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Vehicle Safe-Mode, Concept to Practice
Limp-Mode in the Service of Cyber Security

Anonymous

Abstract—This paper describes both a concept, and an imple-
mentation, of vehicle safe-mode (VSM) — a mechanism that may
help reduce the damage of an identified cyber-attack to the vehicle,
its driver, the passengers, and its surroundings.

Unlike other defense mechanisms, that try to block the attack
or simply notify of its existence, the VSM mechanism responds
to a detected intrusion by limiting the vehicle’s functionality
to safe operations, and optionally activating additional security
counter-measures. This is done by adopting ideas from the existing
mechanism of Limp-mode, that was originally designed to limit
the damage of a mechanical, or an electrical, malfunction, and
let the vehicle “limp back home” in safety.

Like Limp-mode, the purpose of Safe-mode is to limit the vehicle
from performing certain functions when conditions arise that
could render full operation dangerous: Detecting a malfunction
in the Limp-mode case is analogous to detecting an active cyber-
breach in the Safe-mode case, and the reactions should be
analogous as well.

We demonstrate that the vehicle safe-mode can be implemented,
possibly even as an after-market add-on: to do so we developed
a proof-of-concept system, and actively tested it in real-time on
an operating vehicle. Once activated, our VSM system restricts
the vehicle to Limp-mode behavior by guiding it to remain in
low gear, taking into account the vehicle’s speed and the driver’s
actions. Our system does not require any changes to the ECUs,
or to any other part of the vehicle, beyond connecting the safe-
mode manager to the correct bus. We note that our system can
rely upon any deployed anomaly-detection system to identify the
potential attack.

We point out that restricting the vehicle to Limp-mode-like
behavior by an after-market system is just an example. If a car
manufacturer would integrate such a system into a vehicle, they
would have many more options, and the resulting system would
probably be safer and with a better human-machine interface.

I. INTRODUCTION

A. Motivation
Modern vehicles are susceptible to cyber-attacks: this is

since they are controlled by multiple dedicated computers
(electronic control units - ECUs) that are typically connected
to each other over a CAN bus, and also to the outside world—
often by wireless protocols (WiFi, Bluetooth, Cellular, etc.).
These conditions, and the introduction of new technologies
that allow remote access to the vehicle internal systems, make
vehicles vulnerable to new attack vectors of increasing number.
Researchers have already shown that these attacks can be both
feasible and severe (e.g., attacks on Jeep [17] and Tesla [33]).

Many defense mechanisms have been offered to block the
attacks. However, none of them are perfect—and may never
be—motivating the need for a solution to limit the potential
damage of an attack that already passed the vehicle’s first line
of defense. The vehicle’s Limp-mode, that is designed to limit
the damage of a mechanical malfunction, seems to be a good
candidate for this purpose.

B. Related Work

1) Attacks on Vehicles: Research into vehicle cyber-security
has been growing since the first publication of Koscher et al.
[22] in 2010. Using sniffing, fuzzing and reverse engineering of
ECU’s code, the authors succeeded in controlling a wide range
of vehicle functions, such as disabling the brakes, stopping
the engine, etc. Checkoway et al. [5] showed that a remote
attack, without physical access to the vehicle, is also possible
(via Bluetooth, cellular radio, etc.). Valasek and Miller [30]
demonstrated actual attacks on Ford Escape and Toyota Prius
cars via the CAN bus network. They affected the speedometer,
navigation system, steering, braking and more. In 2015 it
was reported [16], [17] that they remotely disabled a Jeep’s
brakes during driving, and caused Jeep to recall 1.4M vehicles.
Foster and Koscher [14] have also reported of the potential
vulnerabilities in relatively new commercial OBD-II dongles
(such as those used by insurance companies to track one’s
driving) which support cellular communication and may be
even exploited via SMS. In 2016, a team of researchers from
Keen Security Lab demonstrated a successful attack on the
Tesla electrical vehicle [33], taking control over the vehicle
through a bug in the Infotainment unit’s browser, forcing the
company to release an over-the-air software update.

2) Defense Mechanisms: Several ideas were offered to
secure vehicles against cyber-attacks, including both active
and passive solutions. One approach is to try and secure the
internal communication of the vehicle - typically a CAN bus,
by adding authentication to the messages (e.g., by using a
cryptographic Message Authentication Code (MAC)). Several
ideas were suggested, ranging from adding part of a MAC tag
to the actual message’s data field, to splitting the MAC into
several pieces and layers as offered by Glas and Lewis [15].
Van Herrewege et al. [40] suggested to use a new light-weight
protocol to better fit the CAN bus limitations.

A similar approach was adopted by the AUTOSAR standard,
as defined by the Secure Onboard Communication (SecOC)
mechanism [2], to add some authentication and replay pre-
vention to the vehicle’s internal networks. Note that all these
cryptographic solutions require secret keys and/or random
nonces—hence they rely on a good source of randomness to
produce the keys cf. [9].

A different, non-cryptographic, family of solutions is based
on destroying non-legitimate spoofed messages. These include
suggestions by Matsumoto et al. [29], Kurachi et al. [23], [24],
Ujiie et al. [38], and the Parrot system of Dagan and Wool [8],
[13].

Another approach is to try and identify un-authorized access
to the internal network of the vehicle, by using Anomaly or



Intrusion Detection Systems (IDS). Markovitz and Wool [28]
demonstrated the ability to classify the traffic over the CAN
bus, where Marchetti et al. offered some anomaly detection
mechanisms, based on an information theoretic algorithm [27]
and on inspection of sequences of IDs [26]. Hamada et al. [19]
offered to implement an IDS system that relies on the traffic
density of some periodic messages.

Newer works offered to rely on some unique characteristics
of the ECU to build an IDS for the CAN bus. Lee et al. [25]
used the time of arrival of Remote-frames reply packets to
identify potential attackers; whereas both Cho and Shin [6],
and Choi et al. [7] used the voltage characteristics of an ECU
to identify attacks.

