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Deep Neural Oracle with Support Identification in
the Compressed Domain

Luciano Prono, Student Member, IEEE, Mauro Mangia, Member, IEEE, Alex Marchioni, Student Member, IEEE,
Fabio Pareschi, Senior Member, IEEE, Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—We investigate the advantage of a two-step approach
in the recovery of Compressed Sensing (CS) encoded signals in a
realistic environment. First, the support of the signal is computed
from the compressed measurements exploiting a Deep Neural
Network (DNN). Once the support is known, the input signal can
be easily recovered by a pseudoinverse operation. We consider a
case study involving realistic biomedical signals and a processing
architecture based on a limited precision fixed-point arithmetic
unit for the implementation of the DNN and the pseudoinverse
operation. In this setting, we show that the proposed approach
results in a performance improvement of more than 5 dB in
terms of average reconstructed signal to noise ratio (ARSNR)
compared to CS state-of-the-art approach. This has been possible
thanks to two main contributions reported in this paper. The
first one is a theoretical investigation of the relationship between
the definition of support and both the properties of the input
signal and the adopted compression technique. The second one
relies on replacing the pseudoinverse operation with a least mean
square filter, whose small sensitivity to numerical errors grants
advantages in architectures relying on limited precision fixed-
point arithmetic units.

Index Terms—Compressed sensing, Biosignal compres-
sion, Low-complexity compression, Deep neural networks,
Quantization-aware training, Quantized implementation

I. INTRODUCTION

THE INTEREST in the Compressed Sensing (CS)
paradigm [1], [2] is mainly due to its peculiarity to

enable low-cost signal compression and simultaneously trans-
fer complexity from the encoder to the decoder stage. This
aspect reverses common requirements of typical compression
schemes, where the most complicated (and power-hungry)
stage is the encoder.

This is particularly interesting in many applications includ-
ing electromagnetic inverse scattering [3], structural health
monitoring [4] and image processing [5]. Another area for
which CS is particularly useful is the design of Body Area
Network (BAN) nodes, which aim to efficiently acquire
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Fig. 1. General scheme of an encoder-decoder pair for ECG signals.

biosignals. This has already been demonstrated for Electro-
cardiographic (ECG) [6], [7], Electromyographic (EMG) [8]
and Electroencephalography (EEG) [9] signals. CS has also
been shown useful for magnetic resonance imaging (MRI)
waveforms acquisition [10], where the main advantage stems
from reducing the overall acquisition time [11].

As an example, the typical setup for a CS framework
specialized for ECG signals is shown in Fig. 1. Such a low-
complexity compression scheme requires a decoder stage for
which a wide variety of approaches have been presented.
One of the first proposed in the literature is Basis Pursuit
(BP), which performs signal recovery by the solution of a
linear programming problem, along with Basis Pursuit with
DeNoising (BPDN), which takes into account also uncertainty
due to noise [12]. More sophisticated decoders [13], [14]
exploit assumptions on the class of signal and perturbation
to ensure adequate performance when signal reconstruction
has to be achieved using hardware with limited computational
capability, which is typically available in a BAN gateway.
In this setting, iterative algorithm such as the Orthogonal
Matching Pursuit (OMP) [15] and the Compressive Sampling
Matching Pursuit (CoSaMP) [16] are often used for their low
computational complexity [17]. Recently, also the use of Deep
Neural Network (DNN) for CS decoding has been investigated,
mainly for image or video applications [18]–[21], even if some
works targeting biomedical signals can be found in [22], [23].

All mentioned CS frameworks share a low-complexity
encoder structure and propose several decoding approaches
aiming at reducing as much as possible the number of digital
words that represent a single input instance. Reaching this
goal, i.e., increasing the compression ratio, further reduces
the computational complexity of the encoder since less digital
outputs must be both computed and dispatched.

For all these CS decoders, the fundamental hypothesis to
allow correct reconstruction is that the class of input signals
is sparse, i.e., each signal instance, in a proper sparsity
basis, can be represented by a number of non-null coefficients
much lower than the mere signal dimension [24]–[26]. Such
a sparsity assumption can be declined in another way by
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introducing the concept of signal support, that is the subset of
the positions corresponding to the non-null coefficients in the
sparse representation. The support identification exploited in
[23] paves the way for the definition of an alternative decoding
procedure where signal reconstruction is split into two phases:
the former employs a DNN to divine the support, while the
latter uses the divined support to recover the input signal with
a simple linear algebra (pseudoinverse) operation.

In this paper, we extend the work in [27], where we
showed preliminary results on applying the DNN-based two-
step reconstruction proposed in [23] to realistic biomedical
signals. Compared to these works, we introduce here several
innovative points.
• The support identification is generalized in case of re-

alistic (and therefore non-perfectly sparse) signals. In
particular, with respect to [23], [27], the proposed support
identification procedure takes into account not only the
signal representation in the sparsity basis but also the
encoder mechanism and possible sources of noise.

