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Abstract: Microsaccades are small eye movements produced during attempted fixation. During
locomotion, the eyes scan the environment; the gaze is not always directed to the focus of expansion
of the optic flow field. We sought to investigate whether the microsaccadic activity was modulated by
eye position during the view of radial optic flow stimuli, and if the presence or lack of a proprioceptive
input signal may influence the microsaccade characteristics during self-motion perception. We
recorded the oculomotor activity when subjects were either standing or sitting in front of a screen
during the view of optic flow stimuli that simulated specific heading directions with different gaze
positions. We recorded five trials of each stimulus. Results showed that microsaccade duration,
peak velocity, and rate were significantly modulated by optic flow stimuli and trial sequence. We
found that the microsaccade rate increased in each condition from trial 1 to trial 5. Microsaccade
peak velocity and duration were significantly different across trials. The analysis of the microsaccade
directions showed that the different combinations of optic flow and eye position evoked non-uniform
directions of microsaccades in standing condition with mean vectors in the upper-left quadrant of the
visual field, uncorrelated with optic flow directions and eye positions. In sitting conditions, all stimuli
evoked uniform directions of microsaccades. Present results indicate that the proprioceptive signals
when the subjects stand up creates a different input that could alter the eye-movement characteristics
during heading perceptions.

Keywords: optic flow; self-motion perception; visual perception; eye position; eye movements;
sensorimotor control; visual system

1. Introduction

The optic flow fields projected on the retina allow the observer to create a neural
representation of the extrapersonal space and thus to move into the environment. The first
studies on the role of optic flow in self-motion perception started in the 1950s with J. J. Gib-
son [1–3]. Since then, many studies have investigated, both on animal and human models,
the cortical and subcortical mechanisms responsible for heading perception. In macaques,
several studies have shown precise neuronal selectivity to optic flow stimuli [4–9], to the
interaction between optic flow and ocular position [10–13], and to the interaction between
optic flow and other sensory signals [14–16]. In humans, several studies have shown that
specific optic flow stimuli are important for guiding locomotion [17–20] and for the postural
control [21–25]. The picture arising from those studies is that the analysis of the optic flow
stimuli is a predominantly cortical process preparatory for specific motor actions.

Microsaccades are small eye movements produced during attempted visual fixa-
tion. Microsaccades are thus small saccades with an amplitude of less than 1◦ occurring
1–2 times per second [26]. The contemporary research field on microsaccades has signifi-
cantly changed due to methodological advances in eye position recordings, progress in
the computational modelling of eye movements, and the development of high-resolution
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and high-speed video-tracking systems. It is now well acknowledged that one of the
primary role of microsaccades is to avoid fading of visual stimuli because of neural adap-
tation [27,28]. Besides that, many studies have shown that microsaccades are related to
precise perceptual processes and demonstrated the interactions between the dynamics of
microsaccades and cognitive processes [29–35]. Ziad Hafed showed that microsaccades
are linked with extraretinal mechanisms that significantly alter spatial perception before
the eye movement onset [36]. Considering this observation, the link between microsac-
cades and visual perception changes significantly; it appears to be a property of the gain
modulation of visual activity by corollary discharge [36].

