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A METRIC MODEL FOR THE FUNCTIONAL ARCHITECTURE OF
THE VISUAL CORTEX\ast 
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Abstract. The purpose of this work is to construct a model for the functional architecture of
the primary visual cortex (V1), based on a structure of metric measure space induced by the under-
lying organization of receptive profiles (RPs) of visual cells. In order to account for the horizontal
connectivity of V1 in such a context, a diffusion process compatible with the geometry of the space
is defined following the classical approach of K.-T. Sturm [Ann. Probab., 26 (1998), pp. 1--55]. The
construction of our distance function neither requires any group parameterization of the family of
RPs nor involves any differential structure. As such, it adapts to nonparameterized sets of RPs,
possibly obtained through numerical procedures; it also allows us to model the lateral connectivity
arising from nondifferential metrics such as the one induced on a pinwheel surface by a family of
filters of vanishing scale. On the other hand, when applied to the classical framework of Gabor
filters, this construction yields a distance approximating the sub-Riemannian structure proposed as
a model for V1 by Citti and Sarti [J. Math. Imaging Vision Archive, 24 (2006), pp. 307--326], thus
showing itself to be consistent with existing cortex models.
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Introduction. The primary visual cortex (V1) is the first cortical area which
receives the visual signal from the retina. The first celebrated description of its struc-
ture dates back to the '60s, when Hubel and Wiesel discovered [21] (see also [22]) that
cortical neurons are sensible not only to the intensity of the visual stimulus but also
to other variables, called ``engrafted,"" such as orientation, scale, velocity. Precisely,
every retinal location is associated to a whole set (called hypercolumn) of cells of V1,
sensitive to all the possible values of the considered feature. The first processing of
a visual stimulus in V1 is performed by a class of neurons called simple cells. The
activation of a simple cell in response to an image I(x, y) on the retinal plane can
be modeled as a linear integral operator with associated kernel \psi (x, y), called the
receptive profile (RP) of the neuron. This means that the RPs of simple cells can
be represented, up to a first approximation, by means of a set \{ \psi p\} p\in \scrG \subseteq L2(\BbbR 2)
of linear filters on the plane. Such a family lifts the image to the set \scrG of parame-
ters encoding the features extracted by the filters. Typically, this set is of the form
\scrG = \BbbR 2 \times \scrF , where (x, y) \in \BbbR 2 denotes the point of the retina on which the profile is
centered (typically with a strongly concentrated support), thus encoding the feature
of position, while \Phi \in \scrF expresses the engrafted variables.

A well-established model for the RPs of V1 simple cells is represented by Ga-
bor filters (see [23], [10], [25]): the whole bank of filters \{ \psi x,y,\theta \} x,y,\theta is obtained by
translations of (x, y) \in \BbbR 2 and rotations of \theta \in S1 of a mother function
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\psi (u, v) = exp

\biggl( 
2\pi iu

\lambda 

\biggr) 
exp

\biggl( 
 - u2 + v2

2\sigma 2

\biggr) 
.

Thus, the corresponding feature space is \scrG = \BbbR 2 \times S1, encoding position and orien-
tation.

The neural activity is known to propagate across V1 through the so-called hor-
izontal connections, linking neurons sensible to similar orientations but belonging to
different hypercolumns [16]. The spatial extent and the marked orientation specificity
of such connections have been investigated in a number of experiments (see, e.g., [18],
[2]). These properties are believed (see [15], [32]) to be the neurophysiological counter-
part to the perceptual rules expressed by the concept of association field, introduced
by Field, Hayes, and Hess in 1993 [13] to describe the results of their psychophysical
experiments on contour integration.

Through the past twenty years, a number of models were proposed that describe
the functional architecture of V1 through differential structures. See, e.g., [20], [32],
[43], [7], [36]. See also [8] for a review. In these models, V1 is represented as a feature
space, typically endowed with a Lie group structure. For instance, the rototranslation
group \BbbR 2 \times S1 is taken into consideration in [7]. In this work, \BbbR 2 \times S1 is endowed
with a sub-Riemannian structure which is invariant with respect to the group law.
The spreading of neural activity in V1 through the lateral connectivity is described
by means of a propagation along the integral curves of this structure.

The aim of this work is to propose a model of V1 as a metric measure space
whose structure is induced directly by the RPs of simple cells. This suggests that
the geometrical rules controlling the intracortical connections of V1 may be recovered
from the shape of such RPs.

Our definition of the cortical metric space is straightforward. V1 is represented by
the family \scrG of parameters indexing a bank of filters \{ \psi p\} p\in \scrG . The distance between
two points p0, p1 \in \scrG is defined as

d(p1, p0) := \| \psi p1  - \psi p0\| L2(\BbbR 2).

Therefore, the filters do not only provide a set of parameters on which to define
a geometric structure, but rather they contribute to the characterization of such a
structure. This metric space is then equipped with its associated spherical Hausdorff
measure. Such a construction does not require any invariance or group structure onto
the set \scrG indexing the RPs: the distance d would still be well defined even for a
nonparameterized set of filters known numerically.

As for the propagation along the horizontal connectivity, the idea is still to con-
sider a diffusion process, associated to a suitable operator which must play, in this
setting, a role analogous to that of the Laplace--Beltrami operator in the differential
case. To this end, we will refer to the classical approach of K.-T. Sturm (see [37], [38]),
which provides a general method to construct a diffusion process on a metric mea-
sure space (X, d, \mu ). This technique consists of defining a Dirichlet form on L2(X,\mu )
whose associated positive self-adjoint operator has a heat kernel admitting Gaussian
estimates in terms of the distance d, provided that a measure contraction property
(MCP see Definition 3.1) on the space is satisfied.

We will give all the details with regard to the feature space determined by a
family of Gabor filters. This example is very meaningful for two reasons. First, it
is useful in terms of intuition and manageability, since the invariances of the feature
space in this setting make it possible to perform some explicit calculations (it is
nevertheless important to notice that these invariances are not taken into account
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in the construction of the metric space in the general case). Second, it links the
present metric model to the existing differential models: indeed, the distance function
obtained in this case turns out to be locally equivalent to a Riemannian distance which
approximates the sub-Riemannian structure defined on \BbbR 2\times S1 in the model presented
in [7].

As a motivation behind the choice of the general setting of metric measure spaces,
we then present a further example. This consists of a sub-Riemannian surface in
\BbbR 2 \times S1, obtained as the feature space defined by a subfamily of Gabor filters with
vanishing scale: the restriction of the distance onto the surface is indeed not associated
to any differential structure. We prove that such a metric measure space satisfies the
MCP, thus providing a model for lateral connectivity in environments such as pinwheel
surfaces.

In the last part of the paper, we propose to approximate the propagation along
the horizontal connectivity through repeated integrations against a kernel, computed
explicitly in terms of the distance function, which estimates the heat kernel of the
diffusion process for small times. With a view to dealing with nonparameterized banks
of filters, possibly obtained through numerical procedures, it is indeed desirable to
dispose of an explicit algorithm to compute the cortical connectivity associated to
them. We present some numerical simulations, comparing the propagations obtained,
respectively, through a discretized heat equation and through repeated integrations
against such kernel, in the case of Gabor filters. We refer to our parallel paper [28]
for a more extensive discussion on this approach.

1. Background.

1.1. RPs and simple cells. We first provide the necessary background on
some structures at the basis of the visual system. The visual pathways start from
the retina, from which the visual signal is conveyed through the optic nerve to the
lateral geniculate nucleus (LGN). This structure is the main central conjunction to the
occipital lobe, in particular to V1. From V1, different specialized parallel pathways
depart, leading to higher cortical areas performing further processing.

Through the abovementioned connections, each cell is linked to a specific domain
D of the retina which is referred to as its RF. A retinal cell in the RF can react in an
excitatory or in an inhibitory way to a punctual luminous stimulation, with different
modulation, and the function \psi : D \rightarrow \BbbR which measures the reaction of the neuron
at every retinal location (x, y) is called RP. Certain types of visual neurons are shown
to act, at least to a first approximation, as linear filters on the optic signal. This
means that the response of the cell to a visual stimulus I, defined as a function on
the retina, is given by

I\psi :=

\int 
D

I(x, y)\psi (x, y)dxdy.(1.1)

The shape of the RP of a neuron contains information about the features that it
extracts from a visual signal. For example, the local support of \psi makes it sensitive
to position, i.e., the neuron only responds to stimuli in a localized region of the image.
Or again, an RP with an elongated shape will be sensitive to a certain orientation,
i.e., it will respond strongly to stimuli consisting of bars collinear with this shape. If
we denote the whole set of RPs by \{ \psi p\} p\in \scrG , where \scrG is a set of indices, we may regard
each p \in \scrG as representing the features extracted by the filter \psi p: in these terms, we
shall refer to \scrG as the feature space associated to the bank of filters \{ \psi p\} p.
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It is a classic result of neurophysiology that the RPs of LGN cells are best modeled
as Laplacians of Gaussians. As for V1, two main classes of cells can be observed in
this area. These neurons are referred to as simple and complex cells, and they were
first discovered by Hubel and Wiesel in the '60s [21].

