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Abstract: This study investigates on the relationship between affect-related psychological variables
and Body Mass Index (BMI). We have utilized a novel method based on machine learning (ML)
algorithms that forecast unobserved BMI values based on psychological variables, like depression, as
predictors. We have employed various machine learning algorithms, including gradient boosting
and random forest, with psychological variables relative to 221 subjects to predict both the BMI
values and the BMI status (normal, overweight, and obese) of those subjects. We have found that
the psychological variables in use allow one to predict both the BMI values (with a mean absolute
error of 5.27–5.50) and the BMI status with an accuracy of over 80% (metric: F1-score). Further, our
study has also confirmed the particular efficacy of psychological variables of negative type, such as
depression for example, compared to positive ones, to achieve excellent predictive BMI values.

Keywords: obesity; depression; machine learning; artificial intelligence; reproducibility

1. Introduction

Obesity constitutes a major public health concern globally, generating considerable
direct and indirect costs, and affecting over one-third of the world’s population [1]. Obesity
is recognized as a complex, multifactorial disease, determined by a combination of factors
and impacting both physical and psychological health [2]. However, existing research
generally treats this condition mainly as a result of both behavioral factors, namely, an
excessive caloric intake relative to metabolic energy expenditure [3], and genetic influences,
such as single gene mutations [4]. The role of other relevant determinants, including
psychological ones, tends therefore to be neglected although these variables clearly also
contribute to weight gain and weight-related pathologies. Nevertheless, particularly
in the field of psychology, researchers have emphasized a mutual association between
overweight, obesity and high levels of negative affectivity, operationalized mainly as
depression. For example, adults diagnosed with obesity report higher depression and
anxiety levels compared to normally weighted individuals [5,6], and negative affects
emerged as important factors for the maintenance of eating pathology [7]. At the same
time, the literature shows inconsistencies with regards to strength and causal direction of
such associations [8].

These mixed results might be related to several factors, including specific method-
ological issues, viz., the variables being measured, assessment tools, and strategies to
data management. In fact, the tendency to employ a limited conceptualization of obesity,
together with the general application of conventional regression analyses (e.g., linear and
logistic regressions) to test empirical assumptions, reinforce existing difficulties in pre-
dicting and treating obesity. The use of regressions have certainly helped to identify risk
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factors of medical outcomes, however, in the case of a multidimensional, lifestyle condition
such as obesity, these methods have made less progress [9].

One of the main approaches that may help to reduce these research-flaws and to
improve scientific knowledge is the use of artificial intelligence (AI). In health-related
disciplines, there is currently an increasing interest in the use of AI, particularly when the
primary task is identifying clinically useful patterns in high-dimensional data sets. For
example, several studies employed AI to classify a number of medical parameters that
could efficiently predict obesity and body mass index (BMI; weight in kilograms divided
by the square of the height in meters) [10], while a recent systematic review showed the
application of machine learning (ML) algorithms for childhood obesity care [11].

Detection and diagnosis of diseases by the use of AI, in particular ML, is indeed an
ongoing and prominent topic in scientific papers [12]. The interest in its potentiality has in-
creased, even if the possible unintended consequences that may result from its application
in clinical practice are clear, and include an overreliance on the capabilities of automation,
thus reducing the skills of physician, as well as relying more on the data than on the clinical
context [11]. Several medical investigations employed ML approaches to develop ad-
vanced remote healthcare systems to monitor long-term patients with BMI-related chronic
illnesses [13–16]. Specifically, while a number of these studies attempted to predict BMI
by voice signals [15], face images [16,17], or face points extracted with a Kinect [18], other
studies focused on blood and biochemical indexes [19–21]. However, to our knowledge
there are currently no studies analyzing the relationship between psychological functioning
and BMI values through ML techniques.

