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Abstract The linear and weakly nonlinear stability analyses are carried out to
study instabilities in Darcy–Bénard convection for non–Newtonian inelastic fluids.
The rheological model considered here is the Darcy–Carreau model, that is an
extension to porous media of Carreau rheological model usually used in clear fluid
media. The linear stability approach showed that the critical Rayleigh number and
wave number corresponding to the onset of convection are the same as for New-
tonian fluids. By employing weakly nonlinear theory, we derived a cubic Landau
equation that describes the temporal evolution of the amplitude of convection rolls
in the unstable regime. It is found that the bifurcation from the conduction state
to convection rolls is always supercritical for dilatant fluids. For pseudoplastic flu-
ids, however, the interplay between the macro-scale properties of the porous media
and the rheological characteristics of the fluid determines the supercritical or sub-
critical nature of the bifurcation. In the parameter range where the bifurcation is
supercritical, we determined and discussed the combined effects of the fluid prop-
erties and the porous medium characteristics on the amplitude of convection rolls
and the corresponding average heat transfer for both pseudoplastic and dilatant
fluids. Remarkably, we found that the curves describing these effects collapse onto
the universal curve for Newtonian fluids, provided the average apparent viscosity
is used to define Rayleigh number.

Keywords Natural convection · Porous media · Darcy–Carreau model · Weakly
nonlinear stability

Pedro Vayssière Brandão
Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale
Risorgimento 2, Bologna 40136, Italy

Mohamed Najib Ouarzazi
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1 Introduction

Natural convection in a porous medium saturated by a Newtonian fluid induced
by heating from below is a thermal instability problem that has been extensively
investigated in the past due to its major importance in many problems that appear
in nature and enginering applications (for detailed reviews, see Nield and Bejan
(2017)). The instability of the conduction state occurs as a result of the buoyancy
effect due to heating. Supercritical stationary bifurcation takes place when the
Rayleigh number, which is a dimensionless measure of the temperature difference
across the layer, exceeds a critical value.

Recently, there has been an increasing interest on the corresponding problem
for non–Newtonian fluids. For a viscoelastic fluid confined in a porous medium
heated from below, Kim et al. (2003) and Yoon et al. (2004) performed a lin-
ear stability analysis by using the modified Darcy’s law based on the Oldroyd-B
model. They showed that in viscoelastic fluids, such as polymeric liquids, a Hopf
bifurcation as well as a stationary bifurcation may occur at the onset of convec-
tion depending on the magnitude of the viscoelastic parameters. In the case of
a Hopf bifurcation, the question of whether standing or traveling waves are pre-
ferred at onset has been fully addressed by Hirata et al. (2015). The dynamics
associated with the nonlinear interaction between the two kinds of instabilities,
namely stationary and oscillatory instabilities, is analyzed by Taleb et al. (2016)
in the framework of a weakly nonlinear theory and with two-dimensional numeri-
cal simulations. From the experimental point of view, the oscillatory character of
the instability at the onset of convection was confirmed by Kolodner (1998) using
DNA suspensions in clear fluid media.

For non–Newtonian visco-inelastic fluids, the rheological model usually em-
ployed is the power-law model. In porous media, this model considers the drag
term in Darcy’s law as µa

K V∗, where V∗ is the seepage velocity, K is the perme-
ability of the porous medium and µa is the apparent viscosity given by

µa = ηef |V∗|n−1 (1)

where ηef [Pa snm1−n] is the effective consistency factor and n is the flow be-
haviour indice. An important deficiency of this model is that, in the limit of a
vanishing V∗, it gives infinite µa for shear-thinning fluids (n < 1 ) and zero
apparent viscosity for shear-thickening fluids (n > 1). To overcome these singu-
larities, Nield (2011a,b) suggested a modified drag term, µ0

K

(
1 + C |V∗|n−1

)
V ∗,

i.e. a modified apparent viscosity,

µa = µ0

(
1 + C |V∗|n−1

)
(2)

where C [m1−nsn−1 ] is a constant.

According to this model, for small values of V∗ and for n > 1, the drag is
linear in V∗, and one recovers the usual linear Darcy’s law with µ0 as the fluid
viscosity at V∗ = 0. Consequently, as pointed out by Nield (2011a,b), the critical
Rayleigh number at the onset of convection is independent of the power-law index
and, hence, equal to the one for Newtonian fluids, i.e. Rac = 4π2. On the other
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hand, for pseudoplastic fluids (n < 1), the apparent viscosity µa becomes infinite
in the limit of vanishing V ∗ and the approach described by Nield (2011a,b) cannot
draw any conclusions about the onset of the instability.

In order to investigate this matter further, Barletta and Nield (2011) investi-
gated the onset of mixed convection of both pseudoplastic and dilatant fluids in a
porous layer heated from below in the presence of a horizontal throughflow. This
introduces a Péclet number Pe characterizing the flow, and the Darcy–Bénard
problem is recovered in the limit of zero Pe. In this limit, the linear stability re-
sults showed that Rac tends to infinity for shear-thinning fluids and tends to zero
for shear-thickening fluids. We note that these results were obtained in the frame-
work of the power–law model which, as pointed out above, presents a singularity
as the seepage velocity becomes small.