Fig. 1.1. (a) Top row: examples of experimentally measured odd (left) and even (right) RPs of
simple cells in cat V1. Bottom row: the best-fitting two-dimensional Gabor function for each cell's
RP. Source: [10]. (b) A quadrature pair of Gabor RPs, given by the real and imaginary parts of a
complex Gabor function (from [31]).

Simple cells are the first neurons in the visual pathway showing orientation selec-
tivity, given by a strongly anisotropic RP, as shown in Figure 1.1. They receive most
of the outgoing projections from the LGN: it is presumed that each simple RF arises
from multiple isotropic LGN RFs converging in a line [22]. The set of RPs of V1
simple cells has classically been modeled [23], [10], [25] (see Figure 1.1(a)) through a
bank of Gabor filters \{ \psi x,y,\theta \} x,y,\theta , obtained by translations T(x,y) of (x, y) \in \BbbR 2 and
rotations R\theta of \theta \in S1 of a mother filter \psi 0,0,0:

\psi x,y,\theta (u, v)=\psi 0,0,0

\Bigl( 
T - 1
(x,y)R

 - 1
\theta (u, v)

\Bigr) 
, \psi 0,0,0(u, v)= exp

\biggl( 
2\pi iu

\lambda 

\biggr) 
exp

\biggl( 
 - u2 + v2

2\sigma 2

\biggr) 
.

(1.2)

Note that these are complex-valued functions: each filter \psi x,y,\theta actually represents
two RPs, given by its real and imaginary parts, sharing the same orientation but
shifted by 90\circ in phase. These are referred to as a quadrature pair of cells. Real and
imaginary parts of Gabor filters represent so-called even and odd cells, respectively
(see Figure 1.1(b)).

In this case, the feature space is \BbbR 2 \times S1: (x, y) \in \BbbR 2 encodes the position at
which the filter is centered and \theta \in S1 expresses its preferred orientation. For the
sake of simplicity and legibility, we take the scale \sigma to be fixed, but it may be let vary
as well, yielding a richer feature space.

The information extracted by simple cells is believed to determine the behavior of
complex cells, which perform a second order analysis: in particular, according to the
energy model [27], the response of each complex cell is modeled as the square sum of
a quadrature pair of simple cells. This leads to the phase invariance of these neurons,
whose behavior cannot be described through linear filtering.

1.2. Horizontal connections and association fields. It has been shown [21],
through recording of the responses to certain stimuli (e.g., oriented bars passing
through the RF), that the preferred retinal position and orientation of V1 neurons are
roughly constant moving perpendicularly to the cortical surface. On the other hand,
the preferred orientation varies gradually in the directions parallel to the surface,
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giving rise to groupings called orientation hypercolumns: these contain cells sensi-
tive to approximately the same retinal position, but span all orientations, which are
``engrafted"" onto the positional map with a finer subdivision [22]. The intracortical
circuitry can be described in terms of two main mechanisms: a short-range connec-
tivity taking place within each hypercolumn, which essentially selects the orientation
of maximum output in response to a visual stimulus and suppresses the others, and
a long-range ``horizontal"" (or lateral) connectivity, connecting neurons belonging to
different hypercolumns but sensitive to similar orientations. The latter is also shown
[2] to spread around each neuron along the axis of its preferred orientation, and it is
believed to be at the basis of the ability of our visual system to perform perceptual
grouping (see [15], [32]). Indeed, a global analysis is necessary in order to correctly
recognize objects and interpret a visual scene: single RPs alone cannot account for
such nonlocal features.

Fig. 1.2. (a) Path segregation. (b) A schematic representation of the notion of association
field. Images taken from [13].

The processing mechanism taking place throughout the visual pathways allows
us to efficiently group local items into extended contours, and to segregate a path
of elements from its background (see Figure 1.2(a)). These perceptual mechanisms
in V1 have been described through the concept of association field [13], a schematic
representation of which is displayed in Figure 1.2(b): this abstract object characterizes
the geometry of the mutual influences between V1 cells depending on their orientation
and reciprocal position. In other words, the excitation of a neuron is strengthened
by the activation of surrounding cells with certain relative features with respect to
it. In particular, the strongest correlation takes place between those edge elements
that are either collinear or co-circular. The psychophysical analysis performed in [13]
revealed that such influences link neurons even with markedly separated RFs. The
comparable spatial extent of association fields and horizontal connections, together
with their shared orientation specificity, make the lateral connectivity a potential
anatomical implementation of this perceptual phenomenon.

1.3. Sub-Riemannian models of V1. From a mathematical point of view,
the hypercolumnar organization of V1 can be described by saying that at each retinal
position there exists a full fiber of possible orientations. This idea led to the repre-
sentation of V1 as a fiber bundle whose basis is the space of retinal locations, first
introduced by Petitot and Tondut in 1999 [32]. Their model yields a three-dimensional
Heisenberg group structure.

A more complete description, allowing nonequioriented boundaries, was given in
[7] in terms of a sub-Riemannian structure on the rototranslation group, associated
to the bank of filters (1.2). In this case, for every fixed retinal position (x, y), the
maximum of the function I\psi (x, y, \theta ) in the variable \theta is attained at a point \Theta (x, y)
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which represents the orientation of the level lines of the image I at the point (x, y).
The images of these lines through the map (x, y) \mapsto \rightarrow (x, y,\Theta (x, y)) are called lifted level
lines, and their tangent vector at every point can be written as a linear combination
of the vector fields

Y1 =  - sin \theta \partial x + cos \theta \partial y , Y2 = \partial \theta .(1.3)

These vector fields define a bidimensional subbundle of the tangent bundle to \BbbR 2 \times 
S1, referred to as the horizontal tangent bundle, thus determining a sub-Riemannian
structure on \BbbR 2 \times S1. The Lie algebra generated by Y1 and Y2 through the bracket
operation between vector fields is the whole Euclidean tangent plane, since [Y1, Y2] =
cos(\theta ) \partial x + sin(\theta ) \partial y =: Y3. In other words, Y1 and Y2 satisfy the H\"ormander rank
condition. This leads, by the Chow theorem, to the so-called connectivity property :
any couple of points in \BbbR 2 \times S1 can be connected through a horizontal curve, i.e., an
integral curve of a section of the horizontal tangent bundle.

The lateral propagation of neural activity in the cortical space is described in
[7] through the sub-Riemannian heat equation \partial tu = \Delta u, where \Delta = Y 2

1 + Y 2
2 .

In this setting, the association field around a point (x0, y0, \theta 0) \in \BbbR 2 \times S1 is then
characterized as a family of integral curves of Y1 and Y2 starting at this point. Namely,
\gamma \prime = Y1 | \gamma + kY2 | \gamma and \gamma (0) = (x0, y0, \theta 0), where k varies in \BbbR .

The evolution of the activity of V1 neurons is influenced by a combination of intra-
columnar and lateral connections. In [7], the sub-Riemannian diffusion modeling the
horizontal connections and the mechanism of selection of maxima implemented by the
short-range connectivity have been combined by alternating their action iteratively:
precisely, each iteration consists of a first step of diffusion in a finite time interval and
a second step of nonmaximal suppression. The time interval is then sent to zero. See
also [3] and [4], where the connections between each couple of neurons are represented
by a weight function which is decomposed as the sum of two terms modeling these
two mechanisms.

Different diffusion equations in this sub-Riemannian setting, such as the Fokker--
Planck equation, have also been used in other works (see, e.g., [29], [35] for a stochastic
point of view).

2. The space of features as a metric space. In this section we outline our
model, whose basic idea is the construction of a metric space encoding the local
geometry of the cortex, defined by a notion of ``local correlation"" between RPs of
simple cells. As in the differential models described above, we will then characterize
the lateral connectivity through a propagation with respect to the metric structure.
The space on which the distance function will be defined is the feature space \scrG indexing
a family of filters \{ \psi p\} p \in \scrG chosen to model the RPs of V1 simple cells. As remarked
above, in the case of a family of Gabor filters of fixed scale the feature space is \BbbR 2\times S1.
In effect, we will show that the distance function induced by Gabor filters on this
space is locally equivalent to a Riemannian distance on \BbbR 2 \times S1 approximating the
Carnot--Carath\'eodory distance associated to the sub-Riemannian structure defined
in [7].

The main new feature of our model is that the cortical geometry is directly induced
by the RPs. This means that any bank of filters used to represent a family of RPs
can be given an associated connectivity pattern through this technique.

2.1. The cortical distance. As said earlier, the family of RPs of simple cells
of V1 can be modeled by a bank of linear filters \{ \psi p\} p \in \scrG \subseteq L2(\BbbR 2). In this section,
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we define a metric structure on the set of parameters \scrG associated to such a family of
filters.

Definition 2.1. Let \{ \psi p\} p \in \scrG be a family of real- or complex-valued functions in
L2(\BbbR 2). We call \scrG the feature space associated to the family \{ \psi p\} .

We then define the distance function d : \scrG \times \scrG  - \rightarrow \BbbR ,

d(p, p0) := \| \psi p  - \psi p0\| L2(\BbbR 2),(2.1)

and the generating kernel K : \scrG \times \scrG  - \rightarrow \BbbR ,

K(p, p0) := Re\langle \psi p, \psi p0\rangle L2 .(2.2)

The introduction of the kernel K was inspired by the definition of the reproducing
kernel induced by a family of admissible wavelets on the image of the associated
wavelet transform (see [33], [11]).