• In case of sparse signal, the proposed decoder mechanism
outperforms state of the art CS frameworks in terms of
either achieved quality of reconstruction or maximum
compression ratio for a fixed quality of service.

• A low-resource implementation of the DNN-based two-
step decoder is presented with emphasis on: i) limiting the
performance degradation in case of fixed point precision
arithmetic (for both DNN and pseudoinverse operation);
ii) optimizing the memory footprint required by both
DNN and pseudoinversion. To reach these goals, we
adopt quantization-aware techniques in the DNN training
and Least Mean Square (LMS) filter instead of direct
Moore-Penrose pseudoinverse implementation.

The rest of the paper is organized as follows. In Section II
we introduce some basic concepts of CS, including the advan-
tages of separating the CS reconstruction in the two phases of
support identification and coefficient computation. Section III
addresses the problem of using CS with realistic signals,
where the sparsity property is replaced by compressibility. In
Section IV we discuss the hardware implementation of the
proposed approach and we show results. Finally, we draw the
conclusion.

II. COMPRESSED SENSING WITH SUPPORT ORACLE

Let us consider the input waveform divided in contiguous
non-overlapped windows of the same length. Without any loss
of generality, we represent windows with vectors x containing
n successive Nyquist samples, i.e., x = (x0, . . . , xn−1)> ∈
Rn where ·> stands for vector transposition. The CS paradigm
is based on the assumption that an orthonormal matrix D exists
such that each signal instance can be expressed as x = Dξ,
where the coefficient vector ξ = (ξ0, . . . , ξn−1)> contains at
most κ � n non-zero entries. In these cases, we say that x
is κ-sparse and ξ is its sparse representation on the sparsity
basis composed by the columns of D. Let us also define the
support s = (s0, . . . , sn−1)> ∈ {0, 1}n of ξ such that sj = 1
if ξj 6= 0 and sj = 0 otherwise.

In the case of sparse signals, each instance x depends only
on a number of scalars that is much smaller than n. This

prior is used to define an encoder procedure that compresses
x by applying a linear operator that is modeled with a sensing
matrix A ∈ Rm×n with m < n. The encoder output is a m-
dimensional measurement vector y obtained by projecting x
over the rows of A as

y = A(x+ ν) (1)

where the vector ν includes noise and non-idealities in the sys-
tem implementation. We define the ratio n/m as compression
ratio (CR).

The decoder aims at recovering the sparse representation
of the input signal ξ, or at least its best approximation ξ̂, by
leveraging on the sparsity prior. The standard BPDN approach
[12], [28] consists of finding the sparsest n-dimensional vector
ξ among the infinite solutions of the ill-defined system y =
ADξ by considering the following optimization problem:

ξ̂ = arg min
ξ∈Rn

‖ξ‖1 s.t. ‖y −ADξ‖2 ≤ τ (2)

where ‖ · ‖p indicates the p-norm of its argument and where
τ ≥ 0 is proportional to ν. The case τ = 0 defines the BP
optimization problem used for the noiseless case. For both
BP and BPDN, the reconstructed signal is finally obtained as
x̂ = Dξ̂.

To evaluate the achieved quality of service, one defines the
Reconstructed Signal to Noise Ratio (also indicated simply as
SNR in [6], [9]), measured in dB, as

RSNR = 20 log10

‖x‖2
‖x− x̂‖2

=

(
‖x‖2
‖x− x̂‖2

)
dB

(3)

along with the Average RSNR (ARSNR) value

ARSNR = E

[(
‖x‖2
‖x− x̂‖2

)
dB

]
(4)

where the E[·] operator stands for expectation over all
possible x.

Reconstruction is possible when the number of measure-
ments m is sufficient and, intuitively, this number is related
to the value of κ. CS theory identifies this relationship as
m = O

(
κ log

(
n
k

))
[12], and in practical cases m is often

chosen proportional to κ. However, such worst-case theoretical
guarantees fail for m < 2κ since, when this happens, two κ-
sparse signals with non overlapping supports can be potentially
mapped in the same measurement vector.

The requirements of the CS framework are not limited to
a minimum number of measurements, but also include the
proper design of the rows of A, that we define as sensing
sequences. Most notably, if the elements of a generic sensing
matrix row a are drawn as instances of independent and iden-
tical distributed (i.i.d.) random variables with zero-mean and
unit-variance Gaussian distribution, then ξ can be recovered
from y [1], [2], [29] with very high probability. Reconstruction
reaches the same level of quality even if the elements of a are
instances of i.i.d. antipodal (i.e.+1/−1) random variables [29],
[30]. Since the latter choice allows an easier computation of
y and simple sign inversion can be used instead of full multi-
plication (with obvious great implementation advantages), we
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focus on this class of sensing sequences for the rest of this
work. The absence of performance loss compared to real-value
matrices A further motivates this choice [30].

