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Abstract 

This work presents a numerical model based on the definition of the scalar and vector 

potentials to calculate the AC losses generated in a high-temperature superconductor (HTS) 

coated conductor tape by an AC transport current and by an AC external magnetic field 

applied with a generic orientation. The material characteristics of the different layers of a 

reference tape are included in the model equations, which allows analyzing the differences 

between a model including only the superconducting layer or all layers of the coated 

conductor. The model is applied to study the dependence of AC losses on the amplitude of 

the transport current and magnetic field (applied individually or combined) and their 

frequency. The numerical results are compared with analytical formulations, with a second 

numerical model based on the H-formulation, and with experimental results.  

The conditions at which the contribution of the non-superconducting layers to the 

total AC losses of the tape becomes relevant are analyzed. In particular, the dependence of 

losses on the frequency of the AC external magnetic field applied at different orientations, 

is investigated. The current density distribution computed on the conductor cross-section is 

used to explain the trend of the calculated losses.  

 

Index Terms— High temperature superconducting tapes, AC losses, Current distribution, A-
V formulation. 
 

 

 

 

 



1. Introduction 

The technical interest in second-generation high-temperature superconductor (HTS) 

tapes, formed by a stack of layers of different materials, is increasing since many studies are 

showing their great potential for use in magnet [1 - 3] and power applications [4 - 6]. 

Prototypes and full-scale devices have been developed for high field magnets [7], NMR 

spectrometers [8] and MRI magnets [9], as well as power cables [10], wind generators [11], 

SFCL [12] and SMES [13] systems. In electromagnets, current ramps and variable magnetic 

fields are involved, while most power applications operate with AC currents. When a coated 

conductor is subjected to these electrodynamic transients, time-varying magnetic fields are 

generated inside the material, thus giving rise to the losses. The heat produced by these losses 

has to be removed by the cooling system in order to safely operate the superconducting 

device. An increasing amount of heat enhances the cooling costs thus reducing the overall 

system efficiency. The correct computation of losses is therefore of great importance for the 

design of the cryogenic system and to avoid the insurgence of unexpected transitions from 

the superconductive to the resistive state.  

Since measurements cannot easily be performed in all possible conditions, the use of 

predictive tools for AC loss computation is very useful in many situations. While analytical 

formulae are easy to implement and allow relatively fast calculations [14, 16], they can 

generally be adopted in simplified cases, which limits their applicability [17]. On the other 

hand, numerical models can describe more complex systems in spite of longer calculation 

times [18, 19]. Over the years, various finite element method (FEM) models have been 

developed for the analysis of the electromagnetic behaviour of HTS tapes, based on the 

solution of the time-dependent Maxwell’s equations to compute the time evolution of the 

electric field and current density distributions in the conductor.  

Depending on the formulations adopted for the solution of the Maxwell’s equations 

associated to the superconductor constitutive laws, different approaches can be followed, 

such as the H-formulation [20 - 24], the T−Φ formulation [25 - 27], the A−V formulation 

[28, 29] and the E-formulation [30, 31]. Various geometric approximations, 1-D [32, 33] 

and 2-D [34 - 37] models have been proposed to reduce the computational burden of real 3-

D devices. Multidimensional approaches allow computing the losses generated in the non-

superconducting layers of a tape. Since their contribution can be relevant in various 

operating conditions of technical interest, the choice of neglecting it, as it is often done to 

reduce the number of system unknowns, should be carefully evaluated.  



These considerations have been proposed for both Bi-2223 tapes [38 – 41] and 

ReBCO coated conductors [42 – 49], even if for the latter ones the interest has been mainly 

focused on the impact of the ferromagnetic substrate. 

This paper describes an integral model based on the A-V formulation to calculate AC 

losses in HTS tapes. The model is based on the definition of the vector potential as a function 

of the current density. In this field of research, the method was firstly proposed in [50] and 

later applied to different geometries of BSCCO tapes [51 - 53], slabs [54] and cylindrical 

geometries [55, 56]. To the authors’ knowledge, this approach has not yet been applied to 

study coated conductors in two dimensions and with the presence of non-superconducting 

layers. In the model presented in this work, it is assumed that the self-field in the central 

portion of the tape can be computed assuming that the current density is independent of the 

tape’s length (z-coordinate in Fig. 1). This is valid if the current redistribution length is 

sufficiently shorter than the tape length. This differs from the approach used in two-

dimensional models for rectangular bars, which assume the conductor as infinitely long [33]. 

The spatial and time discretization of the tape cross-section allows one obtaining a system 

of ordinary differential equations, that in turn can be solved through a solver in matrix form. 

Unlike FEM models, the equations are written in integral form and they are solved in the 

conductor volume only, avoiding the discretization of the air [33]. Therefore, the number of 

system unknowns and the computation time are reduced. Hereupon, the spatial and time 

distribution of the current density is available to compute the AC losses. The model is applied 

to study the dependence of AC losses by transport currents and magnetic fields of different 

amplitude and frequency. The tape cross-section is discretized by accounting for its 

constituting layer materials and their electrical properties. Unlike the previous models based 

on the A-V formulation, the proposed approach allows one assessing the contribution of the 

individual layers to the total losses of a coated conductor. In particular, this study shows 

under which circumstances the losses generated in the non-superconducting layers become 

relevant. In fact, in certain conditions the models including only the superconducting layer 

or based on a 1D approximation of the tape geometry, generally adopted to reduce the 

computational burden, are ineffective to estimate AC losses. The model results are compared 

with analytical formulae, with the results of a different numerical model and with 

experimental results. 