Some leading manufacturers, such as NXP [32] and Bosch
[3] offer a variety of products to secure the vehicles, rang-
ing from Hardware Secure Modules (HSMs) to full fledged
secure gateways. The existence of these products fits the wide-
spreading holistic (in-depth / layered) approach for vehicle
cyber-security, as described by Van Roermund et al. [41].

Augmenting all the above-mentioned defense mechanisms
is the need to notify the driver on potential attacks [20],
using different methods according to the notification severity.
Note that the recently released UN-ECE Resolution on the
Construction of Vehicles [39] Annex 6 (4.3.3) in fact requires
driver notification in case a cyber-attack is detected.

C. Contribution

This paper describes both a concept and an implementation
for vehicle safe-mode — a mechanism that may help reduce
the potential damage of an identified cyber-attack. Unlike other
defense mechanisms, that try to block the attack or simply
notify of its existence, our mechanism responds to the detected
breach, by limiting the vehicle’s functionality to relatively
safe operations, and optionally activating additional security
counter-measures. This is done by adopting the already existing
mechanism of Limp-mode, that was originally designed to limit
the damage of a mechanical or electrical malfunction and let
the vehicle “limp back home” in relative safety.

We further introduce two modes of safe-mode operation to
raise the flexibility and the number of potential integration
plans that may fit the manufacturer’s needs. In Transparent-
mode, when a cyber-attack is detected the vehicle enters its
pre-configured Limp-mode; In Extended-mode we suggest to
use custom messages that offer additional flexibility to both the
reaction and the recovery plans. While Extended-mode requires
modifications to the participating ECUs, Transparent-mode
may be applicable to existing vehicles since it does not require
any changes in the vehicle’s systems—in other words, it may
even be deployed as an external component connected through
the OBD-II port. We also suggest an architectural design for the
given modes, and include guidelines for a safe-mode manager,
its clients, possible reactions and recovery plans.

In addition, we demonstrate that vehicle safe-mode can be
implemented as an after-market add-on, by developing a proof-
of-concept system, and actively testing it on an operating Skoda
Octavia vehicle. Once activated, our VSM system restricts
the vehicle to Limp-mode behavior by guiding it to remain

in low gear, taking into account the vehicle’s speed and the
driver’s actions. The system overrides some of the normal gear-
shifting logic by careful manipulation of the relevant CAN bus
messages. Our system does not require any changes to the
ECUs, or to any other part of the vehicle, beyond connecting
the safe-mode manager to the correct bus.

However, if ECU manufacturers incorporate “VSM-ready”
capabilities, and vehicle manufacturers include the VSM logic
when integrating intrusion- or anomaly-detection technologies,
taking into account the right balance between the IDS possible
alarms, and the chosen reactions, much better solutions can be
developed.

As part of the VSM development we analyzed the Skoda’s
CAN bus topology, and discovered that it is possible to
connect our system to the Powertrain bus from inside the
passenger compartment, without opening the hood. We reverse-
engineered some of the vehicle’s CAN messages and their
timing characteristics, which allow the safe-mode manager to
identify the vehicle’s condition and construct the overriding
control messages. We implemented the safe-mode manager to
work in real-time when connected to the vehicle’s CAN bus,
and tested it in multiple driving scenarios, taking the VSM-
augmented vehicle onto the roads and successfully demonstrat-
ing it’s functionality.

Organization: In the next section we describe some prelim-
inaries. In Section III we introduce the safe-mode concept and
a suggested architecture. Section IV describes various possible
reactions, recovery plans, and some related problems. Section
V describes the setup for our PoC, followed by Section VI that
describes our initial findings. Section VII describe the actual
PoC. We conclude with Section VIII.

II. PRELIMINARIES

A. Limp-mode

Limp-mode (also known as Fail Condition) was originally
designed as a safeguard to limit the potential damage of
either a mechanical or an electrical malfunction, and let the
vehicle “limp back home” for treatment, without risking further
damage and without forcing the vehicle to a complete stop. In
modern vehicles, Limp-mode is activated automatically after an
ECU detects a malfunction in one or more vehicle subsystems.

It is possible to distinguish between two different types of
Limp-modes: a local limp-mode that is limited to the operation
of a single ECU; and a global limp-mode affecting the global
state of the vehicle.

Local limp-mode is a feature often supported by micro-
controllers used to implement ECUs. It is usually provided
as a physical pin that, when activated by applying the proper
voltage, makes it possible to override the normal behavior of
the micro-controller and drive the output pins directly to pre-
configured settings (see as an example the technical documen-
tation of the DRV8305-Q1 automotive micro-controller [36]).
Local limp-mode can be easily deactivated by restoring the
normal voltage to the Limp-mode pin, thus restoring the normal
operation of the micro-controller.

Global limp-mode is activated when one of the central
ECUs connected to the in-vehicle network, usually the Body



Control Module (BCM), or the Engine Control Module (ECM)
detects possible fail conditions by analyzing the values of the
messages received from the CAN bus (e.g., see the Central
BCM produced by Infineon [21]). For instance, global limp-
mode may be activated if the coolant temperature rises above
safe values [18] or if the Powertrain control module detects
a failure (or near-failure) condition in the transmission [37].
Depending on the type and on the severity of the failure, the
central ECU triggers a set of operations that restrict the vehicle
to a limited set of failsafe states. As an example, when in Limp-
mode the vehicle speed might be electronically limited to a set
threshold, the transmission might be fixed in a second gear or,
if an issue related to the engine is detected, Limp-mode can
shut the engine off and gradually reduce the vehicle speed to a
complete stop. The exact counter-measures deployed when in
Limp-mode depend on the specific settings defined by the car
manufacturer: e.g., see [4] for a discussion of Limp-mode in
Mercedes vehicles.