The great majority of the studies on microsaccades and visual perception have been
performed using attentional, cued or discrimination tasks using classical visual stimuli (i.e.,
small bars either steady or moving across the screen), leading to a large agreement that mi-
crosaccades rates are modulated by both endogenous and exogenous attentional shifts [28].
A previous study firstly used optic flow stimuli to uncover the relationship between mi-
crosaccades and heading perception in a discrimination task, showing that microsaccade
characteristics and directions are related to the correct perception of heading [37]. In the
present work, we moved forward, analyzing the microsaccade characteristics during the
view of radial optic flow stimuli, given that such stimuli attract attention toward the focus
of expansion [38]. In this experiment we combined optic flow stimuli and eye positions
to simulate different headings. The rationale of the protocol arises from the fact that the
visual perception of self-motion is mainly due to the optic flow fields. However, in daily
life, during locomotion, the eyes continuously scan the environment; thus, the gaze is not
always directed to the focus of expansion of the optic flow field. Such eye movements
change the retinal position of the focus of expansion with respect to the fovea, likely increas-
ing microsaccade generation, given that the visual system uses microsaccades to heighten
information acquisition from informative regions of the visual field [39]. We sought to
investigate whether the microsaccadic activity was modulated by eye position during the
view of radial optic flow stimuli and if the view of different optic flow stimuli changes the
microsaccade characteristics and directions. Furthermore, we were interested in studying
if a different input signal may influence the oculomotor activity during self-motion percep-
tion. This interest arises from the consensus in the activity of the superior colliculus, which
is known to be involved in integrating multisensory signals to serve crucial functions in
guiding the motor responses toward visual stimuli in space [40]. The superior colliculus is
involved in visually guided behaviors in order to build up unified, coherent, and meaning-
ful sensory perceptions during self-motion in space [41]. The superior colliculus processes
signals conveying head-re-body position, suggesting that collicular neurons contribute
to a displacement to position transformation for oculomotor control [42]. Neurons in the
superior colliculus integrate visual, auditory and somatosensory inputs from subcortical
and cortical sensory structures [43]. From these premises, we decided to perform the
same experiment in two experimental conditions: when subjects viewed the optic flow
stimuli while standing in front of a screen, and when subjects viewed the optic flow stimuli
sitting in front of a screen. We hypothesized that the presence of the proprioceptive input
when the subjects stand up creates a different input that could alter the eye-movements
characteristics during heading perception, given that while standing there is an increased
cognitive load with respect to sitting.

2. Materials and Methods

The experiments were performed on 19 healthy volunteers, 4 females and 15 males,
who participated in two different experimental sessions carried out on two different days.
In the first session, we recorded eye movements when the subjects were standing, while
in the second session the subjects were seated. Three participants dropped out between
sessions, so data were recorded on 19 people in standing conditions and 16 people in sitting
conditions. Direct comparisons have been performed on 16 subjects. The subjects’ age
ranged from 19 to 38 years (average 25.6 ± 4.9 SD). All participants had normal vision.
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Before the beginning of the experiment, the hand and foot laterality of each participant
was assessed by a laterality questionnaire [44,45] using the following formula:

[(right preference−left preference)/(right preference + left preference)] × 100 (1)

A positive index indicates a right dominance, while a negative index indicates a left
dominance. The rationale to compute a laterality index was to correlate the microsaccade
directions with the dominant side to elucidate the potential mechanisms for motor control.

Each participant read and signed a written informed consent before participating in
the study. The study protocol was approved by the Institutional Bioethic Committee of the
University of Bologna. The experiments were performed in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki.

2.1. Optic Flow Stimuli

In this experiment, we presented the same stimuli used in a previous study [24].
Briefly, the stimuli were made by 1155 white dots (1.3 cd/m2, size 0.4◦) presented full-field
on a translucent screen that covered 135 × 107◦ of the visual field. Dots moved a perceived
speed of 5◦/s. All recordings were performed in a dark room with dark walls. Each
participant was instructed to fixate on a fixation point (FP) of 0.6◦ size. The binocular
eye position of each subject was recorded both in standing and sitting condition. The
screen height was adjusted for each subject and each condition, to ensure that the FP was
in the primary position. To study the influence of the microsaccades during optic flow
stimulation, we modified the speed of the dot pattern and the gaze direction, changing the
FP. Specifically, the FP was presented in one of three positions along the horizontal axis (in
the center, 15◦ to the left, or 15◦ to the right). The FP was always concentric with the focus
of expansion of the optic flow stimulus. The dot speed was accelerated to the left or to the
right hemifield to simulate different headings at different angles of gaze [46].