Here, we aim to address this gap by further exploring the relationship between
affect-related psychological variables and BMI through ML algorithms. Specifically, we
applied ML to infer predictive features related to psychological functioning over BMI
using data from a study [22] that demonstrated, employing correlational analysis, that
depression levels may be useful in order to discriminate among BMI levels (normal weight,
overweight, and all obesity classes). The main contributions of this work are twofold.
Firstly, this study attempts to reproduce the results obtained on the relationship between
affect-related psychological variables and BMI [22] by using ML techniques. Computational
reproducibility is the ability to repeat an analysis of a given data set and obtain sufficiently
similar results [23,24]. Not only is reproducibility critical for ML research [25], but it also
constitutes a necessary requirement for science in general, given the constantly increasing
need to subject study findings to more intensive scrutiny [26]. Secondly, this study aims to
test whether psychological variables can be used as predictors to forecast unobserved BMI
values [27]. The main objective of this study is therefore to identify risk and/or protective
factors, conceptualized as negative and positive affectivity respectively, for overweight
and obesity. Depending on the evidence for causality, these factors can be useful for
screening patients who are at risk in a broader population as well as for the development
of therapeutic interventions.

2. Materials and Methods

This section details the research questions at the base of this study, illustrates the
dataset and the machine learning algorithms used, and then describes the employed
approach together with the evaluation metrics adopted.

2.1. Research Questions

As anticipated in the Introduction section, the purpose of this study is to deepen
the relationship between risk and protective factors, in the form of negative and positive
affectivity for overweight and obese people through the use of Machine learning algorithms.
In particular, the research questions that drove our study are the following ones:

(1) Is it possible to predict the BMI value (or the BMI class) using psychological variables?
(2) Which psychological variables, the positive or the negative ones, allow to better

predict the BMI?



Sensors 2021, 21, 2361 3 of 13

(3) Among them, which one has more influence on the prediction capability?

To answer these research questions, we followed the steps outlined below. Firstly, we
used all the psychological variables as input to predict the BMI. Secondly, we considered
separately the positive and the negative ones. This had let us to understand which ones
allow to better predict the BMI. Finally, we evaluated those ones that work better following
a leave-one-out approach to understand if one of them is more related than other ones to
the BMI.

2.2. Dataset Description

The dataset used is composed of psychological variables exhibited by adults seeking
treatment for their obesity, and by the control group. A detailed description of both
participants and data collection procedure for this study is available in a recently published
article [22]. The dataset comprised a set of both positive and negative psychological
variables relative to 320 subjects. Positive variables were those psychological factors
that may play a protective role against obesity and include trait emotional intelligence
(trait EI) measured with the Trait Emotional Intelligence Questionnaire–Short Form [27];
cognitive reappraisal as emotion regulation strategy measured with the Emotion Regulation
Questionnaire [28]; and happiness, measured with the Oxford Happiness Inventory [29].
Negative variables were instead potential risk-factors for the development and maintenance
of obesity, and included: expressive suppression as emotion regulation strategy, binge
eating, assessed with the Binge Eating Scale [30], depression, assessed with the Beck
Depression Inventory [31], trait and state anxiety, assessed with the State Trait Anxiety
Inventory-Y [32]. Each of these questionnaires used to measure a certain psychological
variable returns an integer value. Hence, for each subject, there are seven different values
representing the psychological state of the subject. In addition to these ones, there are the
BMI obtained for each participant and BMI categories computed according to the BMI
ranges given by the World Health Organization [33]. The subjects were organized into
three groups: normal weight, overweight, and obese adults (see Table 1).

Table 1. Number of subjects for each BMI class.

BMI Class Number of Subjects

Normal Weight 60
Overweight 25

Obesity 136

2.3. Machine Learning Algorithms

BMI was considered as both a continuous and a categorical variable. We took advan-
tage of several algorithms, with the aim of understanding which ones work best in this
specific context. In particular, we evaluated: K-nearest neighbor (KNN) [34], classification
and regression tree (CART) [35], support vector machine (SVM) [36], multi-layer perceptron
(MLP) [37], Ada boosting with decision tree (AB) [38], gradient boosting (GB) [39], random
forest (RF) [40], and extra tree (ET) [41].

All algorithms were used for both the classification and the regression problem. For the
regression analysis, we employed Lasso [42] and Elastic Net Regression [43] as additional
algorithms.

We employed the Scikit-learn machine learning library in all our experiments. For
all the algorithms, we used the default parameters with the only exception of the random
state one, that we provided when possible to ensure reproducibility of results.