This agnostic and general approach can then be specialized
to a suitable class of signals in many ways by adopting an
adapted CS approach [31]. Among the several approaches
that, thanks to adaptation, guarantee better performance with
respect to agnostic CS, the state of the art for the design of
antipodal sensing matrices is the rakeness-based CS (Rak-CS)
[31]–[33]

The Rak-CS approach models the sensing sequences not as
instances of i.i.d. variables but as a stochastic process whose
correlation matrix A = E[aa>] is obtained as:

A =
1

2

nX
tr(X )

+
1

2
In (5)

where In is an n×n identity matrix, and X = E[xx>] is the
correlation matrix of the stochastic process generating input
instances.

Roughly speaking, the statistical adaptation of the sensing
matrix proposed by Rak-CS is a middle ground between
standard CS theory (that suggests i.i.d. based sensing, and
for which it is A = In) and an over-adapted setting where
A = X . Such an approach has been proved to guarantee good
performance also in case of uncommon instances [7].

A. Support Oracle based Decoder

To further formalize the consequence of the sparsity as-
sumption, we recall that no more than κ entries in ξ are non-
null, and that they are identified by the position of the elements
of s such that sj = 1.

Let us define the operator ·|s that, when applied to a n-
dimensional vector, selects only the elements corresponding
to non-null entries of s, while, when applied to n-column
matrices, returns the submatrix composed of the columns
whose index corresponds to sj = 1.

As a result, any κ-sparse signal x can be represented by the
n-dimensional binary vector s and by ξ|s, a non-sparse vector
that contains no more then κ real values. As proposed in [23],
this notation paves the way to a completely different decoder
approach, composed of two consecutive blocks. The first one,
indicated in [23] as support oracle (SO), is devoted to identify
the support and is capable to divine s by looking at the vector
y. Then, assuming s is known, by defining B = AD, we can
observe that

y = A(Dξ + ν) = Bξ +Aν = B|sξ|s +Aν. (6)

The fact that κ < m makes B|s a tall matrix (the number
of rows exceeds the number of columns) such that each
measurement vector y, ignoring the noise ν, possesses a unique
counterimage given by ξ|s = B†|sy, where ·† indicates the
Moore-Penrose pseudoinverse operation.

In other words, given (6), to recover the input signal, it is
enough a second stage computing

ξ̂|s = B†|s(y −Aν) = B†|sy −B
†
|sAν (7)

s

a)

b)

Underdetermined

ξ̂ = argminξ∈Rn ‖ξ‖1

Overdetermined

ξ̂|s = B†
|sy

support vector

s.t. ‖y − ADξ‖2 ≤ τ

y = ξ

B

y =

B|s

ξ|s

1
Fig. 2. The original ill-defined underdetermined problem (a) can be trans-
formed in a overdetermined problem (b) by using the support vector s.
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Fig. 3. RSNR as a function of the number of ones in z where the position of
the ones in z follows the position of ξ entries with the highest magnitudes.
Different profiles refer to m × n Rak-CS antipodal sensing matrices with
n = 128 and where the input signal is corrupted by additive Gaussian noise
(ISNR=34dB).

that is a much simpler operation with respect to any CS
recovery algorithm. The term e = B†|sAν defines the signal
recovery error in the sparse representation.

The advantages introduced by the knowledge of the support
vector s in the solving the recovery problem are graphically
schematized in Fig. 2.

Since the aim is always the computation of the non-null
entries of ξ, if s is unknown, the signal recovery is performed
by inverting a wide matrix (which is an ill-defined problem)
thus obtaining both null and non-null entries of ξ. Otherwise,
assuming that an oracle divining s exists, the recovery problem
only focuses on the computation of the non-null entries of
ξ such that the recovery stage only performs the (pseudo-
)inversion of a tail matrix.

III. SUPPORT ORACLE FOR COMPRESSED SIGNALS

As a further important remark, one can note that almost all
classes of real signals are only approximately sparse since the
vector ξ = D>x is composed of few entries with magnitude
significantly greater than zero while the remaining entries
are close to zero. In these cases, signals are not sparse but
compressible.

As a result, it is not possible to define a support for x by
looking at the vector ξ, since any possible definition would
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cause rejection of a part of the signal information content. Let
us therefore indicate with z a n-size binary vector such that
x = D|zξ|z + xd, where xd contains signal details of minor
interest. With this notation, (7) can be reformulated as

ξ̂|z = B†|z[y −A(xd + ν)] = B†|zy −B
†
|zA(xd + ν) (8)

where the reconstructed signal is now x̂ = D|z ξ̂|z and
the reconstruction error in the sparse representation is e =
B†|zA(xd + ν).

