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Subspace Energy Monitoring for Anomaly
Detection @Sensor or @Edge

Alex Marchioni, Member, IEEE, Mauro Mangia, Member, IEEE, Fabio Pareschi, Senior Member, IEEE,
Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—The amount of data generated by distributed moni-
toring systems that can be exploited for anomaly detection, along
with real-time, bandwidth, and scalability requirements leads to
the abandonment of centralized approaches in favor of processing
closer to where data is generated. This increases the interest in
algorithms coping with the limited computational resources of
gateways or sensor nodes.

We here propose two dual and lightweight methods for
anomaly detection based on generalized spectral analysis. We
monitor the signal energy laying along with the principal and
anti-principal signal subspaces and call for an anomaly when such
energy changes significantly with respect to normal conditions.
A streaming approach for the online estimation of the needed
subspaces is also proposed.

The methods are tested by applying them to synthetic data
and real-world sensor readings. The synthetic setting is used for
design space exploration and highlights the trade-off between
accuracy and computational cost. The real-world example deals
with structural health monitoring and shows how, despite the
extremely low computations costs, our methods are able to detect
permanent and transient anomalies that would classically be
detected by full spectral analysis.

Index Terms—Anomaly detection, Principal Component Anal-
ysis, Spectral Analysis, Edge-of-the Cloud, Structural Health
Monitoring.

I. INTRODUCTION

The world in which we are currently living and more so the
one we are designing for tomorrow is based on an interweaving
of physical systems and information flows [1]. One of the most
prominent and useful applications of such an interweaving is
monitoring, i.e., the capability of continuously gathering fine-
grain information from ever-larger portions of the physical
world [2]–[6], let it be a smart city, a wild protected area, an
infrastructure, etc. The general architecture of a monitoring
infrastructure, as previously proposed in literature [5]–[7], is
reported in Fig. 1. Sensors are deployed close to the phys-
ical phenomena to monitor. They are small nodes, in which
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Fig. 1. Monitoring a portion of the physical world by flowing sensor readings
to the cloud.

computational resources are constrained by the requirement of
being as non-intrusive as possible, that implies limits both on
geometric dimensions and energy budget.

Clusters of sensors send their readings either by radio
or wired links to the middle layer. Although represented in
Fig. 1 with a unique device, this layer may be organized as a
hierarchical structure in case of complex systems [7]. However
implemented, this is the edge, i.e., a physically localized layer
of processing elements that interposes between the application
and the cloud abstraction. The computation resources available
at the edge are typically much larger than those on each
sensor node [8], providing the opportunity for local processing.
This is an aspect that can be fundamental in case of wireless
communication between the edge and the cloud, which is
necessary, for instance, in case of monitoring systems located
in remote areas. However, once in the cloud, computational
constraints are virtually removed and translated into monetary
cost constraints. With enough time and money, almost any
amount of calculations can be performed.

Nevertheless, before reaching the cloud, the computational
resources in the edge can be exploited not only for data
dispatch but also for early data processing. Anomaly detection,
conceived as the generation of alerts, is a task that can be
performed in the edge. An alert, i.e., a deviation from normal
behavior resulting from the readings of the sensors, may be
caused by events in the monitored system but also by sensor
fault, intrusion, tampering, damage, etc.

The effectiveness of detection may critically depend on the
promptness with which the alerts are generated once anomalies
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manifest. Moreover, though detection can be easier when
multiple sensors are considered [9], anomalies are usually local
or semi-local phenomena that may become evident even when
not all the available data is collected. This other aspect clearly
hints at the opportunity of implementing anomaly detection at
the edge, or even at sensors, rather than waiting for the whole
data to reach the cloud to be processed. Furthermore, local
early computation helps to reduce the traffic to central servers
that, especially in the case of large-bandwidth sensors, would
be mainly made of redundant data that becomes significant
only in the presence of unusual behaviors to analyze. For
this to be possible, one needs to reduce the computational
complexity of anomaly detection enough to fit the constraint
of the supporting computing hardware.

A. Related work

In this paper, the primary target of anomaly detection is to
recognize changes in the monitored physical phenomenon. In
principle, this may not be an easy task. An intuitive reason
is that anomalies are deviations from behaviors that repeat in
normal conditions. This looking for repeating patterns may
call, for example, for analyses in some transformed domain
(Fourier, Wavelet, adaptive, etc.) in which repeating patterns
are represented by easily identifiable features (e.g., peaks).
This is why spectral analysis and machine learning [10]–
[12] often appear among the tools commonly called into
play. Yet, when implementing anomaly detection at sensors
or the edge, transformation, extraction of features in the
transformed domain, and their tracking over time may result in
a computational complexity exceeding the available resources.

For example, this is the case of [13]–[16], in which anomaly
detection based on spectral analysis is proposed. These works
entail a substantial computational effort and thus call for cen-
tralized processing. Analogously, in [17], the authors propose a
supervised machine learning method to identify the occurrence
of damages, whose implementation requires resources that do
not fit into edge devices.

As an alternative, [18]–[20] propose detectors based on
the Principal Component Analysis (PCA) have also been
proposed, a concept that is quite common in many signal
processing tasks and usually employed to reduce signal dimen-
sionality. When it is employed as detector, the weighted energy
collected by the principal components and the corresponding
reconstruction error are the two scores that characterize this
class of detectors. The approach in [20] proposes a cloud-
based ecosystem where part of the processing is distributed
among the nodes composing the monitoring system. Alterna-
tively, in [18], the PCA is a building block that follows a
centralized genetic algorithm employed to select which subset
of sensors is more suitable to detect a specific system fault.

Another class of anomalies is related to faults of the
monitoring systems. There are several possible causes for
system faults that correspond to different abnormal waveforms
in the sensor readings. A common practice consists of adopting
a separate detector for each type of fault [21], [22], ranging
from very low-complexity approaches [22], [23] to more so-
phisticated methods [24]. A further declination of the anomaly

identification term is represented by intrusion detection [25],
[26], which regards the attacks that infect the sensor nodes
without any explicit network damage. As before, this class of
anomalies includes a plethora of possible attacks along with
a wide variety of detectors [25]. Several methods detect an
intrusion when a node readings differ from the ones of its
neighborhood, as for [27]–[29], while the approach in [29]
can also be adapted to local intrusion detection.

B. Our contribution
The method we propose focuses on detecting changes in

the observed physical phenomena, and it aims at maintaining
detection capabilities close to those based on spectral analysis,
with a limited computational effort to fit device resources
available at sensor node or at the edge. As a working principle,
we investigate how the energy of the signal is distributed over
the signal space. An anomaly is detected when the energy
along a suitably defined subspace of the signal space differs
significantly from what expected in normal conditions.

Two different detectors are proposed, exploiting two dif-
ferent subspaces. The first measures the energy along the
principal subspace to get a quantity able to discriminate the
typical behavior from abnormal ones. Moreover, we also notice
that, under some circumstances, the projections along the anti-
principal subspace may yield information about the state of the
system. We take advantages from this by relaying the second
detector on the observation of the energy on the anti-principal
subspace. With respect to previously proposed PCA-based
detectors in [18]–[20], the concept of principal components is
extended to principal subspace, and the anti-principal subspace
is a generalization of the residual error.

We exploit the fact that our method deals with subspaces
and not with eigenvalue-eigenvector pairs to propose suitably
adapted, low-complexity estimation procedures for the second-
order feature of the normal signals. As a result, the proposed
detectors are novel in the sense that they generalize some PCA-
based methods and, even more important, are able to com-
pound classical transform-based analysis with a lightweight
and implicitly adaptive procedure fitting tight computational
constraints.