2.4. Approach and Evaluation Criteria

First of all, the dataset has been preprocessed to deal with missing values. Since the
subjects with missing values not only had one but had many (five to seven psychological
variables were missing out of a total of seven), we decided to simply remove those subjects
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from the dataset. In this way, the number of subjects in the dataset has gone from 320 to
221. Moreover, the dataset was divided in two different parts, one for the training phase,
composed of the 80% of subjects (i.e., 176), and the other one for the testing phase, composed
of the remaining 20% of subjects (i.e., 45). Then, for each one of the three steps described
in Section 2.1, in the training phase, we employed the stratified k-fold cross validation,
a technique used to reduce the bias deriving from random sampling [44]. We chose to
use the number of folds equal to four, considering that the size of the dataset does not
allow the use of the typical ten-fold cross validation. In fact, by dividing the training
set into 10 folds, at each iteration, the overweight class in validation would only count
2 elements. Instead, using 4 folds, at each iteration, the overweight class in validation
counts 5 elements, number which is also consistent with the size of the class in the test
set. Before each training phase, the data were scaled, subtracting the average value and
dividing by the standard deviation.

With regard to the classification, Table 1 shows that the dataset suffers the problem
of imbalance among the three classes. In fact, the subjects of the class Obesity are more
than five times the ones of the class Overweight. This imbalance could lead to predictions
that are more accurate on the majority class than on a minority class, resulting in a bias in
favour of the majority class. To deal with this problem, we took advantage of a resampling
technique with the aim of over-sampling the minority classes. In particular, we employed
the synthetic minority over-sampling technique (SMOTE) [45]. This technique exploits
K-nearest neighbour in the feature space to generate synthetic examples of the minority
class. In this way, during training, the number of examples for each class will be always
the same.

A final consideration is due to the evaluation metrics. To assess the performance
of classifiers, we employed a global metric, namely the F1-score, that is the harmonic
average of the precision and recall together with two class-specific metrics, the sensitivity
and specificity to measure the ability of the classifiers to predict true positives and true
negatives. The prediction accuracy of our regressors has been evaluated with two different
measures: mean absolute error (MAE) and Pearson correlation coefficient (PCC). The MAE
measures the prediction error (i.e., the average deviation between the real BMI values and
the predicted ones). The PCC quantifies the degree of the linear association between real
and predicted BMI values. The reason to couple MAE and PCC is that when the values
are all distributed near the average, a naive regressor that predicts always the mean value,
achieve good performance. In such case, the PCC will instead be low, allowing to highlight,
and consequently to avoid, such a problem.

3. Results
3.1. BMI Prediction Using Psychological Variables

To answer the first research question, we investigate the employment of psychological
variables to predict BMI values and classes. We conducted a first analysis employing all
the algorithms described in the previous Section, taking advantage of the 4-fold cross
validation. In Figure 1, we report the F1-scores obtained while predicting BMI classes with
all the psychological variables available. In general, algorithms are able to predict the BMI
classes. As shown, the best performances were achieved by the extra tree classifier, with
an average F1-score of 0.84. However, MLP, GB, and RF were also able to achieve average
F1-scores greater than 0.8.
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After this initial assessment, we conducted a tuning phase on the most promising
algorithms: MLP, GB, RF, and ET. We also varied the main hyperparameters of each
algorithm employing a grid search approach, hence considering all the hyper-parameters
combinations. The full list of values considered for each parameter and algorithm is
reported in Table 2. For each algorithm, the best combination is highlighted in bold in
the Table.

Table 2. Hyper-parameters and values tested during tuning for the classification.

Algorithm Parameter Values

MLP

Activation Function identity, logistic, tanh, relu
Solver lbfgs, sgd, adam

Max Iterations 200, 500, 1000
Alpha 0.1, 0.01, 0.001, 0.0001

Hidden layer size 50, 100, 150, 200

RF

Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion gini, entropy
Bootstrap true, false

Number of Estimators 50, 100, 200, 500

GB

Learning Rate 0.01, 0.05. 0.1, 0.2
Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion friedman mse, mae
Subsample 0.5, 0.75, 1

Number of Estimators 50, 100, 200, 500

ET

Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion gini, entropy
Number of Estimators 50, 100, 200, 500
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After finding the hyperparameters that enable the algorithms to perform best on the
training set, we have evaluated them on the test set. Table 3 reports the obtained F1-scores
on the training set, always employing the 4 folds cross validation, and on the test set. As
shown, on the test set, both GB and ET were able to reach F1-scores equal to 0.82. Such
results highlight how it is possible to predict the BMI class using the aforementioned
psychological variables with a good accuracy.