Figure 1 shows the stimuli used: DirR-FixR had FP to the right and dots accelerated to
the right simulated heading direction to the right while fixation was to the right (Figure 1A).
DirL-FixR had FP to the right and dots accelerated to the left to simulate heading direction
to the left while fixation was to the right (Figure 1B). DirR-FixC had FP to the center and
dots accelerated to the right to simulate heading direction to the right while fixation was
straight ahead (Figure 1C). DirL-FixC had FP to the center and dots accelerated to the
left to simulate heading direction to the left while fixation was straight ahead (Figure 1D).
DirR-FixL had FP to the left and dots accelerated to the right to simulate heading direction
to the right while fixation was to the left (Figure 1E). DirL-FixL had FP to the left and dots
accelerated to the left to simulate both heading and fixation to the left (Figure 1F). DirC-
FixC had dots expanding radially concentric with the FP to simulate heading direction and
fixation straight ahead (Figure 1G). Three stimuli were used as controls. Random consisted
of random dot motion (Figure 1H); Baseline consisted of simple fixation on a dark screen
(Figure 1I); and R_Dot consisted of static random dots (Figure 1J). Optic flow stimuli were
made using the Matlab psychophysical toolbox (The Mathworks Inc. Natick, MA, USA).
We recorded 5 trials, i.e., 5 repetitions, for each stimulus; thus, each subject performed
50 trials in standing condition and 50 trials in sitting condition.
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Figure 1. Optic flow and control stimuli. (A) Fixation point (FP) to the right and dots accelerated to the right simulated 
heading direction to the right while fixation was to the right (DirR-FixR). (B) FP to the right and dots accelerated to the 
left simulated heading direction to the left while fixation was to the right (DirL-FixR). (C) FP to the center and dots accel-
erated to the right simulated heading direction to the right while fixation was straight ahead (DirR-FixC). (D) FP to the 
center and dots accelerated to the left simulated heading direction to the left while fixation was straight ahead (DirL-FixC). 
(E) FP to the left and dots accelerated to the right simulated heading direction to the right while fixation was to the left 
(DirR-FixL). (F) FP to the left and dots accelerated to the left simulated both heading and fixation to the left (DirL-FixL). 
(G) Radial expansion concentric with the FP simulated heading direction and fixation straight ahead (DirC-FixC). (H) 
Random dot motion (Random). (I) Baseline condition (Baseline). (J) Static random dots (R_Dot). Arrows represent the 
velocity vectors of moving dots. 

2.2. Eye Movements and Eye Position Recordings 
We recorded the horizontal and vertical eye movements using the EyeLink video-

based eye tracking system (EyeLink® II, SR Research Ltd., Mississauga, Canada). This sys-
tem consists of two miniature cameras mounted on a leather-padded headband. Pupil 

Figure 1. Optic flow and control stimuli. (A) Fixation point (FP) to the right and dots accelerated
to the right simulated heading direction to the right while fixation was to the right (DirR-FixR).
(B) FP to the right and dots accelerated to the left simulated heading direction to the left while
fixation was to the right (DirL-FixR). (C) FP to the center and dots accelerated to the right simulated
heading direction to the right while fixation was straight ahead (DirR-FixC). (D) FP to the center
and dots accelerated to the left simulated heading direction to the left while fixation was straight
ahead (DirL-FixC). (E) FP to the left and dots accelerated to the right simulated heading direction to
the right while fixation was to the left (DirR-FixL). (F) FP to the left and dots accelerated to the left
simulated both heading and fixation to the left (DirL-FixL). (G) Radial expansion concentric with the
FP simulated heading direction and fixation straight ahead (DirC-FixC). (H) Random dot motion
(Random). (I) Baseline condition (Baseline). (J) Static random dots (R_Dot). Arrows represent the
velocity vectors of moving dots.

2.2. Eye Movements and Eye Position Recordings

We recorded the horizontal and vertical eye movements using the EyeLink video-
based eye tracking system (EyeLink® II, SR Research Ltd., Mississauga, Canada). This
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system consists of two miniature cameras mounted on a leather-padded headband. Pupil
tracking was performed at 500 samples/s, with high spatial resolution (<0.005◦) and low
noise (<0.01◦). At the beginning of each recording session, we performed the eye tracking
calibration in which the experimental subjects were instructed to fixate a target presented
in random order in a nine-point 25 × 25◦ square grid. After a correct camera calibration,
the data were validated and drift correction was executed by applying a corrective offset to
the raw eye-position.