Because thermal instabilities in porous media and in a fluid clear of solid
material are qualitatively similar in a number of aspects, it is interesting to re-
call some existing results in the literature obtained for non–Newtonian Rayleigh-
Bénard problem. For shear-thinning fluids described by a power-law model, Chi
et al. (1969) indicated that the linear marginal stability curve cannot be deter-
mined, because of the unphysical infinite viscosity, at zero shear-rate, introduced
by the rheological model. Bouteraa et al. (2015) conducted a weakly nonlinear
stability analysis for Rayleigh-Bénard problem in the case of pseudoplastic fluids
using a Carreau rhelogical model. They derived a Landau amplitude equation and
found that the bifurcation may be supercritical or subcritical depending on the
degree of shear-thinning. The competition between rolls, squares and hexagons
is also investigated (Bouteraa et al., 2015). It shows that only rolls are stable
near the supercritical onset. The supercritical/subcritical nature of the bifurca-
tion predicted by weakly nonlinear theory (Bouteraa et al., 2015) were confirmed
by two-dimensional numerical simulations of the fully nonlinear problem by Jenny
et al. (2015) and by Benouared et al. (2014). Although quite rare, experimental
investigations of this thermal instability for shear-thinning fluids also exist. Dar-
bouli et al. (2016) conducted experiments with Xanthan–gum solutions at different
concentrations. They concluded that the onset of convection for all the concen-
trations used occurred around the Rayleigh value Rac = 1800, which corresponds
to the Newtonian limit. This experimental result is in excellent agreement with
the linear stability predictions reported by Liang and Acrivos (1970), when the
Carreau rheological model is employed. This short overview indicates that the use
of the power-law model with small values of the seepage velocity in porous media,
or weak shear rate in a clear fluid medium, becomes questionable. Since this is the
case at the onset of convection, this model should be modified.

The objective of this paper is to present some new results obtained by weakly
nonlinear stability theory in Darcy–Bénard convection for pseudoplastic and dila-
tant fluids. The analysis is conducted using a new model that extends the Carreau
model to porous media. This article is organized as follows. In section 2, the rhe-
ological model and the mathematical formulation of the current problem are pre-
sented. A weakly nonlinear analysis is performed in section 3, which includes the
derivation of the amplitude equation, results about the nature of bifurcations, the
equilibrium amplitude of finite disturbances and the average heat transfer. Results
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based on the average apparent viscosity are presented in section 4. Conclusions
and future work are given in section 5.

2 Rheological model and dimensionless equations

2.1 Rheological model

To overcome the singularity associated with shear–thinning fluids (n < 1) at zero
shear-rate in a fluid medium, a regularized form of the power–law model is used.
Known as the Carreau model (Carreau, 1972), it is given by

µ− µ∞
µ0 − µ∞

= (1 + (λ∗γ̇)2)
n−1
2 (3)

where γ̇ is the shear rate, the constant µ∞ is the infinite shear rate viscosity and
λ∗ is a characteristic time for the non–Newtonian fluid, defined as

λ∗ = (
η

µ0
)

1
n−1 (4)

where η [Pa sn] is the consistency factor. Usually, µ∞ is negligible and the Carreau
model reduces to

µ

µ0
=
(

1 + (λ∗ γ̇)2
)n−1

2
(5)

In similar way, the singularities of the power–law model associated with a
porous medium can be avoided in the limit of zero filtration velocity V∗ by
adopting the following proposed rheological model, named here the Darcy–Carreau
model,

µa
µ0

=

(
1 + (

ηef
µ0

)
2

n−1 |V∗|2
)n−1

2

(6)

noting that, in the limit of large |V∗|, the power law model (1) is recovered,
while the apparent viscosity takes a finite non zero value µa = µ0 in the limit
of a vanishing seepage velocity |V∗| independent of n. In the present study, the
following expression for ηef , used by many authors (see Pascal and Pascal (1997)
and Longo et al. (2013) for instance), is employed

ηef = η fp (ΦK)
1−n
2 (7)

with fp = 8(−n+1
2

) 2 (3n+1
n )n, where Φ is the porosity of the porous medium.

