ) u and v � u then M,u |= ϕ, and ∀v, u ∈ W : if M,v |=
ψ and v ≡Atm\Atm(ϕ) u and v � u then M,u |= ψ. Item (ii) means that ∃v, u ∈
W : M,v |= ϕ ∧ ψ and v ≡Atm\Atm(ϕ∧ψ) u and v � u and M,u |= ¬ϕ ∨ ¬ψ. We
consider the three possible cases for the latter.

Case 1: M,u |= ¬ϕ ∧ ψ. Since ϕ and ψ are conjunctive clauses we have
v ≡Atm\Atm(ϕ) u. But this is in contradiction with item (i) above.

Case 2: M,u |= ϕ ∧ ¬ψ. Since ϕ and ψ are conjunctive clauses we have
v ≡Atm\Atm(ψ) u. But this is in contradiction with item (i) above.

Case 3: M,u |= ¬ϕ∧¬ψ. There exists w ∈W such that M,w |= ¬ϕ∧ψ and
v ≡Atm\Atm(ϕ) w and w ≡Atm\Atm(ψ) u. It is sufficient to consider the world w
such that ∀p ∈ Atm(ϕ) : p ∈ w iff p ∈ u, ∀p ∈ Atm(ψ) : p ∈ w iff p ∈ v, and
∀p ∈ Atm \ (Atm(ϕ) ∪ Atm(ψ)) : p ∈ w iff p ∈ v. Such a world w exists since
Atm(ϕ) ∩ Atm(ψ) = ∅. By item (i) above and the fact that � is complete, we
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have that w � v. Hence, by the transitivity of �, we have w � u. The latter is
in contradiction with item (i) above.

As shown in Example 3, the formula (O(p → q) ∧ Oq) → O((p → q) ∧ q) is
not valid in our logic. Notice that ((p→ q)∧ q) is logically equivalent to q. This
highlights a more general property of the logic CPDL, namely, the fact that the
obligation operator is not closed under logical equivalence. The same property
holds for permissions, as they are also not closed under logical equivalence. On
the one hand, this might be seen as a limitation of Von Wright’s approach
to ceteris paribus preferences extended here to ceteris paribus permissions and
obligations. Indeed, closure under logical equivalence is the minimal property
that any classical modal logic has to satisfy. From this perspective, our logic of
obligations is not a classical modal logic. On the other hand, it might be seen
as a virtue of the formalism from the point of view of the imperative theory of
norms defended, among the others, by Von Wright. Clearly an obligation, seen
as a imperative or a command that a certain fact ought to be the case, does not
necessarily imply that all its logically equivalent facts are obligatory as well.

We conclude this section by considering the well-known Forrester’s gentle
murderer paradox [8]. Let us assume the following facts: (1) it is obligatory that
you do not kill; (2) if you kill you ought to kill gently, and (3) it is necessarily
the case that if you kill gently then you kill. Let us assume that the action of
killing is captured by the atom k, while the action of killing gently is captured
by the conjunction of atom k and atom g (i.e., doing something gently). Fact 1 is
expressed by the formula O¬k, fact 2 is expressed by the formula k → O(k ∧ g),
while fact 3 is expressed by the formula U((k ∧ g) → k). The latter trivially
holds since (k ∧ g) → k is a tautology of propositional logic. As emphasized
in the introduction, under the assumption that you kill, fact 1 and fact 2 are
together inconsistent in SDL, i.e., k ∧ O¬k ∧ (k → O(k ∧ g)) is an inconsistent
SDL formula. The problem is that in SDL from k and k → O(k∧ g) we can infer
O(k∧g) which, in turn, implies Ok. The latter is inconsistent with O¬k, since in
SDL conflicting obligations are not admitted. We have a similar problem in our
logic, as the formula k ∧O¬k ∧ (k → O(k ∧ g)) ∈ LCPDL(Atm) is not satisfiable
in the class of preference models. Indeed, from k and k → O(k ∧ g) we trivially
infer O(k ∧ g). As the following proposition highlights the latter and O¬k are
together inconsistent:

Proposition 6. For all p, q ∈ Atm :

|=P O(p ∧ q)→ ¬O¬p

Proof. Let us suppose that M,w |= O(p∧ q). The latter means that ∀v, u ∈W :
if M,v |= p∧ q and v ≡Atm\Atm(p∧q) u and v � u then M,u |= p∧ q. The latter

implies that ∃v, u ∈ W : M,v |= p and v ≡Atm\Atm(p) u and u � v and M,u |=
¬p. The latter just means that M,w |= ¬O¬p.

A solution to the Forrester’s gentle murderer paradox, widely explored in the
literature (see, e.g., [24]) consists in reformulating condition (2) above as the
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conditional obligation of killing gently under the condition of killing, and of ap-
plying a principle of factual detachment as the one of Proposition 4. Specifically,
we again represent fact 1 by the formula O¬k, while we now represent fact 2
by the formula O(k|k ∧ g). Moreover, in order to apply factual detachment for
the conditional obligation, we need to assume that k is necessarily true, which
is represented by the formula Uk. The problem is that the latter formula is not
satisfiable, as a preference model includes all possible valuations of propositional
atoms and, consequently, at least one world in which atom k is false. It follows
that the formula O¬k ∧O(k|k ∧ g)∧Uk is not satisfiable either. In order to pro-
vide a solution to the Forrester’s gentle murderer paradox, which is in line with
existing solutions proposed in the literature, we need to weaken the concept of
preference model.

Interpretations of formulas with respect to weak preference models is the
same as interpretations of formulas with respect to preference models. We denote
validity of formulas relative to weak preference models by the symbol |=WP . The
following proposition highlights, the validity of Propositions 2, 3 and 4 generalize
to weak preference models.

Proposition 7. For all ϕ,ψ ∈ LCPDL+(Atm):

|=WP Oϕ↔ O(>|ϕ)

|=WP Pϕ↔ P(>|ϕ)

|=WP Oϕ→ Pϕ

|=WP (O(ψ|ϕ) ∧ Uψ)→ Oϕ

|=WP (P(ψ|ϕ) ∧ Uψ)→ Pϕ

The following proposition is the counterpart of Proposition 5 with respect to
weak preference models.

Proposition 8. If ϕ,ψ are conjunctive clauses and Atm(ϕ)∩Atm(ψ) = ∅ then:

|=WP (AllV(ϕ ∧ ψ) ∧ Oϕ ∧ Oψ)→ O(ϕ ∧ ψ)

|=WP (AllV(ϕ ∧ ψ) ∧ Pϕ ∧ Pψ)→ P(ϕ ∧ ψ)

where:

AllV(ϕ ∧ ψ) =def

∧
X⊆Atm(ϕ∧ψ)

E(
∧
p∈X

p ∧
∧

p∈(Atm(ϕ∧ψ))\X

¬p)

and where Eϕ =def ¬U¬ϕ.

The abbreviation AllV(ϕ,ψ) just expresses the fact that the obligation that ϕ
and the obligation that ψ aggregate under conjunction when interpreting them
relative to weak preference models if, for every valuation of the atoms in Atm(ϕ)∪
Atm(ψ), there exists a world corresponding to this valuation. It is easy to check
that the formula O¬k∧O(k|k∧g)∧Uk is satisfiable in the class of weak preference
models. Indeed, although O(k|k ∧ g) ∧ Uk implies O(k ∧ g), O(k ∧ g) ∧ O¬k
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is satisfiable in the class of weak preference models. As shown in Proposition
6, the latter is not the case in the class of preference models. This highlights
that Forrester’s gentle murderer paradox is solved in the variant of our logic
interpreted over weak preference models by adopting either the solution in which
Condition (2) is interpreted via the material implication k → O(k ∧ g) or the
solution in which it is interpreted via the conditional obligation O(k|k ∧ g).