The choice of the support z is fundamental in limiting the
error e since, along with A and ν, it defines the maximum
achievable performance in terms of RSNR. Increasing the
number of ones in z reduces the error contribution due to
xd. On the other hand, reducing the number of ones in z also
reduces the reconstruction error due to the relative decrease
of the effect due to ν. The optimal support z∗ that balances
this trade-off can be obtained, in principle, by computing the
RSNR for all possible z. Unfortunately, finding z∗ implies the
solution of a combinatorial optimization problem that requires
an exhaustive search over all possible 2n binary z vectors.

z∗ = arg max
z∈{0,1}n

‖x‖2∥∥∥x−D|z ξ̂|z∥∥∥
2

(9)

To overcome the impasse, we propose a greedy approach
capable of achieving a good approximation of z∗ with com-
plexity as low as n steps. First, the entries of ξ are sorted in
decreasing order according to their magnitude. Following this
order, the z vector, initialized with all zeros, is built iteratively
by adding, step by step, a new non-zero element.

At each step, the RSNR is computed. The support z is
identified as the vector that achieves the highest RSNR value.
Note that the support z that we estimate is actually the
extension of the support applied to a compressible signal once
it has been compressed by the CS encoder, and depends both
on the sensing matrix A and the noise ν. We refer to this
as the Support of Compressed signal and to the CS decoder
based on the pre-computation of z as the Support Oracle for
Compressed signals (SOC).

To validate this approach, a dataset of synthetic ECSs gen-
erated according to [34] as in [23], [27] has been considered.
Differently from the approaches in the latter contributions, we
consider here the generated ECG as a compressible signal,
i.e., we do not impose xd to be null. Synthetic ECG instances
are generated with sample rate 256 sps and time windows
composed of n = 128 successive samples. The signal is
then corrupted by additive Gaussian noise so that the intrinsic
signal-to-noise ratio (ISNR) is set to 34 dB [35].

In the example of Fig. 3 we have plotted the RSNR as
a function of the number of ones in z for an instance of x
and ν. The figure shows how both the maximum RSNR and
the corresponding z cardinality depend on the number m of
rows of A. The figure also highlights the already observed
trade-off. When the cardinality of z is low, each new element
inserted in the support is associated with a signal component
with a large magnitude. This increases the RSNR since the
projection of x along the corresponding column of D certainly
exceeds the magnitude of the projection of ν on the same

column of D. Conversely, when the cardinality of z is high,
the additional signal information content brought by the new
column of D could be lower than the corresponding noise
contribution. Moreover, the RSNR values also depend on the
adopted sensing matrix since the higher the compression ratio,
the harder the reconstruction.

For each profile in Fig. 3, the highlighted point represents
the number of ones in z that maximizes the RSNR. Hence,
according to the definition of z and the greedy method we
propose, this point corresponds to the support z for a specific
compressible signal instance x, a noise vector ν, and a sensing
matrix A.

A. Trained Support Oracle for Compressed Signals

All the above considerations about the support oracle de-
coder for compressed signals are based on the possibility
to retrieve the signal support z from the observation of the
measurements vector y. To perform this task, we adopt a
solution based on a Deep Neural Network (DNN) inspired
by [23]. More specifically, the task performed by the DNN is
equivalent to n parallel binary classification tasks that estimate
the n entries of z.

The structure of the network is reported in Fig. 4, where
it is shown that the m-dimensional input layer receives the
measurement vector. Then, there are three fully connected
hidden layers with 2n, 2n an n neurons respectively and
Rectified Linear activation functions (ReLu). Finally, a fully
connected output layer with n neurons and sigmoid activation
functions produces a vector o with entries in [0, 1]. The
final estimated support ẑ is obtained by applying a threshold
θ ∈ [0, 1] to o such that ẑj = 1 if oj ≥ θ, and ẑj = 0
otherwise. The CS decoder that adopts this DNN to divine
z is named Trained Support Oracle for Compressed signal
(TSOC).

Compared to the DNN proposed in [23], the matrix A
characterizing the encoder stage is not trained along with the
rest of the network since the labels used during the training,
i.e., the supports z, depend also on the the sensing matrix.
In light of that, the training exploits measurement vectors y
computed with a fixed sensing matrix A, which is still an
antipodal matrix generated according to the Rak-CS approach
for the considered class of signals. Note that, A plays the role
of a set of hyperparameters that therefore cannot be trained
with the parameters characterizing the neural network. Note
also that A influences the network architecture since a different
number of rows m of the sensing matrix corresponds to a
different number of neurons in the input layer.

The DNN parameters set W (including weights and biases
for each layer) are trained with a dataset of 2 × 106 signal
instances x split in 95% for the actual training and 5% as a test
set for performance assessment. For each different matrix A,
DNN input-output pairs (y, z) are obtained from both vectors
x and randomly drawn noise contributions ν such that y =
A(x + ν). For each value of m, we generate 100 different
random candidates A according to the Rak-CS framework.
Rak-CS (5) requires the signal correlation matrix X which is
estimated from 5000 signal instances generated especially for
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Fig. 4. Structure of the DNN employed to predict the estimated support ẑ.

TABLE I
NUMBER OF DNN PARAMETERS USED FOR THE TSOC

m 16 20 24 28 32

# param 119 552 120 576 121 600 122 624 123 648

m 36 40 44 48

# param 124 672 125 696 126 720 127 744

this purpose. Among these candidates A, the matrix chosen
for the encoder stage of the TSOC is the one obtaining the
best ARSNR over 1000 signal reconstructions when a BPDN
decoder is used1.