Introducing the characteristic time λ∗ of the non–Newtonian fluid defined by
(4), the Darcy–Carreau model (6) becomes

µa
µ0

=

[
1 +

(
λ∗ f

1
n−1
p (ΦK)−

1
2 |V∗|

)2
]n−1

2

(8)

In a review of non–Newtonian flow through porous media, Savins (1969) studied
the effect of the tortuosity of the porous medium on the the shear rate γ̇∗p which

is proportional to (ΦK)
−1
2 |V∗|. Longo et al. (2013) investigated non–Newtonian
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axisymmetric porous gravity currents and showed that choosing the correct shear
rate range for the determination of the rheological parameters is crucial to obtain-
ing a good agreement between theory and experiments. Here we define the porous
shear rate as,

γ̇∗p = f
1

n−1
p (ΦK)

−1
2 |V∗| (9)

and, hence, Eq. (8) may be written as

µa
µ0

=
(

1 + (λ∗ γ̇∗p)2
)n−1

2
(10)

The above form of Darcy-Carreau model looks like the Carreau model for a non–
Newtonian fluid clear of solid material (5) if one assumes that the infinite shear
rate viscosity µ∞ is zero.

2.2 Mathematical formulation

Let us consider an isotropic and homogeneous porous cavity of height H and
infinite extension in the horizontal plane saturated by either a pseudoplastic fluid
or a dilatant fluid. The porous medium is heated from the bottom and cooled
from the top. The upper and lower horizontal walls are considered impermeable
and are kept at constant temperatures T ∗1 and T ∗0 , respectively. We assume that
the Oberbeck-Boussinesq approximation holds. The rheological model used for the
apparent viscosity is supposed to obey the Darcy–Carreau rheological model (8).
The equations for continuity, apparent viscosity, momentum and energy can then
be written as:

∇ ·V∗ = 0 (11)

µa
µ0

=

(
1 + (λ∗ f

1
n−1
p (ΦK)

−1
2 |V∗|)2

)n−1
2

(12)

µa
K

V∗ + ∇P ∗ − ρ0 β (T ∗ − T ∗1 ))g = 0 (13)

(ρc)m
∂T ∗

∂t∗
+ (ρc)f V∗ · ∇T ∗ = km∇2T ∗ (14)

The boundary conditions at the impermeable perfectly conducting horizontal
walls are:

T ∗ = T ∗0 at z∗ = 0 and T ∗ = T ∗1 at z∗ = H

W ∗ = 0 at z∗ = 0, H
(15)

where V∗ = (u∗, v∗, w∗) is the velocity field, T ∗ is the temperature field, P ∗ is the
hydrostatic pressure field, µa is the apparent dynamic viscosity, µ0 is the dynamic
viscosity at the zero shear rate, km is the effective thermal conductivity, β is the
fluid thermal expansion coefficient, K is the permeability, ρ is the fluid density,
(ρc)m and (ρc)f are the heat capacity per unit volume of the medium and the heat
capacity per unit volume of the fluid respectively. g = −gez is the gravitational
acceleration, with g denoting its modulus and ez the unit vector along the z axis.
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We choose H, km/(H(ρc)f ), H2(ρc)m/km, kmµ0/(K(ρc)f ) and ∆T ∗ = T ∗0 −
T ∗1 , as reference quantities for length, velocity, time, pressure and temperature
(T ∗ − T ∗1 ). With this scaling, the following set of dimensionless equations is ob-
tained:

∇ ·V = 0 (16)(
1 + α |V|2

)n−1
2

V + ∇P − RaT ez = 0 (17)

∂T

∂t
+ V · ∇T − ∇2T = 0 (18)

with

Ra =
KHgβ∆T ∗

κmµ0
(19)

and

α = λ∗2 fp
2

n−1
1

ΦK
(
κm
H

)2, (20)

where κm = km

(ρc)f
is the thermal diffusivity of the porous medium. If we introduce

the dimensionless characteristic time of the fluid λ = λ∗

H2/κm
and the Darcy

number Da = K
H2 , equation (20) can be written as,

α = λ2 fp
2

n−1
1

ΦDa
, (21)

the dimensionless boundary conditions become

T = 1 at z = 0 and T = 0 at z = 1

W = 0 at z = 0, 1
(22)

and the basic state can be written in dimensionless form as

T(b) = 1− z (23)

∇P(b) = +RaT(b) ez (24)

3 Weakly nonlinear analysis

3.1 Derivation of amplitude equation

To investigate the nonlinear stability of the conductive state, infinitesimal two-
dimensional perturbations are super-imposed onto the basic solution:

V = 0 + v(x, z, t), T = T(b) + θ(x, z, t), P = P(b) + p(x, z, t) (25)

Substituting equations (25) into (16)-(18), eliminating the pressure field and
introducing the perturbation stream function ψ defined by

u =
∂ψ

∂z
and w = −∂ψ

∂x
(26)
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leads to a set of two coupled nonlinear equations involving ψ and the temperature
perturbation θ,

∇2ψ + Ra
∂θ

∂x
= NL (27)

∂θ

∂t
+
∂ψ

∂x
− ∇2θ = −(u · ∇)θ (28)

where the nonlinear term NL is

(29)

NL = −α(n− 1)