Depending on the car maker and model, global limp-mode
may be implemented by activating the local limp-mode of some
peripheral ECUs, letting the main ECU directly control them.

Deactivation of the global limp-mode also depends on the
nature and severity of the detected failure. For example, Limp-
mode that is activated due to the detection of transient failure
conditions, is usually reset automatically after restarting the
vehicle, or after a predefined amount of time. In some cases,
the car owner can perform a sequence of operations that resets
the Limp-mode for non-severe failures, such as switching the
car ignition on, and pressing and releasing the throttle pedal for
a given number of times [1]. On the other hand, more severe
failures may require a manual reset of the Limp-mode, which
is usually performed by operators of authorized car services
by physically connecting to the OBD-II port and executing
proprietary diagnostic protocols.

In the remainder of this paper we use the term Limp-mode
to refer to the global limp-mode.

B. The Adversary Model
We assume that an attacker may be able to gain access to

the vehicle’s CAN bus, and to inject forged CAN messages.
The amount and the nature of injected messages may vary
depending on both the attacker’s goal and capabilities, and the
deployed defense systems in the vehicle.

We also assume that the attacker has no direct control over
the safe-mode manager, and that there is at least one operating
IDS in the vehicle, that manages to identify the attack, and
notify of its existence to the safe-mode manager.

In particular, we assume that the IDS messages to the safe-
mode manager, and the messages sent by the manager to
activate the safe-mode, are inaccessible to the attacker - either
via cryptographic means, or by sending them over a separate,
non compromised, bus. Some additional clarifications can be
found in Section IV-C.

III. VEHICLE SAFE-MODE - SUGGESTED ARCHITECTURE

A. Overview
The concept of vehicle safe-mode proposed in this paper

is similar in principle to the Limp-mode mechanism (recall

Fig. 1. The system overview. Note that the SMManager can be connected
directly to the IDS system, or alternatively, get its feedback over the bus.

Section II-A): The safe-mode mechanism is offered to let the
vehicle “limp back home” in case a cyber-breach is detected,
while reducing the potential damage of such an attack to the
vehicle, its driver, the passengers, and its surroundings.

The Vehicle safe-mode system operates as follows: When
a cyber-attack is detected, a safe-mode manager (SMManager,
see Section III-C) puts the vehicle into a safe-mode condition—
in which several operations are limited or disabled, by sending
an alert triggering message (TMessage) to other ECUs. The
SMManager bases its decision on any existing IDS-like sys-
tems, that flag suspicious cyber-related events. This decision
should typically include the recommended level of alert and
the chosen reaction that can be encoded into the broadcast
TMessages. See Figure 1 for a system overview.

For possible deployment, we further present two modes
of operation: In Transparent-mode (Section III-B1) the SM-
Manager only causes the neighboring ECUs to enter into
their pre-configured Limp-mode state, in order to limit the
functionality of the vehicle and reduce the potential danger.
The main advantage of this mode is its immediate applicability
to virtually all modern vehicles, since the introduction of the
SMManager is transparent with respect to all other ECUs. in
particular, the system may be deployed by adding a single
OBD-connected entity to include the SMManager, with op-
tional IDS capabilities.

Alternatively, the Extended-mode (Section III-B2) requires
adding a novel software component, called safe-mode client
(SMClient, Section III-D) to chosen ECUs. The purpose of the
SMClient is to process and react to the custom TMessages sent
by the SMManager. Using this mode adds more flexibility to
the system, by making it possible to design and implement
customized reactions per individual ECU and state of alert.

Special care should be given to the recovery options (Section
IV-B) - that make it possible to exit from safe-mode and to
restore full vehicle functionalities. This is required to make
sure that the attacker will not have an easy way to take the
vehicle out of safe-mode, while simultaneously ensuring that
the driver will not have a too-difficult time to return to normal
operation.

B. Operation modes



TABLE I
A SKETCH OF PRE-EXISTING TMessages THAT CAN TRIGGER Limp-mode

ECU Msg ID Data
ECM 014 ”Dangerous high engine temperature”
ECM 014 ”Major engine malfunction”
ABS 004 ”Dangerous low oil pressure”
TPM 020 ”Dangerous low air pressure”

1) Transparent-mode: In this mode of operation, the SM-
Manager’s goal is to put the relevant ECUs into Limp-mode
in order to reduce the potential damage of an identified attack,
by triggering the pre-existing Limp-mode mechanism of each
relevant ECU. Doing so may be effective in reducing the
potential damage to the vehicle and its passengers under the
assumption that entering Limp-mode would typically limit the
vehicle’s operation in a way that may also help to maintain
its safety (e.g., by putting the car on a rigorous speed limit,
keeping it in a low gear).

For this purpose, the SMManager can maintain a list of all
relevant CAN bus messages (or any other protocol in use)
that typically cause each ECU to enter Limp-mode. This list
can be maintained by a simple updatable table of the relevant
TMessages per ECU (see Table I). Note that this table can
include several different lines per ECU, in case there are
multiple TMessages per ECU (in this case the SMManager
can decide, per ECU, whether to send all or only some of the
available TMessages).

The properties of this mode potentially make the Safe-
mode protection applicable to any existing vehicle, e.g., by
connecting an after-market device (to include the SMManager
and some anomaly-detection component) to its OBD-II port.
A more sophisticated after-market device (e.g., one using a
smart-phone) can include more sophisticated notification and
recovery options to the vehicle’s driver (Sections IV-A3, IV-B).

The drawback of this mode is that safe-mode reactions are
bound to be the same reactions that the car maker already
planned for the Limp-mode. Hence counter-measures that are
designed specifically against cyber-breaches cannot be imple-
mented.

Special care should be taken under this mode to make
sure that no collision will occur between the SMManager’s
TMessages and genuine messages of the original responsible
ECU (see Section IV-C).

