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Multi-Task Attentive Residual Networks
for Argument Mining

Andrea Galassi, Marco Lippi, and Paolo Torroni

Abstract—We explore the use of residual networks and neural
attention for multiple argument mining tasks. We propose a
residual architecture that exploits attention, multi-task learning,
and makes use of ensemble, without any assumption on document
or argument structure. We present an extensive experimental
evaluation on five different corpora of user-generated comments,
scientific publications, and persuasive essays. Our results show
that our approach is a strong competitor against state-of-the-art
architectures with a higher computational footprint or corpus-
specific design, representing an interesting compromise between
generality, performance accuracy and reduced model size.

Index Terms—Argument mining, residual networks, neural at-
tention, multi-task learning, ensemble learning, natural language
processing.

I. INTRODUCTION

ARGUMENT mining (AM) is an area of natural language
processing (NLP) defined by a variety of tasks, aiming

to extract and structure arguments from unstructured text [1].
Some are argument detection, stance classification and topic-
based argumentative content retrieval [2]. The problem we
address in this work is to assemble the structure of the
argumentation behind a given input document. This problem
can be broken down into multiple tasks, such as the detection
of argument components, as well as the classification of links
between them. The latter is known to be a challenging task,
whose outcome may be a complicated graph.

There are many possible definitions of argument. According
to Walton [3], an argument is made of three components:
(i) a claim, or assertion, about a given topic; (ii) a set of
premises supporting the claim; and (iii) the inference between
the premises and the claim. Relations between arguments,
or argument components, typically consist of either support
or attack links. Argument components and relations may be
implicit, which contributes to the difficulty of the task at hand.
Moreover, not all argument definitions fit all genres. In fact,
AM approaches are very often tailored to specific corpora
or genres [4], [5], with solutions that are seldom general
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enough to be directly applicable to different data sets. Indeed,
many AM systems build upon sets of handcrafted features
which encode information about the underlying argument
model, genre or topic of interest, and make assumptions
on the argumentative structure of the input document, thus
constraining the resulting argument graph.

On the other end of the spectrum, we find increasingly
many solutions that do not rely on feature engineering, but
on huge neural architectures with millions of trainable param-
eters. These models are usually very accurate, but also very
expensive, especially in terms of the carbon footprint resulting
from the huge energy cost of training and fine-tuning [6]. So
much so that a significant part of the NLP community is now
promoting the vision of a Green AI, whereby more effort must
be spent on simpler and efficient solutions, suited for low-
resources settings [7]–[10].

In the last years, the availability and diversity of AM corpora
has considerably increased [2], [11], [12]. However, most AM
models are tested only on a few popular benchmarks, typically
neglecting less known datasets, and only reporting on positive
results. This phenomenon, which is not limited to AM research
but has been observed in other communities as well, has been
often criticized because it may hinder the development of
new ideas [13] and promote the development of models that
generalize poorly to the real world [14].

This work presents a general-purpose, domain-agnostic neu-
ral architecture that does not rely on genre-specific or topic-
dependent features, and its evaluation on five different datasets.
The architecture is smaller than state-of-the-art models by
various orders of magnitude. It exploits neural attention and
multi-task learning, jointly addressing the problems of iden-
tifying the category of argument components, and predicting
their relations. Experimental results conducted on a variety of
different corpora show that the model is robust, can be applied
to many different domains, and achieves good performance
across the considered data sets. Our main contributions are:

• A novel approach to AM, which extends our previous
work [15] by introducing an attention module and using
ensemble learning. The model jointly performs multiple
AM tasks, and does not rely on ad-hoc features or rich
contextual information, but only on GloVe embeddings
and on a widely applicable notion of distance.

• A model with a much smaller computational footprint
than state-of-the-art neural approaches.

• An analytical evaluation of the contribution of each added
module through an ablation study and a validation of our
model on a challenging corpus.
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• A set of experiments to assess generality, whereby we
test our approach on four different corpora with various
domains, writing style, formatting, length, and annotation
model. To the best of our knowledge, we are the first to
validate a new AM method on as many corpora.

• A negative result on a fifth corpus, which highlights the
limitations of our approach, as suggested in [16].

With respect to our previous work [15], this paper extends
the neural architecture with attention and ensemble learning,
and presents a more extensive experimental evaluation. All the
code used in our experiments is publicly available.1

The paper is organized as follows. Section II presents
background and related work. Section III introduces our ar-
chitectures. Section IV describes the data used for evaluation.
Sections V and VI illustrate the experimental setting and
discuss results. Section VII concludes.

II. BACKGROUND

The adoption of deep learning approaches in AM is rela-
tively recent, compared to other areas of NLP. That is probably
a consequence of a lack of large AM corpora, considering
the complexity and peculiarities of the tasks at hand. Indeed,
the annotation of large corpora for AM system evaluation
and training proved to be challenging, as demonstrated by
relatively low Inter-Annotator Agreement (IAA) indicators and
several unsatisfactory attempts at crowdsourcing annotations.
That is especially true for some genres like user-generated
content [17]. Reasons for that are the nature of the task,
which is intellectually demanding, and the lack of a unified
argument model, as “arguments” may take very different
shapes in different genres, also leading to a trade-off between
the expressiveness of the argument model and the complexity
of the annotation process and availability of relevant data
points, often resolved in favor or simple argument models [1].
Earlier research mainly focused on the definition of features
for specific genres or even for specific corpora. The differences
between corpora, both regarding the domain and the theoretical
framework followed during the annotation process, forced
researchers to test a model on the same corpora on which it
was trained, and to the best of our knowledge, transfer learning
approaches have not seen wide experimentation. These two
elements lead to the common practice to define a method or
a model and validate it only on a single corpus or on a few
corpora [1].

A. Multi-task Learning and Joint Learning for AM

Since AM includes many subtasks that are strongly inter-
related, a recent trend of this research field is to address
many of them at the same time using multi-task or joint
learning techniques. The aim of such approaches is to transfer
knowledge from the auxiliary tasks to the main one, or to
obtain coherent results on multiple tasks performed at once.

Stab and Gurevych [4] jointly address component clas-
sification and link prediction on persuasive essays, using
Integer Linear Programming and a rich set of specific features,

1https://github.com/AGalassi/StructurePrediction18.

such as lexical, structural, and contextual information. Various
neural architectures are tested in [18], including the deep
biLSTM multi-task learning (MTL) setting of [19], using sub-
tasks as auxiliary tasks. They conclude that neural networks
can outperform feature-based techniques in argument mining
tasks. Schulz et al. [20] investigate MTL settings addressing
component detection on five datasets as five different tasks.
Their architecture is composed of a CRF layer on top of a
biLSTM, whose recurrent layers are shared across the tasks.
They obtain positive results, and the MTL setting shows to be
beneficial especially for small datasets, even if the auxiliary
AM tasks involve different domains and even different com-
ponent classes. Lauscher et al. [21] analyze an MTL setting
where rhetorical classification tasks are performed along with
component detection. They use a hierarchical attention-based
model to perform both word-level and sentence-level tasks
with the same neural architecture. The results show improve-
ments in the rhetorical tasks, but not in AM. Accuosto and
Saggion [22] experiment with MTL and sequential transfer
learning, improving performance on AM through discourse
parsing tasks.

In [23], a structured learning framework based on factor
graphs is used to jointly classify all the propositions in a
document and determine which ones are linked together. The
models heavily rely on a priori knowledge, encoded as factors
and constraints, designed to enforce adherence to the desired
argumentation structure, according to the argument model and
domain characteristics. The authors discuss experiments with
six different models, which differ by complexity and by how
they model the factors, using RNNs and SVMs. Their best
result is obtained by using the same set of features used in [4],
resulting in a total feature size of around 7,000 for propositions
and 2,100 for links. Finally, another approach based on factor
graph is DRAIL [24], a neuro-symbolic framework that allows
to specify the structure and the constraints of the graphs
through first-order logic clauses.