Note that d2(p, p0) = \| \psi p  - \psi p0\| 2L2 = \| \psi p\| 2L2 + \| \psi p0\| 2L2  - 2Re\langle \psi p, \psi p0\rangle L2 . Since
we can assume the filters to be normalized to have L2-norm equal to t, the above
expression only depends on the real part of the inner product between the two filters,
that is, on the kernel K:

d2(p, p0) = 2t - 2K(p, p0).(2.3)

K can be thought of as a connectivity kernel, expressing the strength of correlation
between two profiles. Of course, the distance between two points increases as this
correlation fades.

2.2. Local distance and gluing. The function we defined is obviously a dis-
tance on \scrG , since it is a restriction of the L2 distance function. However, one may
want to introduce some constraints on which filters can directly interact with one
another in determining the geometry of the space---for instance, this can be done to
inspect the behavior of the connectivity w.r.t. certain features encoded in the RPs.
We will see a concrete example of this situation in the case of Gabor filters, where we
will be able to isolate the spreading of neural activity along the axis of the preferred
orientation of the starting RP, while discarding the contributes along the orthogonal
axis.

Imposing such constraints corresponds to defining around each point p0 \in \scrG a
local patch \scrP (p0) \subseteq \scrG and to restricting the definition of d to this set. The following
question arises naturally: is it possible to glue all these local distances together to
obtain a global distance function on the feature space? In order to get to this result,
we will need to make one further assumption on the patches \scrP (p0). We now define a
new function \~d as follows.

Definition 2.2. For p, p0 \in \scrG , we set

\~d(p, p0) := inf

\left\{   
N\sum 
j=1

d(qj - 1, qj) : N \in \BbbN , q0 = p0, qN = p, qj \in \scrP (qj - 1) \forall j

\right\}   .

(2.4)

Note that, in general, the existence of a sequence \{ qj\} j=1,...,N such that q0 =
p0, qN = p, and qj \in \scrP (qj - 1) for all j = 1, ..., N is not guaranteed for any couple
of points (p0, p). If such a sequence does not exist, we consider the distance between
the two points to be infinite. However, this would be a ``degenerate"" case where there
are isolated points or regions of the feature space, corresponding to neurons whose
activations are mutually independent.
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Proposition 2.3. Given a set \scrG , define around each point p0 a patch \scrP (p0) \subseteq \scrG 
such that

\forall p0 \in \scrG \exists \varepsilon > 0 : B\varepsilon (p0) := \{ p \in \scrG : d(p, p0) < \varepsilon \} \subseteq \scrP (p0).(2.5)

Then \~d : \scrG \times \scrG  - \rightarrow \BbbR defined as above satisfies
(i) \~d(p, q) \geq 0 for all p, q \in \scrG ,
(ii) \~d(p, s) + \~d(s, q) \leq \~d(p, q) for all p, s, q \in \scrG .

Proof. First, \~d is well-defined. This means verifying that the local distance func-
tions coincide on overlapping patches. Indeed, this happens by construction, since
d(p, p0) is always equal to the L2 distance between \psi p and \psi p0 .

Second, \~d verifies (i) and (ii).
\bullet \~d is obviously nonnegative.
\bullet As for the triangle inequality, we have

\~d(p, s) + \~d(s, q)

= inf

\Biggl\{ 
N\sum 

j=1

d(qj - 1, qj) | N \in \BbbN , q0 = p0, qN = p, qj \in \scrP (qj - 1) \forall j, \exists j : qj = s

\Biggr\} 

\geq inf

\Biggl\{ 
N\sum 

j=1

d(qj - 1, qj) | N \in \BbbN , q0 = p0, qN = p, qj \in \scrP (qj - 1) \forall j

\Biggr\} 
= \~d(p, q).

\bullet Lastly, we have to prove that \~d(p, p0) = 0 \leftrightarrow p = p0. Suppose p \not = p0. From
(2.5), there exists an \varepsilon > 0 such that B\varepsilon (p0) \subseteq \scrP (p0). Now,

-- if p /\in \scrP (p0), then p /\in B\varepsilon (p0) and consequently \~d(p, p0) \not = 0;
-- on the other hand, if p is in \scrP (p0), then \~d(p, p0) \not = 0 for the properties

of d, which is a distance on \scrP (p0).

Remark 2.4. Given a sequence p = q0, q1, . . . , qN = q, the condition qj \in \scrP (qj - 1)
does not imply having qj - 1 \in \scrP (qj). Therefore, in general, Proposition 2.3 yields an

asymmetric distance \~d. This intuitively means that, given two points p and q, getting
from p to q may be harder than getting from q to p, i.e., \~d(p, q) > \~d(q, p). In practical
applications, this could represent, for example, the situation where p and q are points
in space and q is uphill w.r.t. p. See [40] as a reference on quasi-metric spaces.

However, recall that the distance we are defining should model the lateral connec-
tivity in V1. Due to the evidence that horizontal connections are largely reciprocal
[24], it is reasonable to model this phenomenon through a symmetric distance. Since
the construction of the patches \scrP (\cdot ) was meant to restrict which cells can interact
with one another, it is natural to define them so that p is connected to q if and only
if q is connected to p. This means requiring that q \in \scrP (p) \leftrightarrow p \in \scrP (q), which implies
the symmetry of \~d by considering for each sequence p = q0, q1, . . . , qN = q the reversed
sequence \{ qN - j\} j=1,...,N . In the following, the symmetry is taken as an assumption.

To sum up, the kernel distance defined in (2.1) may be treated as a local object
by restricting it to suitable patches defined around each point. In order to have a
meaningful distance on the whole feature space taking into account these constraints,
the local distance functions must be glued together: the above proposition states that,
under reasonable conditions on the choice of the patches, this yields a well-defined
global distance on \scrG .
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2.3. The case of Gabor filters. In this section, we show the results of applying
the model described to the classical example of a bank of Gabor filters. We then
prove that the distance obtained in this case is locally equivalent to a Riemannian
approximation to the sub-Riemannian metric introduced in [7].

Let us consider the set \{ \psi x,y,\theta \} x,y,\theta of Gabor filters introduced in (1.2). For
each value of \lambda > 0 and \sigma > 0, one obtains a family of filters parameterized by
p = (x, y, \theta ) \in \BbbR 2 \times S1 where each of the filters \psi x,y,\theta has wavelength \lambda and scale \sigma .

The distance function. Fix \lambda , \sigma > 0, and denote p = (x, y, \theta ) and p0 =
(x0, y0, \theta 0). As anticipated, there is some invariance in the behavior of the kernel
K(p, p0) = Re\langle \psi p, \psi p0\rangle L2(\BbbR 2) in the Gabor case. Specifically, through a straightfor-
ward calculation one obtains

K
\bigl( 
(x, y, \theta ), (x0, y0, \theta 0)

\bigr) 
= K

\bigl( 
(R\theta 0T(x0,y0)(x, y), \theta  - \theta 0), (0, 0, 0)

\bigr) 
.

It is therefore sufficient to compute explicitly the expression of K(p, p0) for p0 =
(0, 0, 0). We have

\langle \psi p, \psi 0\rangle L2(\BbbR 2)

= \sigma 2\pi exp

\biggl( 
 - x2

4\sigma 2
 - y2

4\sigma 2
 - 2\sigma 2\pi 2(1 - cos \theta )

\lambda 2

\biggr) 
exp

\biggl( 
 - i\pi x(1 + cos \theta ) + y sin \theta 

\lambda 

\biggr) 
.

The real part of this scalar product gives the kernel K. Of course, the same invariance
holds for the distance d. Since the squared L2-norm of each of the filters (1.2) is equal
to \sigma 2\pi , we have

d2(p, 0) = 2\sigma 2\pi  - 2\sigma 2\pi exp

\biggl( 
 - x2

4\sigma 2
 - y2

4\sigma 2
 - 2\sigma 2\pi 2(1 - cos \theta )

\lambda 2

\biggr) 
(2.6)

\cdot cos
\biggl( 
\pi 
x(1 + cos \theta ) + y sin \theta 

\lambda 

\biggr) 
.

Note that the distance d depends on \sigma and \lambda , since the scale and wavelength of the
filters naturally influence its spatial extent and oscillatory behavior, respectively.

Local patches. The balls B\varepsilon (p0) = B\varepsilon 
\bigl( 
(x0, y0, \theta 0)

\bigr) 
of the distance d over a cer-

tain radius \varepsilon are not connected. This is a consequence of the oscillatory behavior of
the distance along the axis orthogonal to the preferred orientation \theta 0 of the starting
filter \psi p0 : the central connected component of the ball contains the points of \scrG cor-
responding to filters either collinear or co-circular with \psi p0 , while the smaller lateral
lobes account for the effect of parallel filters. As anticipated, we shall (at least as
a first stage) examine only the contribute of the ``principal"" connected component,
corresponding to the classical definition of association fields [13]. This is practical in
order to compare our model with previous works, although the oscillatory component
of the kernel could account for other biologically realistic aspects such as the so-called
ladder effect [42], [28]. In order to keep only the central lobe, we define the distance
function on local patches such that it is truncated where it reaches its maximum. This
means ``eliminating"" the periodicity of the cosine in (2.6) by defining around (0, 0, 0)
a patch

\scrP (0) := \{ p = (x, y, \theta ) : | x(1 + cos \theta ) + y sin \theta | < \lambda \} .

