
1.  Introduction
The evaluation of volcanic hazard associated with lava flows depends in large part on lava flow forecasting 
accuracy. For effusive eruptions, the most important questions are how rapidly will flows advance, how 
large an area will be covered by lava, and how far will the furthest lavas flow. The effusion rate of lava from 
an eruption vent is the primary quantity controlling the advance rate, length, and coverage of lava flows. 
For this reason much effort is devoted to the evaluation of this quantity (e.g., Calvari & Pinkerton, 1999).

Effusion rate in basaltic eruptions typically depends on time: there is an initial, relatively fast increase fol-
lowed by a much slower decrease until the eruption vanishes (e.g., Del Negro et al., 2013; Vicari et al., 2011). 
The observed dependence on time of effusion rate has been explained by the decrease of pressure gradient 
in the volcanic conduit due to progressive emptying of the magma chamber (Wadge, 1981), and by the me-
chanical erosion of the conduit wall produced by magma flow (Piombo et al., 2016).

During effusive eruptions, Lautze et al. (2004) observed changes in the effusion rate having durations much 
shorter than the total duration of the eruption. Effusion rate and degassing data show variations occurring 
on timescales of hours to months (e.g., Voight et al., 1999) due to fluctuations in the supply rate from the 
magma chamber and/or conduit processes that interfere with an approximately constant supply rate: flow 
oscillations may result from temperature changes in a fluid with a temperature-dependent viscosity (White-
head & Helfrich, 1991), small chamber overpressures (Woods & Koyaguchi, 1994), rapid changes in the 
width of the conduit outlet by viscous flow of wall rocks (Ida, 1996), the dependence of viscosity on the vola-
tile content of magma (Wylie et al., 1999), high frequency pressure fluctuations due to the ascending magma 
column surrounded by an annulus of compressible foam (Jellinek & Bercovici, 2011). Ripepe et al. (2002) 
indicated that mass flow may proceed in a pulsatory manner. The positive correlation of degassing and 
explosive activity suggests that they are due to pressure changes in the conduit associated with changes in 
volatile content (Gonnermann & Manga, 2013; Sparks, 2003). This pulsatory style was observed during the 
2018 highly destructive eruption occurred on the lower flank of Kı̄lauea Volcano, Hawaii: the eruption rate 
exhibited cyclic behavior on multiple time scales (Patrick et al., 2019) and, in addition, the main flow was 
exceptionally well monitored (Neal et al., 2019). Patrick et al. (2019) concluded that short-term fluctuations 
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were controlled by changes in outgassing efficiency of the lava at shallow depths, while long-term fluctua-
tions were controlled by pressure transients due to the summit caldera collapse of Kı̄lauea Volcano.

In volcanic areas, rocks near magmatic sources are considerably heated, producing effective viscosities or-
ders of magnitude lower than typical crustal values. Because of the relatively high temperatures in these 
areas, observed deformation can be more properly modeled by a viscoelastic rheology (e.g., Bonafede 
et al., 1986; Dragoni & Magnanensi, 1989; Filippucci et al., 2013; Folch et al., 2000; Newman et al., 2001; 
Piombo et al., 2007; Tallarico et al., 2011).

In general, volcanic conduits have irregular cross-sections (e.g., Calvari & Pinkerton,  1999). Dynamical 
and thermal aspects of lava conduits were studied assuming cylindrical shapes with circular and elliptical 
cross-sections (e.g., Dragoni et al., 2002; Dragoni & Santini, 2007; Dragoni & Tallarico, 2008; Sakimoto & 
Zuber, 1998).

Dragoni and Tallarico (2019) investigated the effects of pressure oscillations in a volcanic conduit filled by 
magma. Considering a cylindrical conduit with elliptical cross-section, embedded in an elastic medium, 
they showed that deformation of the conduit wall can produce oscillations in magma flow rate, hence in 
effusion rate at the volcanic vent; they found that the amplitude of flow rate oscillations is remarkable only 
in the case of long and narrow volcanic fissures.