[(
∂ψ

∂z

)2 ∂2ψ

∂z2
+

(
∂ψ

∂x

)2 ∂2ψ

∂x2
+

2
∂ψ

∂z

∂ψ

∂x

∂2ψ

∂x∂z
+

1

2

((
∂ψ

∂z

)2

+

(
∂ψ

∂x

)2
)(

∂2ψ

∂x2
+
∂2ψ

∂z2

)]

The following weakly nonlinear approach is similar to the one used in Newell
and Whitehead (1969) and in more recent papers in Bouteraa et al. (2015) and
Requilé et al. (2020). The governing equations may be re-written in the compact
notation

(L
′
∂t + L(Ra))V = N. (30)

where the vector V = (ψ, θ)T contains the perturbation stream function and tem-

perature. L
′

and L are the linear operators

L
′

=

(
0 0
0 1

)
(31)

and

L =

( ∂2

∂x2 + ∂2

∂z2

)
Ra ∂

∂x

∂
∂x −

(
∂2

∂x2 + ∂2

∂z2

) (32)

where N is the nonlinear operator. Above linear threshold, we introduce a small
parameter ε which measures the distance to criticality by setting Ra = Rac+ε

2R2,
where R2 is of order unity. This fixes the temporal scaling to

t2 = ε2t, (33)

allowing the temporal derivative to be replaced by

∂

∂t
→ ∂

∂t
+ ε2

∂

∂t2
. (34)

and the evolution equations to be obtained by expanding the vector V in power
series of ε, i.e.

V = εV1 + ε2V2 + ... (35)
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where the functions Vi depend on the slow variable t2. By substituting (35) in
the system (30), and then collecting coefficients of like powers of ε, the following
equations are obtained;

(L
′
∂t + L0)V1 = 0, (36)

(L
′
∂t + L0)V2 = N(2) = RH2, (37)

(L
′
∂t + L0)V3 = −L2V1 − L

′
∂t2V1 +N(3) = RH3. (38)

with L0 defined as the linear operator for Ra = Rac, and RHn representing the
final right hand terms, while L2 is given by

L2 =

(
0 R2

∂
∂x

0 0

)
. (39)

First-order variables Ṽ1 = (ψ1, θ1)T are expanded in normal modes,

(ψ1, θ1) = A(t2) (Ψ1,Θ1) eikc x+σ t sin(πz) + c. c (40)

where A is the amplitude of the disturbances, which depends on the slow time
t2, σ is the temporal growth rate of the instability and c. c stands for complex
conjugate. Inserting (40) into (36) leads to the dispersion relation,

σ = −(k2 + π2) +
k2

(k2 + π2)
Ra (41)

The neutral stability condition is found by setting σ = 0 which leads to Ra =
(k2 + π2)2/k2. The minimum Ra and its corresponding k are Rac = 4π2 and
kc = π. As it is well known, these critical values are associated with Darcy–Bénard
convection for Newtonian fluids. This means that the non–Newtonian nature of the
fluid has no effects on linear characteristics of the instability, as it was predicted
by Nield (2011a,b) for dilatant fluids. With the use of Darcy–Carreau model, this
result also holds for pseudoplastic fluids.

On the other hand, ∂σ/∂Ra = 1/2 at (Rac, kc), meaning that the Taylor series
expansion for σ in the vicinity of Rac, assuming an unchanged wavenumber k = kc,
can be written as

σ(Ra) = σ(Ra = Rac) + (1/2) (Ra−Rac) + ... (42)

with σ(Ra = Rac) = 0. This relation states that the linear growth rate of the
instability in the vicinity of critical conditions is (1/2) (Ra−Rac), which justifies
the introduction of the slow time scale t2 defined by (33).

The eigenfunctions at O(ε) and O(ε2) are, respectively,

(θ1, ψ1) = (1, 2πi) A(t2) eikcx sin(πz) + c. c, (43)

θ2 = −π | A |2 sin(2πz) and ψ2 = 0, (44)

where the quantity θ2 represents a nonlinear correction to the conductive basic
temperature and is generated by the interaction of the fundamental mode with its
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complex conjugate.

After inserting V1 and V2 into the third order equation (38), there is no need
to solve this equation. Projecting the whole equation onto V † instead, where V †

is the solution of the adjoint linear problem yields a solvability condition, known
as the Fredholm alternative. We apply the solvability condition using the inner
product,

〈Vi, Vj〉 =
1

2π/kc

∫ 2π/kc

0

∫ 1

0
Vi · V ∗j dz dy, (45)

where V ∗j is the complex conjugate of Vj . Re-introducing the original variables

t = t2/ε
2, this solvability condition yields the amplitude equation

dA

dt
= βA − δ A |A|2. (46)

where the explicit expressions for the coefficients appearing in (46) are:

β =
Ra −Rac

2
and δ = 2π4 + 10π6 α (n− 1) (47)

with β representing the linear growth rate of the instability, determined above by
a linear stability analysis, and δ is the Landau constant.