Additionally, we describe a method to estimate the energy
on the subspaces mentioned above in a streaming fashion. The
procedure can be derived by suitably tweaking an existing
procedure for the on-line estimation of principal components.
The derivation of a streaming procedure to estimate the anti-
principal subspace is novel since classical approaches concen-
trate on principal components.

The proposed procedure has been tested on sensor readings
coming from a system monitoring the vibration of a highway
viaduct in Italy. Obtained results highlight that different kinds
of structural anomalies are detectable: i) a massively destruc-
tive event that permanently changes the elastic structure; ii)
a nondestructive event that causes only slight alterations; iii)
an earthquake with no consequences in the monitored viaduct.
Moreover, the detection capability has also been tested in the
case of two kinds of faults affecting the sensing system.

The paper is organized as follows. In Section II we lay down
the notation, define the detection method, and develop some
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Fig. 2. Block scheme of the proposed method, where for each incoming
vector x the energy of the projections Ux is computed and the average of m
successive windows is adopted to establish if an anomalous event is occurring.

general considerations on its applicability and effectiveness. In
Section III, we develop the online estimation of the subspaces
used to characterize the distribution of energy in the signal
space. In Section IV, we define the performance figures used
to assess detectors’ performance. In Section V, we define a
Gaussian theoretical framework that allows computing semi-
analytically the performance of the proposed detectors. In
Section VI, we use such a framework to explore the detectors’
design space and derive some qualitative behaviors. In Section
VII, we show how the proposed methods behave in a real-
world case. The conclusion is finally drawn.

II. PROBLEM STATEMENT AND DEFINITION OF DETECTORS

The incoming signal is modelled by a sequence of n-
dimensional vectors xrts P Rn such that

xrts �
#
xokrts if ok

xkorts if ko

where ok and ko are the two complementary events that
define normal (ok) and anomalous (ko) behavior, while xokrts
and xkorts are realizations of ergodic (and thus stationary)
stochastic vector processes characterized by constant correla-
tion matrices Kok � Kko defined as

K� � Ex
�
x�rtsx�rtsJ� � lim

NÑ8
1

N

N�1̧

t�0

x�rtsx�rtsJ (1)

where � stands for either ok or ko, E stands for expectation
and J is for vector transpose.

Such matrices are symmetric and positive-semidefinite and
thus admit a spectral decomposition K� � Q�Λ�Q�J with
Q� � �

q�0 q�1 . . . q�n�1

�
an orthonormal matrix with

eigenvector columns q�j and Λ� a diagonal eigenvalue matrix
Λ� � diag

�
λ�0 , λ

�
1 , . . . , λ

�
n�1

�
such that λ�j q

�
j � K�q�j and

λ�0 ¥ λ�1 ¥ � � � ¥ λ�n�1 ¥ 0.
It is reasonable to assume that anomalous events happen

independently at each time step with a probability pko �
Pr tkou ! 1. Under these assumptions, the correlation of the
sequence of signals xrts is K � p1� pkoqKok � pkoK

ko �
Kok.

Note that this model fits both an embodiment in which
the entries of xrts are the subsequent samples of a signal in
the t-th window, and one in which they are the simultaneous
readings of different sensors at time step t, as well as those
intermediate cases in which the vector xrts is made of readings
from different sources in a set of subsequent time steps.

The observable we consider is the energy of the signal along
a predefined subspace. To formalize this concept, let U �

�
u0 u1 . . . uκ�1

�
be an n� κ (with κ ¤ n) matrix with

orthonormal columns uj . For each integer τ and for a given
number m of subsequent instances, we observe the value

EU,mrτ s � 1

m

mpτ�1q�1¸
t�mτ

��UJxrts��2 � 1

m

mpτ�1q�1¸
t�mτ

EU,1rts (2)

where }�} is the standard `2 norm of a vector. We identify
anomalous instances as those yielding anomalous values of
EU,mrτ s, i.e., of the average over m subsequent energies of the
projection of xrts on the κ-dimension linear subspace spanned
by the columns of U .

Since we want to keep the computational complexity of the
detector as low as possible, we limit ourselves to methods that
declare an anomaly when either EU,mrτ s ¤ θ or EU,mrτ s ¥ θ,
for a fixed threshold θ.

Fig. 2 summarizes the mechanism behind the proposed
detector showing its main blocks. From the scheme we get
that the number of multiply and accumulate (MAC) operations
is determined by the projection of the signal x onto U
(nκMACs), the computation of the energy (κMACs) and the
computation of the average (1 MAC for each signal instance).
As a result, every nm elements mpκpn�1q�1q operations are
required, i.e., at most κ� 1 MACs for each incoming sample.

To see that EU,m is linked to the correlation between entries
of xrts, note that its average conditioned to either ok or ko is,
by direct computation from (1),

µEU,m|� � Ex rEU,mrτ s|�s � tr
�
UJK�U

�
(3)

where the assumption of stationarity allows dropping time
indications from the statistics of EU,mrτ s, and where trp�q
indicates the trace of a matrix.

A possible choice for U is uj � qok
j for j � 0, . . . , κ� 1.

Since λok
0 ¥ λok

1 ¥ � � � ¥ λok
n�1 ¥ 0 this amounts to take

U as the principal κ-dimensional subspace of the process
xokrts and implies µEU,m|ok � °κ�1

j�0 λ
ok
j , that is the largest

possible average energy collected by projecting xokrts onto
any κ-dimensional subspace. By the very definition of prin-
cipal subspace the instantaneous energy of the corresponding
projection EU,mrτ s is expected to be large in normal cases,
whereas anomalies can be revealed by the fact that EU,mrτ s
falls below a certain threshold θ. We will indicate such a
method as Lack of Energy Detection (LoED).

From a dual point of view, we may think of choosing uj �
qok
n�j�1 for j � 0, . . . , κ�1 so that µEU,m|ok �

°κ�1
j�0 λ

ok
n�j�1,

implying that U is the anti-principal κ-dimensional subspace,
i.e., the subspace along which projections of normal instances
have the least possible average energy. By the very definition
of anti-principal subspace the instantaneous energy of the
corresponding projection EU,mrτ s is expected to be small in
normal cases, and anomalies can be revealed by the fact the
EU,mrτ s exceeds a certain threshold θ. We will indicate such
a method as Excess of Energy Detection (EoED).

A. The effect of signal localization

Both LoED and EoED rely on the fact that some subspaces
exhibit distinctive features from an energetic point of view,
i.e., that the distribution of the energy of the signal is not
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uniform over the signal space. For this reason, we expect
them to behave poorly for close-to-white signals with almost
equal eigenvalues λok

0 � λok
1 � � � � � λok

n�1. In fact, in that
case, the average energy collected by the projection on any
κ-dimensional subspace is close to κ{n times the total energy
of the signal and little discrimination is possible.

