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Non-monotone transformation
of biomarkers

Gianfranco Adimari1, Duc Khanh To1 and Monica Chiogna2

Abstract
We comment here on a recent paper in this journal, on a non-monotone transformation of biomarkers
aimed at improving diagnostic accuracy. We highlight that, in a binary classification problem, the
proposed transformation finds its motivation in the Neyman-Pearson lemma, so that the underlying
approach is very general and it is applicable to many parametric families, other than the normal one.
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1 Introduction
In a recent paper in this journal, Yang et al.1 propose a non-monotone transformation for continuous
diagnostic tests (or biomarkers), aimed at improving their accuracy.. The Authors focus on a quadratic
transformation, whose coefficients are population means and variances. In the two-class case, the
transformation aims to increase the value of the area under the ROC curve (AUC) of the test and, as
stated by the same Authors, the proposed method is more powerful when test results are assumed to be
normally distributed.

In this note, we start our discussion by observing that, to discriminate between diseased and healthy
subjects, the best test is the one whose ROC curve dominates all others. Clearly, such a test also has
the highest AUC value. From this perspective, the best possible transformation for a test stems from
the Neyman-Pearson lemma and, ultimately, is provided by the likelihood ratio (see also McIntosh
and Pepe2, Gasparini and Sacchetto3). Therefore, our first objective is to show that the transformation
proposed by Yang et al.1, under the assumption of normality, is just based on the likelihood ratio. Then,
we highlight the generality of the method, illustrating its application to some parametric families, other
than the normal one.
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2 Optimal binary classification rule
Let X1 and X2 denote the (continuous) test results for a pair of randomly selected diseased and healthy
subjects, respectively. LetX denote the test result from a new subject to classify. By the Neyman-Pearson
lemma, the best classification rule based on X is given by the likelihood ratio R(X) = f1(X)/f2(X),
where f1(·) and f2(·) denote the density functions of X1 and X2, respectively. Following the optimal
rule, a value x of the test suggests positivity if R(x) is greater than a threshold c, suitably chosen.

Assume that X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), with σ2

1 6= σ2
2 . Because the ROC curve is

invariant with respect to monotone transformations (in particular, increasing transformations), the optimal
rule based on
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is equivalent to a rule based on e−[σ−2
1 (X−µ1)

2−σ−2
2 (X−µ2)

2]/2 and, then, to a rule based on

g(X) = (σ2
1 − σ2

2)X
2 + 2(σ2

2µ1 − σ2
1µ2)X.

Transformation g(X) is the same as the one proposed by Yang et al.1 for the binary classification
problem, when one avoids the complication of dividing by (σ2

1 − σ2
2). Clearly, g(X) depends on

the parameters (µ1, µ2, σ
2
1 , σ

2
2) that, in practice, must be estimated, leading to the estimated version

ĝ(X) = (σ̂2
1 − σ̂2

2)X
2 + 2(σ̂2

2µ̂1 − σ̂2
1µ̂2)X.

The above discussed approach easily generalizes to many parametric families, i.e., to different choices
for the distributions of X1 and X2. In the following, we give some possibile examples.
- Exponential family: Assume that X1 and X2 have distributions that belong to some exponential family.
Then, the density functions f1(·) and f2(·) can be written as fj(x) = h(x) exp{

∑p
k=1 ηk(θj)Tk(x)−

A(θj)}, for j = 1, 2, where θ1 and θ2 are parameter vectors, and h(·), ηk(·), Tk(·) and A(·) are suitable
functions. It is easy to verify that, in this case, the optimal rule based on the likelihood ratio is equivalent
to the rule based on g(X) =

∑p
k=1[ηk(θ1)− ηk(θ2)]Tk(X). In particular, for instance, if X1 and X2

have gamma distribution with shape parameters α1 and α2 (α1 6= α2) and scale parameters β1 and
β2 (β1 6= β2), respectively, then g(X) = (α1 − α2) log(X) +X(β1 − β2)/β1β2, so that the optimal
transformation is no longer a quadratic trasformation.
- Weibull distributions: Let X1 and X2 be Weibull random variables, with parameters α1, β1 and α2,
β2, respectively, with α1 6= α2. Then, fj(x) = (αj/βj)(x/βj)

αj−1 exp{−(x/βj)αj}, j = 1, 2, and the
likelihood ratio R(X) is equivalent to g(X) = (α1 − α2) log(X)− (X/β1)

α1 + (X/β2)
α2 . We remark

that the Weibull’s family of distributions is not an exponential family.
- Distributions not belonging to the same family: The Neyman-Pearson lemma holds provided that X1

and X2 have mutually absolutely continuous measures3. In practice, it is sufficient that X1 and X2 have
the same support, i.e., the same set of values where the corresponding density functions, f1(·) and f2(·),
are strictly positive. Hence, for instance, if X1 has Weibull distribution with parameters α and β, and
X2 has log-normal distribution with parameters µ and σ2, then the optimal classification rule based
on the likelihood ratio is equivalent to the rule based on g(X) = (α− (µ/σ2)) log(X)− (X/β)α +
0.5 log2(X)/σ2.