 

 



 

2. General hypothesis  

As a general approach, let us consider a HTS tape connected to a power supply 

imposing a sinusoidal current (of frequency f) along the tape, 𝐼்௢௧(𝑡) = 𝐼஺௠௣ 𝑠𝑖𝑛(2𝜋𝑓𝑡). The 

tape, with width w, thickness 𝛿 and length L, has a rectilinear axis directed along the z axis 

of a cartesian reference system. The origin of the reference system is placed halfway along 

the tape length, as shown in Fig. 1. A time-dependent external magnetic field, 𝐵௘௫௧(𝑡) =

𝐵௔ 𝑠𝑖𝑛(2𝜋𝑓𝑡), can also be applied to the tape, in a generic direction in the x-y plane. 

It is assumed that the central portion of the tape is at a sufficient distance from the 

tape ends, so that the distribution of the current density vector J in this section can be 

assumed independent of the z-coordinate. The same assumption can be made for the electric 

field E and the magnetic vector potential A: 

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸(𝑥, 𝑦, 𝑡) 𝒌 

𝑱(𝑥, 𝑦, 𝑧, 𝑡) = 𝐽(𝑥, 𝑦, 𝑡) 𝒌 

𝑨(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴(𝑥, 𝑦, 𝑡) 𝒌 

 (1) 

In (1), 𝒌 is the unit vector directed along the z-axis. In practical use when an electromagnetic 

measurement method is applied, this is equivalent to state that the tape length is significantly 

longer than the distance between the voltage taps soldered in the tape middle section. 

The scalar potential is independent of the x and y coordinates, since it is assumed that at 

every location the tape cross-sections (x-y planes) are equipotential:  

𝑉(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉(𝑧, 𝑡) 𝒌 (2) 

The tape cross-section is then discretized into N rectangular-shaped elements. Due to the 

high aspect-ratio of the tape, this shape is preferred to square elements, which would impose 

a finer discretization. Each layer of the tape can be discretized with a number of elements 

independent of that adopted for the adjacent layers. Especially at low frequencies, the 

currents mainly flow at the edges of the tape cross-section. Thus, a non-homogenous 

discretization of the superconducting layer is preferred, with a finer meshing at the edges of 

the tape and a coarser one in its central region. Consequently, the power dissipation per cycle 

per unit of tape length (in W/m) generated in the tape, takes the following expression: 

𝑃஺஼ =
1

𝑇
න ෍(𝐸௜(𝑡) 𝐽௜(𝑡) 𝐴𝑟𝑒𝑎௜)

ே

௜ୀଵ

்

଴

𝑑𝑡  (3) 



where the electric field Ei and current density Ji are computed at the center of the ith element 

of the discretization, while 𝐴𝑟𝑒𝑎௜ indicates the area of each element. 

 

3. Model equations 

The electric field E is expressed as a function of the scalar electric potential V and of 

the magnetic vector potential 𝑨: 

𝑬 = −𝜵𝑉 −
𝜕𝑨

𝜕𝑡
  (4) 

By applying the assumptions reported in (1) and (2), (4) can be rewritten for each element 

of the system: 

𝐸௜(𝑡) = −
𝑑𝑉

𝑑𝑧
(𝑡) −

𝑑𝐴௜

𝑑𝑡
(𝑡)  (5) 

The term 
ௗ௏

ௗ௭
(𝑡) is a forcing term which accounts for the voltage generated by the power 

source to impose the transport current of the tape. 𝐸௜(𝑡) is defined using the local form of 

the Ohm’s law: 

𝐸௜(𝑡) = 𝜌௜ 𝐽௜(𝑡) (6) 

where  𝜌௜  is the electrical resistivity, whose value depends on which layer the ith element 

belongs. If the element belongs to the superconducting layer, the power law is adopted to 

describe its non-linear resistivity:  

𝜌௜ =
𝐸௖

𝐽௖
 ቆ

|𝐽௜|

𝐽௖
ቇ

௡ିଵ

  (7) 

where Ec, Jc and n are the critical electric field, the critical current density and the n-value of 

the superconductor.  The local value of the vector potential 𝐴௜ can be subdivided into two 

different terms: 𝐴௜௡௧௜
 and 𝐴௘௫௧௜

. The first term takes into account the self-field of the tape, 

while the second one accounts for the external magnetic field. 𝐴௜௡௧௜
 can be expressed as a 

function of the local current density in each element of the discretization. While in [33] this 

relation is found for an infinitely long tape using a logarithmic kernel, the Biot-Savart law is 

used in this work under the following assumptions. As a first assumption, the contributions 

of the remaining parts of the electric circuit except for the tape, such as current leads and 

power supply connections, are neglected. As a second assumption, the contribution of the 

regions of the tape close to the tape ends, where the induced current distribution depends on 

the z-coordinate, is approximated by assuming the same current distribution as in the central 



region. In fact, it is assumed that these lateral regions are sufficiently shorter than the central 

portion of the tape. These assumptions lead to the following expression: 