2) Extended-mode: In this mode of operation, the SMMan-
ager is able to put chosen ECUs into a customized safe-mode,
rather than into their pre-configured Limp-mode. This mode
offers more flexibility to the designer, at the cost of adding
at least some software update—the SMClient—to participating
ECUs.

This mode of operation gives us the freedom to chose any
reaction, per ECU, to reduce the potential damage of a cyber-
breach to the overall safety of the vehicle and passengers. This
freedom also provides us more possibilities to react differently
according to the type and severity of the identified attack, as
further described by the SMManager’s chosen alert-levels and
triggered reaction (Sections III-E and IV-A).

Fig. 2. Possible structure of an Extended-mode TMessage. The numbers
represent the field length in bits. Note that the ID field is a regular CAN-
ID-field, while the other fields fit into the CAN 8 byte data-field; Both the
counter and the MAC fields are optional; Transparent-mode TMessages are
regular (Limp-mode triggering) CAN messages.

In addition, this mode of operation can make the vehicle’s
safe-mode more robust against potential manipulations of an
adaptive attacker, since it allows defending the mechanism
itself (e.g., by adding some authentication to the triggering
TMessages, etc.). This mode can be also used to actually fight
some of the attacks e.g., by requiring the addition of some
authentication to all of the critical CAN bus messages (Section
IV-A2) when under a spoofing attack (saving this overhead
during quiet times).

Another potential advantage of this mode, is the extra
flexibility that is given to choose the driver notification and
recovery options; custom messages can notify the driver (e.g.,
through the Infotainment or Cluster units) about the identified
attack and the state of alert (Section IV-A3); Proper notification
can also let the driver decide whether the chosen reaction is
sufficient, or alternatively the safe-mode state can be manually
overridden (Section IV-B).

In this mode the SMManager can maintain a table of all
relevant triggering safe-mode TMessages, per ECU/Alert-level,
to include the type of reaction, as further defined in Section
IV-A1. We note that a similar table can be used for both modes
of operation, even though the Transparent-mode should be able
to use a simpler one.

A typical custom TMessage should be based on the un-
derlying protocol (typically the CAN protocol). Unlike the
Transparent-mode TMessage, it can contain, apart from its
message ID, the vehicle’s Alert-level AL, the required Reaction-
level RL, and optionally a replay counter and a truncated MAC
of a chosen algorithm (e.g., HMAC). A suggestion for such a
CAN based message, with an 8-byte data field, is depicted in
Figure 2.

An SMClient (Section III-D) should be added, optionally
as a software patch, to any participating ECU to allow proper
identification, processing and reaction to the custom safe-mode
TMessages.

The SMManager can also be responsible for the necessary
key management and distribution, in case the safe-mode system
incorporates authentication codes in the TMessages. Several
solutions can be chosen to cover key management, ranging
from factory serialization to specialized solutions, as offered
by Mueller and Lothspeich [31].

Finally we would like to note that combinations of the two
presented modes may also apply, allowing vehicles to utilize a
mixture of SMClient-supportive and non-supportive ECUs.



C. Safe-mode Manager

The SMManager is responsible to process the IDS feedback,
calculate the vehicle alert-level (AL), decide on the relevant
reaction-level (RL), and finally put the vehicle into, and out
of, safe-mode, by sending the relevant TMessages.

The SMManager may also be responsible for any related
key-management aspects in case of using cryptography for
either the protection of the TMessages or the switch into secure-
communication when under attack.

Regardless of the selected configuration, the SMManager
should be able to receive the IDS alerts, either directly from
the bus, or from its hosting ECU (which can also comprise of
both the SMManager and the IDS).

We also note that the SMManager can be implemented
in either software or hardware—a hardware implementation
should increase the cyber-resistance of the suggested mecha-
nism, while possibly increasing its cost and making deployment
more challenging.

1) Topology: The SMManager can be implemented differ-
ently according to the topology of the internal networks and the
computational load of each ECU. In this section we propose
two different topologies: as an Independent SMManager, or as
an Incorporated SMManager.

The Independent SMManager is the implementation of the
SMManager on a dedicated hardware module. This option
allows both possibilities for an internal and an external module.
The internal SMManager can be seen as a dedicated ECU,
responsible for collecting the different notifications across the
internal network in order to properly start the vehicle safe-mode
if necessary.

The external SMManager can be implemented as a dedicated
dongle connected through the OBD-II interface (Figure 3 Top).
In order to work as an external module, the SMManager must
be able to observe the data packets flowing on the internal
network, and to broadcast the necessary TMesagges when
needed: in particular this means that the OBD-II interface must
allow message transmission into the network, and must be
connected to the relevant CAN bus segment(s). The external
module approach allows implementations of the safe-mode
logic in vehicles that were designed without it, thus extending
the proposal of this paper to past and present vehicular systems.

The Incorporated SMManager is the implementation of the
SMManager on existing ECUs of the internal network, as part
of the vehicle specification (as shown in Figure 3 Bottom).
This option makes the SMManager part of the whole system
by design. An Incorporated SMManager allows three different
topologies for its implementation:

• Centralized SMM: the logic for the SMManager opera-
tions is part of the code of a centralized ECU (e.g., the
ECM or BCM)

• Distributed SMM: the logic for the SMManager operations
is spread over multiple ECUs across the network, each one
with its specific set of operations needed for monitoring
and eventually triggering the vehicle safe-mode.

• Hybrid SMM: a composition of the two previous topolo-
gies: Different instances of the same SMManager are
responsible of monitoring and collecting different pieces

OBD-II

Fig. 3. Safe-mode Manager suggested topologies. Top: External Independent
SMManager. Bottom: Distributed Incorporated SMManager. The SMManagers
are marked in green, while the SMClients are marked in blue. Note that the
upper figure shows one example for a system in Transparent-mode, while the
lower one shows an example for a system in Extended-mode.

of information, which they filter and forward to the cen-
tralized SMManager—which ultimately decides whenever
it is necessary to start the vehicle safe-mode.

