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Abstract: Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently
considered one of the most effective nutritional antioxidants for counteracting free radical-related
diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of
curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in
neurodegeneration. Although its poor systemic bioavailability after oral administration and low
plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative
delivery formulations have been developed in order to overwhelm these limitations. This review
provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system
as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore,
pharmacokinetic properties and concerns about curcumin’s safety profile have been addressed.
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1. Introduction

Curcumin (1,7-bis[4-hydroxy 3-methoxy phenyl]-1,6-heptadiene-3,5-dione) is a polyphenol
compound contained in the rhizome of Curcuma longa Linn. Indeed, turmeric contains several
polyphenols, the most abundant being curcumin (~77%), demethoxycurcumin (~15%), and
bis-demethoxycurcumin (~3%) [1]. Considering that curcumin prevails over the other congeners, most
of the literature in this field has explored the beneficial effects of this compound, although a few papers
have studied the physical and biological properties of related curcuminoids [2,3].

In addition to the culinary use due to its spicy and pleasant taste, curcumin has been considered
for thousands of years, by traditional Indian medicine, as an effective remedy in the treatment of several
diseases [4–6]. Chemically speaking, the curcumin structure presents two aromatic rings holding
o-methoxy phenolic groups, linked by an α,β-unsaturated β-diketone moiety (Figure 1) [7].

These three reactive functional sites are responsible for the multiple different biological effects
of curcumin. Indeed, literature data have reported that the antioxidant activity of curcumin as
a free radical scavenger is mediated primarily by the phenolic groups, which undergo oxidation
through electron transfer and hydrogen abstraction mechanisms (reviewed in [8]). On the other hand,
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many studies have demonstrated that curcumin exerts beneficial effects by enhancing the cell stress
response in several experimental models, thus supporting the adjuvant role proposed for this dietary
supplement in free radical-derived disorders, mainly neurodegenerative diseases [6,9]. In this light,
several research studies underlined the pivotal role played by the heme oxygenase/biliverdin reductase
system (HO/BVR) as a determinant of curcumin’s neuroprotective effects (see below). Unfortunately,
despite the huge amount of preclinical studies confirming the pleiotropic effects of curcumin due to HO
modulation, the clinical evidence is not strong enough to include chronic curcumin supplementation
as an effective strategy to prevent or contrast neurodegeneration. One of the reasons behind the
dichotomy between preclinical and clinical results has been identified in curcumin pharmacokinetics
in humans; first of all, the poor bioavailability after ingestion and the effective concentrations reached
in tissues. However, several efforts have been made over recent years to overcome these limitations,
with encouraging results.

The aim of this review is to summarize the preclinical and clinical outcomes which have appeared
in the scientific literature, supporting or contrasting the claimed therapeutic efficacy of curcumin in
neurodegeneration. The reason why the focus has been on the HO/BVR system depends on the several
lines of evidence highlighting its role as a determinant of curcumin neuroprotection. Finally, some
safety issues related to curcumin supplementation have been also reported.
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2. The Heme Oxygenase/Biliverdin Reductase Pathway

Heme oxygenase catalyzes the oxygen- and NADPH-dependent oxidation of hemoproteins’
heme moieties at the alpha-meso carbon bridge, yielding equimolar amounts of ferrous iron, carbon
monoxide (CO), and biliverdin (BV), the latter being further reduced into bilirubin (BR) by biliverdin
reductase [10,11]. Heme oxygenase exists as two main isoforms, named HO-1 and HO-2. Although
these isozymes share the same mechanism of action, their regulation and distribution are quite different.
Heme oxygenase-1 is the inducible isoform and both its gene transcription and protein levels increase
in response to free radicals, e.g., reactive oxygen species and reactive nitrogen species (ROS and RNS,
respectively) [11]. Furthermore, HO-1 is the major isoform detected in both the liver and spleen, even if
it is expressed, at lower levels, in some brain areas, such as the hippocampus and hypothalamus [11,12].
Conversely, the constitutive isoform HO-2 is involved in the physiological turnover of heme and is
mainly detectable in neurons and testes [13,14].