B. Neural Attention for AM

Neural attention is a mechanism widely used in NLP to im-
prove performance and interpretability of neural networks, and
it is the core of many NLP architectures like RNNsearch [25],
Pointer Networks [26], and Transformer [27]. Given an input
sequence, and possibly a query element, attention consists in
the computation of a set of weights that represent the impor-
tance of each element of the sequence, which can be further
used to create a compact representation of such an input. There
are many different ways to compute such weights. A taxonomy
of attention models is proposed in our survey [28].

Among the AM systems that use neural attention, the one
used in [29] integrate hierarchical attention and biGRU for
the analysis of the quality of the argument, the one in [30]
use attention to integrate sentiment lexicon, while in other
works [31]–[33] attention modules are stacked on top of
recurrent layers. The use of Pointer Networks for AM has
also been investigated [34]. Biaffine attention has been used
by Morio et al. [35] along with task-specific parametrization
(TSP-PLBA) and a mixture of symbolic and sub-symbolic
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input features. Chen et al. [36] address the task of inferring the
agreement between sentences using fine-grained co-attention
between the two sentences.

Transformer-based approaches in AM use language rep-
resentation models such as BERT [37] and ELMO [38] to
create contextualized word embeddings. Specifically, Reimers
et al. [39] address component classification and argument
clustering, a related task whose aim is to identify similar
arguments. Similarly, Lugini and Litman [40] use BERT
embeddings alongside other contextual information to perform
component classification, and Wang et al. [41] use them to
train a different model for each type of component. Trautmann
et al. [42] use pre-trained BERT models to perform word-
level classification of the stance of components regarding a
given topic, while Poudyal et al. [43] use RoBERTa [44], an
improved version of the original BERT.

BERT is also used by Opitz [45], who formulates relation
classification as a plausibility ranking task by exploiting
hypothetical discourse contexts. Bao et al. [46] propose a
neural transition-based model which incrementally builds an
argumentation graph, using a combination of fine-tuned BERT
embeddings and other symbolic features as input. More re-
cently, Srivastava et al. [47] use BERT to classify arguments,
then rely on the trained weights and self-attention to predict
links.

Mayer et al. [48], [48] present and conduct extensive
experimentation on the AbstRCT corpus, addressing four AM
subtasks with a pipeline scheme. They analyze the impact of
various BERT models, which are pre-trained on other corpora
and then fine-tuned on the corpus at hand. Segmentation and
component classification are performed as sequence tagging
with BIO scheme. Link prediction and relation classifica-
tion follow, taking into account all the pairs of components
obtained in the first step and classifying their relations as
attack, support, or non-existing. Their architecture is based
on bi-directional transformers followed by a softmax layer
and various encoders. Their approach is completely distance-
independent, but since they compare every possible pair of
components, the size of the dataset grows quadratically with
the number of components in the document, which makes
it hardly scalable to large documents. Another approach,
consisting of predicting at most one related component for
each component, and then classifying their relation, has been
tested but yields worse results. The architectures that yield the
best results are BioBERT [49], which is pre-trained on a large-
scale biomedical corpus, SciBERT [50], which is pre-trained
on scientific articles of various nature, and RoBERTa.

Looking outside the context of AM, BERT is a very popular
model across all the NLP tasks [51], but it is also very
resource-demanding, consisting of more than 110 millions pa-
rameters in its base implementation. For this reason, there is an
active effort in assessing when its use is really necessary [8].

C. Residual Networks

Residual networks [52] are a family of deep neural networks
that achieved outstanding results in many machine learning
tasks across many different domains related to NLP [27],

Fig. 1: Block scheme of a residual network.

[53], [54]. The core idea behind residual networks is to create
shortcuts that link neurons belonging to distant layers (see
Figure 1), whereas standard feed-forward networks typically
link neurons belonging to subsequent layers only. This kind
of architecture usually results in a more efficient training
phase, allowing to train networks with considerably more
layers, reducing the overall computational footprint. A similar
principle is followed also in the design of dense and highway
networks [55], [56]. The intuition behind residual networks
is that if a function H(x) can be approximated by multiple
non-linear layers, then they can also approximate its residual
function F (x) = H(x) − x. It is therefore possible to
obtain the original function simply adding the residual value:
H(x) = F (x) + x.

III. MODEL

The architecture we propose makes use of the dense resid-
ual network model, along with a Long Short-Term Memory
(LSTM) network [57], and an attention module [28]. The
network is trained to jointly perform three argument mining
sub-tasks: argument component classification, link prediction,
and relation classification.

More specifically, our approach operates on sentence pairs,
does not rely on document-level global optimization, and
does not enforce model constraints induced, for example, by
domain- or genre-specific background knowledge. This makes
our approach amenable to a possible integration within more
complex and sophisticated systems.

We performed model selection and hyper-parameter tuning
on a single corpus (CDCP, see Section IV) and we collected
results on validation data in order to tune the whole architec-
ture. There are two reasons for this choice: on the one hand, we
aim to show the robustness of the approach across different
corpora, while on the other hand we believe it is important
to limit the footprint of these experiments – an issue that is
receiving a growing attention in the community [6].
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(a) RESARG architecture [15].

(b) RESATTARG architecture.

(c) Composition of the attention
block.

Fig. 2: A block diagram of our previous architecture (a), our novel architecture (b), and the attention block we use (c). The
figure shows, next to each arrow, the dimensionality of the data involved, so as to clarify the size of the inputs and the outputs
of each block. T is the temporal size of the data.

A. Model description

In order to achieve a general method which may be ap-
plicable in any domain, our approach does not rely on a
specific argument model, but rather it reasons in terms of
abstract entities, such as argumentative components and links
among them. We instantiate such abstract entities into concrete
categories given by annotations, such as claims and premises,
supports and attacks, as soon as we apply the method to a
specific corpus whose annotations follow a concrete argument
model.

The detection of argumentative content in text is one typical
stage of AM systems [1]. Other works only focus on AM
tasks that assume that argumentative components and their
boundaries are already identified in the data. Such is the case
with Niculae et al. [23], whose CDCP dataset only consists of
argumentative elements, and with others [31], [40], [58] who
simply ignore the non-argumentative elements of the input
text. Accordingly, we define a document D as a sequence
of argumentative components and disregard the rest of the
input text. An argumentative component in turn is a sequence
of tokens, i.e., words and punctuation marks, representing
an argument, or part thereof. The labeling of components
is induced by the chosen argument model. Such a labeling
associates each component with the corresponding category
C of the argument component it contains. For this reason,
we will use the terms component, sentence, and proposition
as equivalent, and implying them as being argumentative by
assumption.

Given two argumentative components a and b belonging
to the same document, we represent a directed relation from
the former (source) to the latter (target) as a → b. Reflexive

relations (a→ a) are not allowed.2 Any pair of components is
characterized by four labels: the types of the two components
(Ca and Cb), the Boolean link label La→b, and relation (type)
label (Ra→b). The link label indicates the presence of a link,
and is therefore true if there exists a directed link from a
to b, and false otherwise. The relation label instead contains
information on the nature of the link connecting a and b.
It represents the relationship between the two components,
according to the links that connect a to b or b to a. Its domain
is composed, according to the underlying argument model, not
only by all the possible link types, but also by their opposite
types (e.g., attack and attackedBy), as well as by a special
category, None, meaning no link in either direction. One
reason to introduce opposite relation types is to mitigate the
unbalance caused by limited amount of instances each relation
type typically has, if compared with the number of instances
belonging to the None class. Likewise, we speculate that the
introduction of additional labels may contribute positively
to the optimization process. We shall remark that opposite
relation labels are exploited during training, but they are
discarded in the test phase, where they are simply substituted
with the None label, consistently with previous work.