D. Safe-mode Client

In order to support the Extended-mode, an SMClient is
required. This client should be added, e.g., as a software
patch, to any participating ECU to allow proper identification,
processing and reaction to the custom SMManager TMessages.

In this mode, the client can maintain a list of update-able
reactions per TMessage encoded reaction-level (RL). These
reactions can be chosen by the manufacturer with the goal of
limiting the potential damage of the possible attacks to the
overall vehicle and passengers’ safety.

If the TMessages are authenticated, to prevent adversarial
manipulations, then the SMClient should also validate the au-
thentication tag embedded in the TMessage using the algorithm
in use, (e.g., the 48 bit truncated HMAC, recall Figure 2) on the
relevant section of the received TMessage. If the authentication
also involves an anti-replay counter, then the SMClient must
also validate that the counter value c is acceptable (e.g.,
V max < c < Vmax + k where V max demotes the maximal
value observed on previous TMessages and k is a configured
window-size).

Upon receiving a relevant (optionally authenticated) TMes-
sage, the SMClient should put its hosting ECU in safe-mode,
by performing the relevant (per RL) pre-configured actions ac-
cording to its reaction table (e.g., ignore non critical messages,
limit the operation, etc., see Section IV-A2 for further details).

The SMClient must also support the chosen recovery mecha-
nism (see Section IV-B) to allow proper recovery of its hosting
ECU at the right time and under the right conditions. The



recovery can be done either unilaterally (e.g., after a reset,
or after X seconds, etc.), or by a special recovery-triggering
message (with a unique TMessage ID or RL), or according to
other pre-defined conditions. We note that special care should
be given to this procedure to keep this mechanism both robust
and applicable.

E. The vehicle Alert-level

Independently of the chosen implementation (Transparent
or Extended), the SMManager is responsible for evaluating
the vehicle’s Alert-level (AL). Different levels of alert reflect
different threat levels and imply the deployment of appropriate
reactions, as will be further discussed in Section IV-A1.

To evaluate the current AL, the SMManager relies upon
any anomaly detection system deployed within the vehicle.
In particular, intrusion detection systems (IDS) represents the
main source of information useful for AL evaluation. IDS for
in-vehicle networks of modern vehicles have already been
proposed in the literature [19], [26], [27]. All these systems
analyze different features of the messages broadcast over the
CAN bus and issue alerts whenever evidence of an attack is
found. The SMManager collects and analyzes all of the security
related alerts (or lack thereof) and modifies the current AL
accordingly.

For concreteness, as an example we suggest that the AL can
be comprised of five different levels to represent the severity
of the alert, denoted by AL1 (low severity) to AL5 (critical
severity).

IV. POSSIBLE REACTION, RECOVERY PLANS, AND
POTENTIAL PROBLEMS

A. Reaction

In this section we suggest several steps that can be taken
by the SMManager after the detection of a cyber-breach. The
reaction of the SMManager comprises of two main parts:

• Notification: optional feedback to the driver and the vehi-
cle surroundings about the identified attack and the chosen
reaction.

• Action: under-the-hood counter-measures to limit the po-
tential damage of the attack, narrow the possibilities of
the attacker, and even, under some cases, try to stop the
attack.

Both the notifications and actions can be triggered sequen-
tially or simultaneously, depending on the alert-level and on
the content of the Reaction-Matrix as further explained below.

1) Reaction-Matrix: The Reaction-Matrix is the structure
used by the SMManager to determine the reaction-level (RL)
that encodes the required protective steps and notifications. The
calculation of the RL depends on two metrics:

• the current Alert-level (AL, recall Section III-E)
• the current Vehicle-condition (VC).
The value of the current VC represents the current conditions

of the vehicle dynamics, including speed, yaw, roll, pitch,
lateral acceleration and outputs of the ABS and ESP systems.
Intuitively, it is important to consider the current vehicle con-
ditions to make sure that reactions decided by the SMManager

Fig. 4. An example for a 5x5 Reaction-Matrix. Note that the rows represent the
current VC (speed/location), the columns represent the chosen AL (1-5), and
the colors of the internal blocks represent the chosen RL (nothing to severe).

are appropriate, and do not cause more harm than the attack
itself.

As an example, if counter-measures were to be deployed
without considering the vehicle conditions, the SMManager
might decide to exclude the electronic stability protection or
other advanced driving assistance systems. While this decision
may be the most appropriate for a vehicle running at low speed
on a straight road, it may cause severe safety risks to a vehicle
in dangerous driving conditions (e.g., at high speed, or under
high lateral accelerations). To prevent similar situations, the
reaction-matrix makes it possible to react to the same AL by
deploying different counter-measures based on different vehicle
conditions.

The calculated RL is used to determine the most appropriate
reaction, aiming to bring the vehicle to a safe state that nullifies
or limits the safety consequences of the detected cyber-breach.

An example for a Reaction-Matrix is depicted in Figure 4 to
include the different RL to match every possible combination
of a given 5x5 AL/VC structure.

2) Actions: After activating safe-mode, the SMManager
triggers different actions in order to react to possible dangerous
situations, according to the reaction-matrix. These actions
could take place before, after or together with the notification
phase, and it is essential to define their timing sequence
according to every case (e.g., activating drastic actions, like
bringing the car to a complete stop before driver and external
notification, could have dangerous repercussions).

Actions differ according to the triggered reaction-level (RL),
and can have varying intensity according to the previously
raised AL. While lower RL could trigger very limited actions
in order to recover from a less dangerous situation, a higher
RL will trigger more invasive actions, aimed to react to more
dangerous situations.