𝐴௜௡௧௜
(𝑡) =

µ଴

4 𝜋
න

⎝

⎛෍  𝐴𝑟𝑒𝑎௝

 𝐽௝(𝑡)

ට൫𝑥௜ − 𝑥௝൯
ଶ

+ ൫𝑦௜ − 𝑦௝൯
ଶ

+ (𝑧௜ − 𝑧ᇱ)ଶ

ே

௝ୀଵ
⎠

⎞ 𝑑𝑧′

୐
ଶ

ି୐
ଶ

 (8) 

where the denominator represents the module of the distance between the field point 

(𝑥௜, 𝑦௜ , 𝑧௜) and the source point ൫𝑥௝ , 𝑦௝ , 𝑧௝൯. The integral of Eq. (8) can be analytically solved, 

which leads to: 

𝐴௜௡௧௜
(𝑡) =

µ଴

4 𝜋
෍ 𝐴𝑟𝑒𝑎௝  𝐽௝(𝑡) ቮln ቌට൫𝑥௜ − 𝑥௝൯

ଶ
+ ൫𝑦௜ − 𝑦௝൯

ଶ
+ (𝑧௜ − 𝑧ᇱ)ଶ +  (𝑧௜ − 𝑧ᇱ)ቍቮ

ା
௅
ଶ

ି
௅
ଶே

௝ୀଵ

 (9) 

The term 𝐴௘௫௧௜
 depends on the external magnetic field, defined as: 

𝑩𝒆𝒙𝒕(𝑡) = 𝑩𝒎 𝑠𝑖𝑛(2𝜋𝑓𝑡) = 𝐵௠௫ 𝑠𝑖𝑛(2𝜋𝑓𝑡) 𝒊 + 𝐵௠௬ 𝑠𝑖𝑛(2𝜋𝑓𝑡) 𝒋 = 𝐵௔௫(𝑡) 𝒊 + 𝐵௔௬(𝑡) 𝒋 

𝐵௠ = ට𝐵௠௫ 
ଶ + 𝐵௠௬ 

ଶ          ;             𝜃௙௜௘௟ௗ = arctan ൬
𝐵௠௬

𝐵௠௫
൰  

(10) 

where Bax and Bay are the magnetic field components, whose vector can form any angle 𝜃௙௜௘௟ௗ 

with the tape’s broad face. The possibility to vary the field orientation is an improvement 

with respect to the model reported in [32]. The expression to calculate 𝐴௘௫௧௜
 is the following: 

𝐴௘௫௧௜
(𝑡) = 𝑦௖௜ 

𝐵௔௫(𝑡) − 𝑥௖௜ 
𝐵௔௬(𝑡) (11) 

where 𝑥௖௜
 and 𝑦௖௜

 are the coordinates of the center of the ith element. 

Then, taking the time derivative of both (9) and (11) and substituting them into (5), yields: 

𝐸௜(𝑡) =                                                                                                                                              

= −
𝜕𝑉(𝑧, 𝑡)

𝜕𝑧
− ෍ 𝐾௜,௝  

𝑑𝐽௝(𝑡)

𝑑𝑡

ே

௝ୀଵ

+ 𝑥௖௜ 

𝑑𝐵௔௬(𝑡)

𝑑𝑡
− 𝑦௖௜ 

𝑑𝐵௔௫(𝑡)

𝑑𝑡
         𝑓𝑜𝑟 𝑖 = 1: 𝑁 

𝐾௜,௝ =
µ଴

4 𝜋
𝐴𝑟𝑒𝑎௝  ቮln ቌට൫𝑥௜ − 𝑥௝൯

ଶ
+ ൫𝑦௜ − 𝑦௝൯

ଶ
+ (𝑧௜ − 𝑧ᇱ)ଶ + (𝑧௜ − 𝑧ᇱ)ቍቮ

ା
௅
ଶ

ି
௅
ଶ

 

(12) 

This system of N differential equations includes N unknowns, corresponding to the current 

densities in every element of the discretization. However, the problem also includes a further 



unknown, depending on the forcing term 
డ௏(௭,௧)

డ௭
. It is convenient to rename all the system 

unknowns with the generic term ψ௜(𝑡): 

ቐ

ψ௜(𝑡) = 𝐽௜(𝑡)                         𝑓𝑜𝑟 𝑖 =  1: 𝑁                                        

ψேାଵ(𝑡) = න
𝜕𝑉

𝜕𝑧
𝑑𝑡′

௧

଴

         (𝑁 + 1) − 𝑡ℎ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛                       
 (13) 

An additional equation is then needed to solve the system reported in (12). The conservation 

of the total current on the tape cross-section must be imposed: 

෍ 𝐼𝑗(𝑡)

ே

௝ୀଵ

= ෍  𝐴𝑟𝑒𝑎௝ 𝐽𝑗(𝑡) 