We use a multi-objective learning setting where multiple
tasks are performed jointly for each possible input pair of
components (a, b) belonging to the same document D. Our
main focus is the identification of the link label La→b for each
possible input pair of propositions (a, b) belonging to the same
document D. Our first objective is thus a link prediction task,
which can be considered as a sub-task of argument structure
prediction. A second objective is the classification of the two

2We will partially consider reflexive relations for the UKP dataset for a
specific reason explained in Section V.
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components,3 and our final objective is the classification of
the relationship between such components, i.e., the prediction
of labels Ca, Cb, Ra→b. A common issue in the classification
of pairs of document components is the fact that pairs grow
quadratically with the number of components, causing a large
imbalance against the negative class [43], [48]. One way
of dealing with that issue is to limit the possible pairs by
setting a maximum distance, thus obtaining a number of pairs
proportional to the number of components. Such a distance
is a hyper-parameter, and as such it may be empirically
determined [43].

B. Embeddings and features

Faithful to the main purpose of this work, of evaluating the
effectiveness of deep residual networks and attention for AM
without resorting to domain- or genre-specific information, our
system relies on a minimal set of widely applicable features.

Words are encoded using pre-trained GloVe embed-
dings [59] of size 300. Since punctuation may play a key role
in the semantic of the sentences [60], we have decided to keep
punctuation tokens as well. Input sequences are zero-padded to
the length of the longest sequence in the datasets (henceforth
T ). Out-of-vocabulary terms are handled by creating random
embeddings.

In our previous work, we empirically assessed how the
distance between two components may be a relevant feature
for AM in the CDCP corpus [15]. The same observation has
been recently made also with reference to other corpora [18],
[43], [48]. Similarly to what has been done in [18], we define
the number of argumentative components separating source
and target as argumentative distance, using the positive sign
when the source precedes the target, and the negative sign
otherwise. Inspired by works in other domains [61]–[63],
we encode such a scalar number in a 10-bit array, using
the first 5 bits for those cases where the source precedes
the target, and the other 5 bits for the opposite case. The
number of consecutive “1” values encodes the value of the
distance, with a maximum value of 5. For example, if the
argumentative distance is −3, the encoding is 00111 00000; if
the argumentative distance is 2, the encoding is 00000 11000.

C. The RESARG architecture

We use our own previous system [15] as a baseline. We
refer to it as RESARG. Its architecture, depicted in Figure 2a,
is based on residual networks [52] and comprises the following
macro blocks:
• two deep embedders, one for sources and one for targets,

that manipulate token embeddings;
• a dense encoding layer that reduces the dimensionality of

the features;
• a biLSTM that processes the sequences;
• a residual network;
• the final-stage classifiers.

3Since we examine only argumentative propositions, we do not consider
the non-argumentative class for component classification.

The purpose of the deep embedders is to fine-tune the pre-
trained embeddings, a common procedure in deep learning-
based NLP solutions [64] whose usefulness was confirmed
by preliminary experiments. Each embedder is composed of
a single residual block consisting of four pre-activated time-
distributed dense layers. Accordingly, each layer applies the
same transformation to each embedding, regardless of their
position inside the sentence. All the layers have 50 neurons,
except for the last one, which has 300 neurons.

The dense encoding layer is necessary to reduce the pa-
rameters in the following biLSTM, thus reducing the time
needed for training, and limiting overfitting. It applies a time-
distributed dense layer, which reduces the embedding size to
50, and a time average-pooling layer [65], which reduces the
sequence size by a factor of 10. The resulting sequences are
then given as input to the same biLSTM, producing a single
representation of size 50 for each component.

Source and target are processed in parallel in the first three
blocks, then concatenated together, along with the encoding of
the distance, and given as input to the final residual network.
The first level of the final residual network is a dense encoding
layer with 20 neurons, while the residual block is composed of
a layer with 5 neurons and one with 20 neurons. The outputs
of the first and the last layers of the residual networks are
summed up and provided as input to the classifiers.

The final stage of RESARG are three independent softmax
classifiers used to predict the source, the target, and the relation
labels. Each classifier, which predicts a label for a dedicated
task, contributes simultaneously to our learning model. The
link classifier is obtained by summing the relevant scores
produced by the relation classifier, aggregating the probability
assigned to the relation labels into a single link label.

All the dense layers use the rectifier activation func-
tion [66], and they randomly initialize weights with He ini-
tialization [67]. The application of all non-linear functions is
preceded by batch-normalization layers [68] and by dropout
layers [69], with probability p = 0.1. The resulting architec-
ture has about 130,000 trainable parameters.

D. The RESATTARG architecture

Motivated by the remarkable results obtained by attention-
based architectures in NLP tasks, we have extended RESARG
by including a neural attention block after the bi-LSTM mod-
ule. To better exploit the new attention module, we removed
the time pooling layer from the dense encoding block, so
as to avoid loss of information along the temporal axis,
and to maintain the whole output sequence from the LSTM.
Therefore, in this new model, the input and the output of the
LSTM module have size (T , 50). The resulting architecture,
named RESATTARG, is depicted in Figure 2b.

The attention module is implemented as coarse-grained
parallel co-attention [28], to consider both components at the
same time while computing attention on each of them, and its
structure is illustrated in Figure 2c. Our method consists of ex-
ploiting the average embedding of one proposition as a query
element while computing attention on the other, similarly to
what has been done in [70]. Specifically, calling Ks and
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Kt the outputs of the bi-LSTM obtained from, respectively,
the processing of the source and the target propositions, we
compute the (masked) average of Kt, obtaining a single
embedding gt of size 50 (Eq. 1). This embedding is used as
query element to compute additive soft attention [28] on Ks

(Eq. 2), obtaining a set of attention weights asi that represent
the relevance of an element (Eq. 3), and then a single source
context vector cs of size 50 (Eq. 4). The details of this process
are described in the following Equations, where the matrices
W1, W2 and the vectors b, w3 are learnable parameters.

gt = masked avg(Kt) (1)

es = wT
3 relu(W1Ks +W2 gt + b) (2)

as = softmax(es) (3)

cs =

T∑
i=1

ksi asi (4)

An equivalent symmetric procedure is used to compute
attention on Kt so as to obtain ct. The output of this block
are two embeddings of size 50, as in our previous architecture.

Our method resembles the approach of Chen et al. [36],
but with two important differences. First of all, they use fine-
grained co-attention [28] instead of coarse-grained, so they
consider each element of a sentence with respect to each ele-
ment of the other sentence, leading to a higher computational
footprint. The second difference is that they use multiplicative
attention instead of the additive one: while the former is
more indicated for tasks where it is important to consider the
similarities between two inputs (as in the agreement inference
task) the latter is more suitable for tasks where representations
of relevant elements are unavailable [28], as in component
classification and link prediction.

The resulting architecture has about 140,000 trainable pa-
rameters. If compared with other state-of-the-art neural ar-
chitectures, such as BERTBASE and its 110M parameters,
RESATTARG is considerably smaller, and accordingly it is
less computationally demanding.

E. Optimization Model and Ensemble Learning

We consider a multi-task formulation for our learning prob-
lem. The loss function is given by the weighted sum of four
different components: the categorical cross-entropy on three
labels (source and target categories, link relation category) and
an L2 regularization on the network parameters.

Since the training of neural models is non-deterministic,
the results of a single training procedure are influenced by
the random seed that is used, thus they may not be reliable or
reproducible [71], [72]. Such problem also affects our previous
results [15], since they were obtained from a single training
experiment.

We have decided to replicate that experiment by repeating
the training procedure 10 times, with different seeds, obtaining
10 trained neural networks for each configuration. We will
evaluate our models in two different ways. At first, we will
consider the average of the scores obtained by every single

network for each metric. Then, we evaluate the predictions
obtained using all the 10 models in ensemble voting.

In our ensemble setting the class of each entity is assigned
as the class voted by the majority of the networks. This
technique is similar to the concept of bootstrap aggregating,
also known as bagging [73]. However, while in standard
bagging each model is trained on a random sample of the
training set, here we train all the models on the same training
set, since stochastic elements are already present in the training
procedure itself. Indeed, the training process does involve non-
deterministics steps, such as the initialization of the networks’
weights, the selection of the elements for each batch, and the
application of dropout. We have chosen this ensemble method
for the sake of simplicity, but more advanced techniques do
exist and may yield better results [74].