In the present paper, we study pressure oscillations in a volcanic conduit embedded in a viscoelastic medi-
um. Due to the high temperatures induced by magma in the surrounding rocks, a viscoelastic rheology is 
more appropriate to describe their mechanical behavior. In particular, we assume that conduit deformation 
is controlled by the rheological properties in the proximity of the conduit itself and represent the medium 
as a homogeneous and isotropic Maxwell body.

The aim of the present paper is to calculate the changes in the area of the conduit cross section due to pres-
sure oscillations and the ensuing changes in magma flow rate and in the effusion rate at the Earth’s surface.

2.  The Model
We assume that the conduit is a right cylinder filled by magma and embedded in an isotropic viscoelastic 
medium. The medium is a Maxwell body with Lamé constants λ and μ and viscosity η. The axis of the con-
duit is the z-axis of a Cartesian coordinate system. We assume that the conduit cross-section is an ellipse 
with semi-major axis a and semi-minor axis b. The equation of the conduit wall is then

 
2 2

2 2 1x y
a b

� (1)

with focal distance

 2 2c a b� (2)

and eccentricity


c
a

� (3)

In order to solve the problem, it is appropriate to use elliptic cylindrical coordinates (α, β, z), with

     cosh cos , sinh sin ,x c y c z z� (4)

where α ≥ 0 and 0 ≤ β < 2π. In these coordinates, the conduit wall is defined by the equation

  1� (5)

where
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 1 arccosh a
c� (6)

For the sake of simplicity, we assume that the conduit is embedded in an unbounded medium, that is rea-
sonable if we consider a conduit stretch that is not too close to the eruption vent.

We suppose that at t = 0, an overpressure develops in the conduit, oscillating according to the equation

 0( ) ( )sinp t p H t t� (7)

where H(t) is the Heaviside function, p0 is the amplitude, and ω is the frequency of oscillations. If τ0 is the 
period, then





0

2
� (8)

If pressure changes are slow and strain is small, the quasistatic, small-strain theory can be applied. The 
equilibrium equation is

   0σ� (9)

where σ is the stress produced by the overpressure p(t). The axial symmetry of the system suggests that the 
uα and uβ components of displacement depend only on α and β. As to the uz component, we assume that 
it vanishes, because the vertical deformation produced by magma drag at the conduit wall is negligible 
compared to the horizontal deformation due to the lava pressure and its change. This is a state of plane 
strain (e.g., Landau & Lifshits, 1970), implying that no quantity depends on z. Accordingly, the σαz and σβz 
components of stress vanish.

The solution for a homogeneous elastic medium surrounding the volcanic conduit has been given in Drag-
oni and Tallarico (2019). In the case of a Maxwell viscoelastic medium, deformation of the conduit wall is 
controlled by the rheological parameters λ, μ, and η, according to the constitutive equation

  

 

    
 

  1 ( ) ( ) 2
3

Tr Trσ σ σ I e I e� (10)

where e is the strain tensor and dots indicate differentiation with respect to time. This equation expresses 
the fact that viscoelastic behavior of rocks mainly concerns deviatoric stress (e.g., Peltier, 1974).

We assume a stationary temperature field around the conduit. If χ is the thermal diffusivity of the medium, 
this condition is reached at a distance L from the conduit wall after a time





2

4
L

� (11)

For χ ≃  10−6  m2/s, steady state is achieved after less than 3 days from the eruption beginning inside a 
1-m-thick layer around the conduit.

The three rheological parameters λ, μ, and η are temperature dependent. According to Dragoni and Tallar-
ico (2008), temperature T around a cylindrical conduit with elliptical cross section is a linearly decreasing 
function of the distance α from the conduit axis, given by

 
 


  


1

1 1 2
2 1

( ) ( )T T T T� (12)

where T1 is the wall temperature and T2 is the ambient temperature at distance α2 ≫ α1.

The Lamé constants λ and μ are slowly decreasing functions of temperature (e.g., Ji et al., 2010), that can 
be approximated as
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   2 2( ) ( )T k T T� (13)

where λ2 = λ(T2) and k is a constant. A similar equation can be written for 
μ. The dependence of viscosity on temperature is given by the Arrhenius 
formula

 ( )
E

RT
DT A e� (14)

where AD is the Dorn parameter, E is the activation energy and R is the 
gas constant (e.g., Ranalli, 1995).