On the contrary, when the eigenvalues are substantially
unbalanced, principal and anti-principal subspaces are dis-
tinguishing features of the process that may help to identify
deviations. The unbalancing of the eigenvalues implying con-
centration of energy along a preferential direction in the signal
space is often quantified by localization [30] defined as

Lxok �
°n�1
j�0 λ

ok2
j�°n�1

j�0 λ
ok
j

	2 �
1

n
�

tr
�
Kok2

	
tr2 pKokq � 1

n

that is such that Lxok � 0 for white signals with λok
0 � λok

1 �
� � � � λok

n�1, while it reaches its maximum Lxok � 1 � 1{n
when all the energy of the signal is concentrated along the
first eigenvector qok

0 , i.e., λok
0 ¡ 0 and λok

1 � λok
2 � � � � �

λok
n�1 � 0. In Section VI, by means of numerical evidences

derived on a Gaussian framework, we will show that the larger
Lxok , the better the performance of both LoED and EoED.

B. The effect of uncorrelated additive white noise

We assume that each signal instance is affected by additive
white noise, uncorrelated with the signal, and with average
energy per sample equal to σ2. With this, each possible
observation can be expressed as x�rts � x̄�rts � νrts such
that K̄� � Ex̄�rx̄�rtsx̄�rtsJs and EνrνrtsνrtsJs � σ2I ,
where I is the identity matrix and the overbar indicates the
noiseless quantities. Since noise and signal are assumed to be
uncorrelated, we concentrate on a signal without anomalies
and write

Kok � K̄ok � σ2I

in which trpK̄okq{nσ2 represents the Signal-to-Noise Ratio
(SNR).

Note that the eigenvectors of Kok coincide with those of
K̄ok while the eigenvalues are such that λok

j � λ̄ok
j �σ2. Due

to the offset, the observed normal signal is less localized com-
pared to the noiseless normal signal, and detector performance
is expected to decrease in small-SNR scenarios.

III. STREAMING ESTIMATION OF PRINCIPAL AND
ANTI-PRINCIPAL COMPONENTS

As seen in Section II, LoED and EoED detectors depend on
the availability of the κ-dimensional principal or anti-principal
subspace of the normal signal. They can be estimated offline
by accumulating Kok as in (1) using a finite value of N , and
then extracting from that the κ eigenvectors corresponding
to the largest (LoED) or smallest (EoED) eigenvalues. This
task is commonly executed on the cloud. As an alternative,
the subspace represented by the same eigenvectors can be
obtained in a streaming fashion with a resource budget that
meets the capabilities of the edge devices. For this reason, a
plethora of methods for the estimation of principal components

from streaming data has been investigated (see, e.g., [31], for
a recent review).

A common feature of streaming methods is that, when
applied for κ ¡ 1, they provide a basis for spanpq0, . . . , qκ�1q
that may not coincide with q0, . . . , qκ�1. Further to that, most
of them build local approximations of Kok and rely on the
power method to extract such subspaces [31].

The methods we adopt here are those exploiting the ex-
tremal properties of principal and anti-principal subspaces.
In particular we use a common adjusted formulation of the
method in [32] for principal components, a simplification of
[33] as suggested by [34] in a non-stochastic setting. Starting
from the case of principal subspaces, we want to find a
column-orthonormal matrix UÒ P Rn�κ maximizing the ex-
pectation of the collected energy ExrEU,mrtss � ExrEU,1rtss.
Assuming to have a total of N instances, by considering the
corresponding empirical average

EU � 1

N

N�1̧

t�0

EU,1rts (4)

we can translate such a problem into one that may be tack-
led by classical Stochastic Gradient Ascent/Descent (SGA/D)
[35]–[37]. The gradient of EU rts with respect to U is

∇UEU,1 � 2xrtsxrtsJU
Since following the gradient may spoil the orthonormality

between the columns of U , we insert an orthonormalization
procedure every T gradient steps. Overall, we estimate the
principal κ-dimensional subspace by initializing U p0q

Ò P Rn�κ
at random and iterating

U
pt�1q
Ò �

#
U
ptq
Ò � 2ηtxrtsxrtsJU ptq

Ò if t � 0 pmod T q
K
�
U
ptq
Ò � 2ηtxrtsxrtsJU ptq

Ò
	

if t � 0 pmod T q

where Kp�q is any column-orthonormalization procedure and
ηt ¡ 0 is a learning rate sequence that may be decided within
the classical requirements

°8
t�0 ηt � �8 and

°8
t�0 η

2
t   �8

[37, Theorem 4.7].
Though not mentioned in the Literature, starting from the

same considerations, we may easily devise an algorithm to
estimate the anti-principal subspace spanned by a matrix UÓ.
In fact, since every iteration follows the direction of the
gradient of the energy, each step can increase or decrease
such energy depending on the sign of the applied adjustment.
Hence, starting from a random U p0q P Rn�κ the iterations

U
pt�1q
Ó �

#
U
ptq
Ó � 2ηtxrtsxrtsJU ptq

Ó if t � 0 pmod T q
K
�
U
ptq
Ó � 2ηtxrtsxrtsJU ptq

Ó
	

if t � 0 pmod T q

produce an estimation of the κ-dimensional anti-principal
subspace.

In both cases, the ηt and T should be administered to
address the trade-off between computational complexity and
convergence speed. As far as ηt is concerned, we adopt
ηt � η0{?t that is the slowest possible decaying trend that is
close enough to meeting the theoretical requirements without
impairing convergence.
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Fig. 3. Typical profiles of the probability density function of energy collected by the principal subspace (a) and anti-principal subspace (b) from two distinct
processes, where the highlighted areas define the probabilities of false negatives and false positives for LoED (a) and EoED (b). Besides, two sample trends
of false negative - false positive curves (c) with corresponding performance figures: the area values are equal to L and the highlighted points correspond to
the minimal Λξ .

IV. PERFORMANCE FIGURES

To quantify detection performance, we may indicate with
fokp�q and fkop�q the two probability density functions of the
energy EU conditioned to ok and ko, respectively, and with
Fokp�q and Fkop�q the corresponding cumulative distributions.
With this, we can write the probabilities of false positives and
false negatives for the LoED approach as

pLoED
fp pθq � Pr tEU,m ¤ θ|oku � Fokpθq
pLoED

fn pθq � Pr tEU,m ¡ θ|kou � 1� Fkopθq
and for the EoED approach as

pEoED
fp pθq � Pr tEU,m ¡ θ|oku � 1� Fokpθq
pEoED

fn pθq � Pr tEU,m ¤ θ|kou � Fkopθq
Fig. 3 shows the typical trends for probability density

functions of the energy collected by the principal and anti-
principal subspaces of a process (the blue ones) along with
those of the energies collected by the same subspaces from an
anomalous process (the orange ones). Fig. 3(b) refers to LoED,
while Fig. 3(a) to EoED. The areas defining the false-positive
and false-negative probabilities for both cases are highlighted.

Since we are observing energies, θ ¥ 0, and, as θ goes
from 0 to 8, one between pfp and pfn increases monotonically
from 0 to 1, while the other decreases monotonically from 1
to 0. This means that the curve ppfppθq, pfnpθqq in the pfp-
pfn plane has the trend reported in Fig. 3(c) where each
point refers to a value of θ P r0,8r. Note that such a
curve, sometimes indicated as Detection Error Tradeoff (DET)
curve [38], is the complement of common Receiver Operating
Characteristic (ROC) [39] that lives in the pfp-ptp plane,
where the true-positive probability ptp � 1 � pfn is the
probability that an anomaly is correctly detected. We prefer
to analyze performance in the pfp-pfn plane and the synthetic
performance indexes we derive from it as losses that must be
minimized. This choice is coherent with the anomaly detection
setting in which devices are deployed to detect events that may
cause real-world losses. Moreover, it has the likable side-effect
that allows logarithmic plots to explore values very close to
the optimum zero-loss situation.