IV. CORPORA

We validate our approach on five corpora differing from
each other in various dimensions: the domain of the docu-
ments, their average length, the formatting, and the argumen-
tative model followed for the annotations.

A. CDCP

The Cornell eRulemaking Corpus (CDCP) [23] consists of
user-generated documents in which specific regulations are
discussed. The authors have collected user comments from an
eRulemaking website on the topic of Consumer Debt Collec-
tion Practices rule. The corpus contains 731 user comments,
for a total of about 4,700 components, all considered to be
argumentative.

As typical of user-generated data, the comments are not
structured, and often present grammatical errors, typos, and
do not follow usual writing conventions (such as the blank
space after the period mark). This complicates pre-processing,
since most of the off-the-shelf tools turn out to be inaccurate
even in simple tasks such as tokenization.

Annotations follow the argument model proposed in [75],
where links are constrained to form directed graphs. The
corpus is suitable both for component and relation classifica-
tion, since it presents 5 classes of propositions and two types
of links. We will use the version of CDCP without nested
proposition and guaranteed transitive closure.

Components are addressed as propositions, and they consist
of a sentence or a clause. Propositions are divided into
POLICY (815), VALUE (2160), FACT (746), TESTIMONY
(1026), and REFERENCE (32). Only 3% of more than 43,000
possible proposition pairs are linked; almost all links are
labeled as REASON (1,292), whereas only a few are labeled
as EVIDENCE (46).

The unstructured nature of documents, the strong unbalance
between the classes, and the presence of noise make the
corpus particularly challenging for all the subtasks of argument
mining, especially those that involve the relationships between
components.
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B. AbstRCT

The AbstRCT Corpus [48] consists of abstracts of scientific
papers regarding randomized control trials for the treatment
of specific diseases (i.e., neoplasm, glaucoma, hypertension,
hepatitis b, diabetes). The final corpus contains 659 abstracts,
for a total of about 4,000 argumentative components. AbstRCT
is divided into three parts: neoplasm, glaucoma, and mixed.
The first one contains 500 abstracts about neoplasm, divided
into train (350), test (100), and validation (50) splits. The
remaining two are designed to be test sets. The glaucoma part
contains 100 abstracts for that disease, the mixed one contains
20 abstracts for each disease.4

Components are labeled as EVIDENCE (2,808) and CLAIM
(1,390), while relations are labeled as SUPPORT (2,259) and
ATTACK (342).5 About 10% of about 25,000 possible com-
ponent pairs have a labeled relationship. The argumentative
model chosen for annotation enforces only one constraint:
claims can have an outgoing link only to other claims.

With respect of CDCP, this corpus is less noisy and the
distribution of the classes is more balanced. We have chosen
this as a benchmark to demonstrate that our approach is
independent of the domain and of the argument model.

C. DrInventor

The Dr. Inventor Argumentative Corpus (DrInventor) [76]
is the result of an extension of the Dr. Inventor corpus [77],
which includes an annotation layer containing argumentative
components and relations. DrInventor consists of 40 scientific
publications from computer graphics, which contain about
12,000 argumentative component labels, as well as annotations
for other tasks.

The classes of argumentative components are DATA (4,093),
OWN CLAIM (5,445), and BACKGROUND CLAIM (2,751).
The former two are related to the concepts of premises and
claims, while the latter is something in between, since it is a
claim related to some background knowledge, such as that
made by another author in a previous work. The relation
classes are SUPPORTS (5,790), CONTRADICTS (696), and
SEMANTICALLY SAME (44), since it is common practice
in scientific publications to re-iterate the same claim (or more
rarely the same data) multiple times.

Since DrInventor includes documents where the structure of
the discourse is complex, and data are often presented along
with claims, it makes argument mining more challenging:
in more than 1,000 cases some components are split into
multiple text sequences, located in non-contiguous parts of the
documents. This phenomenon mostly concerns claims, but data
are affected too, in fewer cases. This introduces the difficulty
of recognizing different segments of the documents as part of
a single component and makes link prediction more difficult
to address through non-pipeline approaches.

4Glaucoma and neoplasm documents of the mixed set are present also in
the respective test set.

5The corpus allows also the distinction between CLAIM/MAJOR CLAIM
and ATTACK/PARTIAL ATTACK. For the sake of consistency with previous
works, this detail will not be considered.

The unbalanced distribution between the three classes and
the presence of split components makes this corpus quite chal-
lenging for link prediction, a difficulty which is highlighted
also by the low inter-annotator agreement reported in the
original paper.

D. SciDTB

The SciDTB Argumentative Corpus [22] consists of 60
scientific abstracts from the ACL anthology, for a total of
353 argumentative components. Components can span across
multiple sentences and can belong to six classes: PROPOSAL
(110), ASSERTION (88), RESULT (64), OBSERVATION
(11), MEANS (63), DESCRIPTION (7). The annotation
scheme impose that each component can be linked only to
another one, and presents only one class of argumentative
relationship: SUPPORT.6 Out of the 1884 possible pairs of
components, only 126 (6.69%) are linked together by a SUP-
PORT . The challenging aspects in this corpus are its small
size, which allows us to test our method on a low-resource
setting, and its unbalance in the distribution of component
classes.

E. UKP-PE

The Persuasive Essays Corpus (UKP-PE) [4] consists of
402 documents from an online community where users post
essays and other material, provide feedback, and advise each
other. The dataset is divided into a test split of 80 essays and
a training split with the remaining documents.

UKP-PE defines three classes of argumentative compo-
nents: MAJOR CLAIM (751), CLAIM (1,506), and PREMISE
(3,832). Premises may be linked to CLAIMS through re-
lations of SUPPORT (3,613) or ATTACK (219). MAJOR
CLAIMS are not linked to other components.7 The classes of
argument components are similar to those in other datasets.
However, what distinguishes the UKP-PE corpus from the
others is a more regular argumentation model, which is specific
to this corpus alone. All argument graphs are trees. All
roots are claims. All tree components belong to the same
paragraph. Each premise has exactly one outgoing relation.
Claims do not have outgoing relationships, they can only be
supported/attacked by premises. The structure of the argumen-
tation is also fairly regular. For example, major claims are
usually present in the introduction or conclusion of an essay,
and they are often the only argumentative component in the
paragraph.

Thanks to the highly regular nature of the UKP-PE data,
strong baselines heavily rely on document structure, like the
position of the sentence in the essay, or whether a component
is in the introduction or conclusion, or in the first or the last
sentence of a paragraph [78]. At the same time, including such
highly regular data in our analysis enables us to gain further

6Other classes of relationship are present but they are considered not
argumentative, therefore we do not consider them in our work.

7In fact, each component is linked to a MAJOR CLAIM via an attribute
called stance. Therefore, one could use this dataset for stance detection, by
creating explicit relationships toward the major claims. However, that would
be outside the scope of this work.
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Corpus Documents Components Component Pairs Links

CDCP 731 4,779 43,384 1,338
ABSTRCT 659 4,198 25,938 2,601
DRINVENTOR 263 13,591 243,266 8,705
SCIDTB 60 353 1,884 126
UKP-PE 1,764 6,089 22,172 3,832

TABLE I: Corpora statistics. For UKP-PE we consider para-
graphs containing arguments as ”documents” and we do not
include ”self pairs” in the count of component pairs.

insights on the strengths and limitations of a structure-agnostic
approach like ours.

V. EXPERIMENTAL SETTING

We initially evaluate our new architecture against our pre-
vious model and the structured learning approach of [23] on
CDCP, presenting an ablation study of the new components
we have introduced. Then, we extend the evaluation to other
four data sets, for which we compare our approach against the
state-of-the-art.