Figure 1 shows a contour graph of temperature (a) and viscosity (b) as 
functions of x and y for b = 1 m and a = 25 m and for a choice of values of 
parameters (Table 1). At the conduit wall viscosity is about 1013 Pa s. We 
note that temperature is slowly decreasing away from the conduit wall.

Introducing (12) into (13) and (14), we can draw graphs of the ratios λ/λ1 
(or μ/μ1) and η/η1 as functions of α/α1 (Figure 2), where the subscript 1 
indicates values at the conduit wall. It can be seen that the three parame-
ters are slowly increasing away from the conduit wall.

We can reasonably assume that conduit deformation is mostly affected 
by the rheological properties in the vicinity of the conduit itself. In this 
region, according to the previous considerations, we may assume that the 
rheological parameters have constant values, corresponding to tempera-
ture T1: then we set λ = λ1, μ = μ1, and η = η1.

Considering the Lamé constants and the viscosity as uniform in space has 
the advantage that we can apply the correspondence theorem to the elas-
tic solution and can easily obtain the solution of the viscoelastic problem 
(e.g., Fung, 1965).

3.  Elastic Solution
The displacement has components uα and uβ and the nonvanishing com-
ponents of stress are σαα, σββ, σαβ, and σzz. The boundary conditions are 
given by continuity of traction at the conduit wall, that is,

        1 1( , ) , ( , ) 0p� (15)

From Dragoni and Tallarico (2019), the displacement components are




  

 

 




2
1 1 2 3

2 2

( )cosh2 ( ) ( )cos2( , , )
4 sinh cos

c f t f t e f tu t� (16)

� (17)

where

� (18)


 

 



2

2 2

( )sin2( , , )
4 sinh cos

c f tu t


1

( )( ) p tf t
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Figure 1.  Temperature T(x, y) (a) and the corresponding viscosity field 
η(x, y) (b) for a choice of values of parameters (Table 1) and a = 25 m, 
b = 1 m (ϵ ≃ 0.9992)
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 


2
( )( ) p tf t� (19)

 
  



3

2 ( )( ) p tf t� (20)

Both components uα and uβ are periodic in β with period π. For large 
eccentricities (ϵ > 0.9) uβ ≪ uα, so the wall displacement depends mainly 
on uα.

4.  Viscoelastic Solution
The viscoelastic solution for displacement and stress in the medium can 
be obtained from the elastic solution by application of the correspond-
ence theorem (e.g., Christensen, 1982; Fung, 1965). For a homogeneous 
and isotropic medium, the application of the correspondence theorem 
requires the substitution in the elastic solution of the Lamé constants λ 
and μ with complex expressions:

� � � �� �

( ) , ( ),s s
� (21)

where s is the complex variable conjugate to time. Various kinds of rheologies are possible for a viscoelastic 
medium; the specific functions λ and µ  depend on the rheology considered. In addition, one must substitute 
the source function F(t) with its Laplace transform:
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Symbol Quantity Value

AD Dorn parameter 9 × 1010 Pa s

E Activation energy 5 × 104 J mol−1

k Coefficient in (13) 20 MPa K−1

p0 Pressure oscillation amplitude 105 Pa

R Gas constant 8.314 J K−1 mol−1

T1 Temperature at the conduit wall 1273 K

T2 Ambient temperature 293 K

α2 Distance of boundary at T = T2 100 α1

γ Body force intensity 102 Pa m−1

ηm Magma viscosity 102 Pa s

λ, μ Lamé constants 10 GPa

λ1, μ1 Lamé constants at α = α1 10 GPa

λ2, μ2 Lamé constants at α = α2 30 GPa

Table 1 
Values of Parameters, Considered Fixed in the Paper

Figure 2.  Lamé parameter λ (or μ) and viscosity η as functions of distance α from the conduit axis (values of relevant 
quantities as in Table 1). Subscript 1 indicates values at the conduit wall
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F t F s( ) ( ).→ � (22)

We assume that the medium deforms viscoelastically with respect to shear stresses but elastically with 
respect to normal stresses. Assuming that the viscoelastic behavior is that of a Maxwell body, described by 
Equation 10, in the expressions of displacement field 16 and 17, given by Dragoni and Tallarico (2019), we 
make the substitutions

p t p s p
s

( ) ( )� �
�

 0 2 2
�
�

� (23)

� �
�
��

� �
�

( )s s
s

� (24)

� � � � �� � � �

( ) ( )s s2
3

2
3

� (25)

and we obtain the expressions for the Laplace transforms u s� � �( , , ) and u s� � �( , , ) of viscoelastic 
displacements.