The cytoprotective effects of the HO/BVR system depend on several factors: (i) the degradation
of heme, which may become toxic under unbalanced redox conditions; (ii) the generation of CO,
which improves mitochondrial biogenesis, counteracts NADPH oxidase-induced ROS generation,
activates pro-survival systems (e.g., the protein kinase B/Akt and extracellular signal-related kinase
(ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathways), modulates the release of
neuroinflammatory mediators (e.g., interleukin-1β and prostaglandins), dilates cerebral and peripheral
vessels, and inhibits platelet aggregation; (iii) the antioxidant and antiviral activities of BR [14–20].
Interestingly, the modulation of both mitochondrial respiratory chains and NADPH oxidase accounts
for CO’s antiproliferative effects [21].

Under oxidative stress and inflammatory conditions, several transcription factors, including
nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor k-light-chain-enhancer of activated
B cells (NF-kB), and hypoxia-inducible factor 1 (HIF1), are established as pivotal regulators of HO-1
induction in the brain [22,23]. Among these transcription factors, Nrf2 plays the conservative role of
a positive regulator of HO-1 induction in the development and progression of many diseases [24].
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Conversely, a few negative regulators, such as Keap-1 and Bach1, can modulate the crosstalk between
the Nrf2 and HO-1 [25,26].

3. Curcumin, Neuroprotection, and the HO/BVR Pathway

Over the last 15 years, many papers have appeared in the scientific literature dealing with the
cytoprotective effects of curcumin through the up-regulation of HO-1 (see Table 1).

Table 1. Contribution of HO-1 up-regulation to the biological effects of curcumin in preclinical in vitro
and in vivo models.

Preclinical Model Curcumin
(Concentration or Dose) Effect(s) Reference(s)

Endothelial cells 2–30 µM
Enhancement of cellular resistance against
oxidative damage.
Alleviation of vasodilator dysfunction

[27–30]

Renal tubule cells 1–50 µM Cytoprotection.
Inhibition of fibrosis. [31–33]

Anti-Thy 1
glomerulonephritis rats

Nephrectomized rats

100 mg/kg i.p.
75 mg/kg per os

Reduction of renal fibrosis and proteinuria.
Inhibition of lipid peroxidation, inflammation
and renal fibrosis. Amelioration of renal
function.

[34,35]

Hepatocytes 1–50 µM Cytoprotection against cold/rewarming- or
ethanol-induced damages. [36–38]

Monocytes 1–20 µM Activation of ARE-modulated genes via PKCδ.
Inhibition of inflammation. [39,40]

Macrophages 0.5–50 µM Inhibition of inflammation. [41–43]

Cardiac myoblasts 5–30 µM Inhibition of apoptosis.
Cytoprotection against cold-storage damage. [44,45]

Smooth muscle cells 1–20 µM Inhibition of proliferation. [46]

LPS-treated mice 30 mg/kg i.p. Prevention of pulmonary sequestration of
neutrophils. [47]

Pancreatic islets 6–10 µM
Inhibition of islet damage during
cryopreservation.
Improvement of insulin secretion.

[48,49]

Rat testicular injury

200 mg/kg i.v.
200 mg/kg per os for
30 days before and
45 days after injury.

Inhibition of lipid peroxidation and increase in
testicular spermatogenesis.
Reduced lipid peroxidation; improvement of
serum testosterone level.

[50,51]

Fibroblasts 5–25 µM Induction of apoptosis and modulation of
pathological scar formation. [52]

High-fat-diet-fed mice 50 mg/kg per os Improvement in muscular oxidative stress and
glucose tolerance. [53]

Bladder cancer cells 10 µM Modulation of cancer cell proliferation. [54]

Breast cancer cells 5–20 µM Inhibition of tumor invasion. [55]

Hepatoma cells
expressing HCV 5–25 µM Inhibition of HCV replication. [56]

Lung cancer cells
expressing influenza

virus
0.1–10 µM Inhibition of virus-induced lung injury. [57]

Keratinocytes 1–30 µM Anti-inflammatory activity. [58]

Metabolic syndrome in
rats 5 mg/kg i.p. for 6 weeks

Prevention of hyperinsulinemia and
amelioration of endothelial-dependent
relaxation.