6 From Syntax Dependence to Independence

The general idea behind our ceteris paribus notion of obligation is that ϕ is
obligatory if and only if the utility of a world increases in the direction by the
formula ϕ ceteris paribus, “all else being equal”. Following Von Wright (see
also [27]), in CPDL we capture this ceteris paribus aspect, by keeping fixed
the truth values of the atoms not occurring in ϕ (i.e., Atm \ Atm(ϕ)). The
fact that the sets of atoms not occurring in two logical equivalent formulas do
not necessarily coincide explains why the obligation and permission operators
of CPDL are not closed under logical equivalence. A natural way to obtain
obligation and permission operators which are closed under logical equivalence
consists in defining the ceteris paribus condition by keeping fixed the truth values
of the atoms with respect to which ϕ is independent (i.e., the atoms which do
not affect the truth value of ϕ). This is consistent with Reschers idea that the
concept of ceteris paribus should be defined in terms of a concept of independence
between formulas [25] (see also [10]). In formal terms, let ϕ be a propositional
formula. Then:

M,w |= Oiϕ⇐⇒ ∀v, u ∈W : if M,v |= ϕ and v �Indep(ϕ) u then M,u |= ϕ

M,w |= Piϕ⇐⇒ ∀v, u ∈W : if M,v |= ϕ and v ≺Indep(ϕ) u then M,u |= ϕ

where Indep(ϕ) = {p ∈ Atm : ∀w ∈ W,w ∪ {p} |= ϕ iff w \ {p} |= ϕ} denotes
the set of atoms with respect to which ϕ is independent and w |= ϕ means that
the valuation w satisfies the propositional formula ϕ. We use the notation Oi for
independence-based “ceteris paribus” obligation and Pi for independence-based
“ceteris paribus” permission. Notice that Atm \ Atm(ϕ) ⊆ Indep(ϕ). Thus, a
ceteris paribus obligation/permission defined in terms of Atm \Atm(ϕ) implies
a ceteris paribus obligation/permission defined in terms of Indep(ϕ), as if two
worlds are equivalent with regard to Indep(ϕ) then they are also equivalent with
regard to Atm \Atm(ϕ). The reason why the previous notions of obligation and
permission are closed under logical equivalence is that two logical equivalent
formulas are independent with respect to the same set of atomic propositions.
Moreover, they have the same truth values at all worlds of a preference model.
This feature is captured by the following two validities:

|=P U(ϕ↔ ψ)→ (Oiϕ→ Oiψ)

|=P U(ϕ↔ ψ)→ (Piϕ→ Piψ)
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This means that if ϕ and ψ are universally equivalent, then having the obligation
(resp. permission) that ϕ is the same as having the obligation (resp. permission)
that ψ. Since logical equivalence (i.e., equivalence relative to all preference mod-
els) is stronger than universal equivalence (i.e., equivalence relative to a specific
preference model), we also have the following properties:

|=P ϕ↔ ψ then |=P (Oiϕ→ Oiψ)

|=P ϕ↔ ψ then |=P (Piϕ→ Piψ)

7 Conclusion and perspectives

In this paper, we have presented a new approach to deontic logic, based on ceteris
paribus preferences, which provides a fresh foundation to the logical analysis of
deontic concepts. We have introduced the idea of ceteris paribus preferences and
on this basis we have built the semantics of a deontic logic, named CPDL (ceteris
paribus deontic logic). We have shown that CPDL not only avoids some deontic
paradoxes, but also provides an adequate conceptualisation of obligations and
permission, conditioned and unconditioned. In particular, CPDL supports for-
mal models of obligations and permission that match common-sense intuitions
and legal language. We have also examined some properties of the resulting
logical system showing in particular how it supports for limited aggregation of
conjunctions and factual detachment. We provided a connection with knowledge
representation in order to compactly represent and reason over the set of obliga-
tions and permissions using the CP-net formalism. We are currently working to
develop the framework of CPDL in various directions, concerning both theory
and applications.
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