According to the correspondence theorem, we obtain the viscoelastic solution by inverting the Laplace 

transforms uα  and uβ , which gives




  

 

 




2
1 1 2 3

2 2

( )cosh2 ( ) ( )cos2( , , )
4 sinh cos

c F t F t e F tU t� (26)


 

 



2 2 2

sin 2( , , ) ( )
4 sinh cos

cU t F t� (27)

where

 
  
 

   
 

0
1

1 1

1 1( ) sin cospF t t t� (28)

F t p

t t

2
0

2
2
2

2
1 2 1

3
3 2

1
1

1
3 2

( )

( )sin cos

�
� �

�

� �
�

�
�

�
�

� � � �

� � � �
�

� �
�� �

�
33 2 1

2
� �

�� �

�

�

�

�
�

�
e

t� (29)

F t p
3

0

1
2

2
2

2
2

1
2

1 1
1

3 5
3 2

9 2
3 2

( )

( )( )
( )

�
�

�

�
�

�
� �

�

� �� � �

� �
� �

� � � �
� �

� �
��

�
�
�

�

�
�
�

�
�
�

��

�
� �

�
�

�

�
�
�

�

�
�
�

�� �

� �� �
� �

� �

1

2 2

2
2

1
23 3 6 4

3 2
1

sin

( )

t

ccos

( )

�

�
� �

� � � ��

t

e
t

�
�

� �
�

( }3
3 2

1
2

2
2

1
2 2 2

2
2

� (30)
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and




1� (31)

  
 



2 13

3 2� (32)

For very large values of viscosity the solution tends to elastic one:


 ( ) ( ) , 1,2,3i iF t f t i� (33)

We note that the functions fi of the elastic case are periodic with the same period τ0 of overpressure p(t), 
while only F1 has exactly this property in the viscoelastic case; moreover, if τ1 and τ2 are smaller than or 
equal to τ0, the functions F2 and F3 are with good approximation periodic with a period equal to the forcing 
oscillation, because the aperiodic terms vanish exponentially with time.

The deformation of the conduit wall is described in terms of the α-component of displacement calculated 
at α = α1, that is,




  




 
 

   
  

1 2 2 2 2

2 2 2
1 2

2 2
3

1 1( , , )
4 ( )cos

( ) ( ) ( ) ( )

( ) ( )cos2

U t
a b b

a b F t a b F t

a b F t

� (34)

5.  Effect on Flow Rate
We assume that the magma flowing in the conduit is a homogeneous, isotropic and incompressible Newto-
nian liquid with viscosity ηm. We consider a laminar, steady-state flow, so that the magma flow rate in the 
undeformed conduit is (Dragoni & Santini, 2007)

 





3 3

0 2 24 m

a bQ
a b

� (35)

where the body force intensity γ is considered a constant. As shown in Dragoni and Tallarico (2019), the 
deformed cross section is still an ellipse to a very good approximation. It is the same in the present model, 
with semi-major and semi-minor axes

A t a U t

a
a

a b F t a b F t a b F

( ) ( , , )

( ) ( ) ( ) ( ) ( )

� �

� � � � � � �

� �1

2 2
1

2
2

2 2
3

0
1
4

1 (( )t�
�

�
�

� (36)

B t b U t

b
b

a b F t a b F t a

( ) , ,

( ) ( ) ( ) ( ) (

� �
�

�
�

�

�
�

� � � � � � �

� �
�

1

2 2
1

2
2

2

2
1
4

1 bb F t2
3) ( )�

�
�
�

� (37)

At any time t ≥ 0, the flow rate is

 





3 3

2 2
( ) ( )( )