2.3. Data Analysis

Microsaccades are small eye movements, which occur during prolonged visual fixa-
tion. By definition, microsaccade amplitude is less than 1◦ and the main sequence curve
(amplitude vs peak velocity) follows the same trend of large saccades [47]. To identify
microsaccades, we developed an algorithm based on that of Otero-Millan [48]. To reduce
the amount of potential noise, we considered only binocular microsaccades during at least
3 data samples (6 ms). Trials with incorrect fixations, eye blinks, or behavioural errors were
discarded. We removed portions of data when very fast decreases and increases in the pupil
area occurred (>50 units/sample). Such periods are likely semi-blinks where the pupil is
never fully occluded. We also ignored the 200 ms before and after each blink/semi-blink to
eliminate the initial and final parts where the pupil was still partially occluded [49].

Microsaccade amplitude, duration, direction, rate, and peak velocity were first calcu-
lated for each subject, in each trial and in each condition separately. Then, values for all
subjects in each condition and trial were averaged. Microsaccade rates were calculated
considering only the time spent in fixation periods: the total number of microsaccades for
each subject in each trial was divided by the total time spent in fixation during that trial.

A repeated measure ANOVA was performed separately, to analyze microsaccade rates,
amplitudes, durations, and peak velocities, with stimuli (DirR-FixR, DirL-FixR, DirR-FixC,
DirL-FixC, DirR-FixL, DirL-FixL, DirC-FixC, Random, Baseline, R_Dot), trials (from 1 to 5)
and condition (standing or sitting) as the within-subject factors. Analysis of variance was
performed with SPSS® 22.0 statistical package (SPSS version 22.0 software IBM, Chicago,
IL, USA). Results were considered significant at p < 0.05. Multiple comparisons have been
analyzed in each parameter.

Microsaccade directions were computed using the algorithm developed by Otero-
Millan [48]. Such algorithm produces a representation of the interval 0–90◦ in the fourth
quadrant, so we applied an angular rotation to each vector to bring the representation 0–90◦

into the conventional polar coordinate reference system. To study a possible interaction
between microsaccades and optic flow directions, we used circular statistics (Oriana® 4.0
for Windows, Kovach Computing Services, Anglesey, Wales).

Circular statistics are statistical techniques for use with data on an angular scale. Such
techniques deal with angular directions or rotations. These statistical methods are required
for the analysis of angular data; for example, 0◦ and 360◦ are identical angles, but 180◦ is
not the average of 2◦ and 358◦. In the present data, the uniformity of the mean vectors
distribution was assessed with the Rayleigh test of uniformity and results were considered
significant at p < 0.05.

3. Results

The analysis of the laterality test showed that 16 subjects were right-handed and
3 subjects were left handed. Answers to the laterality questionnaire for the right-handed
subjects resulted in values ranging from 68.42 to 100, indicating a strong right laterality.
Values for the left-handed subjects were −36,84, −89,47, and −100, indicating a strong left
laterality for two subjects.

To verify the identity of the eye movements, to avoid including potential nystagmus,
we plotted velocity (Figure 2) and position (Figure 3) waveforms of exemplary microsac-
cades for both conditions in each stimulus. To allow comparisons, plots of Figures 2 and 3
were taken from the same trial and subject.
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Figure 2. Waveforms of microsaccade velocity in all stimuli in both conditions. Each line in each
diagram represents the waveform of all microsaccades recorded in an exemplary subject and trial.
DirR-FixR: subject 10, trial 1. DirL-FixR: subject 16, trial 5. DirR-FixC: subject 05, trial 3. DirL-FixC:
subject 19, trial 2. Baseline: subject 03, trial 1. DirR-FixL: subject 18, trial 1. DirL-FixL: subject 10,
trial 3. DirC-FixC: subject 05, trial 3. Random: subject 06, trial 4. Baseline: subject 03, trial 1. R_Dot:
subject 19, trial 5. Conventions are as in Figure 1.
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Figure 3. Waveforms of microsaccade positions in all stimuli in both conditions. Each line in each
diagram represents the waveform of all microsaccades recorded in an exemplary subject and trial.
DirR-FixR: subject 10, trial 1. DirL-FixR: subject 16, trial 5. DirR-FixC: subject 05, trial 3. DirL-FixC:
subject 19, trial 2. Baseline: subject 03, trial 1. DirR-FixL: subject 18, trial 1. DirL-FixL: subject 10,
trial 3. DirC-FixC: subject 05, trial 3. Random: subject 06, trial 4. Baseline: subject 03, trial 1. R_Dot:
subject 19, trial 5. Conventions are as in Figure 1.
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3.1. Main Sequence