Since m corresponds to both the number of rows in A
and the number of neurons in the input layer, the parameters
characterizing the first hidden layer are 2nm weigths and 2n
biases. For the case n = 128, Tab. I reports the total number
of parameters for the adopted DNN settings where m ranges
from 16 to 48.

Each of the proposed models is implemented in the Tensor-
Flow framework [37], and the cost function is minimized using
stochastic gradient descent with a batch size of 50 instances
over 500 epoches and an initial learning rate value equal to 0.1.
The minimized cost function is the component-wise clipped
cross-entropy between z and o

X = −
∑
j|zj=1

Lε (oj)−
∑
j|zj=0

Lε (1− oj) (10)

where Lε(·) is a clipped log function defined as min{log2(1−
ε),max{log2(ε), log2(·)}} and ε is a small value.

Finally, 5000 new instances are used to tune the threshold θ
applied to the DNN output o. Resulting values of θ in all the
considered settings are close to the middle-range value 0.5,
i.e., values in o vectors concentrate close to the two boundary
values zero and one.

1The BPDN is implementes with the Spectral Projected Gradient for L1
minimization (SPGL1) toolbox [36].

TABLE II
PERFORMANCE OF THE ORACLE IN TERMS OF P, TP, TPR, TNR AND

ACC WHERE µ(·) MEANS AVERAGE OVER THE TEST SET.

m µ(P) µ(TP) µ(TPR) µ(TNR) µ(ACC)

16 14.4 12.5 0.885 0.997 0.983

20 17.1 15.4 0.908 0.996 0.983

24 20.3 18.6 0.926 0.994 0.982

28 23.2 21.6 0.933 0.992 0.981

32 25.3 24.0 0.949 0.990 0.981

36 27.0 25.4 0.945 0.989 0.979

40 28.5 26.9 0.947 0.988 0.978

44 29.6 28.0 0.951 0.985 0.976

48 30.3 28.5 0.945 0.985 0.974

3 4 5 6 7 8
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Fig. 5. ARSNR as a function of CR for the proposed TOSC along with the
ideal oracle (SOC) compared with the standard decoder (BPDN). The encoder
stage follows Rak-CS and the standard CS encoder coupled with BPDN is
provided as a reference.

B. Results for ECGs

To assess the performance of the neural network architec-
ture, we take into account different CS settings, each of which
considers a matrix A with a different value for m that ranges
from m = 16 (CR = 4) to m = 48 (CR = 2.7). Therefore,
for each setting, we train a different set of parameters. As
anticipated in the previous section, the task of the DNN is
equivalent to a multi-label classification [38] that considers
each label as an independent binary classification problem.
More precisely, for each input y, the DNN produces n outputs
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0.1

RSNR
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1
Fig. 6. Probability density functions of RSNR values with CR= 4 (m = 32)
for the considered system configurations.
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that are independently either positive or negative. If the i-th
output is positive then ẑi = 1 while a negative outcome for
the i-th output implies ẑi = 0.

To assess the capability of correctly estimating z, metrics
related to the difference between z and ẑ need to be adopted.
Let first introduce the metrics for a single binary classification
problem before generalize them for the case of n binary
classifications performed by the DNN.

If both entries zi and ẑi are equal to 1 we mark this
classification as a single true positive, while zi = ẑi = 0
is a single true negative. In case of single miss-classifications
we have either a single false positive (ẑi = 1 and zi = 0) or a
single false negative (ẑi = 0 and zi = 1). Hence, the overall
performance of a DNN prediction can be expressed in terms
of the following metrics:
• Positive (P) and Negative (N):

P =

n−1∑
i=0

zi, N = n− P (11)

• True Positive (TP) and True Negative (TN)

TP =

n−1∑
i=0

ziẑi, TN =

n−1∑
i=0

(1− zi)(1− ẑi) (12)

• TP Rate (TPR), TN Rate (TNR) and Accuracy (ACC)

TPR = TP/P, TNR = TN/N,

ACC = (TP + TN)/n
(13)

A summary of the average values for P, TP, TPR, TNR and
ACC over the whole test set can be found in Tab. II with the
aim of showing the ability of the network to correctly detects
the ones in z.

The results in Tab. II show that the number of ones in ẑ
increases with m, confirming the behaviors of a single instance
reported in Figure 3. The difference between P and TP, that
is the number of ones wrongly estimated, is roughly constant
and less than 2. As a consequence, the TPR tends to increase
with m while the TNR slightly decreases. Since in general ẑ
contains more zeros than ones, the accuracy is dominated by
TN so it slightly decreases with m, starting from 0.983 for
m = 16 to 0.974 for m = 48.

Accuracy values very close to one ensure a high overlap
between z and ẑ. Nevertheless, even when z = ẑ, the decoder
still commits an error in the reconstruction as modeled in (8).
Thus, the overall performance of TSOC must be evaluated in
terms of either ARSNR or RSNR distribution.