4 ( ) ( )m

A t B tQ t
A t B t

� (38)

with a ratio
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




2 2 3 3

3 3 2 2
0

( ) ( ) ( )
( ) ( )

Q t a b A t B t
Q a b A t B t

� (39)

6.  Volcanic Fissure Approximation
For a volcanic conduit with elliptical cross-section, embedded in an elastic medium, Dragoni and Tallar-
ico  (2019) found that the amplitude of flow rate oscillations is remarkable only in the case of long and 
narrow volcanic fissures. In this case, the semi-axes can be approximated (b ≪ a) by

el.( )A t a� (40)

  
  

 
   

el. 0
2

1 2 1( ) 1 sin
2 1

pB t b t


� (41)

and, for λ = μ,




 
 

 
el. 0

2
3 1( ) 1 sin
4 1

pB t b t


� (42)

For a conduit embedded in a viscoelastic medium, the semi-axes A(t) and B(t), and so flow rate Q(t), depend 
mainly on the amplitude p0 and the period τ0 of overpressure, the Maxwell relaxation time τ1 (and τ2) and 
the fissure eccentricity ϵ. From 36, 37, 28–30, and 32, if b ≪ a and λ = μ, the semi-axes of conduit are ap-
proximated by

( )A t a� (43)

  



   
               


5
60 1

1 2 32
1 1( ) 1 (1 cos ) cos sin
4 1

t
pB t b c t c t e c t


� (44)

where the coefficients ci are functions of τ0 and τ1


1

1

2c� (45)


 

 


1
2 2 2

1

6
25 36

c� (46)

 
 


3 2 2

1

53
25 36

c� (47)

Figure 3 shows the coefficients ci as functions of ratio of the Maxwell time τ1 to the overpressure period τ0. 
We note that all functions are constant for τ1/τ0 > 10: c3 ≃ 3 and c1 ≃ c2 ≃ 0. For τ1/τ0 ≤ 10, c1 varies with this 
ratio, while c2 and c3 remain about constant. Comparing 41 with 44, from Figure 3 we deduce that only for 
τ1/τ0 ≤ 10 the viscoelastic rheology differentiates from the elastic case and this characteristic is more evident 
as τ1/τ0 is smaller. This is more evident if we consider the maximum and minimum values of the semi-minor 
axis: B reaches its maximum value

 
   

  
                


2

20 0 1
max 2

1 0

1 11 1 1 9
4 1

pB b


� (48)
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at

  
 

  
      
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where tmax and tmin depend only on τ0 and τ1. In the viscoelastic case, for given values of overpressure am-
plitude and rigidity, the oscillation of semi-minor axis is more remarkable for eccentricity values closer to 
unity and if the overpressure period is larger than the Maxwell relaxation time; furthermore, when τ1/τ0 
decreases Bmax increases and |Bmin| decreases, while tmax and tmin are delayed with respect to elastic case and 
approach τ0/2 and τ0, respectively.

From 44–47 and 48 we note that the oscillation amplitude of B(t) is controlled by the parameter
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Figure 3.  The coefficients ci as functions of τ1/τ0
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and, if ξ is larger than about 10%,


max 1%B b

b
� (54)

7.  Discussion
The model considers the laminar flow of magma in a volcanic conduit 
and processes occurring at some distance from the eruption vent: there-
fore, it can be applied to effusive or moderately explosive eruptions, as far 
as the laminar flow condition is fulfilled. We consider volcanic conduits 
with large values for the eccentricity (ϵ > 0.95) and times following the 
beginning of the eruption, for which the temperature field can be con-

sidered stationary close to the conduit wall. We list in Table 1 the values of the fixed model parameters. In 
particular, we assume for the Dorn parameter and the activation energy values derived experimentally for 
basalts (e.g., Hartmann et al., 2014; Kirby & Kronenberg, 1987; Ranalli, 1995) and for the other parameters 
typical values for basaltic eruptions. From these values and the Arrhenius formula, close to the conduit 
wall, and for a distance in the order of magnitude of semi-minor axis, the medium viscosity is about 1013 Pa 
s, so that the Maxwell relaxation time τ1 is in the order of 1000 s. In general, the pressure oscillation am-
plitude may vary during an eruption, for example due to pressure drop associated with magma chamber 
drainage (Gudmundsson et al., 2016). However, for the sake of simplicity, we consider a time interval in 
which p0 can be assumed as constant.