For the above considered cases, Table 1 provides AUC values for the testX before and after the optimal
transformation g(·) is applied, in some fixed settings. Moreover, for a visual inspection of the effect of
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3

the transformation on the ROC curve, Figure 1 shows the graphs of the ROC curve in the last two of
these settings, before and after the transformation. Without loss of generality, to compute the AUC of the
unprocessed X-based rule, we assumed that test X was positively associated with the disease status, i.e.,
that high test values indicate suspected disease.

Table 1. Original AUC (AUC0) and AUC of transformed diagnostic tests (AUCg) in some fixed settings.

Distribution of X2 Distribution of X1 AUC0 AUCg

Setting 1 N (1, 32) N (1.2, 1.52) 0.524 0.706
Setting 2 N (1, 1) N (3, 32) 0.736 0.837
Setting 3 Gamma(2, 0.9) Gamma(1, 2.5) 0.541 0.644
Setting 4 Weibull(1.5, 1.8) Weibull(1.1, 2) 0.512 0.601
Setting 5 Weibull(0.8, 1) Weibull(3, 1.8) 0.741 0.842
Setting 6 LogNormal(0.3, 0.62) Weibull(1.1, 2) 0.505 0.677
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Figure 1. Original ROC curve and ROC curve after transformation, in Setting 5 (two Weibull distributions, left
panel) and Setting 6 (lognormal distribution and Weibull distribution, right panel) of Table 1.

Both, the AUC values in the table and the graphs in the figure, clearly show the improvement that
can be induced by the transformation g(·) of X. The considered settings were chosen so as to make this
effect evident; nevertheless, it is important to highlight that effectiveness of the transformation depends
on the true (and typically unknown) distributions of the test in the populations of healthy and diseased
subjects, and, a priori, it might not be so remarkable. Indeed, even in the above considered parametric
models, one could have several cases where the effect of the transformation is essentially negligible. For
example, when X1 ∼ N(2.5, 1.52) and X2 ∼ N(1, 1), the AUC for the original test X is equal to 0.797
and the AUC for g(X) is 0.799. Finally, the graphs in Figure 1 also highlight an important feature of the
likelihood ratio-based classification rule, that is, the associated ROC curve is always concave3.

As already mentioned, in practice the transformation g(·) must be estimated, i.e., the involved unknown
coefficients need to be estimated. A natural estimator (for instance (µ̂1, µ̂2, σ̂

2
1 , σ̂

2
2) in the normal case) is
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the maximum likelihood estimator, derived from some pair of simple random samples, x11, x12, . . . , x1n1

and x21, x22, . . . , x2n2 , of size n1 and n2, from X1 and X2, respectively. To evaluate the impact of the
inference on the effectiveness of the transformation, one should explore the behaviour of ĝ(X) with
respect to that of g(X). We carried out this exploration with a simulation study aimed at examining
expected discrepancies, measured in terms of AUC, between the classification rule based on ĝ(X)
and that based on the true g(X). For each setting in Table 1, we generated test values for simulated
samples of diseased and healthy subjects, with sample sizes n1 = n2 = n, and n ∈ {10, 20, 50, 150}.
For each pair of generated samples, the maximum likelihood estimates of the coefficients involved in
g(X) were obtained. Then, the AUC of ĝ(X) was evaluated by computing the empirical AUC over other
two samples, of large size (m1 = m2 = m = 1000), of simulated test values for diseased and healthy
individuals, as

AUCĝ =

∑m
i=1

∑m
j=1 I (ĝ(x1i) > ĝ(x2j))

m2
.

Here I(·) denotes the indicator function. Each simulation experiment was based on 10000 replications.
Simulation results are shown in Table 2, which provides Monte Carlo averages of the AUCĝ values. Such
averages can be considered as reliable evaluations of the unknown true AUC values for the classification
rules based on ĝ(X) in the considered settings. Therefore, by a comparison with the AUC values for rules
based on g(X) provided in Table 1, results in Table 2 seem to indicate that the effect of the inference
on g(X) (a decrease in the effectiveness of the transformation) can be significant for small sample sizes
(n ≤ 20).