In our approach each component is involved in many pairs,
both as a source and as a target, and accordingly it is classified
multiple times by the same network. The label will be assigned
by the model by considering the average probability computed
by the ensemble for each class, and by thus choosing the
class with the highest score. Alternative approaches could
be to assign the class that results to be the most probable
in most of the cases, thus relying on a majority vote. A
further option could be to simply consider the label with
the highest confidence. However, the latter procedure might
be more sensitive to outliers, because the misclassification
of a component in just one pair would lead to the final
misclassification of the component, regardless of all the other
pairs. A deeper analysis of different techniques to address
these issues is left to future research.

A. Data Preparation

Table I report summary statistics of the datasets we use. Our
architecture allows us to use the CDCP, AbstRCT, and SciDTB
datasets directly, without need for further pre-processing.

For what concerns DrInventor, instead, specific data pre-
processing is needed to address two aspects of this dataset:
the presence of lengthy documents and split components.
Lengthy documents make it inconvenient to consider all the
possible pairs of argumentative units. Doing so would not
only be infeasibile with regular computational resources, but
it would also yield an extremely unbalanced dataset for link
prediction, with less than 1% of pairs linked. We thus filtered
out all the pairs that did not appear in the same section of the
document, and whose argumentative distance is not included
between -10 and +10. A second peculiarity of this dataset
is the presence of components that include non-argumentative
material. These “split components” are made of two sequences
x and y separated by a third, non-argumentative sequence z. In
those cases, we split x and y into two unrelated components,
and attributed them the same label, the same links, and the
same argumentative relations with the other components. The

resulting dataset consists of about 8,700 links out of 240,000
possible pairs, which amount roughly to 3.6%. Among these
links, SUPPORTS amount to 89%, CONTRADICTS to 10%,
and the remaining 1% are SEMANTICALLY SAME relations.

Regarding UKP-PE, like others did before us [4], [23], we
also consider exclusively pairs of components that belong to
the same paragraph. However, many paragraphs contain only
a single component. That is the case, for instance, with about
400 paragraphs containing a single major claim. In order to
include also them in our pair-based classification method, we
decided to introduce “self pairs” into our dataset, which are
instances where the same component acts both as source and
target. This significantly increases the number of pairs (from
22,000 to 28,000). So, to improve optimization and enable
a comparison with previous approaches, we did not consider
these pairs for link prediction and relation classification in
validation and testing.

B. Comparison with other methods

Not all the approaches to AM are easily compared against
one another. This is the case, for example, of approaches that
perform only few tasks versus end-to-end systems, or pipeline
versus joint learning approaches. Since we perform component
classification on propositions or sentences, to make our results
comparable with architectures that perform it token-wise, we
split each classified component into tokens that share the same
label, and compute the evaluation of token-wise classification.
Since the tokenization method may not be the same one used
by other approaches, the final results may not be perfectly
comparable, but we believe that this minor difference will not
introduce appreciable errors.

We shall also remark that in our approach we consider
argumentative components as already selected and perfectly
bounded, therefore we perform component classification only
between argumentative classes and we do not consider the
“non-argumentative” class as a possibility. This makes our
figures incomparable against those obtained by architectures
that address both component identification and classification
at once, such as [48], since they include “non-argumentative”
among the possible classes and thus address a harder prob-
lem. A similar consideration holds regarding the pipeline
approaches that perform evaluation of each step based on the
result of the previous one instead of using the gold standard.
In this case, the errors introduced by early steps introduce
noise which may affect the evaluation of subsequent steps. It
is once again the case of [48], where errors obtained during
the first step may introduce noise in the link prediction/relation
classification tasks, even if the authors report that such an error
is neglegible. We could not find a solution to this problems,
but we argue that, nevertheless, a qualitative evaluation of our
method can still benefit from a comparison with these other
approaches.

Due to these difficulties, in most of cases adapting existing
techniques to a new corpus would be a very demanding
task. For this reason, we compare our approach only against
approaches that have already been tried on the same corpus.
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C. Optimization

For each corpus, we train the models on the corresponding
training split. Since each corpus is characterized by different
classes for component and relation classification, it would
be impossible to test a model trained on a different corpus.
Nonetheless, it would be possible to use the same model for
the task of link prediction.

We shall remark that the hyper-parameters of the archi-
tecture and of the learning model have been tuned on the
validation set of CDCP. It is also important to highlight
that we use the same set of hyper-parameters in all the
experiments. Our purpose is to test whether our approach can
yield satisfactory results across different and heterogeneous
corpora without the need of re-tuning, and therefore limiting
its cost and its environmental impact [6]. Nonetheless, we are
aware that performing a specific calibration for each corpus
would probably improve our results.

We use the Adam optimizer [79] with parameters b1 = 0.9
and b2 = 0.9999, applying proportional decay of the initial
learning rate α0 = 5 × 10−3. The weights of the four
components of the loss function are set to 1 for the cross
entropy of source and target, 10 for the cross entropy of
relation, and 10−4 for the regularization. The training was
early-stopped after 100 epochs with no improvements on
the F1 score of the Link class computed over validation
data, except for DrInventor, where we early-stopped after 20
epochs of patience due to the dataset’s size and much heavier
computational footprint.

VI. RESULTS AND DISCUSSION

This section presents the experimental results on each
corpus. To assess the contribution of the attention module, we
compareRESATTARG with RESARG. Moreover, we study the
performance gain introduced by the ensemble approach. To be
consistent with other works in this research field, we measure
all the performances using the F1 metric and report the values
as percentages. For component and relation classification we
consider the macro-averaged score. For link prediction, we
consider the score of the positive class.

We structure the analysis of results on each corpus in
separate subsections. Two more subsections are devoted to the
analysis of computational costs and of the attention module.

A. CDCP

We used the same validation set as in our earlier work [15],
which was created by randomly selecting documents from
the original training split with 10% probability. We used the
remaining documents as training data and the original test split
as is. To provide a summary evaluation, following [23], we
measured the performance of the models by computing the
F1 score for links, propositions, and the average between the
two. More specifically, for the links we measured the F1 of
the positive classes, whereas for the propositions we used the
score of each class and then we computed the macro-average.
We also reported the F1 score for each relation class, alongside
their macro-average. The NONE class of relation classification
corresponds to the negative class of link prediction.

A first question we address was whether our results with
a single model were solid or to what extent influenced by
the non-deterministic nature of the training procedure. We
compared our baseline model with the average scores obtained
by 10 networks, with our ensemble setting, and against the
structured approach used in [23]. The results are shown in
Table II. The average computed over the 10 networks leads to
a worse performance on Link prediction with respect to our
previous results, which suggests that our previous results were
due to a particularly “lucky” training. Nonetheless, the average
score on the two tasks remains similar (between 47 and 48),
just a few points below the state of the art. The ensemble
approach substantially improves the results, outperforming the
structured learning approach on both tasks. The results on link
prediction are still below those obtained in the first experiment,
if only by less than 1%.

Introducing the attention module in the architecture leads to
appreciable improvements for both the average and the ensem-
ble approach. In particular, the latter performance outperforms
our previous result in all the three tasks. As far as relation
label prediction, our approaches fail to predict the EVIDENCE
relation. This is a negative result, but hardly surprising, since
EVIDENCE is a rather rare class in this dataset (less than 1%
of all relations). Also, we can see in Table X that the use
of attention strongly reduces the amount of training epochs
(-56%) as well as the standard deviation.

Our results on component classification are similar to the
ones obtained by using TSP and PLBA [35], while Transition-
based BERT [46] greatly surpasses our approach in both tasks.
It is worth remarking that both these approaches use a mixture
of symbolic and subsymbolic features, and that BERT has
about 1,000 times more trainable parameters than one of the
networks in our ensemble. Bao et al. [46] report they fine-
tuned their model 50 epochs with early stopping strategy. In
our experiments, the average time required to train a BERT
model for a single epoch is remarkably higher than the time
required to train our models (more details on the computational
cost will be given in Section VI-F).