Of course, the thickness of the patch depends on the frequency of the oscillations
of the distance, ruled by the wavelength \lambda of the filters. Figure 2.1(a,b,c) schematically
displays this operation on a plot of the distance function with respect to x, for fixed
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Fig. 2.1. (a) For fixed y = 0 and \theta = 0, a plot of x \mapsto \rightarrow d((x, 0, 0), (0, 0, 0)). In red, the
corresponding slice of a neighborhood B\varepsilon 

\bigl( 
(0, 0, 0)

\bigr) 
= \{ (x, y, \theta ) \in \BbbR 2 \times S1 : d((x, y, \theta ), (0, 0, 0)) < \varepsilon \} ,

which is not connected. (b) We truncate the distance function at its maximum. (b) The neighborhood
of the same radius as before, with the truncated distance, turns out to be connected. (d) The non-
connected ball B\varepsilon 

\bigl( 
(0, 0, 0)

\bigr) 
(dark blue) displayed in the three-dimensional space \BbbR 2 \times S1. The patch

\scrP (0, 0, 0) is represented by the volume between the two light blue surfaces. After truncating the
distance function, only the central lobe remains. In this example we set \lambda = 1 and \sigma = 1.

values of y and \theta . The invariance of d leads to the definition of a patch around each
point p0 = (x0, y0, \theta 0) \in \BbbR 2 \times S1 as follows.

\scrP (p0) := \{ p = (x, y, \theta ) :
\bigl( 
R\theta 0T(x0,y0)(x, y), \theta  - \theta 0

\bigr) 
\in \scrP (0)\} .

The shape of these patches is shown in Figure 2.1(d). For each p, p0 \in \BbbR 2\times S1 we then
consider the distance \~d(p, p0) as defined in (2.4). Note that those neighborhoods which
are ``small enough"" are connected even without truncating the distance function (see
Figure 2.1). In other words, there always exists an \varepsilon > 0 such that B\varepsilon (p0) \subseteq \scrP (p0).
This is sufficient for (2.4) to define a global distance on \BbbR 2\times S1 (see Proposition 2.3).
Moreover, note that a finite sequence \{ qj\} j=0,...,N connecting two points always exists.
For p0 = (0, 0, 0) and p = (x, y, \theta ), take, for example,

q0 = (0, 0, 0) = p0, q1 = (0, y, 0), q2 =
\Bigl( 
0, y,

\pi 

2

\Bigr) 
,

q3 =
\Bigl( 
x, y,

\pi 

2

\Bigr) 
, q4 = (x, y, \theta ) = p.

The distance is therefore finite.
Local estimate of d2. Let us study the local behavior of the distance function

d. Fix p = (x, y, \theta ) \in \BbbR 2 \times S1, and let x, y, \theta \rightarrow 0. We have

\bullet exp
\Bigl( 
 - x2

4\sigma 2  - y2

4\sigma 2  - 2\sigma 2\pi 2(1 - cos \theta )
\lambda 2

\Bigr) 
\approx 1 - x2

4\sigma 2  - y2

4\sigma 2  - 2\sigma 2\pi 2

\lambda 2
\theta 2

2 .

\bullet cos
\bigl( 
\pi (x(1+cos \theta )+y sin \theta )

\lambda 

\bigr) 
\approx 1 - 2\pi 2

\lambda 2 x
2.

Then

d2(p, 0) \approx 2\sigma 2\pi 

\biggl( \biggl( 
1

4\sigma 2
+

2\pi 2

\lambda 2

\biggr) 
x2 +

y2

4\sigma 2
+
\sigma 2\pi 2

\lambda 2
\theta 2
\biggr) 
.

More generally, for p = (x, y, \theta ) \rightarrow (x0, y0, \theta 0) = p0,

d2(p, p0) \approx 2\sigma 2\pi 

\biggl( \biggl( 
1

4\sigma 2
+

2\pi 2

\lambda 2

\biggr) 
a2 +

1

4\sigma 2
b2 +

\sigma 2\pi 2

\lambda 2
(\theta  - \theta 0)

2

\biggr) 
,

where (a, b) = R\theta 0T(x0,y0)(x, y). Equivalently,

d2(p, p0) \approx (x - x0, y  - y0, \theta  - \theta 0)\cdot g(p0)\cdot 

\left(  x - x0
y  - y0
\theta  - \theta 0

\right)  ,
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where g(p0) =

2\sigma 2\pi 

\left(    
\Bigl( 

1
4\sigma 2 + 2\pi 2

\lambda 2

\Bigr) 
cos2 \theta 0 +

1
4\sigma 2 sin

2 \theta 0
2\pi 2

\lambda 2 cos \theta 0 sin \theta 0 0

2\pi 2

\lambda 2 cos \theta 0 sin \theta 0

\Bigl( 
1

4\sigma 2 + 2\pi 2

\lambda 2

\Bigr) 
sin2 \theta 0 +

1
4\sigma 2 cos

2 \theta 0 0

0 0 \sigma 2\pi 2

\lambda 2

\right)    .

Thus, the distance d is locally equivalent to a Riemannian distance on \BbbR 2 \times S1.
Note that, for every point p0,

det g(p0) = 8\sigma 6\pi 3

\biggl( 
1

4\sigma 2
+

2\pi 2

\lambda 2

\biggr) 
1

4\sigma 2

\sigma 2\pi 2

\lambda 2
.

This implies that the associated Riemannian measure on \BbbR 2\times S1 is a constant multiple
of the Euclidean measure.

Convergence to a sub-Riemannian metric. Finally, we show that the metric
g computed above is a Riemannian approximation to a sub-Riemannian structure on
\BbbR 2 \times S1 which is, up to constants, the same as the one defined in [7]. More precisely,
we let
(i) \sigma 2 = A\lambda for some A > 0.
(ii) \lambda  - \rightarrow 0.

This means that the support of the filters shrinks and the number of oscillations under
the Gaussian bell goes to infinity. We have, for each p0 = (x0, y0, \theta 0),

g(p0) = 2\lambda \pi 

\left(       
1

4A\lambda + 2\pi 2

\lambda 2 cos2 \theta 0
2\pi 2

\lambda 2 cos \theta 0 sin \theta 0 0

2\pi 2

\lambda 2 cos \theta 0 sin \theta 0
1

4A\lambda + 2\pi 2

\lambda 2 sin2 \theta 0 0

0 0 A\pi 2

\lambda 

\right)       .

The inverse metric reads g - 1(p0) =

1

2\pi 
\bigl( 
\pi 4

4 + \lambda \pi 2

16A

\bigr) 
\left(       
2A\pi 4 sin2 \theta 0 + \lambda \pi 

2

4  - 2A\pi 4 sin \theta 0 cos \theta 0 0

 - 2A\pi 4 sin \theta 0 cos \theta 0 2A\pi 4 cos2 \theta 0 + \lambda \pi 
2

4 0

0 0 \pi 2

2A + \lambda 1
16A2

\right)       .

Now set \lambda \rightarrow 0. We have

g - 1(p0)  -  -  -  -  -  - \rightarrow 
\lambda \rightarrow 0

4A

\pi 

\left(  sin2 \theta 0  - cos \theta 0 sin \theta 0 0
 - cos \theta 0 sin \theta 0 cos2 \theta 0 0

0 0 1
4\pi 2A2

\right)  =: g - 1
0 (p0),(2.7)

i.e., the metric is the Riemannian approximation to a sub-Riemannian structure on
\scrG = \BbbR 2 \times S1. In particular, the matrix g - 1

0 (p0) in (2.7) is the cometric induced by
the vector fields Y1 and Y2 defined in (1.3), with the following norm on the horizontal
planes:

| v| 2 =
\pi 

4A
| Y1\cdot v| 2 +A\pi 3| Y2\cdot v| 2 \forall v \in Hx,y,\theta .(2.8)

For each (x, y, \theta ) the horizontal plane Hx,y,\theta is the subspace of Tx,y,\theta \scrG generated by
Y1 and Y2. Note that g - 1

0 is just a notation, since this matrix is not invertible.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1068 N. MONTOBBIO, A. SARTI, AND G. CITTI

2.4. A nondifferential example. The example that we are about to introduce
is a relevant one since it represents an instance of feature space whose metric cannot
be described through a differential structure, thus motivating our work in the more
general setting of metric spaces.

Let us consider a surface

\Sigma =
\bigl\{ 
(x, y, \theta ) \in \BbbR 2 \times S1 : \theta = \Theta (x, y)

\bigr\} 
(2.9)

and the corresponding subset \{ \psi x,y,\Theta (x,y)\} x,y of the abovementioned family of Gabor
filters. This yields a feature space \scrG \approx \BbbR 2, endowed with the metric structure defined
by this subfamily of filters, i.e.,

d
\bigl( 
(x, y), (x0, y0)

\bigr) 
:= \| \psi x,y,\Theta (x,y)  - \psi x0,y0,\Theta (x0,y0)\| L2(\BbbR 2).(2.10)

The restriction to \Sigma of a distance which is locally equivalent to a Riemannian one is
still locally equivalent to the induced Riemannian metric on the surface. However,
setting \sigma 2 = A\lambda \rightarrow 0 as before yields a sub-Riemannian structure on \BbbR 2 \times S1, deter-
mined by the vector fields Y1 and Y2 of (1.3). We can consider them to be rescaled so
that the norm (2.8) becomes the Euclidean norm on the horizontal planes. We still
denote their commutator by Y3.