Table 2. Monte Carlo means of the AUCĝ values over 10,000 replications, for the settings considered in Table
1, in samples of sizes n1 = n2 = n.

n = 10 n = 20 n = 50 n = 150

Setting 1 0.671 0.691 0.701 0.704
Setting 2 0.824 0.832 0.836 0.837
Setting 3 0.596 0.618 0.635 0.642
Setting 4 0.550 0.567 0.586 0.596
Setting 5 0.827 0.836 0.840 0.842
Setting 6 0.631 0.654 0.670 0.676

However, in many situations, the practitioner typically only has a pair of samples of test results
from diseased and healthy populations (let’s say again x11, x12, . . . , x1n1

and x21, x22, . . . , x2n2
), which

he can use to estimate the coefficients of the optimal transformation g(·) for X . Then, since a sharp
effectiveness of the transformation is not ensured a priori, and the effectiveness itself may be significantly
reduced by inference, it is important to recover an adequate estimate of the AUC of the classification rule
based on ĝ(X). To do this, by using the same data, the practitioner may resort to cross-validation methods.
In particular (see, for instance, Huang et al.4), the leave-one-pair-out estimate of the AUC of ĝ(X) is

ÂUCĝ =

∑n1

i=1

∑n2

j=1 I
(
ĝ(−ij)(x1i) > ĝ(−ij)(x2j)

)
n1n2

,
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where ĝ(−ij)(·) denotes the transformation estimated from the data without the pair (x1i, x2j). Table
3 show the results of a simulation study conducted to asses the behavior of the estimator ÂUCĝ . It
provides Monte Carlo means and standard deviations, computed by simulated samples of diseased and
healthy subjects, with sample sizes n1 = n2 = n and n ∈ {10, 20, 50}, for each setting in Table 1. Each
simulation experiment is based on 10000 replications. Taking as reference values those stored in Table
2, results in Table 3 show that the bias of the estimator ÂUCĝ is negligible in all settings. Moreover, as
expected, the accuracy of the estimator improves as the sample size grows.

Table 3. Monte Carlo means (MCM) and Monte Carlo standard deviations (SD) of the estimates ÂUCĝ over
10,000 replications, for the settings considered in Table 1, at different sample sizes n = n1 = n2.

n = 10 n = 20 n = 50
MCM SD MCM SD MCM SD

Setting 1 0.665 0.149 0.691 0.092 0.701 0.054
Setting 2 0.821 0.099 0.831 0.067 0.836 0.041
Setting 3 0.592 0.170 0.615 0.112 0.635 0.069
Setting 4 0.549 0.176 0.567 0.124 0.584 0.070
Setting 5 0.826 0.101 0.835 0.067 0.840 0.041
Setting 6 0.629 0.154 0.654 0.100 0.669 0.057

3 Conclusion
The non-monotone transformation proposed by Yang et al.1 for a binary classification problem leads to
a classification rule that, ultimately, is equivalent to the optimal rule based on the likelihood ratio. We
emphasized the generality of this approach, identifying the optimal transformation g(X) under some
parametric models, other than the normal one. The optimal rule is characterized by a ROC curve that
dominates all curves associated with possible other rules based on functions of the original diagnostic
test X , and that is always concave. Moreover, the classification rule based on g(X) is always the same,
i.e., it classifies a subject with test value x as diseased if g(x) is greater than a suitably chosen threshold
c, irrespective of whether high values of the test are associated with the disease or not.

However, effectiveness of the transformation g(·) is not always significant, and the fact that typically
g(·) must be estimated, reduces its effectiveness at least when inference is based on small samples.
For these reasons, we suggest that practitioners assess the actual effectiveness of the (estimated)
transformation by resorting to ÂUCĝ to estimate the AUC of the corresponding rule.

References

1. Yang J, Kuan PF and Li J. Non-monotone trasformation of biomarkers to improve diagnostic and
screening accuracy in a dna methylation study with trichotomous phenotypes. Stat Meth Med Res ; DOI:
10.1177/0962280219882047.

2. McIntosh MW and Pepe MS. Combining severel screening test: optimality of the risk score. Biometrics 2002;
58: 657–664.

Prepared using sagej.cls



3. Gasparini M and Sacchetto L. Proper likelihood ratio based roc curves for general binary classification problems.
arXiv preprint arXiv:180900694 2018; .

4. Huang X, Qin G and Fang Y. Optimal combinations of diagnostic tests based on auc. Biometrics 2011; 67(2):
568–576.

Prepared using sagej.cls


	1 Introduction
	2 Optimal binary classification rule
	3 Conclusion