In this setting, as a first quantitative assessment of detector
performance, we identify the detector loss L as the area under
such a curve, as shown in Fig. 3(c). L represents a cost to be
minimized. Its upper bound L � 0.5 is for a trivial anomaly
detector that randomly marks an event as anomalous with a
probability 0.5, while the perfect detector would feature a DET
curve such that pfn � 0 for any target pfp and vice-versa
pfp � 0 for any target pfn, thus yielding L � 0.

Adapting [39], [40] we may give a further intuition for L. To
do so, let us concentrate on the EoED that declares an anomaly
when our statistic EU exceeds the threshold and compute the
area under pfp-pfn curve as

L �
» 1

0

pfn ppfpq dpfp

�
» 1

0

Fko

�
F�1

ok p1� pfpq
�
dpfp

�
» 1

0

» F�1
ok p1�pfpq

0

fko pαq dα dpfp

�
» 8

0

» β
0

fkopαqfokpβqdαdβ

The final expression for L has a probabilistic interpretation1.
Given U , a randomly chosen normal signal x1, and a randomly
chosen anomalous one x2, L is the probability that the
observed statistics are in the wrong order, i.e., that E 1U (β
in the above expression) is larger than E2U (α in the above
expression). When this happens, the detector makes a mistake,
though we do not know of which kind. In fact, if x1 does not
give rise to a false positive then we must have θ ¡ E 1U ¡ E2U
and thus x2 will result in a false negative. On the contrary, if
x2 does not give rise to a false negative then we must have
θ   E2U   E 1U and thus x1 will result in a false positive. Hence,
the lower the L, the smaller the chance that the detector makes
an error of some kind.

1The last passage is due to the change of variable β � F�1
ok

�
1� pfp

�
.
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A more specific quantitative assessment can be given by
means of a loss depending on a parameter 0 ¤ ξ ¤ 1

Λξpθq � ξpfnpθq � p1� ξqpfppθq
that models the different relative cost that a false alarm may
have compared to an overlooked anomaly. Each detector is
then characterized by means of minθ Λξpθq for different values
of ξ. As an example, the rightmost plot of Fig. 3(c) shows how
the optimum point changes when ξ changes. Note that Λ0.5pθq
is the complement to 1 of the classical balanced accuracy
measured in classification tasks.

Besides, if the monitored physical phenomena changes in a
way that requires a new estimation of the matrix U , also the
value of θ that minimizes the adopted loss must be updated.

V. A GAUSSIAN FRAMEWORK FOR PERFORMANCE
EVALUATION

To derive analytical and semianalytical guidelines, we con-
sider the classical theoretical setting in which the process
produces vectors xrts that are independent realizations of a
zero-mean Gaussian vector whose correlation matrix is either
Kok (in the normal cases) or Kko (in the anomalous cases).

Since detectors rely on spotting significant deviations from
most common behaviors, their performance is qualitatively
related to the variance of the observable in the non-anomalous
case. The smaller such a variance, the closer the observable to
being an invariant of the process, and deviations from invariant
behaviors are reliable indicators of anomalies.

This guideline leads us to consider EoED along with LoED.
In fact, we may recognize the following property whose proof
is in the Appendix.

Property 1. Let x P Rn a jointly Gaussian random vec-
tor with zero average and covariance/correlation matrix K
with eigenvalues λ0 ¥ λ1 ¥ � � � ¥ λn�1 ¥ 0 and
corresponding orthonormal eigenvectors q0, q1, . . . , qn�1. Let
0 ¤ j0   j1   � � �   jκ�1   n be any choice of κ
indices, U � �

qj0 |qj1 | . . . |qjκ�1

�
and EU,1 � }UJx}2. Setting

µEU,1 � ExrEU,1s �
°κ�1
j�0 λjk , we have

σ2
EU,1 � Ex

��
EU,1 � µEU,1

�2
�
� 2

κ�1̧

k�0

λ2
jk

With this, since the xrts are independent and equally dis-
tributed Gaussian vectors, from (2) we have

σ2
EU,m � Ex

��
EU,m � µEU,m

�2
�
� 2

m

κ�1̧

k�0

λ2
jk

where no time indication is needed as we deal with statistics
of stationary quantities.

Hence, the variance of the energy observed along the
anti-principal subspace is smaller than the variance of the
energy observed along the principal subspace. This difference
indicates that EoED has the potential of performing better
than LoED. In both cases, increasing m decreases the variance
(presumably increasing performance) at the expense of a lower
time resolution.

To assess the capabilities of EoED and LoED, we shall
explore the detectors’ design space exploiting the Gaussian
assumption further to derive precise distributions for EU,m.

Since x is Gaussian, also UJx is Gaussian with zero
average and correlation/covariance matrix UJK�U , where �
is either ok or ko. Such a matrix can be given a spectral
decomposition as in UJK�U � RDRJ with R P Rκ�κ
orthonormal and D � diag pd0, . . . , dκ�1q. We may now
consider the κ-dimensional vector y � D�1{2RJUJx that is
also a zero-mean Gaussian vector with correlation/covariance
D�1{2RJUJK�URD�1{2 � Iκ, i.e., its entries are indepen-
dent normals with zero average and unit variance.

Since UJx � RD1{2y, the observed energy can be recast in
terms of y obtaining

EU,1 � yJD1{2RJRD1{2y � yJDy �
κ�1̧

j�0

djχ
2
j p1q (5)

that is a linear combination with non-negative coefficients of
1-degree-of-freedom, independent chi-square random variables
χ2
j p1q.
For m ¡ 1, we may consider (2) in which, since the xrts

are independent and equally distributed Gaussian vectors, the
summands EU,1rts are independent and equally distributed.
Hence

EU,mrτ s � 1

m

κ�1̧

j�0

djχ
2
j pmq (6)

that is the average of a linear combination of m-degree-of-
freedom independent random variables χ2

j pmq with the same
coefficients as in (5).

A plethora of analytical and numerical results are available
for linear combinations in (6) (see [41], [42] and references
therein) allowing the numerical evaluation of pfn and pfp

in different test cases. In particular, it is known that the
cumulative distribution function of EU,m can be written as

Pr tEU,m ¤ θu �
8̧

j�0

cj
Γ
�
mκ� j, θ

2d0

	
Γ pmκ� jq (7)

where Γpa, bq � ³b
0
ξa�1e�ξdξ is the lower incomplete

Gamma function, whose complete version is Γpaq � Γpa,8q,
and the sequence of coefficients cj for j � 0, 1, . . . is
computed from the coefficients d0, . . . , dκ�1 following [41].

Clearly, given any θ and letting K� be either the correlation
matrix of the normal or of the anomalous cases, the method
yielding (7) allows to compute pfppθq and pfnpθq defined in
Section II.

The semi-analytical assessment of the method we propose
assumes that the normal process is made of independent
zero-mean Gaussian vectors with Kok

j,k � ω|j�k| for j, k �
0, . . . , n�1. A rather straightforward computation [43, Chapter
2] allows to obtain the localization Lx � 2ω2

n
np1�ω2q�ω2n�1

np1�ω2q2
that we use to choose values for ω implying normal signals
with three different levels of localization, i.e., Lx � 0.02
(indicated as Low Localization - LL), Lx � 0.05 (indicated as
Medium Localization - ML), and Lx � 0.1 (indicated as High
Localization - HL). We expect higher localization to benefit
the identifiability of anomalies.
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The correlation of the anomalous process Kko is randomly
built as a perturbation of Kok. In formulas, we extract the
square root S �

?
Kok such as the matrix that SJS � Kok

and consider its columns sj for j � 0, 1, . . . , n � 1 that are
such that sJj sj � Kok

j,j � 1. We then rotate each sj in a
random direction by a certain angle α to obtain the columns of
a matrix S1 from which we set Kko � S1JS1, that can be seen
as a perturbation of Kok preserving the average energy of each
component of xrts, but gradually departing from its second-
order statistics as α increases. We explore configurations with
α � 0.1π, 0.25π, 0.5π.