[59]

ARE, antioxidant responsive element; HCV, hepatitis C virus; i.p., intraperitoneal route of administration; i.v.,
intravenous route of administration; PKC, protein kinase C.
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The following are the main studies supporting the neuroprotective effects of curcumin via the
modulation of the HO/BVR pathway.

Scapagnini et al. [60] have shown how curcumin (5–25 µM) up-regulates HO-1 in cultured
rat hippocampal neurons and, thus, the polyphenol enhances the cell stress response against
glucose oxidase-mediated oxidative damage. Shin et al. [61] reported that curcumin (200 mg/kg
by intraperitoneal route (i.p.)) reduced kainic acid-induced seizures in mice through the increased
expression of HO-1 and endothelial nitric oxide synthase (eNOS) in hippocampal astrocytes, whereas
Park and Chun [62] demonstrated that curcumin (0.1–10 µM) reduces oxidative stress, apoptosis, and
mitochondrial damage through the direct involvement of HO-1 in BV-2 microglial cells.

These early studies were followed by several others describing the neuroprotective effects of
curcumin in neurovascular disorders. Curcumin (100 mg/kg i.p. or 5–30 µM), via HO-1 over-expression,
was neuroprotective in a rat model of focal ischemia [63] and in rat cerebellar granule neurons exposed
to hemin [64]. In an experimental system of rat hypoxic-ischemic brain injury, curcumin (150 mg/kg
per os for three days) overexpressed HO-1 with a mechanism related to Nrf2 nuclear translocation [65].
In addition, curcumin (1–100 µM) has been shown to up-regulate HO-1 and, through this mechanism,
it prevents oxygen glucose deprivation-induced damage in rat brain microvascular endothelial cells,
a model mimicking the blood–brain barrier (BBB) function [66].

With regard to neurodegenerative diseases, in a rodent model of Alzheimer’s disease (AD), e.g., the
SAMP8 mouse, 500 mg/kg of curcumin in a five month diet increased HO-1 gene expression, together
with regulators of mitochondrial function, e.g., the translocator protein (TSPO) [67]. Similarly, by
up-regulating HO-1, curcumin (1.25–20 µM) inhibited programmed cell death and prevented the loss of
mitochondrial function in SH-SY5Y neuroblastoma cells transfected with appoptosin, a pro-apoptotic
protein overexpressed in AD [68]. Concerning neurodegenerative diseases, curcumin (100 mg/kg
twice a day for 50 days intragastrically) contrasted extrapyramidal symptoms and increased HO-1
expression, through Akt/Nrf2 phosphorylation, in the substantia nigra pars compacta of rats treated
with rotenone, a pharmacological tool able to destroy dopaminergic neurons and, therefore, used to
induce experimental Parkinson’s disease (PD) [69]. It is no longer a hypothesis that the cytoprotective
effects of curcumin against neuroinflammation depend on the inhibition, HO-1-mediated, of cytokine
release and iNOS overexpression in rat microglia [70,71].

Finally, curcumin (15 µM or 200 mg/kg for four days) has been shown to counteract both hydrogen
peroxide-induced damage in human retinal pigment cells [72] and cisplatin-induced ototoxicity in
outer hair cells [73].

As far as the modulation of HO-2 by curcumin and the potential neuroprotective features, only
limited evidence is available. As shown by Yin et al. [74], curcumin (5 µM) up-regulated HO-1 but
down-regulated HO-2 in APPswe transfected SH-SY5Y. In the same experimental system, curcumin was
able to activate phosphoinositide 3-kinase (PI3K) and Akt [74]. By keeping this in mind, it is necessary
to draw the conclusion that in selected experimental settings, the neuroprotective outcomes of curcumin
strictly depend on the fine-tuning of the HO-1/HO-2 balance, in concert with the modulation of other
pro-survival systems, such as PI3K and Akt.