Table 3. Classification: F1-score, specificity/sensitivity on the test set, after tuning.

Algorithm Class Sensitivity Specificity F1-Score

MLP
Normal Weight 0.67 0.91

0.81Overweight 0.60 0.90
Obesity 0.89 0.88

GB
Normal Weight 0.83 0.91

0.85Overweight 0.60 0.93
Obesity 0.89 0.94

RF
Normal Weight 0.92 0.91

0.89Overweight 0.60 0.97
Obesity 0.93 0.94

ET
Normal Weight 0.75 0.88

0.82Overweight 0.60 0.97
Obesity 0.89 0.82

We then tackled the regression analysis. Parallel to the classification analysis, we firstly
analyzed the performances of all the algorithms. Table 4 reports both the mean absolute
error and the Pearson Correlation Coefficient obtained by each algorithm. As shown, the
best performance was achieved by the Lasso and Elastic Net, with a MAE equal to 4.35 and
the PCCs respectively of 0.81 and 0.80, indicating a strong correlation between predictions
and real values. Slightly worse results were instead obtained by KNN, GB, RF, and ET.

Table 4. Regression: Mean Absolute Error and Pearson Correlation Coefficient of the cross-validation
on the training set.

Algorithm MAE PCC

LASSO 4.35 0.81
EN 4.35 0.8

CART 5.93 0.63
KNN 4.37 0.79
SVR 5.33 0.75
MLP 9.44 0.5
AB 4.62 0.76
GB 4.58 0.76
RF 4.65 0.77

Also in this case, we conducted a tuning phase, varying the hyperparameters of:
LASSO, EN, KNN, GB, RF, and ET. The full list of values considered for each parameter and
algorithm is reported in Table 5. As in the previous case, we have employed a grid search
approach. For each algorithm, the best combination is highlighted in bold in the Table.

Table 6 reports the MAE and the PCC on both the training and test set. As shown, the
best performance on both the training and test set is achieved by the gradient boosting
with an average error of 4.14 and 5.27. For both, there is a strong correlation between the
predictions and the real values, as highlighted by the PCC. Instead, the worst performances
on the test set were achieved by Lasso and EN, that were the ones that initially performed
better. However, even when tackling the problem as a regression one, we were able to
predict BMI values starting from psychological variables.
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Table 5. Hyper-parameters and values tested during tuning for the regression.

Algorithm Parameter Values

LASSO Alpha 1.0, 0.75, 0.5, 0.25
EN Alpha 1.0, 0.75, 0.5, 0.25

KNN

N Neighbors 3, 7, 11, 15, 21
Leaf Size 1, 2, 3, 5
Weights uniform, distance

Algorithm auto, ball tree, kd tree, brute

RF

Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion mse,mae
Bootstrap true, false

Number of Estimators 50, 100, 200, 500

Gb

Learning Rate 0.01, 0.05, 0.1, 0.2
Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion friedman mse, mae
Subsample 0.5, 0.75, 1

Number of Estimators 50, 100, 200, 500

ET

Min Samples Leaf 1, 3, 5
Min Samples Split 2, 4, 6

Max Depth 3, 5, 8
Max Features log2, sqrt

Criterion mse,mae
Number of Estimators 50, 100, 200, 500

Table 6. Regression: Mean Absolute Error and Pearson Correlation Coefficient on the training and
test set, after the tuning phase.

Algorithm
4-Fold CV Test

MAE PCC MAE PCC

LASSO 4.35 0.81 6.00 0.72
EN 4.35 0.80 6.52 0.70

KNN 4.31 0.76 5.50 0.76
GB 4.14 0.79 5.27 0.75
RF 4.26 0.79 5.31 0.78
ET 4.41 0.78 5.57 0.76

3.2. Evaluation of the Impact of Positive and Negative Psychological Variables on Prediction

To answer the second research question, we contrasted the performance of the vari-
ous machine learning algorithms, when trained on positive and negative psychological
variables separately. We started with the classification problem. We employed the same
approach of the previous Section, using the same split for the cross-validation and the same
parameters for the algorithms. Table 7 reports the F1-scores obtained by the algorithms
when trained with positive (Positive Variables column) and negative (Negative Variables
column) psychological variables.