We work on the domain (x, y) of the function \Theta defining the surface. Now con-
sider, as in [6], the projections V := Y1 \Theta and W := Y3 \Theta of the vector fields Y1, Y3 on
the plane P = \{ (x, y, 0)\} :

V(x,y) = Y1 \Theta (x,y) =  - sin(\Theta (x, y))\partial x + cos(\Theta (x, y))\partial y,

W(x,y) = Y3 \Theta (x,y) = cos(\Theta (x, y))\partial x + sin(\Theta (x, y))\partial y.

The vector fields V and W span the plane P . Note that the surface \Sigma is foliated by
integral curves of V , and the restriction of the horizontal norm (2.8) onto this surface
would yield a degenerate distance whose balls are segments of curves.

The distance we want to consider on \Sigma is instead the one whose balls are obtained
by intersecting \Sigma with the balls of the sub-Riemannian metric on \BbbR 2 \times S1---i.e., the
distance induced on \Sigma as a metric subspace of \BbbR 2\times S1 with the Carnot--Carath\'eodory
distance. At each point p0 \in \BbbR 2\times S1, the exponential mapping expp0 : g \rightarrow \BbbR 2\times S1 is
defined by expp0(X) = \gamma X(1, p0), where g is the Lie algebra associated to \BbbR 2 \times S1 =
SE(2) as a Lie group (see [39]) and \gamma X(\cdot , p0) is the unique solution to the Cauchy
problem \Biggl\{ 

\partial t\gamma (t) = X| \gamma (t),

\gamma (0) = p0.

For sufficiently small t, expp0(tX) = \gamma tX(1, p0) = \gamma X(t, p0) is always well defined.
Moreover, expp0 is a local diffeomorphism [39]. We can thus define locally on \BbbR 2\times S1

the distance
d2Y (p, p0) = v21 + v22 + | v3| ,

where v1, v2, v3 \in \BbbR are such that p = expp0(
\sum 3
i=1 viYi). This distance is locally

equivalent to the Carnot--Carath\'eodory distance dcc on \BbbR 2 \times S1. Restricted on the
domain of \Theta , this becomes

d2\Sigma 
\bigl( 
(x, y), (x0, y0)

\bigr) 
= e21 + | e2| ,(2.11)
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where (x, y) = exp(x0,y0)(e1V + e2W ) (see [6]). Note that the balls of this distance
are indeed open sets of the surface.

Surfaces play a key role in modeling the visual cortex. A first example is given
by a surface of maxima such as the one introduced in section 1.3.

Fig. 2.2. An orientation map \Theta (x, y). The orientation preference measured at each location
(x, y) is color-coded. On the right, enlarged portions of the map show pinwheel arrangements, cor-
responding to hypercolumns. Image modified from [2].

Another important instance is represented by the surface defined through an
orientation map of V1. These maps, which can be computed through optical imaging
techniques (see [2]), express the fine-scale mapping of orientation preference of V1
neurons: the visual cortex is indeed two-dimensional, and each hypercolumn actually
consists of a pinwheel configuration such as the ones displayed in Figure 2.2.

We shall return to this example in the next section, whose main subject will be
the horizontal connectivity of V1. As already mentioned in section 1.3, a possible way
to represent this connectivity is by means of a diffusion process: in some differential
models of V1, this diffusion is expressed through second order operators associated
to the sub-Riemannian structure taken into consideration. In order to still be able to
use this approach in nondifferential cases such as the one described above, we aim at
extending it to the context of metric measure spaces.

3. Connectivity. A central aspect in modeling the visual cortex is the charac-
terization of how the activity of a neuron is influenced by the surrounding cells. In
the main existing mathematical cortex models, the feature space (obtained as the set
of parameters indexing a family of filters) is equipped with a sub-Riemannian struc-
ture (see [36], [7]). Starting from this local geometry, the idea is that of describing
the spreading of horizontal connections around each neuron through a propagation
equation (e.g., the sub-Riemannian heat equation or the Fokker--Planck equation)
associated to the geometry of the space. Such constructions inspired us to give an
analogous description of the lateral connectivity through a suitable concept of diffu-
sion linked to the geometric structure of our space.

In our model, the feature space is equipped with a metric space structure defined
by the RPs themselves. Starting from a general family of filters, we cannot expect the
distance obtained to be compatible with some differential structure. We shall then
address the issue in the much more general setting of metric measure spaces, following
the classical approach of Sturm (see [37],[38]) in defining Dirichlet forms and diffusion
processes in this context: if one can define a measure satisfying a certain condition of
compatibility with the distance, then it is possible to obtain well-behaved extensions
of the Laplacian operator and of its heat kernel. The latter can also be shown to
admit Gaussian estimates in terms of the distance.
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3.1. Diffusion processes on metric measure spaces. In this section we shall
briefly summarize the content of [38], in which Sturm provided a general method to
construct a diffusion process on a metric measure space and proved some properties
under a crucial assumption, called the MCP.

Let (X, d, \mu ) be a metric measure space such that (X, d) is a locally compact
separable metric space and \mu is a Radon measure on X, strictly positive on nonempty
open sets. One can then construct a Dirichlet form E on L2(X,\mu ) as the \Gamma -limit of a
sequence of forms, defined in analogy with the Dirichlet form

u \mapsto  - \rightarrow 1

2

\int 
X

| \nabla u| 2d\mu ,(3.1)

whose associated elliptic operator is the Laplace--Beltrami operator, in the Riemann-
ian case. More precisely, one defines

Er(u) =
1

2

\int 
X

N(x)

\int 
Br(x)\smallsetminus \{ x\} 

\biggl( 
u(z) - u(x)

d(z, x)

\biggr) 2
d\mu (z)\sqrt{} 
\mu (Br(z))

d\mu (x)\sqrt{} 
\mu (Br(x))

,(3.2)

where N is a normalization function, and lets E = \Gamma -limr\rightarrow 0E
r. This does always

exist, provided that (X, d, \mu ) satisfies the following property.

Definition 3.1. A metric measure space (X, d, \mu ) satisfies the (weak) MCP with
exceptional set if there exists a closed set Z \subseteq X with \mu (Z) = 0 such that for every
compact set Y \subseteq X \smallsetminus Z there are numbers R > 0,\Theta < \infty and \vargamma < \infty and \mu 2-
measurable maps \Phi t : X \times X \rightarrow X (for all t \in [0, 1]), with the following properties.

(i) For \mu -a.e. x, y \in Y with d(x, y) < R, and for all s, t \in [0, 1],

\Phi 0(x, y) = x, \Phi t(x, y) = \Phi 1 - t(y, x), \Phi s(x,\Phi t(x, y)) = \Phi st(x, y),(3.3)

d(\Phi s(x, y),\Phi t(x, y)) \leq \vargamma | s - t| d(x, y).(3.4)

(ii) Define, for r < 0, the measures d\mu r(x) = d\mu (x)\surd 
\mu (Br(x))

. Then, for all r < R,

\mu -a.e. x \in Y , all \mu -measurable A \subseteq Br(x) \cap Y and all t \in [0, 1],

\mu r(A)\sqrt{} 
\mu (Br(x))

\leq \Theta 
\mu rt(\Phi t(x,A))\sqrt{} 
\mu (Brt(x))

.(3.5)

The space (X, d, \mu ) is said to verify the strong MCP if
\bullet the constants \Theta and \vargamma can be taken arbitrarily close to 1;
\bullet for every \Theta \prime > 1 there exists some \vargamma \prime > 1 such that, for \mu -a.e. x \in Y and for
all r < R with Br(x) \subseteq Y ,

\mu (Br\vargamma \prime (x)) \leq \Theta \prime \mu (Br(x)).

In this case, there is no restriction in taking always \Theta = \Theta \prime and \vargamma < \vargamma \prime .
For both the weak and strong MCP, one says without exceptional set if Z = \emptyset .
Remark 3.2. For fixed x and y, the map \Phi \cdot (x, y) : [0, 1] \rightarrow X, t \mapsto \rightarrow \Phi t(x, y)

is a quasi-geodesic joining x and y. Moreover, if (X, d) is a geodesic space such that
geodesics joining x and y can be chosen in such a way that they depend in a measurable
way on x and y, property (ii) simplifies to

\mu (A)

\mu (Br(x))
\leq \Theta 

\mu (\Phi t(x,A))

\mu (Brt(x))
.
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Example 3.3. Let (X, g) be a Riemannian manifold. If d is the Riemannian dis-
tance and \mu is the Riemannian volume on X, (X, d, \mu ) is a metric measure space
satisfying the initial requests on d and \mu . Furthermore, for such a space the strong
MCP without exceptional set is verified. This example is central in our setting, since
the basic case which we have in mind as a prototype is the cortical metric space asso-
ciated to Gabor filters, whose distance is locally equivalent to a Riemannian distance.

More examples are given by manifolds with corners or by gluing together of man-
ifolds not necessarily of the same dimension.