Fig. 5 compares the performance in terms of the achieved
ARSNR of the proposed TSOC approach with that of SOC
(ideal oracle) and BPDN (SPGL1 decoder). All these ap-
proaches share the same tuned Rak-CS antipodal sensing ma-
trices A. Further comparison shows BPDN approach coupled
with matrices A following the standard CS theory (Std) where
-1 and +1 occur with the same probability. Rak + TSOC
outperforms Rak + BPDN with a gap of at least 5 dB, while the
loss with respect to the ideal oracle (Rak + SOC) never exceeds
2.5 dB. Std + BPDN performance is not even comparable with
the ones of the other frameworks.

To provide a further comparison between these approaches,
Fig. 6 shows the RSNR distributions in case of CR = 4 (m =
32). The proposed TSOC, along with the ideal SOC, shows an
RSNR variance that does not increase compared to both the
already presented Std + BPDN and Rak + BPDB.

IV. QUANTIZATION-AWARE DECODER ARCHITECTURE

In this section we investigate the implementation of the
TSOC-based system in presence of possible hardware lim-
itations, e.g., a limited precision arithmetic unit. The block
scheme of the overall system has been depicted in Fig. 7 where
we highlight the fact that each digital signal is associated to a
number of bits. At the decoder side we can identify two main
blocks: i) the oracle divining z, ii) the reconstructor that uses
the oracle output to recover the original waveform.

The representation of each system quantity with a finite
number of bits addresses a trade-off between computational
burden/memory footprint and capability to correctly recon-
struct input signals.

A preliminary investigation on this direction is reported
in [39] where authors study the performance loss due to
the parameter post-quantization with the two-stage decoder
proposed in [23]. They first design the two blocks composing
the decoder with full precision and then they simply quantize
the entries of both B and D and the DNN parameters.

Here we propose different strategies to limit the loss in
performance including quantization-aware techniques, as well
as a different approach in the pseudoinverse operation and the
quantization of the measurement vector y.

The first issue we address is the quantization of the input
of the decoder y. Our analysis assumes that y is quantized by
a mid-tread uniform quantizer, with 2by levels.

Quantization may come either from the quantization of a
measurement vector computed by an analog CS encoder block
or from the digital processing of a digital input signal x. In
this setting, we need to remember that if n is large enough,
each yi, i = 0, 1, . . . ,m−1 can be considered as a zero mean
Gaussian distributed random variable, and setting a conversion
range that includes all possible values is not possible, or simply
not convenient [7], [40].

Being ∆ the quantization step, σ2
y the variance of the

distribution of each value in y, and γ a positive coefficient,
we set 2by∆ = 2γσy , so that each entry of y is represented
with by bits and ranges from ymin = −2by−1∆ = −γσy to
ymax = (2by−1−1)∆ ≈ γσy . After quantization, each element
of y can be considered a fixed point number belonging to the
set Σy = {−1,−1 + ∆y, . . . , 1−∆y}, with ∆y = ∆/(2γσ2

y).
The quantized y values feed both the oracle and the recon-

structor. Each of the two structures internally uses parameters
that can be quantized to reduce the complexity and memory
footprint.

A. The quantized oracle

As a first modification to reduce computational complexity
of our DNN structure, we replace the sigmoid function in
the output layer with a linear function. Since the sigmoid is
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Fig. 7. Block diagram of the overall system including CS encoder, measurements dispatch and the proposed TSOC decoder. The arrows represent digital
quantities and for each of them the number of bits is highlighted.

monotone and the output is thresholded, it is sufficient to adapt
the threshold value θ.

Then, the parameters of the oracle are quantized to minimize
the memory footprint and reduce the resources needed for the
support divination. All parameters are encoded with bw bits
and constrained to be in the discrete set Σw = {−1,−1 +
∆w, . . . 1 − ∆w}, where ∆w is the quantization step chosen
be compliant with the adopted fixed point representation.

Moreover, in the hidden layers, all the neurons outputs
(activations) are represented with only the by most significant
bits such that their representation is coherent with the one
of the DNN input. As a result, since both activations and
parameters are represented in fixed point, integer arithmetic
is sufficient to produce the oracle output. In each neuron,
the inputs are multiplied by the weights and then summed,
therefore, the number of bits required by the arithmetic unit
is by + bw + log2(nL + 1) where nL is the number of neuron
inputs that in our case never exceeds 2n.

Regarding the parameters quantization, a possible choice is
reported in [39] where quantization is applied at the end of
the training. However, it is possible to adopt strategies during
the training that help to reduce the performance loss due to
quantization. Here, we investigate some approaches that we
group by task:

• limiting the parameters in the set Σw so that they are not
clipped during quantization;

• limiting the activations in the set Σy to avoid overflow
during inference;

• updating parameters considering the effect of quantization
(quantization-aware training).

The details follow.