3.2 Supercritical/subcritical nature of bifurcations

The Landau constant δ in the amplitude equation (46) contains two different
nonlinear contributions present in the current problem. The first one, i.e. 2π4,
models the nonlinear thermal advection, while the second one, i.e. 10π6 α (n− 1),
models the non–Newtonian character of the fluid. Physically, the latter can be
related to the variation of the apparent viscosity µa = (1 + (α |V|)2)(n−1)/2 near
the onset of convection,

dµa
d|V|2 (|V|2= 0) = α

n− 1

2
(48)

The above equation states that in the vicinity of the convection state threshold,
where |V| is small, the nonlinear correction decreases the apparent viscosity for
pseudoplastic fluids (n < 1), while the opposite occurs for dilatant fluids (n > 1).
If we introduce the parameter

αp = α |n− 1

2
|= |n− 1

2
| fp

2
n−1 λ2

1

ΦDa
(49)

that may be considered as a measure of non–Newtonian effects, then the Landau
constant may be written as δ = 2π4 ± 20π6 αp. The + and − signs correspond
respectively to dilatant and pseudoplastic fluids.

The sign of the Landau constant δ determines whether or not we are dealing
with a subcritical bifurcation. The nonlinear coefficient δ is always positive for
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Newtonian (n = 1) as well as dilatant fluids (n > 1), while its sign may be pos-
itive or negative for pseudoplastic fluids (n < 1). For Darcy–Bénard convection
of Newtonian fluids we retreive the well known result that the first bifurcation
is supercritical. For non–Newtonian fluids, we conlude that the bifurcation is al-
ways supercritical for dilatatant fluids. In the case of pseudoplastic fluids, there
exists a particular value αtrp of the dimensionless number αp related to a tricritical
bifurcation point,

αtrp =
1

10π2
(50)

such that the bifurcation from conduction to convection is supercritical when
αp < αtrp and subcritical otherwise.

Bouteraa et al. (2015) performed a weakly nonlinear stability analysis of the
respective Rayleigh-Bénard convection without porous materials in the case of
pseudoplastic fluids. They found that the bifurcation from the conduction state
to convection rolls may be supercritical or subcritical depending on the degree of
the shear-thinning of the fluid. On the other hand, in Darcy–Bénard convection,
the intrinsic properties of the porous medium, namely the Darcy number and the
porosity of the porous medium, act in concert with the fluid properties to trigger
the transition from supercritical to subcritical bifurcation. In fact, introducing the
definition of α given by (21), the condition required for subcritical bifurcation
reads,

λ2

φDa
(1− n) fp

2
n−1 >

1

5π2
. (51)

ϕ Da = 10-18,10-15,10-12,10-10,10-7,10-4

Subcritical bifurcation

Supercritical bifurcation

0.0 0.2 0.4 0.6 0.8 1.0

10
-11

10
-8

10
-5

0.01

10

10
4

n

λ

Fig. 1: Tricritical bifurcation curves separating regions of subcritical and supercritial bifurca-
tion in (n, λ) plane at different values of φDa corresponding to pseudoplastic fluids.
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Figure 1 shows the tricritical bifurcation curves, defined by λ2/(φDa) (1 −
n) fp

2/(n−1) = 1/(5π2), where a transition from supercritical to subcritical bi-
furcation may occur, in the (n, λ) plane for different values of the product φDa.
For a prescribed value of φDa, the bifurcation is supercritical below the tricritical
bifurcation curve, becoming subcritical otherwise. We can see in Fig. 1 that when
the index n approaches n = 1, the curves go to infinity, attesting a supercritical
bifurcation for all values of φDa as in the case of a Newtonian fluid. However,
this figure also shows that decreasing n, which means more shear-thinning effects,
promotes a subcritical bifurcation. The same conclusion can be drawn if the char-
acteristic time of the fluid λ is increased. On the other hand, this figure indicates
that more permeable porous materials may promote a supercritical nature of the
bifurcation.
For laboratory experiments, one needs realistic values to properly interpret the bi-
furcation diagram shown in Fig. 1. Expression (51) may be written in dimensional
form as,

φK < (φK)tr = 5π2 (1 − n) fp
2

n− 1 λ∗
2 κ

2
m

H2
(52)

where (φK)tr is the particular value of the product of the porosity and the per-
meability needed for the observability of a subcritical bifurcation. For real pseudo-
plastic fluids, the time characteristic of the fluid λ∗ may vary from 0.1 s to 100 s. If
we fix the height of the porous cavity to H = 4× 10−2m, the thermal diffusivity
of the medium to κm = 10−7m2 s−1 and the power index to n = 0.5, then (φK)tr

may vary from 10−12m2 to 10−6m2. As for common porous materials the values
of the permeability K vary widely from 10−20m2 to 10−7m2 while a typical value
of the porosity φ is 0.35, the subcritical bifurcation from conductive state to con-
vection rolls predicted by the present weakly nonlinaer stability analysis may be
effective in laboratory experiments for realistic parameters.