To understand the effect of such a perturbation, we may
consider pairs of Kok and Kko and evaluate the Kullback-
Leibler divergence of the two implied Gaussian distributions
[44] that depends on the two correlation matrices as in

Dpok}koq � 1

2
log2 det

�
Kok�1

KkoeK
ok�1

Kko�I
	

Such a divergence measures the amount of information (in
bit) that each anomalous sample xrts gives to a detector that
tries to discard the ok hypothesis in favor of the ko one.
Since Kko is randomly built starting from Kok, the divergence
itself is a random variable. Yet, we may estimate its average
in the ML case to obtain Exok,xkorDpok|koqs � 0.8 bit for
α � 0.1π, Exok,xkorDpok|koqs � 12.1 bit for α � 0.25π, and
Exok,xkorDpok|koqs � 203.5 bit for α � 0.5π. This indicates
that the performance of an ideal detector is largely affected
by the value of α.

The Kullback-Leibler divergence allows us to assess also
the effect of localization discussed in Section II from a
more intuitive point of view. As an example, if we set
α � 0.25π and consider the three localization levels, then
average divergences are Exok,xkorDpok|koqs � 10.8 bit in
the LL case, Exok,xkorDpok|koqs � 12.1 bit in the ML case,
and Exok,xkorDpok|koqs � 14.6 bit in the HL case. Hence,
though less than the difference between normal and abnormal
behavior measured by α, increasing the localization of the
normal behavior itself also eases detection in the ideal case.

As the first application of our Gaussian framework, we
test the effectiveness of the streaming estimation of principal
and anti-principal components. We consider n � 64 and
a LL Kok, and we analyze 105 independent windows to
look for κ-dimensional principal and anti-principal subspaces,
with κ � 3. The learning rate is controlled by η0 � 0.1.
Through the singular value decomposition of the data matrix
collecting all the 105 windows, we derive the targets U�

Ò
and U�

Ó , i.e., the two κ-dimensional subspaces that collect
the maximum possible empirical average energy E�

Ò and the
minimum possible empirical average energy E�

Ó .
To evaluate the estimation quality we consider the empirical

averages Eptq
Ò and Eptq

Ó of the energy (4) collected by the two
estimations U ptq

Ò and U ptq
Ó , and match them with E�

Ò and E�
Ó .

Fig. 4 plots the relative estimation errors
���Eptq

Ò {E�
Ò � 1

��� and���Eptq
Ó {E�

Ó � 1
��� against the number t of windows considered.

The two continuous tracks correspond to T � 1, i.e., to a
procedure in which U ptq

Ò and U ptq
Ó are re-orthonormalized after

each application of a gradient step.

1
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Fig. 4. Relative difference between the energy collected by the principal
and anti-principal subspaces and their estimation by means of the streaming
procedures in Section III.

Such a strategy implies a large computational overhead as
orthonormalizing an n � κ matrix has complexity Opnκ2q
while the application of a gradient step is only Opnκq.

Fig. 4 shows what happens when T � 1 � 104 (asterisks),
T � 2� 104 (squares), and T � 5� 104 (circles). Estimation
performance is the same at least up to T � 2� 104, while for
larger values, the estimation of the principal subspace fails. In
any case, orthonormalization overhead can be made negligible
by choosing T " κ while not suffering any performance
degradation.

VI. EXPLORATION OF DETECTORS’ DESIGN SPACE

Let us remark that, in the proposed Gaussian framework, n
and the localization level identify a matrix Kok while Kko is
randomly generated depending on α. We already know that
µEULoED,m|ok �

°κ�1
j�0 λ

ok
j and µEUEoED,m|ok �

°κ�1
j�0 λ

ok
n�j�1

with µEUEoED,m
¤ µEULoED,m

.
After that, the detector depends on the couple of parameters

κ and m from which it is possible to obtain the cumulative
distribution function of EU,m and then evaluate the loss L.

Monte Carlo simulations are needed to average over the
possible Kko for each given value of α, and performance is
assessed by averaging the loss L over 1000 trials. Moreover,
due to the complexity of the design space, we assume n �
64 that allows running simulations in an amount of time that
is reasonable but sufficiently large to resemble a real-world
signal window.

Fig. 5(a) and Fig. 5(b) show what happens to the detector
loss L when we sweep the dimensionality κ of the projection
subspace from its minimum κ � 1 to its maximum κ � 64,
with m � 1. In both plots, lines correspond to median values,
while the shaded areas contain 99% of the values.

We may observe the same trends for both EoED and LoED.
First, plots show that the higher the α the better the maximum
performance that detectors may attain. In fact, given a local-
ization, i.e., given a color in Fig. 5(a) and Fig. 5(b), dotted
lines (α � 0.5π) are able to produce lower losses with respect
to dashed lines (α � 0.25π) that, in turn, do the same with
respect to solid lines (α � 0.1π). This behavior is coherent
with the general analysis of the Kullback-Liebler divergence
of the distribution of the anomalous vectors compared to that
of the normal vectors: as α increases, each anomalous xrts
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contains more information that can be used to reject the ok
hypothesis in favor of the right ko hypothesis.

The same happens when the localization of the normal
signal increases. Given a perturbation angle, i.e., given a
line style in Fig. 5(a) and Fig. 5(b), pink tracks (HL sig-
nals) reach smaller losses with respect to yellow tracks (ML
signals) that, in turn, reach smaller losses with respect to
blue tracks (LL signals). As expected, more localized normal
signals concentrate a larger fraction of the energy in smaller
dimensional subspaces and thus are more easily distinguished
from anomalies.

Beyond these common features, the vertical ranges of the
two figures are different and highlight that EoED has the
potentiality of performing much better than LoED. However,
minimum losses localize at different values of κ, especially
for high localization cases.

To explain this aspect, consider an extreme case in which
λok
j ¡ 0 only for j � 0, . . . , J � 1 with a certain J ! n.

An EoED with κ � 1 exploits the fact that the normal signal
has no energy λok

n�1 � 0 along qok
n�1 and declares an anomaly

when the instantaneous energy is larger than a certain θ. Such a
detector never yields a false positive. However, an instance can
be anomalous because it has energy along qok

n�2 (that a normal
signal does not have since λok

n�2 � 0 if n � 2 ¥ J). Such
an anomaly would go unnoticed unless we set κ � 2. This
increase still causes no false positive but, assuming n�3 ¥ J ,
leaves out anomalies that distribute their energy along qok

n�3.
Following this path κ can be increased until κ � n�J to yield
no false positive but being able to capture all anomalies that
feature energies in all the direction along which the normal
signal does not. On the contrary, if we set κ � n � J � 1
then a normal signal that has energy along qok

J�1 may produce
a false positive, thus increasing the detector loss. Maximum
performance is therefore at κ � n � J that, since J ! n, is
quite high.