ே

௝ୀଵ

=  I்௢௧(𝑡) (14) 

By applying the time derivative of the current conservation law, the terms ψ௜(𝑡) can be 

introduced: 

෍  𝐴𝑟𝑒𝑎௝  
𝑑𝐽௝(𝑡)

𝑑𝑡
=  ෍  𝐴𝑟𝑒𝑎௝  

𝑑ψ௝(𝑡)

𝑑𝑡

ே

௝ୀଵ

=
𝑑𝐼்௢௧(𝑡)

𝑑𝑡

ே

௝ୀଵ

 (15) 

Consequently, Eq. (12) can be rewritten by using the unknown terms described in (13) and 

by including (15) as the N+1 differential equation. Rewriting the ψ௜(𝑡) values at the l.h.s, 

yields: 

⎩
⎪
⎨

⎪
⎧෍ 𝐾𝑒𝑟𝑛𝑒𝑙௜,௝  

𝑑ψ௝(𝑡)

𝑑𝑡

ேାଵ

௝ୀଵ

 = −𝐸௜(𝑡) + 𝑥௖௜ 

𝑑𝐵௔௬(𝑡)

𝑑𝑡
− 𝑦௖௜ 

𝑑𝐵௔௫(𝑡)

𝑑𝑡
      𝑓𝑜𝑟  𝑖 =  1: 𝑁

෍ 𝐾𝑒𝑟𝑛𝑒𝑙௜,௝  
𝑑ψ௝(𝑡)

𝑑𝑡

ேାଵ

௃ୀଵ

=  
𝑑𝐼்௢௧(𝑡)

𝑑𝑡
                                                         𝑓𝑜𝑟  𝑖 = 𝑁 + 1

 (16) 

 
which is a system of N+1 equations in N+1 unknowns. The terms 𝐾𝑒𝑟𝑛𝑒𝑙௜,௝ refer to the 

matrix Kernel, which has dimensions equal to (N+1)×(N+1). The first N×N terms of the 

matrix correspond to the 𝐾௜,௝ terms reported in (12). The first N elements of the last row of 

the matrix 𝐾𝑒𝑟𝑛𝑒𝑙 correspond to the terms 𝐴𝑟𝑒𝑎௜. The first N elements of the last column of 

the matrix 𝐾𝑒𝑟𝑛𝑒𝑙 are equal to 1, while the last element of the diagonal of the matrix 𝐾𝑒𝑟𝑛𝑒𝑙 

is null. 

Finally, as reported in various studies [57, 58], the implementation of a 

nondimensionalization technique allows reaching a better accuracy than the dimensional 

analysis when solving a system of differential equations. However, it should be noted that 



this topic is still debated the scientific community [59]. In the present work, the following 

quantities are made dimensionless: 

𝐽∗ =
𝐽

𝐽௖
       ;        𝐸∗ =

𝐸

𝐸௖
         ;          ൬

𝜕𝑉

𝜕𝑧
൰

∗

=  
ቀ

𝜕𝑉
𝜕𝑧

ቁ

𝐸௖
       ;          𝐼்௢௧

∗ =
𝐼்௢௧

𝐼஺௠௣
 (17) 

 

which leads to the following modifications of the system unknowns shown in (13): 
 

⎩
⎪
⎨

⎪
⎧ψ௜

∗(𝑡) = 𝐽௜
∗(𝑡) =

1

𝐽௖
 𝐽௜(𝑥௜, 𝑦௜, 𝑡)                              𝑓𝑜𝑟 𝑖 =  1: 𝑁                              

ψேାଵ
∗(𝑡) = න ൬

𝜕𝑉

𝜕𝑧
൰

∗

𝑑𝑡′
௧

଴

= න
1

𝐸௖
 
𝜕𝑉

𝜕𝑧
𝑑𝑡′

௧

଴

           (𝑁 + 1) − 𝑡ℎ 𝑢𝑛𝑘𝑛𝑜𝑤              

 (18) 

 

Then, (16) can be rewritten in terms of the dimensionless unknowns: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ෍ 𝐾𝑒𝑟𝑛𝑒𝑙௜,௝

∗  
𝑑ψ௝

∗(𝑡)

𝑑𝑡

ேାଵ

௝ୀଵ

 =                                                                                            

             = − 𝐸௜
∗(𝑡) +

1

𝐸௖
𝑥௖௜ 

𝑑𝐵௔௬(𝑡)

𝑑𝑡
  −

1

𝐸௖
𝑦௖௜ 

𝑑𝐵௔௫(𝑡)

𝑑𝑡
     𝑓𝑜𝑟 𝑖 =  1: 𝑁          

෍ 𝐾𝑒𝑟𝑛𝑒𝑙௜,௝
∗  

𝑑ψ௃
∗(𝑡)

𝑑𝑡

ேାଵ

௃ୀଵ

=  
𝑑𝐼்௢௧

∗(𝑡)

𝑑𝑡
                                    𝑓𝑜𝑟    𝑖 = 𝑁 + 1      

 (19) 

The matrix 𝐾𝑒𝑟𝑛𝑒𝑙∗ is written starting from the matrix 𝐾𝑒𝑟𝑛𝑒𝑙 of (16) and can be written as 
to: 