3.3 Equilibrium amplitude, isocontours and average heat transfer

The amplitude equation (46) predicts supercritical instability for dilatant fluids,
independent of the parameter αp, and also for pseudoplastic fluids, if αp < αtrp ,
both yielding the stable stationary nonlinear equilibrium solution,

(53)
|As|=

[
Ra − Rac

Rac

]1/2 1

π

1

(1 ± 10π2 αp)1/2

=
|ANs |

(1 ± 10π2 αp)1/2

where the + and − signs correspond, respectively, to dilatant and pseudoplastic
fluids and ANs is the equilibrium amplitude for Newtonian fluids defined as,

|ANs |=
1

π

[
Ra − Rac

Rac

]1/2
(54)
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0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

(Ra-Rac )/Rac

|As|

Fig. 2: Finite amplitude of supercritical instability versus the relative distance to criticality.
Continuous curves correspond to pseudoplastic fluids, the single dashed curve in the center
corresponds to the Newtonian fluid case while the dotted curves below correspond the dilatant
fluids. Starting from the Newtonian curve, αp varies from 0.1 to 0.6 times αtrp for pseudoplastic

fluids and from 0.2 to 2.2 times αtrp for dilatant fluids. The arrows indicate the direction in
which αp grows.

Figure 2 presents the bifurcation diagram showing the equilibrium amplitude
for dilatant (n > 1) and pseudoplastic (n < 1) fluids when the bifurcation is su-
percritical. The amplitude is represented as a function of the relative distance to
criticality for different values of αp, varying from 0.1 to 0.6 for pseudoplastic fluids
and from 0.2 to 2.2 for dilatant fluids. The dashed, continuous and dotted curves
represent the Newtonian, pseudoplastic and dilatant fluid amplitudes, respectively.
This figure shows that the pseudoplastic fluid convection amplitude grows as αp
increases and approaches the tricritical point αtrp . We also observe that convection
in pseudoplastic fluids is more vigorous compared to the Newtonian fluid case.
Contrary to the pseudoplastic fluids, the dilatant fluid convection amplitude de-
creases with the bifurcation parameter αp, i.e. convection is weaker compared to
the Newtonian fluid case.

For Pseudoplastic fluids, in the parametric region where αp > αtrp , the bifur-
cation is subcritical and the cubic amplitude equation (46) does not provide any
stable finite-amplitude equilibrium. Therefore it would be necessary to carry the
analysis to higher orders to find such solutions. This task is out of the scope of
the present work.

The Nusselt number measures the total vertical heat transfer through the layer
induced by convection and conduction reduced by its conductive contribution. The
mean Nusselt number N evaluated at z = 0, where the vertical velocity vanishes,
is defined as

N = 1− <
∂θ

∂z
(z = 0) > (55)
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where < · > represents an horizontal average over one wavelength of the quantity
being averaged. Doing so yields

(56)

Nu− 1 =

[
Ra − Rac

Rac

]
2

(1 ± 10π2 αp)

=
(NuN − 1)

(1 ± 10π2 αp)

where NuN is the Nusselt number for Newtonian fluids,

NuN − 1 = 2

[
Ra − Rac

Rac

]
(57)

which is exactly the same one derived in Joseph (2013).

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

(Ra-Rac )/Rac

Nu-1

Fig. 3: Convective Nusselt number versus the relative distance to criticality. Continuous curves
correspond to pseudoplastic fluids, the single dashed curve in the center corresponds to the
Newtonian fluid case while the dotted curves below correspond the dilatant fluids. Starting
from the Newtonian curve, αp varies from 0.1 to 0.6 times αtrp for pseudoplastic fluids and

from 0.2 to 2.2 times αtrp for dilatant fluids. The arrows indicate the direction in which αp
grows.

Figure 3 shows the Nusselt number for pseudoplastic and dilatant fluids as a
function of the relative distance to the critical Rayleigh number for different val-
ues of the bifurcation parameter αp. The Newtonian fluid case is also presented
for comparison purposes. The dashed, continuous and dotted curves correspond
to the Newtonian, pseudoplastic and dilatant fluids, respectively. It is interesting
to note that the heat transfer is always higher in a pseudoplastic fluid convection,
compared to the Newtonian case. The Nusselt number also increases when αp in-
creases, as a consequence of the higher amplitude of convection rolls. According
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to the definition (49) for αp, this means that heat transfer is higher for strongly
shear-thinning fluid and weakly permeable porous material. The opposite trend is
observed for dilatant fluids.
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Fig. 4: Disturbance Isotherm patterns for pseudoplastic fluids obtaianed by linear stability
(a) and nonlinear stability (b). The total temperature field including the conductive state is

represented in (c). The prescribed parameters are Ra−Rac
Rac

= 0.1 and αp = 0.5αtrp .
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Fig. 5: Streamline and isotherm patterns obtained for pseudoplastic (a) and dilatant (b) fluids

at Ra−Rac
Rac

= 0.1 and αp = 0.5αtrp .