The selected triggered actions can range from the already
existing Limp-mode operations (e.g., limit the vehicle speed)
to custom steps such as those presented below:

Ignore all non-critical messages: This action has a twofold
advantage: it allows ECUs to ignore attacks that leverage non-
critical messages; and further, it reduces the computational
power required by ECUs to operate the vehicle, thus leaving



more room for computations related to the safe-mode. We note
that each ECU can maintain a list of non-critical messages.

Shutdown particular ECUs: In case of identifying a com-
promised ECU that puts the vehicle in danger. This action
could be triggered after the identification of a Denial-of-
Service attack on the internal network that leverages messages
produced by the victim ECU.

Reset particular ECUs: Similar to the above, only less
aggressive. This action can be used when dealing with a
relatively important ECU, or as an initial step in a graceful
shutdown. We note that both the reset and the shutdown options
should be chosen with great care, to make sure that they won’t
put the vehicle in a dangerous situation (e.g., in the case that
the selected ECUs are critical ones, the reset action is a viable
option only if the expected outcome of this action is absolutely
safe.)

Trigger the usage of authentication to some (CAN) mes-
sages: using cryptographic primitives (e.g., truncated HMAC)
in order to mitigate spoofing attacks of critical messages. We
note that using this option only when under attack (and between
chosen ECUs) reduces the related overhead (traffic/computation
wise) of a similar permanent solution.

Trigger the encryption of some (CAN) messages: using
cryptographic primitives in order to encrypt the data of selected
(CAN) messages when under attack. We note that both this
and the previous options can be implemented in software or
hardware, and that hybrid solutions may also be chosen to
maximize the strength of the chosen solution, in relation to
the given capabilities of the participating components.

Segment isolation - the submarine model: In a typical
segmentation of the vehicular networks - Powertrain, Body
and Infotainment, a bus gateway can isolate a compromised
segment of the network from the others. This solution allows
fast reaction after the detection of a potential intrusion on any
segment of the CAN bus, thus limiting the intrusion only to
the affected network and preventing its spreading to the other
segments. Further segmentation can be recommended to allow
better flexibility. We note that special care should be taken if
choosing this option to make sure that critical ECUs could still
communicate.

Secondary emergency CAN bus: Implementing a sec-
ondary limited CAN bus, connecting only the critical ECUs
on a different interface, could prevent some of the segment-
isolation potential problems. We note that this solution can also
be used to raise the accuracy of any existing IDS, by adding
some redundancy to the system; During the vehicle normal
operation, the secondary CAN bus could be used in a redundant
way, sending duplicated packets (already sent on the primary
CAN bus) of selected messages. Intrusion Detection Systems’
could compare the two different networks in order to detect
any intrusion on the primary CAN bus.

3) Notification: Notifications can be both internal or exter-
nal. Internal-notifications are used to notify the driver that the
SMManager is performing different actions in order to react to
the calculated AL. These notifications can be acoustic, visual or
even include haptic feedback on different parts of the cockpit,

like the steering wheel or the pedals. A more articulated schema
for vehicle internal-notifications can be found in [20].

The necessity to externalize the notification is extremely
important and needs to be taken in consideration. External-
notifications are mostly used in order to notify other drivers,
vehicles, and nearby pedestrians of a potentially dangerous
situation. External-notifications can consist of visual feedback,
e.g., blinking turning indicators, brake lighting signals or even
dedicated custom “under-attack” lights. More sophisticated
external-notifications can be designed e.g., using vehicle-to-
vehicle (V2V) technology to make adjacent vehicles enter a
preventive “safe-mode”, or use vehicle-to-infrastructure (V2I)
communication channels to trigger roadside actions - to warn
and protect adjacent entities.

B. Recovery plans

The Recovery is the last phase of the vehicle safe-mode,
and can take place only after the reaction has terminated. The
recovery procedure is aimed to allow bringing the vehicle back
to normal operation at the proper time—after the attack is
considered to be over, or under safe-confinements (e.g., engine
off, in an authorized garage, etc.).

The SMManager is responsible to decide when and where
the recovery operation can begin (e.g., per ECU, AL, VC).
We further suggest several modes of recovery: Self, Driver-
initiated, Garage-authorized.

Self-recovery can allow the procedure to be started by the
SMManager itself, without even notifying the driver. A self-
started recovery procedure should be applied only if non-
critical parts of the network were involved in the attack, or
when the identified attack was not severe.

Driver-initiated recovery can be used when some interaction
with the driver is required (e.g., by physically approving the
initiation of the procedure). We note that this option can
contribute to the robustness of the mechanism, by reducing
the possibility of the attacker to initiate the recovery procedure
during the attack.

Authorized-Garage recovery can be required when recuper-
ating from a major attack (e.g., on critical ECUs), or when the
attack was not fully terminated. This option requires bringing
the vehicle to an authorized garage, and optionally the usage
of special manufacturer tools, for further inspection and safe
recovery.

We note that it may also be possible to initiate a remote-
recovery procedure as an intermediate step, and that a
combination of the above procedures may also be applicable.

The SMManager can use the following metrics in order to
choose which recovery-mode can be allowed and under which
conditions:

• iAL: the initial Alert-level,
computed before the reaction phase

• RL: the previously calculated Reaction-level,
computed before the reaction phase.

• aAL: the actual Alert-level,
computed after the reaction phase



• aVC: the actual Vehicle-condition,
computed after the reaction phase

C. Potential problems

The safe-mode mechanism may have some limitations and
side effects as presented below. We recommend to take them
into account when considering this solution.

False positives: The IDS or anomaly detection component is
a critical, yet external, part of the safe-mode system, since it is
responsible for providing the input to trigger the SMManager’s
safe-mode reaction. This means that any problem or limitation
of the IDS systems can affect the safe-mode mechanism. In
particular, IDS systems are susceptible to false alarms, which
means that a safe-mode state may be activated unnecessarily.