As shown, there is not much difference between the performance obtained when
training algorithms with all the psychological variables and the one obtained when training
algorithms with only negative psychological variables. The same cannot be said of the
algorithms trained with positive psychological variables. In fact, the performance falls
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significantly. These results highlight the fact that positive psychological variables do not
influence BMI, contrary to the negative ones.

Table 7. Classification: positive vs. negative variables, F1-scores of the cross-validation on the
training set.

Algorithm Class
Positive Variables Negative Variables

Sen Spec F1 Sen Spec F1

KNN

Normal
Weight 0.38 0.66

0.43
0.67 0.90

0.79Overweight 0.35 0.69 0.45 0.83
Obesity 0.41 0.78 0.86 0.96

CART

Normal
Weight 0.33 0.67

0.44
0.67 0.89

0.77Overweight 0.15 0.80 0.30 0.85
Obesity 0.50 0.74 0.87 0.91

SVC

Normal
Weight 0.48 0.73

0.51
0.79 0.91

0.86Overweight 0.30 0.74 0.45 0.93
Obesity 0.51 0.74 0.96 0.96

MLP

Normal
Weight 0.50 0.69

0.52
0.71 0.90

0.82Overweight 0.25 0.78 0.40 0.90
Obesity 0.53 0.77 0.94 0.94

AB

Normal
Weight 0.42 0.68

0.49
0.69 0.87

0.70Overweight 0.15 0.83 0.55 0.76
Obesity 0.56 0.63 0.68 0.94

GB

Normal
Weight 0.40 0.75

0.51
0.69 0.91

0.81Overweight 0.25 0.81 0.35 0.92
Obesity 0.57 0.59 0.96 0.88

RF

Normal
Weight 0.38 0.72

0.47
0.75 0.89

0.82Overweight 0.20 0.80 0.35 0.92
Obesity 0.52 0.56 0.94 0.93

ET

Normal
Weight 0.38 0.73

0.49
0.75 0.88

0.81Overweight 0.20 0.78 0.30 0.91
Obesity 0.55 0.62 0.93 0.93

We then replicated the experiments on the regression analysis. Even in this case, we
used the same split for the cross-validation and the same parameters for the algorithms.
Table 8 reports both the mean absolute error and the Pearson correlation coefficient for both
the algorithms trained with positive (Positive Variables column) and negative (Negative
Variables column) psychological variables. The reported results confirm the ones obtained
with classification algorithms. The algorithms trained with negative psychological vari-
ables present similar performances of the ones obtained by algorithms trained with all
psychological variables. Thus, in many cases, the MAE of the algorithms trained on positive
variables is almost two times the MAE of the algorithms trained on negative ones.

3.3. Evaluation of the Impact of the Single Negative Psychological Variables on Prediction

Finally, to answer the third research question, we trained our machine learning al-
gorithms removing, in turn, each negative psychological variable: Depression (DE), Trait
anxiety (TA), Binge eating (BE), and Expressive suppression (ES). In this way, we can
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understand which variable has more impact on the predictive capabilities of the algorithms.
We first tackled the classification problem. We focused only on the training set, employing
the 4-fold cross validation. Table 9 reports the F1-scores obtained by the algorithms when
trained without one of the psychological variables. From the results, it is clear that the
psychological variable that has most impact on the predictive capabilities of the algorithms
is Depression. In fact, removing such a variable leads to a deterioration in performance of
0.2 on average (column No DE). Instead, removing any other variable does not significantly
affect the performances, as shown by the values reported in columns No TA, No BE, and
No ES.

Table 8. Regression: positive vs. negative variables, Mean Absolute Error and Pearson Correlation
Coefficient of the cross-validation on the train set.

Algorithm
Positive Variables Negative Variables

MAE PCC MAE PCC

LASSO 8.05 0.16 4.41 0.83
EN 8.03 0.16 4.4 0.83

CART 9.96 0.23 6.12 0.69
KNN 8.47 0.1 4.37 0.8
SVR 8.19 0.15 4.69 0.81
MLP 9.88 0.08 7.74 0.62
AB 8.01 0.17 4.35 0.82
GB 8.04 0.28 4.34 0.82
RF 8.13 0.3 4.34 0.83
ET 8.14 0.33 4.18 0.84

Table 9. Classification: F1-scores of the cross-validation on the training set, removing in turn one negative psychologi-
cal variable.