LoED would behave in an exactly complementary way since
increasing κ beyond J causes the detector to aggregate energy
along the directions that do not give any contribution in the
normal case and thus may cause false negatives when those
directions contain energy from anomalous instances.

Fig. 6 shows the effect of averaging on the performance of
the detectors. In particular, the loss L is plotted against κ for
both LoED and EoED when trying to discriminate a LL signal
from an anomaly whose second-order statistics is only slightly
different from the normal one, i.e., for α � 0.1π. The trends
reported show how reducing the variance of the observable
can be fundamental, improving detectors’ performance.

Furthermore, in a safety-critical situation in which false
negatives imply a much higher cost with respect to false
positives, the weighted loss Λξ may be preferred to the
agnostic L. In addition, since κ controls the computational
complexity of the detector, EoED and LoED may be useful in
different settings.

To exemplify this point we may compare the two cases
κ � 6 and κ � 32 by looking at the pfn-pfp curve as shown in
Fig. 7. In particular, we compare the ξ � 0.5 cases (agnostic
situation), and the ξ � 0.9 cases (false negatives imply a much
larger, 10 times, loss with respect to false positives).

1
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LL α = 0.1π
ML α = 0.25π
HL α = 0.5π
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10−7
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10−1
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L
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Fig. 5. The loss L of LoED (a) and EoED (b) as a function of κ of the
projection subspace, for m � 1, for different localizations of the normal
signal and for different levels of difference between the normal and anomalous
statistics. Lines are median values while shaded areas show where 99% of
the values fall.
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Fig. 6. The loss L of LoED (a) and EoED (b) as a function of κ of the
projection subspace, for LL signals, a small difference α � 0.1π between
the normal and anomalous statistics, and various level of averaging m. Lines
are median values while shaded areas show where 99% of the values fall.

In the κ � 32 case, the pfn-pfp curve of EoED is so close to
the ideal profile that, for any value of ξ, LoED is not able to
deliver smaller losses. However, if the computational resources
are extremely scarce, and we are forced to adopt κ � 6, the
method with a lower weighted loss Λξ depends on the value
of ξ. As shown in Fig. 7(right), the curves for LoED and
EoED feature an intersection such that for ξ � 0.5 EoED still
outperforms LoED while in the unbalanced case, with ξ � 0.9,
LoED reaches a lower minimum loss compared to EoED.

VII. A REAL-WORLD APPLICATION

To test the proposed method on real-world signals, we
consider the data coming from the accelerometers deployed
at a viaduct along an Italian motorway (see Fig. 8).
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Fig. 7. pfn-pfp curves for both EoED and LoED, for κ � 32 (left plot) and
κ � 6 (right plot) and for m � 1. The filled areas under the curves represent
the loss L while the highlighted points correspond the the minimum loss Λξ
for both ξ � 0.5 and ξ � 0.9.

The structure is a composite box girder with external
prestressed tendons (each of them consisting of 27 strands)
used for reinforcement. The length of the viaduct is 580 m, and
five concrete piers hold up the six spans, and each span counts
12 tendons. Although they are not identical, all the cables have
roughly the same mass-over-length ratio, and they have been
equally prestressed so that their natural vibration frequencies
are about 7-8 Hz. 90 three-axis accelerometers are attached
to the viaduct tendons (maximum two for each tendon) and
provide a stream of 100 sample/s for each axis. The structure
is stimulated by car traffic and by environmental factors such
as wind and exhibits complicated elastic responses.

In this application, solutions that imply the upload of
all sensor readings to the cloud are not viable, the main
reason being communication costs. In fact, given the re-
mote location, a wired connection is not available and
the constant total data rate of 422 kbit/s rules out the use
of LoRa technologies, whose links cannot provide more
than 37.5 kbit/s and, in any case, are meant for very
low duty cycles nodes. Beyond that, M2M communication
through telephone-like infrastructure comes with different cost
schemes: i) traffic/rate-unlimited, typically charging not less
than 0.01 EUR/Mb; ii) traffic-limited, typically charging not
less than 0.2 (Gb/month)/(EUR/month); iii) rate-limited, typi-
cally charging not less than 1 (kbit/s)/(EUR/month).

A constant bit rate makes iii) the most convenient option still
implying not less than 400 EUR/month. Yet, by performing
local caching and local anomaly detection, one may transmit
data only when critical situations occur thus reverting to
a situation in which high data rate connections are used
unfrequently. By tuning false positives one may adopt plan
i) and reduce transmission costs by almost two orders of
magnitude.

The monitoring system has been active for two years with
the aim of detecting anomalous responses that may indicate
either a non-conventional stimulus or a compromised elastic
behavior. Given a target sensor, the streams of samples corre-
sponding to the three axes are partitioned in chunks of 100-
samples � 1 s. Every second, the chunks corresponding to the
three axes are arranged in a single vector, thus generating a

Fig. 8. Viaduct along an Italian motorway, where sensors deployed for
structural health monitoring are attached to the internal tendons.

sequence of n � 300-dimensional vectors xrts that account
both for the time- and space- behavior of the structure as
perceived by that sensor. Since the traffic on the viaduct is
intermittent, we pre-filter windows to guarantee that those
contributing to anomaly detection exhibit a good level of signal
compared to background noise. Moreover, to focus on the
correlations without the bias of the signal magnitude, each
window is normalized to have zero mean and unit energy.

Using such a sieved sequence of normalized windows, we
estimate both the principal and anti-principal subspaces of
Kok by the methods in Section III for κ � 20 and κ � 70.
Fig. 9 shows what happens when we feed those methods with
4.5 � 105 windows comparing the energy collected by the
resulting subspaces with that collected by the corresponding
target eigenspaces of the empirical correlation matrix. We
show trends for T � 1�104, 2�104, 5�104 (in which orthonor-
malization gives a negligible contribution to the computational
burden of the procedure) with the one with T � 1.

When analyzing the anti-principal subspace, we realize that
the 30 less energetic directions collect an average energy
that is negligible (¤ 0.01%) compared to what projects on
the other directions. This means that, even if the overall
signal is n � 300-dimensional, it can be safely embedded
in a 270-dimensional space. Accordingly, from now on, the
anti-principal subspace used in EoED will span only the
40 directions obtained by discarding the 30 least energetic
components from the 70 estimated by the streaming method
of Section III.

The estimation of the matrix UÒ and of UÓ enables the
application of LoED and EoED to reveal different anomalies
in the data streams coming from the viaduct. The proposed
methods have been primarily designed to detect anomalies that
affect the monitored structure and are, hopefully, rare events.
In fact, over more than one year of monitoring, we have access
to only a few anomalies, and their limited number prevents any
significant estimation of statistical metrics.

Nevertheless, the properties of LoED and EoED allow for
the detection of those anomalies that are related to faults of
the monitoring system, causing data corruption. Since these are
more common events, their number is statistically significant
and are used for a comparative assessment. Although the
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Fig. 9. The relative difference between the energy collected by the principal
and anti-principal subspaces and their estimation by means of the streaming
procedures in Section III in the case of a real world acceleration signal (for
LoED κ � 20, η0 � 0.3 and for EoED κ � 70, η0 � 40).

selected system faults are not representative of all possible
malfunctions, their analysis is presented to investigate the
effectiveness of the proposed methods also on this class of
anomalies.

A. Structural anomalies

In the monitoring period, the system witnesses three kinds
of anomalies related to structural health: tendon break, strand
break, and earthquake.