However, when we note the severity of potential false-
negatives (unlimited vehicle operation under malicious con-
trol), one could argue that false-positives may be acceptable.
This argument can be strengthened by the fact that safe-mode
only limits the vehicle operation, and does offer some built-in
recovery plans.

Either way, we can recommend taking the following two
steps: Use more than a single IDS-like system as a source
of input to the SMManager; and take the possibility of false-
positives into account when configuring the SMManager trig-
gering threshold and recovery plans.

Adversarial triggering: We note that an adaptive adversary
may try to trigger the safe-mode mechanism on his own, by
sending the relevant triggering TMessages when the system is
deployed in Transparent-mode, or in a non-secure Extended-
mode. However, this can be viewed as another flavor of false-
positive case, and should be handled as described above.

Transparent-mode, TMessage collisions: Special care
should be taken when using Transparent-mode to ensure that
no CAN bus collisions will occur between the SMManager
TMessages and genuine messages of the original responsible
ECU. Collisions may happen since the SMManager may broad-
cast TMessages using the same ID, and but different content,
than those broadcast by the ECU that is responsible for the
given message ID. For example, if one of the TMessages is an
over-heating alert message (recall Table I) with ID 014, and
the ECM uses the same message ID to broadcast the engine
temperature at a fixed frequency, even when conditions are
normal; since the two messages have exactly the same CAN
priority, it is possible that collisions may happen, (cf. [13]).
To eliminate such possibilities, we recommend to either use a
carefully chosen broadcast Tmessage schedule (e.g., broadcast
immediately after the genuine message) or to simply avoid
using the same ID. We note that in Incorporated-mode this
problem cannot exist since the TMessages will use dedicated
message IDs.

Transparent-mode, TMessage overriding: Another chal-
lenge in Transparent-mode is that of overriding. Under a similar
scenario, even without the danger of CAN bus collisions. The
ECU responsible for some message ID, which is oblivious
to the cyber-attack in progress, may override the effect of
a TMessage by its own genuine broadcast of a message
with the same ID. Using the same example as before, the

genuine ECM 014 message (normal temperature) can make
the neighboring dependent ECUs understand that all is fine,
or alternatively, make them go in-and-out of Limp-mode in a
loop. Recommendations that are similar to those mitigating the
TMessage collisions can be used to mitigate this challenge as
well. Furthermore, broadcasting more than a single TMessage,
at a fixed rate, may help ensure that the target ECU will remain
in Limp-mode (even if getting occasional countering messages).

V. SETUP FOR THE PROOF OF CONCEPT

A. Overview

Modern vehicles typically have several CAN buses, inter-
connected by a filtering gateway. Therefore, to develop an
after-market Transparent-mode safe-mode mechanism, a basic
understanding of the vehicle’s CAN bus topology is required:
connecting the SMManager to the wrong bus would render it
useless.

Furthermore, a good understanding of the syntax, semantics,
and frequency of the relevant CAN messages is necessary. This
knowledge help us identify which messages carry the Vehicle
Condition (VC); How to construct, and when to broadcast the
Tmessages, in order to make the relevant ECUs limit their
operation under the desired concept of safe-mode.

Clearly the vehicle manufacturer has all the above-mentioned
knowledge. However, manufacturers generally do not provide
the specifications of their ECU’s CAN messages, nor do they
provide much detail about the CAN bus topology. Hence a
developer of an after-market SMManager needs to resort to
some trial-and-error, and to identify and parse the key CAN
messages by reverse-engineering sniffed traffic.

In the next sections we describe the topology discovery
we went through, and the results of our traffic analysis. Our
findings are specific to the vehicle we experimented with—
a 2015 Skoda Octavia—however we believe that they are
indicative of other modern vehicles.

B. Equipment and Software

In our experiments we used two Peak-system PCAN-USB
devices [34]. Both PCAN-USB devices were controlled via
USB connections by a Dell laptop running Windows, using
the PCAN-View control software.

The first USB device was used primarily as a sniffer: we
used the software to capture the traffic over the vehicle’s CAN
bus into .trc trace files (which include the messages’ ID, Data,
Type, and time-stamp). We also used this device to broadcast
some messages during the initial stage of our analysis.

The second USB device was added for the SMManager
testing, where the first device served as an observer, capturing
all the traffic over the CAN bus. The two devices were
connected to the same location on the CAN bus through a
Peak T-connector (two-to-one D9 connector).

We developed the SMManager in Python, using the PCAN-
Basic software libraries and DLL (PCANBasic.dll) to access
the devices drivers. For voice notifications we used the pyttsx3
Text-to-speech python library, that relies on Windows’ SAPI5
(Microsoft Speech Application Programming Interface) synthe-
sizer.



C. Bus Topology and Connection Choices

In order to identify the relevant CAN messages we needed to
sniff the CAN bus traffic, which entails connecting our USB-
based sniffing device to the CAN bus.

Our first attempt was to connect the sniffer through the OBD-
II port, which provides a fully legitimate connection to a CAN
bus with minimal tinkering. Unfortunately, after connecting to
the OBD-II port, we failed to observe the CAN traffic we
were looking for: hardly any messages were received. This
lead us to conclude that traffic reaching the OBD-II port is
heavily filtered, so connecting through it is not suitable for our
purposes.

Our second attempt was to connect the USB device to the
dashboard unit’s CAN line. Our intuition was that since the
dashboard displays the speed and current gear position, it
should also receive the CAN messages we care about. This
turned out to be the case, and sniffing CAN traffic from
the dashboard CAN line allowed us to observe the desired
messages and begin with our analysis, (see Section VI below).

However, when we tried to re-broadcast messages from
our USB device onto the dashboard unit’s CAN line, we
discovered that some of our messages have no effect. We
concluded that additional bus segmentation and filtering exists:
for instance, the shift-gear messages we tried to re-broadcast
were not allowed to cross over from the dashboard unit’s bus
to the relevant Powertrain bus. Additional investigation taught
us that the Skoda Octavia indeed has separate Convenience and
Powertrain buses.