𝐾𝑒𝑟𝑛𝑒𝑙∗ = 

⎣
⎢
⎢
⎢
⎡

቎

𝐾ଵ,ଵ
∗       ⋯       𝐾ଵ,ே

∗

⋮ ⋱     ⋮
𝐾ே,ଵ

∗       ⋯     𝐾ே,ே
∗

቏
1 
⋮ 
1 

௃೎

ூಲ೘೛
𝐴𝑟𝑒𝑎ଵ ⋯

௃೎

ூಲ೘೛
𝐴𝑟𝑒𝑎ே  0 ⎦

⎥
⎥
⎥
⎤

 

𝐾௜,௝
∗ =

𝐽௖

𝐸௖

µ଴

4 𝜋
𝐴𝑟𝑒𝑎௝  ቮln ቌට൫𝑥௜ − 𝑥௝൯

ଶ
+ ൫𝑦௜ − 𝑦௝൯

ଶ
+ (𝑧௜ − 𝑧ᇱ)ଶ +  𝜆 +  (𝑧௜ − 𝑧ᇱ)ቍቮ

ା
௅
ଶ

ି
௅
ଶ

 

(20) 

The system (19) represents the final set of ordinary differential equations to be solved. The 

terms 𝐸∗(𝑡) can be easily retrieved by introducing the dimensionless quantities of (17) into 

(6). The term 𝜆 represents a corrective factor, introduced to avoid divergence errors 

occurring when the solver computes the inverse of the matrix 𝐾𝑒𝑟𝑛𝑒𝑙∗. In particular, these 

problems arise from the main diagonal terms. The term 𝜆 is set through an iterative 

procedure, by recursively performing the same simulation while reducing the correction 



factor. The smallest value found which allows convergence of the numerical is then retained 

for the following computations. 

The initial conditions impose that the problem unknowns are null at the beginning of 

the simulation: 

ψ௜
∗(0) = 0   𝑓𝑜𝑟 𝑖 = 1: 𝑁 + 1 (21) 

 

Once (19) is solved, (18) can be applied to retrieve the 𝐽௜(𝑡) values. Then, (6) is adopted to 

find the 𝐸௜(𝑡) values. Finally, it is possible to calculate the average losses during a cycle 

using (3). 

 

4. Model validation 

The model equations were implemented in the MATLAB software [60], but the 

model is suitable for an easy implementation into free alternative solvers. In order to validate 

the model, the geometry and electrical properties of the SuNAM SCN04 tape were adopted. 

The resistivity values of conventional metals used in the simulation are reported in Table 1, 

as well as the parameters of superconductor power law, computed from experimental 

measurements. The tape geometrical parameters are shown in Fig. 2 [61]. The tape length is 

set to 10 cm, in order to analyse the measurements carried out for this study.  

It is worth noting that 𝐴௜௡௧௜
 depends on the tape length (see Eq. (8)). A preliminary 

analysis was performed in this regard, showing that the calculated AC losses converge for 

tape lengths greater than or equal to 10 cm. The buffer layer was neglected in the model: 

given its small thickness, its impact on the AC losses is assumed as minor. After a 

convergence analysis performed for the calculation of the transport current losses, the 

numbers of points to discretize the superconducting layer along its width and thickness were 

set to 200 and 4, respectively. The total number of elements to discretize the cross-section 

of the other layers was set to 390, distributed between the different layers. 

Three main sets of simulations were performed. In the first set, the losses due to a 

sinusoidally varying transport current were analysed. In the second set, the study was 

focused on analysing the losses due to a sinusoidal magnetic field, applied in phase with the 

transport current and with different orientations with respect to the tape’s broad face. In the 

third set of simulations, the impact of the combined action of transport current and applied 



magnetic field was analysed. In all sets of simulations, parametric studies were performed 

to assess the impact of both frequency and field/current amplitude on the overall losses.  

The duration of the simulated number of periods of the sinusoidal signals considered in the 

simulations was set to 2. It was verified that the system already reached its regime conditions 

during the second period, which was therefore selected in order to compute the losses 

through the integral reported in (3). The integration time step was set in all simulations to 

1/100 of the period. The corrective term 𝜆 of (19) is set to 2.5∙10-9, since it is the lowest value 

to ensure the solver convergence.  

In order to identify the contribution of all tape layers to the total losses, two different 

types of analyses were performed with the model based on the A-V formulation. In the first 

case, referred to as “Whole_Tape”, all layers of the tape cross-section were included in the 

model. In the second case instead, named “SC_only”, only the superconducting layer was 

implemented in the model and the other layers were neglecred. Three methods were adopted 

for the model validation. As a first approach, the model results were compared to those of a 

distinct numerical model based on the 2D approximation of the H-formulation [20 - 24]. 

This second model was implemented in the COMSOL Multiphysics environment [62]. 

Furthermore, the numerical results were compared with those obtained through analytical 

formulae available in the literature. Finally, the model results were compared to 

experimental data obtained on the same tape. 