The total number of analyzed trials for standing condition was 950, while for sitting it
was 800. Figure 4 shows the main sequence, i.e., the amplitude–peak velocity relationship
of all microsaccades during standing (Figure 4A) and sitting (Figure 4B), in all stimuli. This
relationship followed the trend of large saccades. In standing position, the total number of
microsaccades was 12,078, while in sitting position the total number of microsaccades was
13,938.
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Figure 4. Microsaccade main sequence. (A) Main sequence when subjects were standing. Total
number of microsaccades: 12,078. (B) Main sequence when subjects were seated. Total number of
microsaccades: 13,938.

3.2. Microsaccades Duration

The ANOVA performed on the microsaccade duration showed the main effect of
stimulus (F1,9 = 2.21, p = 0.025, ηp

2 = 0.12) and an interaction effect of trial × stimuli
(F1,36 = 1.56, p = 0.021, ηp

2 = 0.09). Figure 5 shows the changes in microsaccade duration
through the entire experiment for each stimulus from trial 1 to trial 5. The microsaccade
duration increased in almost all stimuli across trials. Control stimuli (Figure 5A) and
stimuli with optic flow directions to the right (Figure 5C) showed the highest duration.
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Figure 5. Frequency histograms of microsaccade durations in all stimuli across trials in both sitting and standing conditions.
(A) Controls: Baseline, R_dot, Random. (B) Central direction and fixation: DirC-FixC. (C) Optic flow direction to the right:
DirR-FixR, DirR-FixC, DirR-FixL. (D) Optic flow direction to the left: DirL-FixR, DirL-FixC, DirL-FixL. Data are reported as
mean ± SE. Conventions are as in Figure 1.

3.3. Microsaccades Peak Velocity

The ANOVA performed on the microsaccade peak velocities showed a main effect
for trial (F1,4 = 3.29, p = 0.017, ηp

2 = 0.18), stimuli (F1,9 = 5.14, p < 0.001, ηp
2 = 0.25) and

trial × stimuli interaction effects (F1,36 = 1.57, p = 0.02, ηp
2 = 0.09) (Figure 6). The Bonferroni

pairwise comparison showed few stimuli differences (Table 1).
The microsaccade peak velocity decreased in many control stimuli (Figure 6A), while

it showed a fluctuant effect for the majority of the optic flow stimuli (Figure 6B–D).

Table 1. Significant values resulting from the Bonferroni pairwise comparison for the microsaccade
peak velocity. Please note that for simplicity only significant comparisons are reported.

Stimulus Pairwise Comparison p-Value

Baseline vs. R_dot p = 0.005

DirR-FixC vs. R_dot p = 0.003

DirR-FixL vs. R_dot p = 0.001

DirL-FixC vs. R_dot p = 0.002

DirL-FixL vs. R_dot p = 0.001

Random vs. R_dot p = 0.03
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3.4. Microsaccades Rate

The ANOVA showed a significant main effect for stimuli (F1,9 = 3.33, p = 0.007,
ηp

2 = 0.52) and trial (F1,4 = 3.85, p = 0.031, ηp
2 = 0.56). The microsaccade rate increased in

almost all stimuli across trials. Control stimuli (Figure 7A), central direction and fixation
(Figure 7B) and stimuli with optic flow direction to the right (Figure 7C) caused the greatest
rate increment, while stimuli with optic flow direction to the left (Figure 7D) elicited a
moderate rate increment.