An accurate analysis of both previous paragraphs and Table 1 has drawn attention to the fact
that the concentrations of curcumin responsible for protective effects on various organs and tissues,
primarily on the brain, were obtained with polyphenol concentrations in the micromolar size range.
That said, curcumin, per os, has about a 60% bioavailability, due to a marked first-pass metabolism [9,75].
This implies a low concentration of curcumin in both blood and tissues, even at high doses. Curcumin
plasma levels up to 0.16 µM have been detected in humans treated with polyphenol at supra-maximal
doses (10–12 g/day), whereas at the lowest doses, curcumin (450–3600 mg/day for one week) reached
the plasma concentration of about 0.003 µM [76,77]. In chronic administrations, curcumin (1–4 g/day
for six months) exhibited plasma concentrations in the range of 0.06–0.27 µM [78]. With regard to
tissue levels, the available data are quite limited. In patients suffering from colorectal cancer and
treated with curcumin (1.8 to 3.6 g/day for seven days), concentrations of polyphenol in colorectal
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tumor tissue and normal tissue were about 7 nmol/g and 20 nmol/g, respectively [79]. These data lead
to the conclusion that the plasma concentrations of curcumin that can be reached in the plasma, even
after high dose chronic supplementation, are at least two–three orders of magnitude lower than those
at which the polyphenol has shown therapeutic effects in in vitro preclinical models. The calculation of
the concentrations of curcumin in the tissues is more difficult and may appear less accurate. In the brain,
which is protected by BBB, the achievable curcumin concentrations are even lower than those detected
in the blood and other tissues. These analytical data have important consequences also from a functional
point of view. In subjects with AD, supplementation with curcumin (1–4 g/day for six months) reduced
neither peripheral biomarkers of inflammation (e.g., isoprostanes) nor amyloid-β-peptide (Aβ) serum
levels; importantly, curcumin did not improve cognitive functions—evaluated through the mini-mental
status examination test—in AD patients [78]. Concerning the contribution of the HO/BVR system to
the cytoprotective effects of curcumin, the study by Klickovic et al. [80] is significant, showing how 10
healthy male subjects treated with 12 g curcumin per os, did not have any significant induction of HO-1
gene and protein in peripheral blood mononuclear cells up to 48 h from treatment.

In order to overcome limitations due to the poor bioavailability after ingestion and the low
plasma concentrations, new formulations of curcumin complexed with liposoluble matrices have been
developed (for an extensive review on this topic see [81]) (Table 2).

Table 2. The main pharmacokinetic parameters of curcumin and some of its novel formulations
(adapted from [82]).

Formulation AUC Cmax Tmax T1/2

Curcumin ~312 ng/mL·h a ~ 245 nM a 0.5 h a ~1.0 h a

Curcumin-PLGA ~3224 ng/mL·h b ~ 710 nM b 2.0 h b

Curcumin-TMC ~12,760 ng/mL·h c ~3.3 µM c 2.0 h c ~12 h c

Curcumin-SLN ~42,000 ng/mL·h d ~38 µM d 0.5 h d

a Male Sprague-Dawley rats treated with 250 mg/kg curcumin per os; b male Sprague-Dawley rats treated with
100 mg/kg curcumin-PLGA per os; c Balb/c mice treated with 50 mg/kg curcumin-TMC per os; d male Wistar rats
treated with 50 mg/kg curcumin-SLN per os; AUC, area under the curve; Cmax, peak plasma concentration; PLGA,
poly(lactic-co-glycolic) acid; SLN, solid lipid nanoparticles; Tmax, time necessary to reach the Cmax; T1/2, half-life;
TMC, N-trimethyl chitosan.