As an example, Figures 4 and 5 show B(t) and Q(t) for some values of ϵ and τ0 for fixed values of τ1 (≃1000 s) 
and Q0 = 40 m3 s-1 and the values of parameters are given in Table 1. The effect of viscoelastic rheology 
becomes remarkable for larger values of τ0 and/or for eccentricity values closer to unity: when ξ ≥ 0.1, the 
viscoelastic rheology entails that B(t) ceases to oscillate symmetrically around the initial value as in elastic 
case, and, as ξ increases, B(t) is almost always larger then b (Figure 4b). In addition, as the ratio τ1/τ0 decreas-
es, tmax shifts from τ0/4 (elastic value) toward τ0/2, while tmin moves from 3/4 τ0 toward τ0.

In Table 2, we consider four cases corresponding to different choices of the conduit size and the period τ0 of 
overpressure p: the initial value of the semi-minor axis b is fixed, while we select two different values for the 
initial semi-major axis a; the values of eccentricity ϵ range between 0.9992 and 0.9998 and τ0 between 1 and 
12 h, so that ξ ≥ 0.1 and the effect of viscoelastic rheology can be appreciable. Table 2 includes the values 
of the parameter ξ and of the initial flow rate Q0.For the values of Table 2, the semi-major axis A(t) remains 
almost constant, while the semi-minor axis B(t) varies as shown in Figure 6; the amplitudes of oscillations 
of B(t) change from 2% and 9% with respect to the initial value b. Figure 6 shows the main effects due to the 
viscoelastic rheology with respect to elastic rheology (dotted curve): the increase in amplitude of oscillations 
of B(t) and the time delay of its oscillation with respect to the elastic case. Because A(t) is almost constant, 
Q(t) shows the same behavior as B(t) (Figure 7).

Figure 7 shows the flow rate Q as a function of time, for the cases of Table 2. The flow rate Q(t) varies from 
5% to 30% with respect to the initial value Q0 (horizontal line). For values of τ0 near to Maxwell time τ1 
(≃1,000 s), Q(t) oscillates around the initial value Q0 (case 4), as in the elastic rheology (dotted curve); for 
greater τ0 (Cases 1–3) Q(t) is almost always greater than the initial value Q0, that is, it is above this value 
during most of the overpressure period τ0. For the same value of τ0 (Cases 2 and 3), the amplitude of flow 
rate oscillations increases with increasing eccentricity of the conduit. For a fixed eccentricity (Cases 1–2 
and 3–4), the amplitude of flow rate oscillations increases with increasing values of τ0. The times at which 
flow rate reaches its maximum and minimum values are delayed with respect to elastic case, as shown in 49 
and 51.

During the 2018 eruption of Kı̄lauea Volcano, cyclic variations in effusion rate occurred at Fissure 8 on both 
short and long time scales (Neal et al., 2019; Patrick et al., 2019): multiparameter data showed that the short 
cycles, with period of 5–10 min, were driven by shallow outgassing, whereas longer cycles, with period of 
1–2 days, were pressure-driven surges in magma supply triggered by summit caldera collapse events. For 
the short-time fluctuations, Patrick et al. (2019) estimated that lava velocity ranged between 4 and 15 m/s 