Throughout the paper, when the dependency on the amplitude of the transport current 

or the magnetic field is analysed, the average power dissipation over a full cycle is presented 

in units of W/m. Instead, when the loss dependency on frequency is studied, the overall 

losses per cycle are presented in terms of J/m. The average power dissipation can easily be 

computed by multiplying the AC loss energy per cycle by the frequency. Hereafter, the tape 

current is expressed as a dimensionless ratio of the transport current amplitude to the tape 

critical current: 𝐼௠ =  
ூಲ೘೛

ூ೎
. 

4.1. Transport AC losses 

The losses due to a sinusoidal transport current are reported in Figure 3(a) for 

different Im values at a frequency of 50 Hz. As a first validation, the difference between the 

results obtained with the model based on the H-formulation is below 20% at low amplitudes, 

decreasing below 2% when Im approaches Ic. The results of the analytical formula valid for 

a thin strip of finite width (see [14]) are also reported in the plot. The numerical results fit 



well the analytical ones, although some discrepancies can be observed at particularly small 

and large transport current values.  In fact, the analytical formula adopts the critical state 

model for the superconductor [63] instead of the power law, reported in (7). It has been 

proven that increasing the n-value used in the simulation, the agreement between the two 

computation methods improves. 

The non-superconducting layers of the tape do not generate significant dissipation 

since the differences between the “Whole_Tape” and “SC_only” numerical curves are minor 

(below 0.5 %). 

The comparison with the experimental results is also shown in the plot. The 

experiments were performed on the same tape as that sketched in Fig. 2. The experimental 

setup, the measurement procedure and the post-processing methodology adopted to treat the 

acquired signals are described in detail in [64]. 

The experimental data generally exhibit greater values than the numerical ones, 

especially for low values of Im (more than 2 times higher), while they tend to converge with 

the other curves at high current amplitudes (the differences get lower than 30% when Im > 

0.6). The discrepancies at low currents can be ascribed to local variations of the critical 

current density across the tape width. At low transport current amplitudes, the penetration of 

the induced currents remains limited to the tape sides, where the current density can be lower. 

The proposed model does not account for the critical current density inhomogeneities, which 

might be a source of discrepancy with the experimental data, as shown in [65]. Another 

possible explanation for this discrepancy can be ascribed to the adoption in the model of a 

field independent Jc value. In practice, the tape self-field can locally modify the Jc within 

the tape, thus affecting the measured AC losses. Future developments will aim to include a 

field-dependent Jc in the model equations. 
 

4.2. Magnetization losses 

Figure 3(b) reports the results of the model validation for the case of a sinusoidal 

magnetic field applied perpendicular to the tape, with variable field amplitude (Ba) and 

frequency set to 50 Hz. The difference between the results obtained with the model based on 

the H-formulation is below 15% when Ba = 10 mT, decreasing below 1% already at Ba > 0.1 

T. The analytical results for this analysis were computed by means of the formula developed 

for a thin strip in perpendicular field, presented in [15, 16]. The change in the curve slope 

for field amplitudes around 50 mT indicates the condition at which themagnetic saturation 



is reached in the tape. The numerical and the analytical results are in good agreement, 

although they start to diverge at high field amplitudes.  

The numerical results obtained in the “Whole_tape” case indicate losses at high fields 

slightly greater than those obtained in the “SC_only” case, with a maximum difference of 

13% with Ba = 2 T. This can be explained as an increasing contribution of the non-

superconducting layers to the total losses. These aspects will be analysed more thoroughly 

in the next section. 

 

4.3. AC losses due to a combination of time-varying transport current and magnetic field 

Figure 3(c) presents the losses generated in the tape by the combination of a variable 

transport current and a sinusoidal magnetic field applied perpendicular to the tape. In this 

study, the current amplitude is varied, while the perpendicular field amplitude is set to 0.1 

T; the frequency of both AC sources is set to 50 Hz. The curves obtained with the A-V and 

the H formulations are in very good agreement (the discrepancies are below 0.5%), thus 

providing a further validation of the numerical model. The difference between the results of 

the A-V model obtained in the “Whole_tape” and “SC_only” cases remains below 1%, which 

indicates that the losses generated in the non-superconducting layers have a minor impact.  

As expected, the combination of the two AC sources determines greater losses than 

those found for their separate application. It is worth noting that the power increases by 2.9 

W/m when the current rises from its lower (Im = 0.1) to its higher value (Im = 1). In 

comparison, the increase obtained between the same amplitudes in absence of the magnetic 

field (Fig. 3 (a)) is around 0.3 W/m. When both AC sources are applied simultaneously, the 

transport current flows in conditions which significantly differ from those obtained for the 

analyses reported in Fig. 3(a). As a matter of fact, the presence of a magnetic field produces 

a certain distribution of induced currents within the tape. For a field amplitude of 0.1 T, for 

instance, the tape is fully penetrated by the field and its induced currents.  Thus, when both 

AC sources are present, the transport current superimposes to the current distribution 

generated by the field variations and its contribution to the dissipated power gets higher [66].  

Finally, Table II shows some examples of computation times for this integral 

approach, in comparison with those obtained with the H-formulation (both found on a 

computer equipped with an Intel Xeon E5-2650 v3 CPU and 64 GB of RAM). Three cases 

are reported, in which the AC sources are either applied separately or act simultaneously. 