To estimate the agreement among the networks in the
ensemble architecture, and have a measure of the robustness
against the implicit randomness of the training procedure,
we have computed Krippendorff’s alpha [80] for the three
tasks. We obtained α = 0.70 for component classification, and
α = 0.44 for both link prediction and relation classification.
These values are similar to the IAA obtained by the authors
of the corpus, and confirm the difficulty of the link prediction
task.

Figure 3 shows confusion matrices for component classifi-
cation on CDCP. Unsurprisingly, the most common mistake
regards the prediction of facts as values – VALUE being by
far the largest class in the corpus, and so affected by many
false positives. Such an ambiguity between the two classes has
also been reported during the annotation process.

Interestingly, the confusion matrices of the structured ap-
proach and of our methods are quite similar. We speculate that
our networks may have learned a behavior similar to that pro-
duced by the structured approach, with no need to receive any
of the constraints or information regarding the argumentative

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3275040

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

TABLE II: Results of the argument mining on CDCP. From top to bottom: the best results of structured approaches based on
SVM and RNN, two recent approaches, our previous result obtained with a single training of RESARG, the average scores of
the same architecture trained 10 times, the scores of the ensemble learning setting of the same model, and finally the average
and the ensemble scores of the new attention-based architecture RESATTARG. When previous works do not report a score, we
use the symbol “-”.

Task Link Components Relation
Approach Average Macro VALUE POLICY TEST. FACT REF. Macro REASON EVID. NONE

Structured [23]
SVM 50.0 26.7 73.5 76.4 77.3 71.7 42.5 100.0 - - - -
RNN 43.5 14.6 72.7 73.7 76.8 75.8 42.2 100.0 - - - -

TSP+PLBA [35] 56.5 34.0 78.9 80.7 83.3 79.0 51.6 100.0 - - - -
+ checkpoint ens. 56.7 33.8 79.5 - - - - - - - - -

Transition BERT [46] 59.9 37.3 82.5 83.2 86.3 84.9 58.3 100.0 - - - 98.3
BERT + SA [47] 52 25 81 - - - - - - - - -
RESARG

Single [15] 47.3 29.3 65.3 72.2 74.4 72.9 40.3 66.7 - 30.0 0.0 -
Average 47.8 25.0 70.5 72.3 75.4 73.5 41.4 90.0 41.8 25.1 2.5 97.8
Ensemble 52.1 28.8 75.5 75.4 79.6 76.3 46.4 100.0 42.3 28.6 0.0 98.2

RESATTARG
Average 51.57 27.40 75.75 77.84 80.09 76.42 44.39 100.00 42.69 27.88 2.22 98.03
Ensemble 54.22 29.73 78.71 80.37 82.55 81.19 49.42 100.00 42.95 30.56 0.00 98.32

Fig. 3: Confusion matrices for component classification on CDCP. Columns and rows refer to the classes POLICY, FACT,
TESTIMONY, VALUE, and REFERENCE, respectively. From left to right: Structured Learning approach, our previous result
with RESARG [15], RESARG used in ensemble fashion, and RESATTARG used in ensemble fashion.

structure that are instead injected in the structured approach.

B. AbstRCT

For what concerns AbstRCT, we compare our architectures
against the best methods presented by its authors [48], whose
results are reported in the first rows of Tables III and IV.
We trained and validated our model on the respective splits
of the Neoplasm dataset, using the remainder of the dataset
for testing. For reasons we already explained, the approach
presented by Mayer et al. [48] is not directly comparable with
ours, therefore the comparison can only be qualitative. To ease
comparison with future approaches, we report in Table V some
additional details on our results.

As for component classification, RESATTARG with ensem-
ble yields the best result, performing comparably with the state
of the art. Our approaches obtain substantially better scores
for EVIDENCE than CLAIM on all datasets. Similarly to
the Transformer-based approaches, our architectures perform
better on the mixed test set than on the neoplasm one. We
yield better results on all datasets for what concerns the micro
f1 score. However, for what concerns macro F1, although our
architecture improves the previous approaches on Neoplasm,
it is outperfomed by BioBERT on Glaucoma and Mixed. In re-
lation classification, RESATTARG with ensemble outperforms

all the other models on Neoplasm, and it performs about 2%
worse than the state of the art on Mixed and Glaucoma. It
is interesting to notice that in this task BioBERT is largely
outperformed by our approach. Almost all the metrics confirm
that the introduction of attention and ensemble improve our
architectures. The agreement between the networks RESAT-
TARG is very high for token-wise component classification
in each dataset (0.81 ≤ α ≤ 0.83), and lower but still
acceptable for the other two tasks (α = 0.67 on neoplasm
and α = 0.62 for the other two). The introduction of attention
has importantly reduced the amount of training epochs (-29%)
and the standard deviation. On this corpus, RESARG requires
about half the amount of training epochs it required on CDCP,
while RESATTARG requires a few less.

These good results indicate that our method may be a valu-
able approach with well-structured corpora. Moreover, such
results are attained without resorting to contextual embeddings
or pre-training on domain-related corpora, but by only relying
on non-contextual, general-purpose embeddings.

C. DrInventor

To the best of our knowledge, the only approach tested
on this corpus is the architecture for token-wise component
classification used by Lauscher et al. [21], which makes
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TABLE III: Results of component classification on AbstRCT. We report the F1 score related to the micro average (f1), the
macro average (F1), the EVIDENCE class (E), and the CLAIM class (C) obtained on the 3 test sets. Our approach is not
directly comparable with component classification of [48] and the comparison must be considered qualitative.

Test set Neoplasm Glaucoma Mixed
Level Approach f1 F1 E C f1 F1 E C f1 F1 E C

Token

Transformer-based [48]
BioBERT+GRU+CRF 90 84 90 87 92 91 91 93 92 91 92 91
SciBERT+GRU+CRF 90 87 92 88 91 89 91 93 91 88 93 90

Our approach
RESARG (avg) 91 88 94 83 92 87 95 80 91 88 94 81
RESARG+Ensemble 91 88 94 82 93 88 95 82 92 88 95 92
RESATTARG (avg) 91 89 94 84 92 88 95 81 92 89 94 83
RESATTARG+Ensemble 92 90 95 86 93 89 96 83 93 90 95 85

Component

Our approach
RESARG (avg) 87 86 90 82 88 86 92 79 88 87 91 82
RESARG+Ensemble 88 86 91 82 89 87 93 82 89 88 92 83
RESATTARG (avg) 87 86 90 82 89 86 92 81 89 88 91 84
RESATTARG+Ensemble 89 88 91 84 90 88 93 87 91 90 93 83

TABLE IV: Results of relation classification on AbstRCT.

Test set Neoplasm Glaucoma Mixed
Approach

Transformer-based [48]
BioBERT 64 58 61
SciBERT 68 62 69
SciBERT + Weighted Loss 68 70 70
RoBERTa 67 66 67
RoBERTa + Weighted Loss 68 67 67

Our approach
RESARG (avg) 59 57 60
RESARG+Ensemble 63 62 68
RESATTARG (avg) 66 63 63
RESATTARG+Ensemble 71 68 68

TABLE V: Results of RESATTARG with Ensemble for Link
Prediction and Relation Classification on AbstRCT.

Test set Link Relation SUPPORT ATTACK NONE

Neoplasm 54.43 70.92 52.77 65.38 94.54
Glaucoma 55.23 68.40 54.73 56.00 94.36
Mixed 51.20 67.66 49.62 59.09 94.21

use of GloVe embeddings and a Bi-LSTM followed by a
feed-forward neural network with a single hidden layer as
classifier. We thus consider such an approach as a baseline.
Like Lauscher et al., we reserved 30% of the documents of
the DrInventor corpus as test set, and 20% of the remaining
part as validation set. It is worth remarking that for the tasks of
link prediction and relation classification we are considering
a limited number of pairs.