1) Limiting the parameters range: We force the parameters
to assume values in the set Σw with the combination of two
methods: “bathtub” regularization and parameter “recycling”.

The “bathtub” regularization consists in a regularization
term that is added to the cost function (10) and penalizes the
parameters that are outside the desired range. We can define

the “bathtub” regularization function with its derivative:

∂Rbathtub(wl,i)

∂wl,i
=


−1 for wl,i < −1

0 for − 1 ≤ wl,i ≤ 1−∆w

1 for wl,i > 1−∆w

(14)

where wl,i is the i-th parameter in the l-th DNN layer. This
regularization term affects the cost gradient that is used to
update the parameters in the back-propagation algorithm and
its effect consists in pushing the parameters value inside the
desired set.

The parameter “recycling” is still applied in the training but
only at the beginning of each epoch. The parameters that have
a values outside the desired set are modifies to a new value
uniformly randomly chosen in Σw.

2) Limiting the activations in their range: Since both the
input and the activations are represented with fixed point, we
want to force each neuron to produce an output that is in the set
Σy . To do so, for all hidden layers, we replace the ReLU with
the Saturated ReLU (SReLU) as activation function. SReLU
is defined as follows:

SReLU(v) =


0 for v < 0

v for 0 ≤ v < 1

1 for v ≥ 1

(15)

where v is the weighted sum generated by each neuron.
3) Quantization-aware training: Among the many solu-

tions proposed in the literature, we investigate the results
achieved by two techniques, namely fake-quantization [41] and
cosine regularization [42].

Fake-quantization [41] suggests to train the network with
full precision parameters and to adopt quantized values only
during the feed-forward phase. This has the effect of emulating
the loss of precision due to quantization.

Cosine regularization [42] is a further regularization term
Rcosine(W ) added to (10) and defined as follows:

Rcosine(W ) = −
L∑
l=1

Nl∑
i=1

λ

2bw
cos(2bw′l,iπ) (16)

where L is equal to the number of layers composing the
DNN, Nl is the number of parameter in each layer, w′l,i is
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Fig. 8. The regularization function used during training: the “bathtub”
regularization works outside the range [wmin, wmax] and keeps the values
inside the interval; the cosine regularization pushes the parameters towards
the quantizer levels.

wl,i constrained to the set Σw, and λ is a parameter that
defines the strength of the regularization. As a consequence,
the parameters are pushed near the 2bw values allowed by
the quantizer and, therefore, quantization error is reduced. A
visual representation of the cosine regularization along with
the “bathtub” regularization can be seen in Fig. 8.

B. The LMS-based reconstructor

The final stage retrieves the vector ξ|ẑ by solving the
equation y = B|ẑξ|ẑ . Note that this is a resource-hungry
operation.

Indeed, Moore-Penrose pseudo inversion is a computation-
ally expensive operation since it requires a matrix inversion
and several square roots operations. As a consequence, devices
embedding a floating-point unit are preferred.

The first step adopted to reduce the reconstruction com-
plexity is the quantization of both matrices D and B with
respectively bD and bB bits. As a result, the memory footprint
required for storing them is significantly reduced.

Moreover, since the pseudoinverse operation fundamentally
solves the Least Mean Squares problem (LMS), it is possible
to compute ξ|ẑ as the output of a 1-st order LMS filter
[43], [44, Ch. 6]. The LMS filter employs only additions
and multiplications, allowing the use of low-power fixed-point
arithmetic, not possible with the pseudoinverse approach. Its
mechanism is based on a gradient descent algorithm with a
fixed amount of iterations q and a learning rate η � 1. A
more detailed explanation of the LMS filter algorithm can be
found in Appendix A.

C. Architecture design and results

Many hyperparameters need tuning for the final implemen-
tation of the overall decoder. They are summarized in Table
III. We focus here on the case CR = 4. To speed up the
process, we split this investigation into two phases. Firstly,
we determine the setting characterizing the LMS filter where
the oracle is supposed ideal (see App. A for more details).
Then, we focus on the tuning of the DNN hyperparameters.

For the LMS setting, we first perform a series of tests with
5000 signal instances, imposing ẑ = z, i.e., replacing the DNN
with the ideal oracle. In practice, bB = 9, the learning rate η
of the LMS filter equal to 2−6 and γ = 4 are values that
correspond to the maximum ARSNR value.

TABLE III
HYPER-PARAMETERS FOR THE LOW-RESOURCES TSOC IMPLEMENTATION

Decoder input

by Number of bits used to represent measurements y

γσy Half range of measurements y

Oracle

bw Number of bits used to represent DNN weights

λ Strength of cosine regularization

Reconstructor

bD Number of bits used to store matrices D

bB Number of bits used to store matrices B = AD

q Iterations of the LMS filter

η LMS filter learning rate
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Fig. 9. Performance of the decoder with ẑ = z, with the variation of the
hyper-parameters q, bD and by , which have not an optimum value (i.e. a
single value with best performance). The values highlighted are the choices
for our implementation test.