The MCP implies some important facts, among which the volume doubling prop-
erty. Moreover, for each u \in CLip0 (X), the \Gamma -limit and the point-wise limit of Er(u)
exist and coincide. Such a limit defines a strongly local, regular Dirichlet form, whose
associated intrinsic metric is locally equivalent to the original distance d. A Poincar\'e
inequality is shown to hold as well. Finally, the corresponding positive self-adjoint
operator A has a H\"older continuous heat kernel ht (see Theorem 7.4 in [38]).

Theorem 3.4. There exists a measurable function

H : ]0,\infty [\times X \times X  - \rightarrow [0,\infty ], (t, x, y) \mapsto  - \rightarrow H(t, x, y) \equiv ht(x, y)(3.6)

with the following properties.
(i) For every t > 0, every u \in L2(X,\mu ) and \mu -a.e. x \in X,

e - Atu(x) =

\int 
X

ht(x, y)u(y)d\mu (y).(3.7)

(ii) The function H is locally H\"older continuous on ]0,\infty [\times (X \smallsetminus Z)\times (X \smallsetminus Z) and
identically zero on its complement in ]0,\infty [\times X \times X.

(iii) For all s, t > 0 and all x, y \in X,

ht(x, y) = ht(y, x) and ht+s(x, y) =

\int 
x

hs(x, z)ht(z, y)d\mu (z).(3.8)

The function H is defined pointwise uniquely by these properties and is called heat
kernel for A.

Furthermore, this heat kernel admits upper and lower Gaussian estimates. More
precisely (see Theorems 7.7 and 7.9 of [38]), we have the following result.

Theorem 3.5. Let (X, d, \mu ) verify the strong MCP with some exceptional set, and
let Z be the exceptional set for the weak MCP. Then, for every compact Y \subseteq X \smallsetminus Z
and every \varepsilon > 0, there exists a constant C such that

1

C \mu (B\surd 
t\wedge R(x))

exp

\biggl( 
 - C d

2(x, y)

2t

\biggr) 
exp

\biggl( 
 - Ct
R2

\biggr) 
\leq ht(x, y)

\leq C

\mu (B\surd 
t0(x))

exp

\biggl( 
 - d

2(x, y)

(2 + \varepsilon )t

\biggr) 
exp ( - (1 + \varepsilon )\Lambda t)

for each x, y which are joined by an arc \gamma in Y of arc length d(x, y). Here R =
d(\gamma ,X \smallsetminus Y ), t0 = inf\{ t, d2(x,X \smallsetminus Y ), d2(y,X \smallsetminus Y )\} , and \Lambda is the bottom of the
spectrum of the operator A on L2(X,\mu ).

3.2. The cortical metric measure space. Let us recall our setting: we have
a metric space (\scrG , d), where \scrG is the feature space indexing a family \{ \psi p\} p\in \scrG of linear
filters on the plane, and d is the distance function of Definition 2.2.
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The first step in order to be able to do some analysis on (\scrG , d) is to equip it with
a suitable measure. This has to be related to some notion of density of the filters
with respect to the distance d. Moreover, the MCP of [38] expresses a link between
the metric balls and the measure. Therefore, a quite natural choice is the spherical
Hausdorff measure (see [19], [41], [12]) associated to the distance d. We shall denote
it by \mu . Suppose now that (\scrG , d) is a locally compact separable metric space, that \mu is
a Radon measure with full support on X, and that the metric measure space (X, d, \mu )
satisfies the MCP. This yields Gaussian estimates for the heat kernel ht associated
to the diffusion process defined by the Dirichlet form E, meaning that in this case
one has an approximate version of ht expressed explicitly in terms of the cortical
distance d.

The first comment to be made is about the nice behavior of the spherical Hausdorff
measure and of the MCP in the event of equivalent (or locally equivalent) distances.
Indeed, if d and d\prime are two distances defined on X with corresponding spherical
Hausdorff measures \mu and \mu \prime , then we have [12]:

\exists \kappa > 0 : \kappa  - 1d(x, y) \leq d\prime (x, y) \leq \kappa d(x, y) \forall x, y \in X(3.9)

=\Rightarrow \kappa  - s\mu (A) \leq \mu \prime (A) \leq \kappa s \mu (A) for any Borel set A \subseteq X,(3.10)

where s is the Hausdorff dimension. The same holds locally if the distances are
only locally equivalent. Suppose now that the MCP is verified for (X, d, \mu ). The
exceptional set Z is obviously still a null set with respect to \mu \prime . Fix a compact set
Y \subseteq X. Note that, even if the equivalence is just local, the compactness of Y allows
us to have (3.9) with the same \kappa over all Y . The maps \Phi t are still measurable and
verify the properties (i). In particular (3.4) holds thanks to the equivalence of the
distances. Recall that the doubling property holds for d, \mu , and let M be a doubling
constant:

\mu (B\kappa r(x)) \leq M\mu (Br(x)).

Now, (3.10) implies

(\kappa sM) - 1\mu (Br(x)) \leq \mu \prime (B\prime 
r(x)) \leq \kappa sM \mu (Br(x)) and

(\kappa 
3s
2 M) - 1\mu r(A) \leq \mu \prime 

r(A) \leq \kappa 
3s
2 M \mu r(A).

Finally, by these inequalities and the property (3.5) for d and \mu , we have

\mu \prime 
r(A)\sqrt{} 

\mu \prime (B\prime 
r(x))

\leq \kappa 2sM
3
2 \mu r(A)\sqrt{} 

\mu (Br(x))
\leq \Theta \kappa 2sM

3
2 \mu rt(\Phi t(x,A))\sqrt{} 
\mu (Brt(x))

\leq \Theta \kappa 4sM3\mu \prime 
rt(\Phi t(x,A))\sqrt{} 

\mu \prime (B\prime 
rt(x))

,

i.e.,
\mu \prime 
r(A)\sqrt{} 

\mu \prime (B\prime 
r(x))

\leq C
\mu \prime 
rt(\Phi t(x,A))\sqrt{} 
\mu \prime (B\prime 

rt(x))
.

We sum up with the following proposition.

Proposition 3.6. The weak MCP for the spherical Hausdorff measure is invari-
ant under local equivalence of distances.

In fact, if the equivalence constant \kappa of the two distances can be locally chosen
to be arbitrarily close to 1, then even the strong MCP is preserved.

These facts are of particular importance for our purposes, since we have seen
that the cortical distance arising from a set of Gabor filters turns out to be locally
equivalent to a Riemannian distance on \BbbR 2 \times S1, with a local equivalence constant
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approaching 1. Recall that all Riemannian manifolds (M, g) are locally compact as
metric spaces with the geodesic distance dg [1] and that this property is preserved in
metric spaces under local equivalence of distances. Moreover, the MCP holds [38] on
(M,dg, \mu g) where \mu g is the Riemannian measure, which coincides with the spherical
Hausdorff measure associated to dg. This immediately leads to the following result.

Theorem 3.7. The cortical metric measure space (\BbbR 2 \times S1, d, \mu ) defined by the
bank of Gabor filters (1.2) satisfies the MCP.

3.3. The MCP for a sub-Riemannian surface in \BbbR \bftwo \times \bfitS \bfone . We now go back
to the example, introduced in section 2.4, of a sub-Riemannian surface in \BbbR 2 \times S1.
We prove that such a space satisfies the MCP, thus providing an example of a non-
differential feature space on which the horizontal connectivity can still be represented
through a suitable diffusion process.

Consider a surface \Sigma as in (2.9), whose defining function \Theta (x, y) is C1, except
possibly for a discrete set \Pi \subset \BbbR 2. Denote Z := \{ (x, y,\Theta (x, y)) : (x, y) \in \Pi \} \subseteq \Sigma .

Remark 3.8. (\Sigma , d\Sigma ) is locally compact. Indeed, the following hold.
(i) \BbbR 2 \times S1 with the Carnot--Carath\'eodory distance dcc is a locally compact

space [1]. Then each closed subset of (\Sigma , d\Sigma ) away from Z is locally compact
because it is a closed subspace of (\BbbR 2 \times S1, dcc) by the continuity of \Theta .

(ii) Now, given \zeta \in Z, we need to construct a compact neighborhood of \zeta in
\Sigma . Consider a closed ball Bcc\varepsilon (\zeta ) of dcc in \BbbR 2 \times S1 such that Bcc\varepsilon (\zeta ) does
not contain any other point of Z; then define B := Bcc\varepsilon (\zeta ) \cap \Sigma . This is
a neighborhood of \zeta in the induced metric d\Sigma . We now prove that B is
compact.
Given a sequence \{ pn\} n \subseteq B \subseteq Bcc\varepsilon (\zeta ), by the compactness of Bcc\varepsilon (\zeta ) there
exists a subsequence \{ pnk

\} k converging to a point p \in Bcc\varepsilon (\zeta ). If \zeta /\in \{ pnk
\} k,

then p belongs to B by (i). If \zeta \in \{ pnk
\} k, either p = \zeta \in B or pnk

\not = \zeta for
k > k and the truncated sequence falls into the preceding case.

The measure \mu that we consider on \Sigma is the one given by the sub-Riemannian
area, since this coincides up to a constant with the spherical Hausdorff measure on
(\Sigma , d\Sigma ) (see [17],[14]). Specifically, given a subset S \subseteq \Sigma ,

\mu (S) =

\int 
S

| Nh| d\Sigma .(3.11)

Here, Nh is the orthogonal projection of a unit vector field normal to \Sigma onto the hori-
zontal distribution, and d\Sigma is the Riemannian measure of \Sigma induced by the projected
vector fields V and W defined in section 2.4, i.e.,

d\Sigma (x, y) =
\sqrt{} 
det g\Sigma (x, y)dxdy.