Tables VI and VII includes a detailed report of our per-
formance on the dataset. We outperform the baseline by a
wide margin. Moreover, we address two additional tasks,
link prediction and relation classification, thus offering a
benchmark for future work. These results confirm once more
that attention and ensemble together give a crucial contribution
to the classifier.

Differently from previous experiments, the agreement be-
tween the networks RESATTARG is similar for all the tasks,

TABLE VI: Results of component classification on DrInventor.
We report the macro F1 score, and the F1 for the classes OWN
CLAIM, BACKGROUND CLAIM, DATA.

Level Approach Macro O C B C D

Token

Bi-LSTM [21] 44.70 - - -
RESARG (avg) 58.27 72.31 51.36 51.14
RESARG+Ens 61.16 75.77 54.24 53.48
RESATTARG (avg) 61.77 73.66 57.70 53.95
RESATTARG+Ens 65.71 78.03 61.58 57.53

Component

RESARG (avg) 60.62 65.65 45.63 70.56
RESARG+Ens 62.97 68.97 48.03 71.90
RESATTARG (avg) 66.19 68.61 56.07 73.89
RESATTARG+Ens 69.64 73.13 59.63 76.15

TABLE VII: Results of RESATTARG with Ensemble for Link
Prediction, and Relation Classification on DrInventor.

Link Relation SUPP CON SEM SAME NONE

43.66 37.72 45.90 6.61 0 98.37

with only α = 0.56 for component classification and α = 0.60
for the remaining tasks. The agreement for Component Clas-
sification is lower than on the previous datasets and may
suggest that this dataset is more challenging. This is the
only case where RESARG requires less training epochs than
RESATTARG, but the difference is neglegible.

Our model is incapable of classifying the SEMANTI-
CALLY SAME relation and has difficulties also with CON-
TRADICTS. That is hardly surprising, if we consider that
these are the two least represented classes in this dataset. It is
less straightforward to understand why the model is better at
classifying BACKGROUND CLAIM rather than DATA, even
if the latter are more represented than the former. We speculate
it may be related to the fact that in some instances data may
amount to citations or text other than proper sentences.
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TABLE VIII: Results of AM on SciDTB. For link prediction, we report the F1 score related to the two classes.

Task Link Component
Level Approach Average Yes No Macro Micro PROP ASS RES OBS MEANS DESC

Token

RESARG (avg) 41.23 38.99 96.20 43.46 54.03 64.18 55.32 52.08 59.57 29.64 0.00
RESARG+Ensemble 47.72 41.67 96.15 53.78 61.11 68.18 62.50 72.00 100.00 20.00 0.00
RESATTARG (avg) 43.58 45.25 96.97 41.90 52.22 60.48 50.68 51.98 55.00 33.02 0.27
RESATTARG+Ensemble 56.17 50.00 97.28 62.35 70.83 78.26 66.67 72.00 100.00 57.14 0.00

Component

RESARG (avg) 40.51 38.99 96.20 42.03 52.53 64.21 52.46 49.98 58.38 27.16 0.00
RESARG+Ensemble 46.51 41.67 96.15 51.35 58.23 65.83 58.80 68.06 100.00 15.42 0.00
RESATTARG (avg) 43.05 45.25 96.97 40.84 51.07 59.94 48.27 51.18 55.56 29.92 0.21
RESATTARG+Ensemble 55.67 50.00 97.28 61.33 70.16 78.67 66.10 70.47 100.00 52.74 0.00

D. SciDTB

Previous experiments on this dataset were conducted us-
ing BiLSTM and CRF, exploiting syntactical, positional, and
discourse features [22]. The authors performed component
classification at token level using BIO tagging and validated it
through a 10-fold cross-validation setting. We have decided to
pursue a different experimental setting: we randomly split the
corpus into train, validation, and test folds with an approximate
rate of 60%, 20%, 20%, imposing the constraint that each
fold must contain at least 1 instance of each component class.
We are aware that such decision makes our results impossible
to compare with previous approaches, but we are deeply
convinced that this is the best approach for the task at hand.
Indeed, since some component classes are under-represented
in the dataset (for example, there are only 11 instances
of OBSERVATION and 7 of DESCRIPTION), some folds
will not contain any instances of them, and therefore some
of the tests will completely ignore those classes, resulting
in unreliable measures. For what concerns link prediction,
previous experiments were conducted also considering non
argumentative relationships, so it is impossible to compare
those results to ours.

Due to the small size of the corpus, the architectures
overfitted on both the task of component classification and
link prediction, obtaining the perfect score on the training set.
The results on the test set are showed in Table VIII. The per-
formance on component classification are comparable to the
measures obtained on DrInventor, and the architecture clearly
have difficulty to recognize MEANS and DESCRIPTION.
Surprisingly, OBSERVATION, the second least represented
class, is always correctly classified. While the use of ensemble
plays a key role, once again it is the combination of attention
and ensemble that leads to the best result. The agreement
between the networks is extremely low (α < 0.30), and the
measure is deeply affected by the error on the DESCRIPTION
class. For what concerns link prediction, similar considerations
can be drawn, except that the agreement is considerably higher,
but still unreliable (0.43 < α < 0.46). The number of
necessary training epochs is higher than in previous corpora
for both the models. Once more, RESATTARG requires less
epochs than RESARG, but the standard deviation for both
models is similarly high.

E. UKP-PE

UKP-PE comes with two strong baselines: the ILP joint
model proposed by the authors of the dataset [4] and the struc-
tured learning approach by Niculae et al. [23]. They heavily
rely on corpus-specific structural features. For example, it is
possible to obtain a 47.7 F1 score for major claim detection
by only using structural information [78]: something that has
never been even attempted in other datasets, because it would
not make sense to do so. We compare our results based on
the original test split of the dataset, using about 10% of the
documents of the training split as a validation split. As shown
in Table IX, our approach is largely below the baselines, with
a difference in F1 scores between 20% and 30%. Both the
use of attention and ensemble bring consistent improvements
with respect to the base model. The agreement between
the networks is also low, with α = 0.57 for component
classification and α = 0.38 for link prediction, assessing them
as nearly acceptable for the first task but unreliable for the
others. The number of training epochs required is the highest
for both models and also the standard deviation is very large.
This suggests that the training process is probably unstable
and it is difficult to make the model converge. Investigating
the type of errors, we see that most CLAIMS are predicted
as PREMISES and that most MAJOR CLAIMS are predicted
as CLAIMS. As previously noted, failure to outperform the
baselines by ignoring dataset-specific structural knowledge is
not suprising, but it gives us a valuable indication of the limits
of a structure-agnostic approach like ours.

F. Analysis of Computational Costs

We shall now turn to the analysis of the computational cost.
Table X reports the average number of epochs required to train
our models on each dataset (we do not include the epochs
of patience during which there was no improvement on the
validation set). Table XI reports the seconds spent by one
epoch of training on a single GPU GeForce GTX 1080 Ti. For
comparison, we also report the average time required to train
a BERT model [37]8 on the same hardware. We considered
two typical training regimes: fine-tuning of the entire model
(BERT fine-tuned), and training of the classification head only
(BERT freezed). Training BERT freezed for one epoch requires
ten times as long as training RESATTARG for one epoch.

8We used the bert-base-uncased model.
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TABLE IX: Results of AM on UKP-PE. For link prediction, we report the F1 related to the positive class. The score of the
negative class corresponds to the score obtained by the NONE class in the task of relation classification. When previous works
do not report a score, we use the symbol “-”.