Among the matrices complexed with curcumin, the ones that are better characterized, from
a pharmacokinetic viewpoint, are poly(lactic-co-glycolic) acid (PLGA) derivatives, solid lipid
nanoparticles (SLN), and N-trimethyl-chitosan (TMC) [82,83]. Preclinical studies in rodents (Table 2)
have shown how the complexation of curcumin with these different carriers increases the Cmax of both
SLN and TMC (155 times and 13 times greater than curcumin, respectively) markedly, suggesting a
more effective absorption of the active ingredient [82]. Furthermore, the increase in the area under the
curve demonstrates how the presence of SLN or TMC can improve curcumin bioavailability by about
135 times and 41 times, respectively [82]. Finally, an approximately 10-fold increase in the half-life
(T1/2) of curcumin in the case of formulations based on SLN and TMC implies an extension of the
time of persistence of the active agent in the body and, therefore, a more prolonged pharmacological
action [82]. Unfortunately, no studies are available in the literature on the interaction of such novel
curcumin liposoluble formulations and HO. Indeed, few studies which have been carried out using
novel gelatin-based water-soluble formulations of curcumin and remarkable results have been reported.
The oral administration of water-soluble curcumin (2–10 mg/kg per os for 45 days) increased plasma
insulin levels and improved glucose absorption in diabetic rats by up-regulating HO-1 expression
in the pancreas and liver [84]. The same authors supported the beneficial effects of water-soluble
curcumin (2–10 mg/kg per os up to one week) in an experimental model of erectile dysfunction. At a
dose of 10 mg/kg, water-soluble curcumin over-expressed HO-1 and soluble guanylyl cyclase (sGC) as
early as 1 h after treatment, with a concomitant increase in intracavernosal pressure. These effects were
maintained over one week from treatment [85].
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Although not strictly related to any modulation of the HO system, it is worth mentioning a
novel formulation of curcumin complexed with exosomes; these latter are extracellular microvesicles
(diameter ranging from 30 to 100 nm) able to carry several types of agents, thus enhancing their
bioavailability [86]. Interestingly, curcumin-exosome has been shown to improve cognitive function in
a preclinical model of AD, through the inhibition of tau hyperphosphorylation via Akt activation [87].

4. Curcumin’s Safety Profile

In any case, regardless of whether it is pure curcumin or new liposoluble or water-soluble
formulations, it is worth considering the possibility that the administration of high doses of curcumin
causes toxic effects. An organic extract, called turmeric oleoresin, containing a high percentage of
curcumin (79–85%), at the concentration of 50,000 ppm (equivalent to 2600 mg/kg and 2800 mg/kg in
male and female rats, respectively) has been shown to increase the incidence of ulcers, hyperplasia,
and inflammation in the forestomach, cecum, and colon of male and female rats supplemented for
two years [88]. Increased evidence of small intestine carcinomas in male mice supplemented with
curcumin (0.2 mg/kg) has also been described [88]. Furthermore, curcumin (0.5–2% with the diet for
either 2 or 12 weeks) exhibited iron-chelating activity in mice, thus suggesting its involvement in the
onset of hypochromic anemia [88]. Finally, curcumin (1 g or 4 g per os for one or six months) modestly
increased cholesterol plasma levels in Chinese subjects aged 50 years or older [89]. Regarding the
interaction with drug-metabolizing enzymes, curcumin has been shown to inhibit not only several
subtypes of cytochrome P450 (CYP), such as CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and
CYP3A4, but also uridine dinucleotide phosphate glucuronosyltransterases (UGT), sulfotransferase,
glutathione-S-transferase, and organic anion transporting polypeptides (OATP) [9,75,90]. Among
the drugs metabolized by these enzymes, whose blood levels may be altered by curcumin and for
which further research is needed to assess the effects in cases of chronic supplementation, there are
midazolam, talinolol, nifedipine, rosuvastatin, docetaxel, warfarin, clopidogrel, and norfloxacin ([90]
and references therein).

In April 2017, the European Food Scientific Agency (EFSA) pointed out that there is no scientific
evidence strong enough to justify the use of curcumin in inflammatory diseases, such as osteoarthritis
and rheumatoid arthritis [91].

5. Conclusions

In this review, we have summarized the conflicting preclinical and clinical results on the
neuroprotective effects of curcumin. Furthermore, we have made our best efforts to provide a critical
analysis of the pharmacological issues responsible for this divergence, which have precluded the
full development of curcumin supplementation as a useful strategy in neurodegenerative diseases.
The intriguing results, in terms of improved absorption and bioavailability, obtained with lipid- and
water-soluble curcumin formulations, should prompt researchers to transfer this technology to clinical
studies, with the hope of overwhelming the pharmacokinetic limitations experienced with standard
curcumin. The contribution of pharmaceutical companies to scale up and transpose into clinics these
encouraging preclinical results is more than welcome.
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