The tendon break is a massively disruptive event that
significantly and permanently alters the elastic properties of
the tendon. This event is not something that goes unnoticed:
maintenance-on-failure is triggered to recover the structural
integrity while exploiting the redundancy of the viaduct design
to avoid service downtime. However, continuous monitoring
is thought to be able to detect more subtle anomalies that may
be prodromal to significant failures, thus enabling the pursual
of predictive-maintenance approaches.

That is the case of the breakage of a strand, whose detection
may be a prodrome of the tendon break. This event is much
less noticeable and may cause slight and permanent changes in
the tendon elastic properties. Here we consider a strand break
that occurred on the tendon that broke four months after.

The last observed anomaly is an earthquake that lasted a
few seconds and did not result in any severe damage to the
structure, which maintained its original elastic behavior.

Fig. 10 shows how the three different anomalies are ob-
served with an established analysis in the frequency domain
[45]–[47] as well as with the proposed methods. Each column
of the figure regards a different anomaly, while each row
refers to a different detector. The same figure also reports
the behavior of two scores defined by previous PCA-based
detectors [18]–[20]: T2 and SPE. The former accounts for
the energy of the weighted projection along the first principal
components, while the latter account for the energy on the
orthogonal subspace. Scores are such that high values hint at
anomalies.

The first row, i.e., Fig. 10(a)-(c), shows the spectrum of the
signal along the x-axis (the one parallel to the ground and
orthogonal to the tendon length) before and after the anoma-
lies. Spectrum is estimated by averaging the periodograms

over 18 non-overlapping Hanning windows of 200 s each.
Hence, the computation of each spectral profile requires 18
Fourier Transforms of 2 � 104 samples. The final minimum
frequency accuracy is 5 mHz and is needed to detect small
relative variations of peak frequencies, that are themselves in
the order of few Hertz.

The evolution of the observable of both LoED and EoED
for κ � 20 are shown in Fig. 10(d)-(f) and Fig. 10(g)-(i)
respectively. Tracks of different colors correspond to different
averaging, namely, m � 1 (no average), m � 1800 (i.e.,
average over 1{2 h) and m � 43200 (i.e., average over 12 h). In
each plot, dashed lines indicate the expected value of the ob-
servable under normal conditions, computed as the sum of the
eigenvalues of Kok corresponding to the eigenspaces spanned
by the columns of UÒ and UÓ. Profiles for the reference scores
T2 and SPE are reported in Fig. 10(l)-(n) and Fig. 10(o)-(q)
respectively. To keep the computational complexity unaltered
with respect to the LoED and EoED cases, these scores have
been computed considering the first 20 principal components,
for T2, and by the corresponding residue for SPE. In all cases,
the trends run for 14 days centered on the day on which the
event happened, and Kok is estimated by considering a week
of data preceding the observation period.

Firstly, we consider the tendon brake, which is the more
evident anomaly that any detector should be able to notice. The
break of the tendon drastically changes its elastic properties,
and that is confirmed in Fig. 10(a) where the spectrum after
the event is noticeably different from the one before. The
event is also immediately detectable both from EoED and
LoED observables shown in Fig. 10(d) and 10(g). where
the new regime of the observables is completely different
from the previous one. In according with their definitions, the
observable of LoED decreases while the observable of EoED is
increasing. This is also the case of the score SPE in Fig. 10(o)
while the profile of T2 in 10(l) shows a decrease in the score
that makes T2 insensitive to the tendon break.

The second column of Fig. 10 refers to the strand break.
Fig. 10(b) shows that the occurred event results in a � 2%
downshift for all the harmonics. Though this is a subtle
change, it is still detectable from an accurate analysis of the
tendon frequency response that considers suitably long data
windows. The anomaly is also visible in both the EoED and
LoED observables depicted in Fig. 10(e) and Fig. 10(h). In
fact, a permanent deviation from the expected values of the
observables can be seen in both plots even if their magnitude
is smaller than those measured after the tendon break. Con-
sidering the cases of T2 and SPE, plots in Fig. 10(m) and Fig.
10(p) shown that, as before, a permanent deviation is evident
in SPE only while T2 exhibits a feeble drop that, again, makes
it insensitive to this anomaly. In both tendon and strand cases,
the comparison between trends for different values of m shows
how averaging is fundamental in reducing the variance of the
observables. Averaging does not impair detection capabilities
if the events to reveal either have a non-negligible duration
or have long-lasting effects whose period is larger than the
averaging window, while it filters out impulsive anomalies.

A representative of this last class of anomalies is an
earthquake that hit the viaduct. The earthquake lasted few
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Fig. 10. The tendon break, strand break and earthquake anomalies observed by means of conventional spectral analysis as well as both with EoED and LoED
(κ � 20), and with the scores T2 and SPE in [19] (20 principal components). Plots in the first row show the Power Spectral Densities of acceleration along
the x-axis before and after the anomalous event. Plots in the second and third rows depict the Behavior of LoED and EoED observables for different values
of m. Dashed lines indicate the expected value of the observables in normal conditions. Finally, plots in the forth row are for the T2 score while the last row
is for the SPE score. Also for T2 and SPE, different values of m have been considered.

seconds and the frequency response of Fig. 10(c), as well as
the averaged observables of Fig. 10(f), Fig. 10(i), Fig. 10(n)
and Fig. 10(q), do not give any hint of it.

However, when m � 1, EoED highlights that something
anomalous was happening. This is possible thanks to the fact
that, even for small m, the observable of EoED features a small
variance that lets the high-energy event stand out from normal
conditions. On the other hand: LoED observable, T2 score and
SPE score are characterized by a much higher variance and
thus exhibits values comparable to those assumed during the
earthquake even in normal conditions.

Focusing only on LoED and EoED, note that in general the
adopted value of κ must be low enough to reduce the detector
complexity and high enough to highlight changes in the
structure. This change can be measured with the normalized

gap G defined as

GU,m � Mbef
U,m �Maft

U,m

pSbef
U,m � Saft

U,mq{2

where Mbef
U,m and Maft

U,m are the empirical means and Sbef
U,m and

Saft
U,m are the empirical standard deviations of the projections

energy EU,m computed on the week before (bef) and the week
after (aft) the event. Therefore, G gives an estimate of how
large the gap is compared to the standard deviation.

Using the tendon brake as reference, Fig. 11 depicts the
dependency of G with respect to κ for different values of m in
the cases of both LoED and EoED. To limit the computational
complexity of the detector, only values for κ ¤ 50 are
considered. The graph shows that, for LoED, the normalized
gap presents a maximum at about κ � 20 for all three
values of m, while for EoED, the more evident gaps are for
κ ¡ 40. Although an increase of m reduces time resolution,
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Fig. 11. Normalized gap G in LoED and EoED observables in the case of
the tendon break anomaly depending on κ for different values of m.

it significantly lowers the variance of the observables while
keeping nearly constant their mean. For this reason, higher
values of m allow for more evident gaps. It is worth noting
that the adoption of the κ values corresponding to the maxima
observed in the G curves is not critical. As possible setting
we suggest κ � 20 for LoED and κ � 40 EoED.

Let us now focus on the difference in computational re-
sources needed by the method we propose and the spectral
analysis. For a rough comparison of time-complexities, we
consider a python implementation of the two alternatives
whose running times are averaged over 103 Montecarlo trials
when analyzing 1 h of readings from one sensor. The results
are reported in the first row of Table I, where spectral analysis
results to be not less than one order of magnitude more time-
consuming than our methods.