Algorithm Class
No DE No TA No BE No ES

Sen Spec F1 Sen Spec F1 Sen Spec F1 Sen Spec F1

KNN
N.W. 0.60 0.77

0.59
0.63 0.91

0.80
0.63 0.85

0.74
0.56 0.92

0.78Over. 0.30 0.76 0.55 0.84 0.20 0.83 0.45 0.82
Obes. 0.58 0.82 0.89 0.96 0.86 0.94 0.92 0.96

CART
N.W. 0.46 0.80

0.56
0.65 0.88

0.75
0.56 0.91

0.75
0.75 0.88

0.78Over. 0.25 0.83 0.30 0.86 0.35 0.85 0.30 0.90
Obes. 0.66 0.62 0.86 0.87 0.90 0.85 0.88 0.88

SVC
N.W. 0.65 0.81

0.63
0.75 0.92

0.85
0.54 0.88

0.77
0.73 0.91

0.84Over. 0.35 0.80 0.50 0.91 0.35 0.85 0.45 0.91
Obes. 0.63 0.79 0.95 0.96 0.94 0.97 0.95 0.94

MLP
N.W. 0.65 0.78

0.64
0.69 0.91

0.82
0.75 0.88

0.81
0.69 0.91

0.82Over. 0.30 0.87 0.50 0.89 0.30 0.90 0.45 0.89
Obes. 0.68 0.75 0.93 0.94 0.93 0.96 0.94 0.94

AB
N.W. 0.52 0.81

0.57
0.77 0.87

0.75
0.73 0.88

0.72
0.75 0.85

0.76Over. 0.30 0.80 0.30 0.83 0.30 0.78 0.35 0.85
Obes. 0.61 0.66 0.79 0.93 0.75 0.96 0.80 0.94

GB
N.W. 0.54 0.83

0.62
0.67 0.89

0.79
0.67 0.88

0.79
0.75 0.91

0.82Over. 0.25 0.86 0.30 0.90 0.30 0.90 0.40 0.90
Obes. 0.70 0.63 0.94 0.90 0.94 0.90 0.93 0.94

RF
N.W. 0.54 0.80

0.61
0.69 0.88

0.79
0.65 0.89

0.79
0.79 0.89

0.82Over. 0.25 0.85 0.30 0.90 0.35 0.90 0.35 0.92
Obes. 0.69 0.68 0.92 0.90 0.94 0.90 0.93 0.93

ET
N.W. 0.58 0.81

0.62
0.71 0.90

0.81
0.60 0.88

0.78
0.81 0.91

0.83Over. 0.20 0.85 0.35 0.91 0.35 0.90 0.35 0.92
Obes. 0.69 0.69 0.94 0.90 0.94 0.90 0.94 0.93
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We then repeated the same analysis evaluating the prediction of BMI values. Even in
this case, we analysed only the training set, using the 4-fold cross validation. Table 10 re-
ports both the mean absolute error and the Pearson correlation coefficient for the algorithm
trained, in turn, without one of the negative psychological variables. The obtained results
confirm the ones obtained with classification algorithms. Removing the Depression vari-
able has a greater impact than the removal of any other variable. In fact, the performances
get worse by about 2 on average.

Table 10. Regression: Mean Absolute Error and Pearson Correlation Coefficient of the cross-validation
on the training set, removing in turn one negative psychological variable.

Algorithm
No DE No TA No BE No ES

MAE PCC MAE PCC MAE PCC MAE PCC

LASSO 6.83 0.58 5.01 0.78 4.59 0.82 4.47 0.82
EN 6.83 0.58 5 0.78 4.58 0.82 4.46 0.82

CART 9.07 0.3 5.92 0.69 5.8 0.72 6.39 0.67
KNN 6.68 0.57 4.86 0.78 4.41 0.83 4.6 0.8
SVR 6.92 0.56 4.86 0.79 4.82 0.81 4.46 0.81
MLP 8.18 0.44 7.26 0.61 7.09 0.66 8.02 0.62
AB 7.25 0.54 4.58 0.8 4.56 0.82 4.63 0.8
GB 6.69 0.55 4.6 0.79 4.41 0.82 4.66 0.79
RF 6.77 0.53 4.54 0.81 4.54 0.82 4.75 0.79
ET 7.09 0.51 4.45 0.82 4.55 0.83 4.67 0.8