The computations with the A-V formulation are 2.4 to 4.8 times faster than those based on 



the H-formulation. However, this comparison is affected by the greater number of degrees 

of freedom required to achieve convergence in the FEM model. In fact, the stacked 

configuration requires the spatial discretization along the tape width to be the same for all 

layers, which does not apply for the integral model. In the model based on the H-formulation, 

the superconducting layer was discretized with 180 elements while all the other layers were 

discretized with 4320 elements, distributed between the different layers. Moreover, the FEM 

model requires discretizing the air, which enhances the computation times. Lately, the so-

called H-φ model was proposed, which can partially reduce this drawback [67]. 

  

5. Analysis of the contribution of individual tape layers. 

The contribution of the individual layers to the total losses of the tape is analysed in 

this section. The operating conditions which determine a remarkable contribution of the non-

superconducting layers of the tape to the total tape losses are presented in this section. 

 

5.1. Losses in individual tape layers due to a perpendicular magnetic field 

Figure 4 shows the losses obtained by varying the perpendicular field frequency with 

an amplitude set to 0.1 T. All curves overlap at low frequencies. For frequencies higher than 

100 Hz, while the “SC_only” curve remains essentially frequency independent, the 

“Whole_tape” curve exhibits a significant rise. For a better understanding of this trend, Fig. 

5 shows the magnetization losses generated in each layer of the tape. The losses in the 

superconducting layer are frequency-independent up to about 1 kHz; above this threshold 

value, they start to decrease. The losses generated in the other layers increase with frequency 

and reach remarkable values at frequencies of some kHz (especially for the copper layers). 

In these conditions, their contribution to the total losses generated in the tape exceeds 50%. 

For a better insight in the underlying physical phenomena, Figure 6 depicts the J/Jc 

distribution in the cross-section of the superconducting layer, computed for different 

frequencies (10 Hz, 100 Hz, 1 kHz and 10 kHz) with a perpendicular field amplitude of 0.1 

T. Various instants of the field cycle are shown, corresponding to ωt = 
ହ

ଶ
𝜋 (a) and ωt = 3 𝜋 

(b). These time instants are all included in the second period, since the regime conditions are 

not yet reached during the first one. The plots reported on the left refer to the “Whole_tape” 

model, although only the current distribution in the superconducting layer is presented. The 

plots reported on the right correspond to the “SC_only” model. The thickness of the 

superconductor was finely discretized (8 elements) in order to obtain a sufficiently precise 



representation of the current density fronts at different time instants. However, for the mere 

AC loss calculation, such fine discretization is not necessary. Both Figs 6(a) and 6(b) show 

that there are no significant differences between the current density distributions obtained 

with the two models for frequencies up to 1 kHz. When the induced current distributions are 

the same for the different cases, the losses obtained are equal. This result is consistent with 

the frequency independence of the AC losses in the superconducting layer at these frequency 

values, as displayed in Fig. 5. When the frequency overcomes 1 kHz, some discrepancies 

between the two models can be observed. In particular, the “Whole_tape” case results in 

lower values of the J/Jc ratio (and therefore of the amplitude of induced currents) in the 

central area of the superconductor as compared to the “SC only” case. This indicates that the 

induced currents can no longer penetrate this layer completely. This might be due to the fact 

that at very high frequencies the electric field rises to significant values, and therefore the 

induced currents start following different paths, passing through the metallic layers of the 

tape. Since lower induced current amplitudes determine lower values of the losses, the 

current distributions shown in Fig. 6 prove that the losses decrease in the superconducting 

layer above 1 kHz. Instead, it can be inferred that the induced currents increase in the normal 

layers, which produce a greater loss contribution. Thus, for the computation of magnetization 

losses, neglecting the non-superconducting layers of a tape becomes a too rough 

approximation when the frequency exceeds 1 kHz. The same outcomes are verified for all 

the other instants. It is worth noting how the induced currents shift from the outer to the inner 

part of the tape during time. The sign of the new induced currents changes according to the 

increasing or decreasing time variations of the external field. 

 

5.2. Losses in individual tape layers due to a magnetic field of different orientations 

The model was then applied to calculate the magnetization losses generated by a 

variable magnetic field applied with different orientations with respect to the tape broad face. 

In order to reach convergence also for nearly parallel field orientations, the spatial 

discretization of the HTS layer was refined to reach 8 elements along its thickness. Figure 7 

shows the magnetization losses for different 𝜃௙௜௘௟ௗ angles, with variable field amplitudes at 

a frequency set to 50 Hz. By reducing the incidence angle at constant Ba, the losses are 

lowered. For sufficiently wide angles, the losses do not greatly differ from the perpendicular 

case; on the contrary, when the angle of incidence approaches the parallel case, the losses 

are drastically reduced by several orders of magnitude. There is no significant difference in 

the results obtained with the “Whole_tape” or “SC_only” models, except for the parallel 



case. In this case, the discrepancy between the two cases is significant: the contribution of 

the non-superconducting layers never drops below 50%.  