PIOMBO AND DRAGONI

10.1029/2020JB020642

10 of 16

Case 1 Case 2 Case 3 Case 4

a 25 m 25 m 50 m 50 m

b 1 m 1 m 1 m 1 m

ϵ 0.9992 0.9992 0.9998 0.9998

τ0 12 h 6 h 6 h 1 h

ξ 0.3 0.1 0.5 0.1

Q0 19.6 m3 s−1 19.6 m3 s−1 39.3 m3 s−1 39.3 m3 s−1

Table 2 
The Four Cases Illustrated in Figures 6 and 7



Journal of Geophysical Research: Solid Earth

PIOMBO AND DRAGONI

10.1029/2020JB020642

11 of 16

Figure 4.  The semi-minor axis B as a function of time for different values of overpressure period τ0 and conduit 
eccentricity ϵ, for a choice of values of parameters (Table 1) and Q0 = 40 m3 s−1
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Figure 5.  The flow rate Q as a function of time for different values of overpressure period τ0 and conduit eccentricity ϵ, 
for a choice of values of parameters (Table 1) and Q0 = 40 m3 s−1
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and effusion rate oscillated between 175 and 306 m3 s⁻1: these values implicate a low value of lava viscosity. 
We consider an elliptical eruptive fissure with semi-major axis a ≃ 45 m and semi-minor axis b ≃ 0.5 m 
(ϵ ≃ 0.9999), and an overpressure with amplitude p0 = 105 Pa and period τ0 = 10 min; in addition, we assume 
for the Dorn parameter AD ≃ 4.4 × 109 Pa s, for the lava viscosity ηm ≃ 5 Pa s, and for the body force intensity 
γ ≃ 2 × 102 Pa m⁻1. The semi-minor axis B(t) varies as shown in Figure 8a; because ξ ≃ 0.98, the elastic case 
differs from the viscoelastic one. The flow rate oscillates between 185 and 315 m3/s and Q0 ≃ 200 m3 s⁻1 (Fig-
ure 8b); therefore, in the viscoelastic case, the pattern approximates the in-situ observations of short-time 
fluctuations of flow rate during the 2018 eruption of Kı̄lauea Volcano.

8.  Conclusions
For an effusive eruption, we calculated the deformation of the volcanic conduit and the associated changes 
in flow rate due to short-term pressure oscillations. We considered an elliptical conduit embedded in a vis-
coelastic medium and assumed that the medium is a Maxwell body. We assumed that the deformation of 
the conduit is controlled by the viscosity of the region surrounding the conduit, which is assumed to be uni-
form. As a consequence of pressure oscillations, the semi axes of the conduit are quasi periodic functions of 
time with the same period as pressure.

For fissures, the viscoelastic rheology entails an increase in oscillation amplitude with respect to the elastic 
case. This effect is due to the viscoelastic rheology of the medium surrounding the volcanic conduit and 
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Figure 6.  The semi-minor axis B as a function of time, for a choice of values of parameters (Table 1) and for the cases of Table 2: (a) case 1, (b) case 2, (c) case 
3, and (d) case 4; dotted curves refer to a conduit embedded in an elastic medium
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becomes remarkable for larger values of the ratio between overpressure period and Maxwell time and/or for 
eccentricity value closer to unity, for a given value of pressure oscillation amplitude.

For values of the period of pressure oscillation near to Maxwell time, flow rate oscillates around its initial 
value, as in the elastic case; for larger period values, flow rate is almost always larger than its initial value 
and oscillates around a higher value than initial one. For a given overpressure period, the amplitude of flow 
rate oscillations increases with increasing eccentricity of the conduit. For a fixed eccentricity, the amplitude 
of flow rate oscillation increases with increasing values of the period of pressure oscillation. The flow rate 
can vary from 5% to 30% with respect to the initial value. The viscoelastic rheology entails a time delay in 
flow rate oscillation with respect to overpressure oscillation; this delay depends on ratio between overpres-
sure period and Maxwell time.

In conclusion, the effect of viscoelastic rheology is to produce significant flow rate oscillations also in con-
duits with smaller eccentricities with respect to the elastic case; moreover, viscoelastic rheology allows to 
achieve higher (average) flux rates with lower overpressures.

The model provides a possible explanation of observed changes in the effusion rate during effusive erup-
tions occurring on timescales less than the total duration of eruption. This pulsatory style can have a dif-
ferent period with respect the overpressure period that causes it. The model can approximate the in situ 
observations of short-time fluctuations of flow rate during the 2018 eruption of Kı̄lauea Volcano.
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Figure 7.  Flow rate Q as a function of time, for a choice of values of parameters (Tables 1 and 2): (a) case 1, (b) case 2, (c) case 3, and (d) case 4; dotted curves 
refer to a conduit embedded in an elastic medium. Graphs in (a and b) and (c and d) use two different scales.
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