4. Discussion

The current study aimed at exploring whether BMI values can be predicted from
psychological parameters by using ML techniques. ML techniques represent a powerful
set of algorithms that can derive useful knowledge for the medical field in general and
for obesity more specifically, as they can help us to improve our understanding of such
pathology and our capacity to predict it with greater precision [46]. Risk prediction of
adverse health conditions and events is a primary goal of much health research, and this
study had the objective to provide evidence about the role of psychological factors as either
risk (negative affectivity) or protective (positive affectivity) determinants of BMI levels
through non-conventional statistical techniques.

Several ML algorithms were used to test theoretical models about the relationship
between psychological variables and BMI. First of all, we can highlight how regardless of
how the BMI is conceptualized (i.e., as a continuous value or as a categorical variable), the
results are the same, without particular differences. For this reason, in the presentation of
the answers to the research questions, we will not differentiate between the two types of
problems. From the results presented in Section 3.1, it is clear that the answer to the first
research question is affirmative. In fact, using affect-related variables it is possible to predict
the BMI with a good level of accuracy. To answer the second research question, instead, we
have used as input positive and negative affect-related variables separately. The results
reported in Section 3.2 showed that BMI can be better predicted by the set of negative affect-
related variables, such as depression, anxiety, and emotion suppression, whereas variables
with more positive contents, such as happiness and emotion regulation, did not seem to
play a predictive role over BMI. Hence, in the third step of our experiments, we considered
only negative affect-related variables, leaving out one variable in turn to respond to the
last research question. Among the psychological variables that we considered, depression
seemed to have the strongest predictive power. In fact, the results presented in Section 3.3
it is clear how the removal of depression generally leads to a significant lowering of the
predictive capabilities of the machine learning algorithms, which does not happen for the
other variables. Such a finding reinforces already published results that have highlighted
the role of depression [22]. These results add to the literature on ML and obesity by focusing
on relevant psychological parameters for the prediction of BMI, and suggest that affective
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variables, particularly depression, should be considered in preventive and treatment care
of BMI-related problems, especially in the case of elevated BMI and obesity.

To our knowledge, no prior investigation has used ML techniques to test for the predic-
tive effects of emotional and affective variables over BMI values. In fact, already published
studies where ML was employed took into account physiological parameters such as voice
signals [15] and face images [16,17]. However, further research should combine these
findings by taking into account both medical and psychological parameters simultaneously.
This would help to verify and compare the predictive role of these variables.

We must address the limitations of the current study. Firstly, it did not employ newly
collected data, thus making our inferences limited. However, it allowed us to have a basis
for comparison and to test for the reproducibility of previous findings [23–26]. Secondly,
this study suffers from a number of methodological flaws, such as cross-sectional study
design and a prevalence of self-evaluation (with the exclusion of BMI values which were
directly assessed by the medical staff), as already discussed in [22]. Those issues should be
solved in future studies. Thirdly, from a technical perspective, the main limitation of this
work is surely the restricted number of subjects. Increasing the size of the dataset, possibly
in a balanced way, would help to strengthen the obtained results. Moreover, it would
also allow the use of more powerful, yet data-hungry, algorithms, such as deep neural
networks. Lastly, aside from BMI, the present study took into account psychological and
demographic variables only. However, given the multifactorial nature of weight-related
disorders, future studies need to include relevant medical and ‘lifestyle’ variables which
may contribute to the explanation of present results (e.g., actual calories intake, weekly
exercise, social support).

In conclusion, despite these limitations, present findings provide statistically strong in-
formation regarding the possibility to predict BMI values by means of a set of psychological
variables with negative contents. Particularly, this is one of the first studies investigating
the predictive role of psychological factors over a condition such as obesity, through ML al-
gorithms [47]. These data highlight the importance of considering the affective component
of individual’s experience for a better and more complete understanding of weight-related
disorders, as it can inform psychological interventions and treatment approaches, as well as
improve preventive and therapeutic strategies. Yet, the use of ML has several advantages,
as it outperforms traditional statistics, can be used to compare the impact of more variables
on the prediction of the chosen outcome, and can handle any kind of variable. However,
in order to improve the strength of these findings, future research aimed at overcoming
present study limitations is required.
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