The intensity of the streamfunction and temperature fields depend on the rel-
ative distance to the critical Rayleigh number and on the value of the bifurcation
parameter αp. Here the prescribed values of these two parameters are, respectively,
Ra−Rac

Rac
= 0.1 and αp = 0.5αtrp . Figure 4 presents the disturbance isotherms for

pseudoplastic fluid, considering a single convective cell in the spatial domain, ob-
tained by linear stability analysis (a), nonlinear stability analysis (b) and the total
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temperature field (c), including the basic state. As can be seen from the figure 4
(b), the nonlinear interaction distorts the linear fundamental mode and breaks the
symmetry with respect to the vertical and horizontal mid-planes. Figure 5 presents
the spatial profile of the convective fields in terms of streamfunction (continuous
lines) and the total temperature field (dashed lines) isocontours. The results are
shown for pseudoplastic (a) and dilatant (b) fluids. In this figure, the streamlines
are seen to be equally spaced between ψ = 0, at the horizontal boundaries, and the
maximum value at the center of the cell. The thermal structure behaves qualita-
tively in the same way as in the Newtonian case and consists of hot ascending and
cold descending plumes. The results for dilatant fluids are qualitatively similar.
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Fig. 6: Apparent viscosity isolines for pseudoplastic (a) and dilatant (b) fluids at Ra−Rac
Rac

= 0.1

and αp = 0.5αtrp

For non–Newtonian fluids, the dimensionless apparent viscosity changes its
spatial structure when the convection takes place, contrary to the Newtonian fluid
case where it is uniform and equal to one. Figures 6 show the isolines of appar-
ent viscosity for pseudoplastic (a) and dilatant (b) fluids. As expected, the local
apparent viscosity µa in the presence of convection is lower than one for pseu-
doplastic fluids and higher than one for dilatant fluids. Both plots indicate that
µa ≈ 1 near the the center of the cell and at the neighborhood of its four cor-
ners, as a consequence of nearly vanishing convective velocity in these locations.
These plots clearly show that the minimum (maximum) of the apparent viscosity
in pseudoplastic (dilatant) fluids occurs in the middle of the horizontal and verti-
cal boundaries of the cell where the absolute value of the convective velocity is at
its maximum.

3.4 Apparent Rayleigh number, universal equilibrium amplitude and Nusselt
number

Parmentier (1978) investigated thermal convection in non–Newtonian dilatants
fluids with a power-law exponent n in the range 1 < n < 9. He introduced an
apparent Rayleigh number based on the average viscosity and showed that all
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different Nusselt number curves for various values of n collapse on the universal
curve for a Newtonian fluid. For porous media saturated with non–Newtonian
fluids, the average apparent viscosity will be defined by deploying a momentum
energy analysis. Multiplying the complex conjugate of u and w to the x and z
components of the momentum equation (17), respectively, adding both equations,
and integrating the resulting equation along x and z, leads to the expression for
the perturbation energy

eth + ed = 0 (58)

where the two contributions are given by

eth = Ra

∫ 1

0

∫ 2π/kc

0
(w∗ θ) dxdz (59)

ed = −
∫ 1

0

∫ 2π/kc

0
µa (|u|2 + |w|2) dxdz (60)

with µa =
(
1 ± αp (|u|2 + |w|2)

)
and w∗ is the complex conjugate of w.

The energy eth corresponds to the thermal buoyancy energy contribution due to
the imposed temperature gradient whereas ed corresponds to the viscous dissipa-
tion energy.

If we define the average apparent viscosity µa as

µa =

∫ 1
0

∫ 2π/kc

0 µa (|u|2 + |w|2) dxdz∫ 1
0

∫ 2π/kc

0 (|u|2 + |w|2) dxdz
(61)

equation (58) becomes

Ra

∫ 1

0

∫ 2π/kc

0
(w̃ θ) dxdz −

∫ 1

0

∫ 2π/kc

0
(|u|2 + |w|2) dxdz = 0 (62)

where Ra = Ra/µa is the apparent Rayleigh number. It should be emphasized
that the energy budget equation (62), written in terms of the apparent Rayleigh
number, explicitly depends on neither the fluid parameters n and λ nor the porous
material parameters Da and φ.

By substituting u and w by ∂ψ/∂z and −∂ψ/∂x, respectively, and taking into
account the expression for ψ determined above, the following analytical expressions
for the average viscosity µa and the apparent Rayleigh number Ra are obtained,

µa =
(

1 ± 10π4 αp |As|2
)

(63)

Ra = Ra
(

1 ± 10π4 αp |As|2
)

(64)

According to the current weakly nonlinear approach, which takes into account first
order nonlinearities, the expression (53) for |As|2 was obtained. We now expand
Ra and Ra in power series of the small parameters (Ra − Rac) and (Ra − Rac)
by setting Ra = Rac + (Ra − Rac) and Ra = Rac + (Ra − Rac). Therefore, Eq.
(64) yields, respectively, at zeroth and first orders

Rac = Rac (65)
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Ra−Rac = (1 ± 10π2 αp)(Ra−Rac) (66)

After inserting the above expressions in equations (53) and (56), the equilibrium
amplitude and the Nusselt number may be written as a function of the apparent
Rayleigh number as

|As|=
1

π

(
Ra − Rac

Rac

)1/2

(67)

Nu− 1 = 2

(
Ra − Rac

Rac

)
(68)

The above results state that, for both pseudoplastic and dilatant fluids, the expres-
sions for the equilibrium amplitude and the Nusselt number are similar to those
found for Newtonian fluids in equations (54) and (57), respectively, if we change
Ra by Ra.