Fig. 8 shows the magnetization losses for a field with different orientations and 

frequencies and a fixed amplitude of 0.1 T. The losses found with the “SC_only” model are 

almost frequency-independent. For the “Whole_tape” model instead, all curves converge 

with the “SConly” case at low frequencies and then rise when the frequency exceeds a 

threshold value. This threshold is in the order of hundreds of Hz for all cases, except for the 

parallel field case, where the “WholeTape” curve diverges already for frequencies of tens of 

Hz. In this case, the impact of the non-superconducting layers is significant even at low 

frequencies, becoming predominant (> 50%) around 600 Hz, and approaching 100% of the 

total losses for frequencies above 1 kHz. Indeed, for parallel field the thicknesses of the 

different layers determine the extent of the induced currents, and therefore the losses 

generated in each layer. Since the metallic layers are thicker than the superconducting one, 

their contribution becomes relevant. This phenomenon is enhanced at high frequencies [48]. 

In these conditions it is therefore of great importance to include the non-superconducting 

layers in the calculation of the magnetization losses due to parallel fields. 

 
Conclusions 

 A numerical analysis of the AC losses in HTS tapes using an integral form of the A-

V formulation is presented in this work. The model assumes that in the central portion of the 

tape the system variables are independent of the z-coordinate, thus simplifying the equations 

and reducing the computational burden. The model was applied to the calculation of the 

transport AC losses, the magnetization losses and for a combination of the two AC sources. 

Unlike previous works, this model applies the integral model to coated conductors’ 

geometries. The model was validated against a second numerical model based on the H-

formulation, as well as analytical formulae and experimental results.  

The model allows one computing the losses generated in all layers of the tape, in 

order to quantify their relevance in different conditions. The analysis of the current density 

distribution on the conductor cross-section is also reported to explain the trend of the 

computed losses. It is concluded that the contribution to the total losses of the non-

superconducting layers is enhanced when the frequency of the applied external magnetic 

field exceeds 1 kHz. In turns, the induced currents in the superconducting layer are reduced, 

producing lower losses. Furthermore, if the magnetic field is parallel to the tape main face, 

the impact of non-superconducting layers is already relevant at frequencies of tens of Hz. 



For these conditions, the simulation of the superconducting layer only, a simplification often 

adopted in the literature to reduce the computational burden, is not acceptable for a correct 

assessment of the AC losses. For all the other cases, considering only the superconducting 

layer provides a good approximation of the total tape losses.  
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Figures 

 

Figure 1. Reference system and geometrical parameters for an HTS tape subjected to AC 

conditions. 

 

Figure 2. Cross-section of the SuNAM SCN04 tape. The figure is not in scale. 

 

 

 

 

 

 

Table 1. Electrical parameters of the SuNAM SCN04 tape. 

Parameter Unit Value 

Ic (77 K , Ec = 1 μV/cm) [A] 242 

n- value (77 K , Ec = 1 μV/cm)  43 

ρCu [Ω m] 1.97e-9 

ρAg [Ω m] 2.7e-9 

ρSubstrate  [Ω m] 7.24e-7 



(b)  

(a) 



 

Figure 3. Average power dissipation in the SuNAM SCN04 tape due to different sources, 

computed with different methodologies.  (a) Transport current only: varying Im with f = 50 

Hz. (b) Perpendicular field only: varying the field amplitude with f = 50 Hz. (c) Both AC 

sources together: varying Im with a field amplitude of 0.1 T and f = 50 Hz. 

 

 

 

Parameters Simulation time 

Speed-up Im Bay f A-V formulation H-formulation 

 [T] [Hz] [s] [s] 

0.7 0.0 50 158 759 4.8 

0.0 0.1 50 320 962 3.0 

0.7 0.1 50 375 901 2.4 
 

Table 2. Simulation times for the A-V formulation and the H-formulation to compute AC 

losses with the same operating parameters. 
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Figure 4. Magnetization losses in the SuNAM SCN04 tape due to a perpendicular field, 

computed with different methodologies. The field frequency is varied and the amplitude 

is set to 0.1 T.  

 

 

 



 

Figure 5. Magnetization losses in each layer of the SuNAM SCN04 tape due to a 

perpendicular field, computed with different formulations.  The field frequency is varied and 

the amplitude is set to 0.1 T.  

 



 

 

 

Figure 6. J/Jc distribution in the superconducting layer of the SuNAM SCN04 tape 

subjected to a perpendicular magnetic field with an amplitude of 0.1 T and different 

frequencies, for ωt = 
ହ

ଶ
𝜋 (a) and ωt = 3 𝜋 (b). In the left plots, the non-superconducting 

layers of the tape are included in the model, while in the right plots they are neglected.  
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Figure 7. Average power dissipation computed for the SuNAM SCN04 tape for a magnetic 

field applied with different orientations and amplitudes and f = 50 Hz.  

 

 



 

Figure 8. Magnetization losses in the SuNAM SCN04 tape for a magnetic field with 

different orientations and frequencies and an amplitude of 0.1 T. The lower graph is in 

logarithmic scale while the upper ones are in semi-logarithmic scale. 

 

 

 