Task Link Component Relation
Approach Average Macro P C M C Macro SUPPORT ATTACK NONE

ILP joint model 70.6 58.5 82.6 90.3 68.2 89.1 - - - 91.8
structured SVM 68.9 60.1 77.6 90.3 64.5 80.0 - - - -
structured RNN 64.8 50.4 79.3 87.6 62.0 88.3 - - - -

RESARG (avg) 37.0 29.9 44.1 78.5 41.2 12.6 38,2 29.7 1.1 83.9
RESARG Ensemble 37.1 30.4 43.9 80.8 40.2 10.5 38.3 30.8 0.0 84.2
RESATTARG (avg) 43.3 33.5 53.0 78.5 42.0 38.7 40.0 32.9 0.0 87.0
RESATTARG Ensemble 44.4 36.3 52.5 81.6 42.1 33.9 41.6 36.1 0.0 88.6

CDCP AbstRCT DrInventor SciDTB UKP-PE

RESARG 190±95 105±73 29±11 202±80 212±232
RESATTARG 84±39 75±45 33±7 159±87 183±128

Difference -106 -30 +3 -43 -29
Difference as % -56% -29% +11% -21% -14%

TABLE X: Average number of epochs required for training
for each dataset and standard deviation.

CDCP AbstRCT DrInventor SciDTB UKP-PE

BERT fine-tuned 1,133 864 4,240 37 334
BERT freezed 421 319 1,535 14 122

RESARG 8 4 20 <1 3
RESATTARG 34 19 62 1 10

TABLE XI: Average number of seconds required for each
training epoch.

Training BERT fine-tuned for one epoch requires thirty times
as long. The total cost of training will depend on the epochs
required to reach the result. Standard practice when using
BERT models in AM is to fine-tune for just 3 epochs (see,
e.g., [48] and references therein). However, 3 epochs is a lower
bound. For instance, the best result on the CDCP dataset so
far have been obtained by fine-tuning a BERT-based model
for 50 epochs with early stopping strategy [46]. These results
could not be outperformed by training a plain BERT model
for component classification for 3 epochs only [47] Moreover,
transformer models like BERT often are but the backbone of
more sophisticated AM architectures. Clearly, a backbone with
such a large computational cost per single epoch greatly limits
the possibility to test different architectures or to perform
model selection and hyperparameter tuning. In conclusion,
training a single RESATTARG architecture requires less time
than fine-tuning a BERT model for 3 epochs (2856 vs 3399
seconds), let alone 50 epochs. Moreover, an ensemble of
smaller architectures could better exploit parallel training and,
importantly, can have a much lower computational footprint
at inference time (see Section III-D: 110M parameters for a
plain BERT model vs 1.4M parameters for an ensemble of 10
RESATTARG models).

G. Analysis of Attention

The attention module, besides improving the overall perfor-
mance of our architecture, can also be used to enhance the

VALUE Nobody likes to be in debt and

have bill collectors chasing them ,

TESTIMONY Not every debt collection agency is

like that .

FACT as soon as someone says stop

calling , STOP .

POLICY We are making an honest effort to

get current and stay current ,

Fig. 4: Visualization of the attention score given to some
sentences, along with their predicted class. Words in blue are
the ones that receive more attention.

TABLE XII: Top 20 tokens of CDCP by average attention.

General Case Link Case
Word Score Word Score

?! 59 Please 69
Please 46 Surely 36
Seriously 41 thats 34
professionals 37 phased 34
Nobody 36 Depending 32
Voice 33 Owing 30
Make 31 Continuing 30
phased 31 relentless 29
Enough 29 provider 29
mislead 29 spam 28
Calling 29 danger 28
fashioned 29 whenever 27
thats 29 Luckily 27
Not 29 refinancing 27
Unethical 28 massive 26
Everything 27 This 25
Two 27 hung 25
stone 27 finds 25
particularly 26 Express 24
nor 26 Emails 24

interpretability of the underlying neural model. To this aim,
the normalized weights as attributed by the module to each
token are typically used as indicators of which words does the
model consider important for the tasks. Indeed, whether this
mechanism is really helpful for improving the explainability
of neural models is still a matter of discussion [28], [81], [82].
Figure 4 provides some visualizations of such scores.
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TABLE XIII: Top 20 tokens of SciDTB by average attention.

General Case Link Case
Word Score Word Score

selectional 13 Performance 23
However 12 However 13
comparison 12 Firstly 12
word-based 12 Unlike 12
State-of-the-art 11 word-based 11
different 11 one 11
Second 11 literature 10
one 10 linguistics 10
This 10 arguments 10
arguments 10 themselves 10
Firstly 10 Unfortunately 10
compare 10 Deceptive 10
lexico 10 Experiments 10
propose 10 The 10
Rich 10 Even 10
comparatively 10 comparatively 10
Even 10 Compared 10
While 10 advantages 9
straight-forward 10 improve 9
improve 10 detection 9

In an attempt to assess the impact of attention on inter-
pretability, we analyzed RESATTARG by measuring which
are the tokens that, on average, receive the most attention.
Tables XII and XIII report the 20 tokens from the CDCP and
SciDTB corpora, respectively, that receive on average the most
attention both in the general case (leftmost part in the tables),
and in case the network predicts a link (rightmost part).

This kind of analysis gives mixed results. In the general
case, tokens should give us hints about which elements are
used by the network to distinguish between different compo-
nents. The CDCP corpus stands out since in the first position
there is the punctuation sign ”?!”. This sign as well as other
tokens seem good indicators of emotional involvement (e.g.,
also “please”, “seriously”). We speculate that they may be
useful for the network to discriminate objective components
from subjective ones (e.g., TESTIMONIES from VALUES,
CLAIMS from EVIDENCES). These results seem to confirm
previous findings, regarding the importance of subjectivity
analysis [83] for the task of argument mining [84]. For
what concerns link prediction, among the top-ranked tokens
some discourse markers can be observed (e.g., “depending”,
“owing”, “whenever”, “firstly”, “second”, “while”, “even”),
as well as verbs in present continuous form, but also words
that do not seem correlated with the task, such as “spam” or
“phased”. These results provide an additional example of the
ambivalence of the study of attention weights to obtain an
explanation of classification performed by black-box models.

VII. CONCLUSIONS

In this paper we presented RESATTARG, a new neural
architecture for argument mining based on residual networks,
multi-task learning, neural attention, and ensemble learning.
Our approach does not rely on dataset-specific architectural
choices such as structural features or encodings. On the
contrary, it only uses general-purpose embeddings and a
broadly applicable distance feature, making it suitable for any
domain and argumentative model. Moreover, RESATTARG is

considerably smaller than other state-of-the-art approaches,
making it less expensive to train, and more sustainable from
an environmental perspective [6], [7].

In spite of its lower computational footprint, RESATTARG
equals or outperforms state-of-the-art architectures on a va-
riety of tasks and datasets, with a notable exception of a
dataset whose structural properties are crucial for a correct
identification of argumentative components. We conducted
ablation studies to evaluate the performance gain yielded by
the attention module and the ensemble learning addition and to
compare to our previous work [15]. The use of ensemble also
increases the robustness of this approach against the intrin-
sic randomness of neural architecture training. The attention
module could be instrumental to interpreting the behavior of
the model, although our analysis gives mixed results on that.

The main limitations of RESATTARG are its limited scala-
bility to large documents, and its failure to accommodate task-
specific structural constraints. The latter is a design choice,
and our results show that highly regular datasets and tasks
are best address with dedicated architectures. Alternatively,
neural-symbolic approaches [24], [85] may enable a systematic
and modular integration of background knowledge. Such a
knowledge would contribute during the optimization process,
so as to influence and improve the training, without compro-
mising the generality of the neural architecture. However, they
risk exasperating the existing scalability issues [86]. When
facing very high numbers of argument pairs, we addressed
scalability by limiting the range of argumentative relation-
ships using a fixed-size window, which, although cognitively
plausible, and in agreement with annotated dataset statistics,
meant imposing an additional constraint on the model of the
argument. Alternatives to our pair-based approach include
multiple-choice classifiers [48], pointer networks [34], and
sequence labelling [18]. Such methods should scale better,
but they enforce a constraint on the argument model as well,
imposing that any component can have only one outgoing
relationship, which makes them unsuitable to some corpora.
Finally, since all the datasets have a strong unbalance, the use
of weighted loss [48] or augmentation techniques [87], [88]
may contribute further performance gain.
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