Conversely, q, bD and by exhibit profiles that saturate as
their values increase, as reported for a few configurations in
Fig. 9. In these cases we select the lower value below which
the performance starts to degrade. The final values are q =
512, bD = 10 and by = 10.

Once the LMS filter setting is fixed, we consider the overall
non-ideal decoder to tune the oracle hyperparameters bw and
λ. We, therefore, perform a DNN training for each hyperpa-
rameters configuration. Even considering different values for
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Fig. 10. Probability density functions of RSNR values with CR= 4 (m = 32)
for the high-precision TSOC and the quantized TSOC (qTSOC) with either
the pseudoinverse (PINV) or the LMS filter. The performance in the case of
a-posteriori quantization is also shown (post-qTSOC).

λ, the performance is almost constant when bw is equal or
greater than 4, and it significantly degrades only for bw lower
than 4. Since one of the aims is to reduce the memory footprint
dedicated to the oracle, we set bw = 4, and for that value, the
optimal λ is 10−8.

Therefore, considering bw = 4, we need 495 kbit to store
the DNN parameters (that are 123,648 for m = 32), 37 kbit
for the 4096 entries of B (bB = 9 bits each), and 164 kbit
for the 16384 entries of D (bD = 10 bits each). The overall
memory footprint of the decoder is 695 kbit, to which we must
add 4 kbit needed for the 32 × 128 antipodal sensing matrix
A in the encoder.

We finally test the whole quantized architecture, with quan-
tized y, W , B and D, along with either the pseudoinverse on a
floating-point unit or the LMS filter approach with fixed-point
arithmetic. For this final test, we use 9 × 104 ECG windows
with the same setup described in Section III. The distribution
of the RSNR can be found in Fig. 10, along with the results
presented in Section III for the TSOC case (without quantiza-
tion). The main three cases to consider are therefore the ideal
(i.e. high-precision) TSOC with pseudoinverse (PINV) and
the two “constrained” cases of the quantized TSOC (qTSOC)
with either the pseudoinverse (PINV) or the LMS filter. As it
can be seen, the observed variances of each distribution are
similar to each other, while the ARSNR for the qTSOC+LMS
case is 25.9 dB and 26.6 dB for qTSOC+PINV, therefore
showing only a slight degradation with respect to the 28.2 dB
characterizing the reference TSOC+PINV setting. To offer an
additional reference point, the performance of the case where
the DNN parameters are quantized a-posteriori (post-qTSOC),
i.e. after the training, is also shown in Fig. 10. Without
proper quantization-aware training techniques the performance
is greatly degraded, with an ARSNR of 17.7 dB.

Finally, In Fig. 11 it is also possible to see some recon-
structed ECG samples in the case of qTSOC with LMS filter
along with the original instances.

V. CONCLUSION

In this paper, we have investigated the application of a
two-step decoder, namely, support identification by a DNN
and signal reconstruction by an LMS, for a realistic signal
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Fig. 11. Samples of the original ECG windows compared with the windows
reconstructed using qTSOC + LMS filter with CR = 4 (m = 32).

encoded according to CS techniques, assuming a realistic
hardware environment. In detail, we have considered support
identification for compressed synthetic ECG signals, and we
have assumed that the device implementing the decoder is
limited to fixed-point arithmetic. Results show that i) the
two-step approach ensures performances that are much more
reliable compared to what obtained to a Rak-CS approach
(more than 5 dB advantage); ii) the proposed architecture is
robust to quantization error and numerical errors. Moreover,
with a low-precision fixed-point arithmetic unit, we achieve
results that are a couple of dB lower with respect to those
achievable by a standard high-precision implementation.

Nevertheless, the adoption of a DNN in a CS decoder
introduces two possible limitations with respect to traditional
approaches: i) the need for a sufficiently large data set for the
neural network training; ii) the need for an entire training in
case of a change in the sensing matrix.

APPENDIX A
THE LMS FILTER ALGORITHM

The working principle of the 1-st order LMS filter can be
summarized as follows. Given a system y = Hc, we have
c ∈ Rn unknown and y ∈ Rm and H ∈ Rm×n known. We
also define ĉ ∈ Rn as the estimated coefficients vector. The
pseudocode of the LMS filter is described in Alg. 1.
In the algorithm, yj is the j-th value of vector y, hj,∗ is the j-
th row of matrix H and η � 1 is the learning rate coefficient.
In line 4, the error ε on the forward prediction of the single
value yj is evaluated. Then, in line 5, ε is backpropagated to
update ĉ. Both operations are first executed for all the entries
of y (and so, for each row of H) and then iterated q times to
make the solution converge.
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Algorithm 1 LMS filter
1: Set all the entries of ĉ to 0
2: for i = 0, 1, . . . , q − 1 do
3: for j = 0, 1, . . . ,m− 1 do
4: ε = yj − hj,∗ · ĉT
5: ĉ = ĉ+ ηε · hj,∗
6: end for
7: end for
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