3.5. Microsaccades Directions

Our hypothesis was that the microsaccade directions might be influenced by the
combined interaction of optic flow and eye position and by the presence of a proprioceptive
input. Figure 8 shows the distribution of microsaccade directions in all stimuli in both
conditions. Rose diagrams are shown paired for standing and sitting. In standing condition,
all stimuli evoked a non-uniform distribution of microsaccade directions: Baseline p <
0.001, mean vector 166◦; DirC-FixC p < 0.001, mean vector 143◦; DirR-FixC p < 0.001, mean
vector 147◦; DirR-FixR p = 0.003, mean vector 123◦; DirR-FixL p = 0.007, mean vector 146◦;
DirL-FixC p = 0.005, mean vector 136◦; DirL-FixR p = 0.005, mean vector 114◦; DirL-FixL
p < 0.001, mean vector 143◦; Random p = 0.009, mean vector 157◦; R_dot p = 0.003, mean
vector 143◦ (Rayleigh test of uniformity). However, in sitting condition, all stimuli evoked
a uniform distribution of microsaccade directions. It has to be noted that in standing
condition, the mean significant vectors were always located in the upper-left quadrant
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of the visual field, which was uncorrelated with the optic flow stimulus direction and
eye position.
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4. Discussion

The aim of the present study was to elucidate the microsaccade characteristics during
the passive view of optic flow stimuli to verify the potential role of microsaccades during
heading perception. To uncover the role of the sensory systems, we used radial optic flow
stimuli with different angles of gaze and control stimuli in two experimental conditions:
standing and sitting. By the use of ANOVA and circular statistics, microsaccade duration,
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peak velocity, rate, and direction showed significant effects, while microsaccade amplitude
did not show any significant effect.

4.1. The Effect of Optic Flow Stimuli on Microsaccades

It is well known that the preferred locus of fixation is much smaller than the fovea [50],
and microsaccades bring task-relevant visual targets to the preferred subregion of the fovea,
improving visual acuity [51,52]. Visual perception can be altered before microsaccades, and
perceptual/motor responses are suppressed after microsaccades [36,53–56]. Microsaccade
generation, direction, and timing have been correlated to the appearance of sensory stimuli,
attentional processes, and the degree of active fixation [29,54,56–58]. The present study was
thus designed to elucidate whether such microsaccade characteristics change during the
view of different optic flow stimuli with different structures and directions. The microsac-
cade rates and durations increased in almost all stimuli across trials (Figure 5 and Figure 7);
meanwhile, the microsaccades peak velocity decreased in the majority of the control stimuli
(Figure 6).

Microsaccade behaviors are strongly influenced by high cognitive activities [59,60].
Gao et al. [61] showed that nonvisual cognitive processing can suppress microsaccade rates,
and that the extent of such suppression is related to the task difficulty. Later, Xue at al. [62]
showed that high perceptual load suppresses the rate and amplitude of microsaccades,
suggesting that the microsaccades’ behavior could be an effective indicator of the perceptual
load. The opposite trend of microsaccades’ behavior visible in our results is explicable with
the familiarity of the task. The subjects of the present study performed five trials of the
same stimulus. It is possible to hypothesize that the rate and duration of the microsaccades
increased because, after the first presentation, there was nothing to explore in the stimuli.
Such lack of saliency reflects a very low cognitive activity. Our results suggest that heading
perception increases microsaccades’ rate and duration, and that the extent of such an
increase is related to the number of stimulus presentations. To better confirm this finding,
future studies should include the appearance of attentional cues within the optic flow
stimuli, so as to dissociate the pure heading perception mechanisms from the involvement
of attentional mechanisms during heading perception.