Now denote \xi = (x, y). We define

\Phi t(\xi , A) = exp\xi (t\cdot exp - 1
\xi (A)),(3.12)

where \cdot denotes the dilation

t\cdot v =
\bigl( 
te1, t

2e2
\bigr) 

\forall v = (e1, e2) \in P.

Given a compact set Y of \Sigma and A \subseteq Br(\xi ) \cap Y , we have
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\mu (\Phi t(\xi , A)) =

\int 
exp\xi (t\cdot exp

 - 1
\xi (A))

d\mu =

\int 
exp\xi (t\cdot exp

 - 1
\xi (A))

| Nh(\xi \prime )| 
\sqrt{} 
det(g\Sigma (\xi \prime ))d\xi 

\prime 

=

\int 
t\cdot exp - 1

\xi (A)

\bigm| \bigm| J\xi (v)\bigm| \bigm| | Nh(exp\xi (v))| \sqrt{} det(g\Sigma (exp\xi (v)))dv

= t3
\int 
exp - 1

\xi (A)

\bigm| \bigm| J\xi (tu)\bigm| \bigm| | Nh(exp\xi (tu))| \sqrt{} det(g\Sigma (exp\xi (tu)))du

= t3
\int 
A

\bigm| \bigm| J\xi (t\cdot exp - 1
\xi (\xi \prime ))

\bigm| \bigm| \bigm| \bigm| J\xi (exp - 1
\xi (\xi \prime ))

\bigm| \bigm| | Nh(\Phi t(\xi , \xi \prime ))| 
\sqrt{} 

det(g\Sigma (\Phi t(\xi , \xi \prime )))d\xi 
\prime ,

where d\xi \prime = dx\prime dy\prime and J\xi (v) denotes the Jacobian determinant of exp\xi . Then

\mu (\Phi t(\xi , A))

\mu (A)
=

\int 
A

\bigm| \bigm| J\xi (t\cdot exp - 1
\xi (\xi \prime ))

\bigm| \bigm| \bigm| \bigm| J\xi (exp - 1
\xi (\xi \prime ))

\bigm| \bigm|  - 1
f(\Phi t(\xi , \xi 

\prime ))d\xi \prime \int 
A
f(\xi \prime )d\xi \prime 

t3,(3.13)

where we have denoted f = | Nh| 
\sqrt{} 
det(g\Sigma ). Now, one has (see [6],[30])

(1 +O(| v| )) - 1 \leq | J\xi (v)| \leq 1 +O(| v| ).

This yields\bigm| \bigm| J\xi (t\cdot exp - 1
\xi (\xi \prime ))

\bigm| \bigm| \bigm| \bigm| J\xi (exp - 1
\xi (\xi \prime ))

\bigm| \bigm| \geq (1 +O(| exp - 1
\xi (\xi \prime )| )) - 1(1 + t2O(| exp - 1

\xi (\xi \prime )| )) - 1 \geq 1 +O(r).

Therefore the initial calculation leads to

\mu (\Phi t(\xi , A))

\mu (A)
\geq 

\int 
A
f(\Phi t(\xi , \xi 

\prime ))d\xi \prime \int 
A
f(\xi \prime )d\xi \prime 

(1 +O(r)) t3.

Finally, f(\Phi t(\xi , \xi 
\prime )) = f(\xi \prime ) + O(d\Sigma (\Phi t(\xi , \xi 

\prime ), \xi \prime )) and both \Phi t(\xi , \xi 
\prime ) and \xi \prime are in

Br(\xi ). Then,\int 
A
f(\Phi t(\xi , \xi 

\prime ))d\xi \prime \int 
A
f(\xi \prime )d\xi \prime 

=

\int 
A
f(\xi \prime )d\xi \prime +O(r)

\int 
A
d\xi \prime \int 

A
f(\xi \prime )d\xi \prime 

= 1 +O(r) \Rightarrow \mu (\Phi t(\xi , A))

\mu (A)

\geq (1 +O(r)) t3.

On the other hand, since Brt(\xi ) = \Phi t(\xi ,Br(\xi )) and since we have estimates for J\xi 
and f both from above and from below, we have

\mu (Brt(\xi ))

\mu (Br(\xi ))
\leq (1 +O(r))

\mu (\Phi t(\xi , A))

\mu (A)
.

Note that, in the case of a pinwheel surface (see section 2.4), the exceptional set
Z of the MCP is represented by the singularities at the center of each pinwheel
arrangement.

3.4. Propagation through a connectivity kernel. Under the hypothesis
that the MCP holds on (X, d, \mu ), the heat kernel admits Gaussian estimates. Hence,
in analogy with the sub-Riemannian case, we may model the horizontal connectivity
with the heat kernel. However, it would not be clear how this is implemented in the
visual cortex. On the other side, the kernel K can be locally approximated through
an exponentially decaying function of the squared distance.
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Remark 3.9. By Taylor expansion, we have e - 
d2(p,q)

2t = (1  - d2(p,q)
2t ) + o(d

2(p,q)
t ).

Recall that d2(p, q) = 2(t  - K(p, q)), where t is the squared L2 norm of the filters.
We shall now make explicit the dependence of K on t, i.e.,

Kt(p, q) = t - d2(p, q)

2
.

If we fix t, when d(p, q) is small we then get

e - 
d2(p,q)

2t \approx 
\biggl( 
1 - d2(p, q)

2t

\biggr) 
=
Kt(p, q)

t
.(3.14)

In addition, in the special case of a compact Riemannian submanifold of the
Euclidean space, an arbitrary good approximation of the heat kernel can be provided
by iterating the Gaussian kernel for small t. In [9], an approximating kernel is defined
as follows: given an exponentially decaying function h and \alpha \in \BbbR ,

kt(p, q) = h

\biggl( 
\| p - q\| 2

t

\biggr) 
; k

(\alpha )
t (p, q) =

kt(p, q)

Q\alpha t (p)Q
\alpha 
t (q)

, where

Qt(p) =

\int 
kt(p, q)Q(q)d\mu (q).

Here, Q is a density function expressing the distribution of points in a dataset. A
new kernel, depending on the choice of \alpha , is then defined via a normalization:

S(\alpha )[kt](p, q) =
k
(\alpha )
t (p, q)\int 

k
(\alpha )
t (p, q\prime )Q(q\prime )d\mu (q\prime )

.(3.15)

The following theorem is proved (see Proposition 3 in [9]).

Theorem 3.10. Define the operators

H
(\alpha )
t f (p) :=

\int 
S(\alpha )([kt](p, q)f(q)d\mu (q) and Lt,\alpha f =

1

t

\Bigl( 
f  - H

(\alpha )
t f

\Bigr) 
.(3.16)

For \alpha = 1 and for any fixed N , the operator Lt,1 converges to the Laplace--Beltrami
operator onto the linear span of its first N eigenfunctions, and the kernel

kt,n :=
\Bigl( 
H t

n

\Bigr) n - 1

S(\alpha )[k t
n
]

converges to the Neumann heat kernel on the manifold as n goes to infinity.

As a matter of fact, the result proved in [9] is more general. For each value of \alpha ,
the generator converges to a specific operator (see Theorem 2 in [9]). In particular,
an interesting fact is that, for \alpha = 1

2 , the process approximates the diffusion of a
Fokker--Planck equation depending on the density function Q. This result implies
that different normalizations of the same Gaussian kernel may be used to define a
generalization of other diffusion processes proposed in differential cortex models. As
already mentioned in section 1.3, the Fokker--Planck equation has been taken into
consideration in various works to describe the lateral connectivity of V1 (see [29],
[35]).

We can interpret the association field generated by the lateral connectivity as the
expansion of the activity starting from the stimulation of one specific profile (i.e., one
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point p0 of the feature space \scrG ), and we may model it through an operator analogous
to (3.16).

We adapt the normalization operation proposed in [9] to our setting by taking the
integrals w.r.t. the spherical Hausdorff measure associated to the cortical distance.
For \alpha = 1 and Q \equiv 1, we obtain the operator S applied to kernels \scrK : \scrG \times \scrG \rightarrow \BbbR as
follows:

S[\scrK ](p, q) =
\scrK (1)(p, q)\int 

\scrK (1)(p, q\prime )d\mu (q\prime )
, where \scrK (1)(p, q) =

\scrK (p, q)\int 
\scrK (p, q)d\mu (q)

\int 
\scrK (p, q)d\mu (p)

.

We then define the propagation operator

Htf (p) :=

\int 
S

\biggl[ 
s

\biggl( 
Kt

t

\biggr) \biggr] 
(p, q) f(q) d\mu (q),(3.17)

where S is applied to the kernel Kt divided by the norm t of the filters and passed
through a sigmoidal activation function

s(z) =
1

1 + exp( - z)
.