4 Conclusion

A novel Darcy–Carreau rheological model for the apparent viscosity of non–Newtonian
inelastic fluids flowing through a porous medium was proposed in this paper. This
model can be seen as an extension of the well known Carreau model, usually used
in a non–Newtonian fluid clear of solid material, to porous media. According to
this model, the apparent viscosity expression introduces four dimensionless pa-
rameters, namely the power law index n, the characteristic time of the fluid λ,
the Darcy number Da and the porosity φ of the porous medium. Compared to
the classical power law model, the use of this rheological model has major im-
plications, especially in the range of small seepage velocity found at the onset of
natural convection. The linear and weakly nonlinear stability analysis of natural
convection in porous media saturated by a peudoplastic fluid (n < 1) as well as
a dilatant fluid (n > 1) are carried out using this Darcy–Carreau model. Linear
stability results showed that the critical value of Rayleigh number needed to trig-
ger the thermal instability in non–Newtonian fluids and the corresponding critical
wave number are the same as in Newtonian fluids. Although this result is not new
for dilatant fluids, since it was originally discovered by Nield (2011a), the present
Darcy–Carreau model indicates that it also holds for pseudoplastic fluids.

The nonlinear perturbation behaviour has been investigated using weakly non-
linear theory. The coefficients of the appropriate cubic Landau amplitude equation
that describes stationary convection rolls beyond instability threshold have been
determined. The effect of the two nonlinear terms in the governing equations,
namely the advection and non–Newtonian apparent viscosity terms, have been
discerned. It is shown that the nonlinear effect depends on a single dimension-
less parameter αp(n, λ,Da, φ), which is proportional to the characteristic time of
the fluid λ and is inversely proportional to the properties of the porous medium
Da and φ. Keeping in mind that increasing the bifurcation parameter αp means
physically increasing the shear-thinning (shear-thickning) character of the pseudo-
plastic (dilatant) fluid or decreasing the permeability of the porous medium, the
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main results obtained through this analysis are the following:

• In dilatant fluids, the bifurcation from the conductive state to convection
rolls is always supercritical independent of the dimensionless parameter αp. The
amplitude of these rolls and the average convective heat flux decrease with an
increase in αp.

• In pseudoplastic fluids, there exists a tricritical value αtrp , of the dimension-
less parameter αp, such that a supercritical (subcritical) bifurcation happens when
αp < αtrp (αp > αtrp ). The physical interpretation of this result lies in the fact that
the nonlinear advection term tends to favour a supercritical bifurcation, while the
non–Newtonian part in the apparent viscosity promotes a subcritical bifurcation.
In the case of a supercritical bifurcation, it was found that the amplitude of con-
vection rolls increases and the average heat flux is enhanced when increasing the
parameter αp, contrary to dilatant fluids.

• Results for both pseudoplastic and dilatant fluids indicate that the equilib-
rium amplitude of convection and the Nusselt number, when quantified in terms
of an apparent Rayleigh number based on the average apparent viscosity, can be
successfully described by universal curves that are independent of the rheological
parameters and the macroscale properties of the porous medium.

In this paper, we have restricted the analysis to the cubic Landau amplitude
equation. However, it would be desirable to go beyond the cubic Landau amplitude
equation by considering higher nonlinearities in order to compute the equilibrium
amplitude for pseudoplastic fluids with αp > αtrp , which yields a subcritical bifur-
cation. This task is under consideration and will be the objective of a future paper.

Recently, Petrolo et al. (2020) investigated theoretically and experimentally
the onset of convection under a horizontal throughflow of pseudoplastic fluids in
a Hele–Shaw cell. They observed hysteresis effects that may be attributed to the
subcritical nature of the bifurcation to mixed convection. For zero basic through-
flow, we have shown in the current study that subcritical bifurcation is possible
for a known value of the bifurcation parameter αp. Therefore, it is very interesting
to use a nonlinear stability approach to the case when, in addition to the imposed
vertical temperature gradient, a horizontal throughflow of pseudoplastic fluids is
added. This research is also currently under consideration.

Finally, we want to emphasize that the proposed Darcy–Carreau model of the
apparent viscosity in porous media represents a regime of momentum transport
that could have potential applications in practical problems qualitatively different
from problems involving only thermal instabilities.
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