As far as memory needs are concerned, note that in 1 h the
accelerometer produces 3.6 � 105 samples per axis, encoded
as 16 bit words. The streams are partitioned into 18 windows
with N � 2�104 samples. Since axes are sampled in parallel,
three buffers are needed, each requiring 2N byte. In the most
straightforward implementation, the Fourier transform of a
buffer produces an equal number of frequency samples, each
being a complex number with a 32 bit real part and a 32 bit
imaginary part yielding further 8N bytes. The computation
of spectrum averages in the modified periodogram implies
an accumulating buffer for each axis requiring 4N byte. The
overall memory footprint of the spectral analysis is therefore
� 3 � 2N � 8N � 3 � 4N � 26N � 500 kB.

The memory requirement of EoED and LoED is dominated
by the κ�n matrix, and we assume that each entry is encoded
in a 32 bit word. To this, we should add a buffer of n � 300
samples, each encoded as a 16 bit word, and one of κ 32 bit
words to contain the projections. As an example, considering
κ � 40 the memory footprint is about 50 kB that results in one
order of magnitude lower compared to the spectral analysis
approach. This reduction allows for the deployment of the
proposed detector on commercial devices typically devoted
to sensor nodes such as ultra-low-power microcontrollers
belonging to the STMicroelectronics’ STM32L0 family (based
on Cortex M0+) [48] and the ones based on Texas Instruments’
MSP430 processor [49].

TABLE I
EMPIRICAL COMPARISON OF RESOURCES NEEDED BY THE PROPOSED

DETECTORS AND BY CLASSICAL SPECTRAL ANALYSIS.

LoED EoED spectral
κ � 20 κ � 40 analysis

running time [ms] 1.85 4.43 49.7
memory footprint [Kb] 24.7 48.2 507.8

Note also that, for these class of devices a possible setting
considers U stored in non-volatile memory (maximum 2 clock
cycles to read each element) and 2 clock cycles for each MAC.
With a typical 8 MHz clock frequency the computational time
for each incoming 1 second instance is approximately equal
to 6 ms.

B. System faults

The system faults that we consider are of two kinds. The
first is represented by a reset of the sensing device. At each
sensor boot, the digital filters used for signal pre-processing
need a settling period of few samples for which the acquired
data is corrupted. Following the classification, in [22] this
anomaly falls within the SHORT class that describes a sharp
change in the measured value between two successive data
points.

The second system anomaly is a disturbance that has
been observed to randomly affects some sensor devices. It
manifests as an additive noise with a high correlation among
the acceleration signals along the three axes (it is probably a
disturbance injected during the simultaneous analog to digital
conversion of the three channels). According to [22] it falls
within the NOISE class.

Similarly to the previous subsection, a training set composed
of one week of data without known anomalies is used to
estimate the Kok from which we get UÒ and UÓ. After that, a
validation phase is performed to compute the optimal threshold
θ for each κ and detector. Here we refer to m � 1. The
validation set contains 50 signal instances associated with
sensor reset, one week of data corrupted by the mentioned
disturbance, and finally, one week of data related to normal
behavior. Performances are assessed in terms of loss Λ0.5 on
a test set that is composed like the validation set but referring
different signal instances.

For these classes of anomalies, as a competitor, we adopt a
variance-based anomaly detector that represents a common and
low-complexity detector that can identify substantial changes
in the signal statistics [22], [23]. This method matches the
variance of the incoming vector x with a pre-trained threshold
whose value is the one that minimizes Λ0.5 on the validation
set.

Since the two kinds of system faults affect only the principal
subspace, we report in this subsection only the performance
related to LoED method. Fig. 12 shows Λ0.5 as a function
of κ, in both validation and test set, compared to the values
obtained with the variance-based method. The top plot depicts
performances in case of resets. When κ is more of a few units,
LoED reaches performances equal to the one observed with the
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for the disturb and reset anomalies.

variance-based detector. Results related to the disturbance case
are reported in the bottom plot and show that LoED clearly
outperforms its competitor.

VIII. CONCLUSION

In this paper, we present methods for anomaly detection
based on the evaluation of spectral-like features whose imple-
mentation can fit low resources devices such as sensor nodes
and gateways.

Signal energy in a proper subspace is measured, and a
threshold discriminates between normal and anomalous in-
stances. The proposed methods, LoED and EoED, are as-
sociated with two different subspaces. The former identifies
the place where the signal usually concentrates, while the
latter refers to anti-principal components, i.e., those normally
receiving a minimal amount of energy. Since the method
targets low resources devices, we also derive a procedure
for the on-line estimation of the anti-principal subspace by
slightly modifying an existing one for principal components
estimation.

The assessment of the methods is conducted firstly on
synthetic data in terms of detector loss. Although EoED
outperforms LoED in the investigated settings, it achieves the
best performance with higher computational effort compared
to what is observed for LoED.

The effectiveness of LoED and EoED is tested in a real-
world scenario implying, as input signal, the vibrations of a
highway viaduct in operational conditions. The methods are
able to identify anomalies generated by not only destructive
event causing permanent structural changes but also slight
alterations in the viaduct elastic properties. Moreover, by mon-
itoring the anti-principal components, EoED is even able to
identify anomalies that do not permanently affect the structure.
Performance assessment in the case of two kinds of system
faults has also been presented, showing that LoED is still able
to detect such a kind of abnormal waveforms.

Given the promising performance assessment, we will ex-
tend our trials to different signal sources and explore the
implementation design space as far as sensor and gateway
devices are concerned.

APPENDIX

Proof of Property 1. From (3), and independently of the
Gaussian assumption, one immediately gets the well-known
average energy µEU � °κ�1

k�0 λjk .
As far as the second-order statistics are concerned, note

that E2
U �

��
UJx

�J
UJx

�2

� xJUUJxxJUUJx �
tr
�
UUJxxJUUJxxJ

�
that, brought down to sums over

indexed quantities, gives

Ex
�
E2
U

� � Ex

� ¸
a,b,c,d,e,f

Ua,bUc,bxcxdUd,eUf,exfxa

�

�
¸

a,b,c,d,e,f

Ua,bUc,bUd,eUf,eEx rxcxdxfxas

where a sum in a set of indices shortens a sequence of sum
each summing over a different index going from 0 to n� 1.

Since x is Gaussian and zero-mean Ex rxcxdxfxas �
Kc,dKf,a �Kc,fKd,a �Kc,aKd,f . Hence,

Ex
�
E2
U

� �
¸

a,b,c,d,e,f

Ua,bUc,bKc,dUd,eUf,eKf,a �
¸

a,b,c,d,e,f

Ua,bUc,bKc,fUf,eUd,eKd,a �
¸
a,b,c

Ua,bUc,bKc,a

¸
d,e,f

Uf,eUd,eKd,f

where factors and sums have been rearranged and distributed
to reconstruct high-level matrix and vector operations. By
recognizing such operations we have

Ex
�
E2
U

� � 2tr
�
UUJKUUJK

�� tr
�
UUJK

�
tr
�
UUJK

�
� 2tr

�
UJKUUJKU

�� tr2
�
UJKU

�
� 2

κ�1̧

j�0

λ2
jk
�
�
κ�1̧

j�0

λjk

�2

where we have exploited the fact that since U has eigenvectors
of K as columns, UJKU � diag

�
λj0 , λj1 , . . . , λjκ�1

�
.

Since σ2
EU � Ex

�
E2
U

�� µ2
EU the property is proved.
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