Note that, for d(p, q) \rightarrow +\infty , the term s
\bigl( 
Kt

t

\bigr) 
is an exponentially decaying function

of d
2(p,q)
2t :

s

\biggl( 
Kt(p, q)

t

\biggr) 
=

exp
\Bigl( 
 - d2(p,q)

2t

\Bigr) 
1
e + exp

\Bigl( 
 - d2(p,q)

2t

\Bigr) \sim e \cdot exp
\biggl( 
 - d

2(p, q)

2t

\biggr) 
.

We finally provide a description of the propagation of neural activity around a point
p0 by defining

Kp0
t,n := Hn - 1

t Kp0
t ,(3.18)

where Kp0
t (p) \equiv Kp0

t,1(p) := S
\bigl[ 
s
\bigl( 
Kt

t

\bigr) \bigr] 
(p, p0).

Remark 3.9 suggests that, with a much more rough approximation, one can even
think of modeling the cortical connectivity as an iteration of (a proper normalization
of) Kt

t itself instead of a Gaussian kernel. In this case, one may consider an activation
function of the type s(z) = max(z  - T, 0), which simply puts to zero all values below
a certain threshold T .

3.5. Numerical simulations and discussion. We now present numerical sim-
ulations of the modeled propagation, both through the mechanism of repeated inte-
grations described in section 3.4 and by suitably approximating the diffusion process
introduced in section 3.1. We first take into account the family of Gabor filters (1.2);
we then consider the example of the bidimensional feature space induced by an ori-
entation map, as in section 2.4.

Gabor filters. In the Gabor case, the connectivity kernel lives in \BbbR 2 \times S1. Fig-
ure 3.1(b) displays the projection onto the retinal plane of the kernel around the start-
ing point (0, 0, 0), obtained after four steps of the iterative rule (3.18). Figure 3.1(a)
displays the real part of the filter \psi (0,0,0), corresponding to the starting point. The
propagation has been implemented on ]  - 1, 5, 1.5[\times ]  - 2, 2[\times ]  - 1.5, 1.5[\subseteq \BbbR 2 \times S1,
discretized with step 0.075 in x and y and with step 0.15 in \theta . We refer to our work
[28] for more technical details. The function
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Fig. 3.1. Propagation of the neural activity in \BbbR 2 \times S1 through repeated integrations of the

kernel. (a) The starting filter \psi (0,0,0) (real part). (b) The kernel K
(0,0,0)
4 (x, y, \theta ) obtained at the

fourth step of propagation, projected down onto the (x, y) plane by taking the maximum over \theta . (c)
The corresponding maximizing orientations \theta (x, y): at every location (x, y), an oriented segment

with angle \theta (x, y) is displayed---only where K
(0,0,0)
4

\bigl( 
x, y, \theta (x, y)

\bigr) 
is over a threshold.

(x, y, \theta ) \mapsto \rightarrow K
(0,0,0)
4 (x, y, \theta )(3.19)

has been projected onto the (x, y) plane by taking the maximum over the variable \theta .
Figure 3.1(c) shows the orientation \theta (x, y) maximizing the value of the kernel, at each
location (x, y) where this value exceeds a threshold. Specifically,

\theta (x, y) := argmax
\theta 
K

(0,0,0)
4 (x, y, \theta ).

Now, as shown in section 2.3, the cortical distance d obtained from the family of filters
(1.2) is locally equivalent to a Riemannian distance on the space \BbbR 2 \times S1. In such a
case, it is possible to discretize the Laplace--Beltrami operator by means of a graph
Laplacian operator associated to the distance. Specifically, given a simple undirected
weighted graph \Gamma with vertices X = \{ pi\} i equipped with weights \{ \mu i\} i, and edges
E = \{ eij\} i,j equipped with weights \{ wij\} i,j , one can define for any function f on V
the Laplacian operator onto the graph as

Lf(pi) :=
1

\mu i

\sum 
j : pi\sim pj

wij (f(pj) - f(pj)) ,(3.20)

where pi \sim pj means that there is an edge connecting pi and pj . This operator,
possibly with slightly different definitions from time to time, is widely used in shape
analysis (see, e.g., [26], [34]) to construct algorithms that keep trace of the geometry of
the data, by means of parameterizations obtained through the eigenfunctions of L. In
[5], a graph approximation of a Riemannian manifold M is constructed by taking the
set of vertices X to be an \varepsilon -net inM with an associated discrete measure \~\mu =

\sum 
i \mu i\delta pi

which approximates the volume \mu of M . In the Gabor case, this allows us to consider
a simple rectangular grid as set of vertices, provided that the discretization step is
sufficiently small. Moreover, this choice yields uniform weights \mu i. The set of edges
with relative weights is then defined depending on the distance. Namely, for \rho \gg \varepsilon ,
two vertices pi, pj \in X are connected by an edge iff dij \equiv d(pi, pj) < \rho , and in this
case one defines the edge weight wij := \kappa \mu i\mu j , where \kappa is a normalization constant
depending on the dimension of the manifold. Note that the vertices can be chosen to
be any \varepsilon -net, since the geometry of the manifold is encoded in the definition of the
edges, i.e., in the choice of the neighborhood over which the sum (3.20) is taken. We
implemented the graph Laplacian associated to this approximating graph, in order
to obtain a discretized heat equation on the same sampling of \BbbR 2 \times S1 as before,
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with initial datum the Dirac delta f0 = \delta (0,0,0) in this three-dimensional space; see
Figure 3.2(a). We took 100 iterations of the discretized differential equation with a
time step of 0.01. We then projected the updated datum f(x, y, \theta ) onto the image
plane, again by taking the maximum over \theta , and displayed the maximizing orientations
as in the preceding case. See Figure 3.2(b, c).

Fig. 3.2. Propagation of the neural activity through the discretized heat equation associated to
the graph Laplacian in \BbbR 2 \times S1. (a) The starting point (0, 0, 0), displayed as a blue asterisk in this
three-dimensionl space. (b) The updated kernel, projected down onto the (x, y) plane by taking the
maximum over \theta . (c) The corresponding maximizing orientations \theta (x, y), as in Figure 3.1.

The results obtained are compatible with the geometrical properties of V1 lateral
connections, and the pattern of the maximizing orientations turns out to be consistent
with the perceptual principles of association fields.

Orientation map. We now consider the subfamily of Gabor filters \{ \psi x,y,\Theta (x,y)\} x,y
determined by an orientation map \Theta and the corresponding metric structure onto
\scrG \Theta = \BbbR 2.

Fig. 3.3. (a) The orientation map \Theta , generated through superposition of plane waves. The
point (0, 0) is highlighted in black. (b) The starting filter \~\psi 0,0 (real part).

We generated an orientation map \Theta through superposition of plane waves with
random phases, as described in [31], and we chose its central point (0, 0) as a starting
point (see Figure 3.3(a)). The corresponding filter \psi (0,0) is displayed in Figure 3.3(b).

Again, we implemented the propagation of neural activity through iteration of
the kernel onto the two-dimensional feature space, and we displayed the updated
kernel with color-coded intensity (Figure 3.4(a)), as well as the orientations \Theta (x, y)
corresponding to points (x, y) where the kernel exceeds a threshold (Figure 3.4(b)).
As a sampling of the feature space, we took ] - 2, 2[\times ] - 2, 2[\subseteq \BbbR 2 = \scrG \Theta , discretized
with step 0.05 for both x and y.

Finally, recall that the cortical distance on \scrG \Theta can be seen as the restriction of the
Gabor distance to \Sigma = \{ 

\bigl( 
x, y,\Theta (x, y)

\bigr) 
\} x,y \subseteq \BbbR 2 \times S1. This is still locally equivalent

to a Riemannian metric on \scrG \Theta . Note that, for \sigma 2 = A\lambda \ll 1, this approximates the
distance d\Sigma of section 2.4. We implemented the graph Laplacian operator associated
to this metric on \scrG \Theta and the corresponding discretized heat equation. The results for
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Fig. 3.4. Propagation of the neural activity onto \scrG \Theta through repeated integrations of the kernel.
(a) The propagated kernel around (0, 0), obtained after four iterations. A black asterisk shows the
starting point (0, 0), and the orientation \Theta (0, 0) is highlighted by a red line superposed onto the
image. (b) At each point (x, y) where the kernel exceeds a threshold, the corresponding orientation
\Theta (x, y) is displayed through an oriented segment superposed onto the orientation map.

Fig. 3.5. Propagation of the neural activity in \scrG \Theta through the discretized heat equation associ-
ated to the graph Laplacian in this space. (a) The propagated kernel around (0, 0), where the starting
point and the orientation \Theta (0, 0) are highlighted by a black asterisk and a red line superposed onto
the image, respectively. (c) The corresponding orientations \Theta (x, y), as in Figure 3.4.

150 iterations of the discretized equation, with a time step of 0.01, are displayed in
Figure 3.5.

Note that in this case we do not need to project the connectivity kernels onto
the image plane to visualize them, since the whole propagation already lives in a
bidimensional space.

Again, the computed kernel spreads along the axis of the orientation \Theta (0, 0);
moreover, it propagates in a patchy way, with peaks in the regions of the map whose
orientation values are close to \Theta (0, 0). This behavior has been observed experimen-
tally by tracking the spreading of neural activity through biocytin injections and by
comparing it with the underlying orientation preference map [2].

More simulations can be found in our work [28], including an example on curvature-
selective neurons as well as the application of our construction to a family of numer-
ically known filters obtained through an optimization algorithm.
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