4.2. The Role of the Proprioceptive Input on Microsaccades Characteristics and Directions

In the present study, the two experimental conditions differed only for the proprio-
ceptive and vestibular input; in the sitting condition, such input was robustly reduced. As
shown in a previous study [38], the view of radial expanding optic flow patterns attracts
attention toward the focus of expansion. When the attention is directed toward a specific
point in the peripheral visual field, the direction of the microsaccades indicates the focus of
attention. In this experiment, we chose to use a series of global stimuli that did not require
the subject to shift attention to the peripheral visual field, which enabled us to dissociate
the microsaccade motor response and the perception of the stimulus. In standing condition,
the analysis showed that all stimuli evoked a non-uniform distribution of microsaccade
directions in the upper-left quadrant of the visual field (Figure 8). The various directions of
self-motion and the different gaze angles did not show any modulatory effect on the mi-
crosaccades, indicating that attention was likely always centered on the focus of expansion
and was never widespread. A very different situation was observed when the subjects were
sitting on a chair looking at the optic flow, where all stimuli evoked uniform microsaccade
directions (Figure 8). Present results indicate that while standing, when the attention is
located toward the focus of expansion with full sensory input, the cortical processing of
optic flow perception may drive the oculomotor response toward the postural response;
the mean vectors of microsaccade directions were significantly clustered in the upper-left
visual field. The opposite situation occurred when the subjects were sitting and the sensory
input diminished, because the mean vectors were uniformly distributed.

Although a strong effect, the finding that the microsaccades are always directed toward
the upper-left visual field in a standing position during heading perception, is somehow
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surprising. Our hypothesis for such phenomenon is that in the absence of peripheral
attention during self-motion perception, the oculomotor microsaccadic response matches
the postural response. In a previous study, we showed that visual feedback differently
influences the neural control of body sway; thus, the neural activity seems to provide the
motor system with different afferent inputs in response to disturbances of body balance [25].
It seems that the neural resources to process information related to heading perception
during multisensory integration do not allow the generation of exploratory microsaccades,
which instead happens when the sensory input is strongly reduced (i.e, sitting condition).
The present results also open an important question: why are the microsaccade directions
directed toward the upper-left visual field? According to our previous results [24,25], the
microsaccade directions could reflect the body sway oscillation in response to the optic
flow field. In a previous study, we recorded the body sway in a group of subjects using
the same stimuli used in this experiment; results showed a significant body oscillation
toward the upper-left space (Figures 3 and 4 of [24]). Such oscillations may arise from
the laterality, because the subjects were right-handed and right-footed, or from the motor
response evoked by the optic flow stimuli, supporting the view that a person has their own
way to stand using peculiar motor coordination dynamics to control posture [24].

Reed-Jones and co-workers performed an experiment in which subjects were im-
mersed in a virtual environment, which simulated walking down a hallway and turning
a corner [63]. In half of the trials, the subjects were required to fixate on a static target
placed in the middle of the screen, while in the remaining trials the gaze was unconstrained.
Results of their experiment showed that gaze fixation on a stationary target suppressed the
anticipatory steering responses. Although postural adjustments were still observed during
constrained gaze trials, such adjustments were significantly smaller than trials in which
gaze was unconstrained. These findings indicate that gaze redirection is a prerequisite for
the initiation of a pre-programmed motor action, suggesting that the postural responses
are closely linked to the oculomotor control processes within the central nervous system.
In our experiment, and for the entire trial duration, the subjects’ gaze was always directed
to the fixation point.

We are aware that this experimental condition does not reflect real oculomotor behav-
ior, because in everyday life, the eyes are usually not fixated on an object for more than
a few seconds. However, as already stated by Hafed et al. [34], investigating the role of
microsaccades in experiments that require fixation is necessary because these experiments
themselves allow inferences to be made about vision and cognitive processes.

5. Conclusions

The results show that microsaccade rate, amplitude and peak velocity are strongly
influenced by the combination of optic flow and eye position, while microsaccade directions
are only influenced by standing or sitting conditions. During standing, the microsaccade
directions were significantly clustered toward the upper-left quadrant of the visual field,
while during sitting the microsaccade directions were uniformly distributed. According
to Hafed et al. [34], the role of microsaccades in modulating neuronal responses in the
visual system is more sophisticated than a simple retinal refresh, extending to changes
in response gain, spatial representations, and possibly neural coding. The present results
open new horizons on the study and role of the microsaccadic activity, at the same time
leading to new questions about the link between eye movements, visual perception and
postural control.
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