This made us look yet again for a suitable connection point,
that provides access to the Powertrain bus. We discovered
that we can achieve this access from inside the passenger
compartment, without opening the hood: by tapping the gear
selector unit’s CAN bus lines (see Figure 5). In the Skoda the
gear selection is electronic, so clearly the gear selector is able
to broadcast gear-shifting messages onto the Powertrain CAN
bus, without filtering. In all the following experimentation we
used this connection point.

VI. MESSAGE AND FIELD IDENTIFICATION

A. Overview and notations

The next stage of our experiments focused on analyzing
the CAN bus traffic in the search of messages that bring the
vehicle (or at least some of its key ECUs) into a predefined
Limp-mode. Finding these messages would have allowed us
to implement the Transparent-mode version of the safe-mode
mechanism, exactly as described in Section III-B1. Note that
Limp-mode is typically activated when the vehicle senses a seri-
ous mechanical or electric failure—yet we needed to trigger it’s
activation without damaging the vehicle. Under this constraint,
our attempts to trigger Limp-mode included disconnecting
fuses and unplugging various sensors. Unfortunately, we were
unable to find messages related to any Limp-mode activation:
either we did not manage to simulate a serious-enough fault
(e.g., disconnecting the fuel pressure sensor), or we caused
failures that completely prevented driving the vehicle (e.g.,
disconnecting the gearbox’s main fuse).

Failing to find CAN messages that put the Skoda in a real
Limp-mode (e.g., permanent low gear / limited RPM), we
decided to mimic the behavior of Limp-mode from the safety
perspective, by actively guiding the vehicle to stay in low
gear, while taking into account its speed as an indicative ‘VC’
parameter.

To implement this alternative of “simulated Transparent-
mode”, we needed to identify the messages that carry the
vehicle’s speed and current gear, in addition to the message
that makes the gear change its position. For each message we
had to analyze the data field, understand its semantics, and
learn its typical pattern of broadcast. The following Section
VI-B describes these identified messages and their analysis.

Recall that every CAN message is characterized by its ID (an
11-bit value). In our analysis of each message we also record
its length (we only observed 4-byte or 8-byte messages), its
frequency (which we denote by the message’s typical inter-
arrival time in milliseconds), its assumed field structure, and
the level of its semantics we understand. Following [28] we
found that each of the messages we analyzed is constructed
of several bit fields that carry semantic meaning, surrounded
by seemingly ignored “don’t care” bit fields. All the semantic
fields we identified are either 4- or 8-bit wide and are nibble-
aligned. Below we use ‘x’ to indicate a don’t-care nibble, a
single lower-case letter to indicate a semantic 4-bit field, and
two Upper-Case letters to indicate an 8-bit field. For each field
we also indicate it’s classification into the categories: Sensor /
Counter / Multi-Value, following [28].

B. Identified Messages

We identified and analyzed the following messages:
• ID: 0x0AF, gear selector position

Message frequency: 10 msec
Length: 4 bytes
Data field structure: [gb ḡc xx xx]
Data field analysis: In the left (most significant) byte,
the ‘g’ digit is a multi-value field representing the gear

Fig. 5. CAN bus tapping. Note that both USB devices are connected to the
same line by using the black T-connector.



selector’s position; see Table II for the semantic meaning
of the values we identified. The ‘b’ digit is a multi-value
field which seems to represent whether the brakes are
applied (b=2), or not (b=3).
In the second byte, the ‘ḡ’ digit represents a bitwise-
complement digit of ‘g’ (where g + ḡ = 0xF always
holds). The ‘c’ digit is a 4-bit increasing cyclic counter
field. The remaining 2 bytes seem unimportant.
For example, two consecutive 0x0AF messages indicating
the gear selector set to the Parking (g=0x8) position, with
the brakes applied (b=2), can appear as: [82 70 xx xx],
and [82 71 xx xx].

• ID: 0x394, gear position
Message frequency: Typically 160 or 200 msec. Can
appear at higher frequency after a gear shift event.
Length: 8 bytes
Data field structure: [xx xc xx GP xx MG xx xx]
Data field analysis: The ‘c’ digit is a 4-bit increasing
cyclic counter field. ‘GP’ is an 8-bit multi-value field
which seems to represent the gear position1. We identified
the following values: 0x1A and 0x0A: Neutral; 0x0i: gear
in position i, where i = 1 to 7. We are uncertain of the
difference between Neutral values 0x1A and 0x0A: they
seem related to whether the brakes are on or not. ‘MG’
has similar values to those of the ‘GP’ field, and appears
in addition when in Manual state.

• ID: 0x30B, vehicle speed
Message frequency: 50 msec.
Length: 8 bytes
Data field structure: [10 2c 00 00 00 00 SP 10]
Data field analysis: The ‘c’ digit is a 4-bit increasing
cyclic counter field. ‘SP’ is an 8-bit sensor field which
seems to represent 3×the vehicle’s speed in Km/h. For
example, the ‘SP’ field for 30 Km/h is 0x5A (since 3 ×
30 = 90 = 0x5A). All the remaining message bits are
fixed.

• ID: 0x391, gas pedal position
Message frequency: 100 msec.
Length: 8 bytes
Data field structure: [xx xx xx xx xx PD xx xx]
Data field analysis: ‘PD’ is an 8-bit sensor field which
seems to represent the gas pedal position, ranging from
0x26 (idle position) to 0xD0 (fully open throttle).

C. Gearbox Manipulation

After identifying the relevant messages and understanding
their usage, we turned to testing the ability to broadcast them
ourselves (using the PCAN-View software) and observing the
results. Since our goal is to guide the vehicle to a low gear
(to simulate Transparent safe-mode behavior), we focused on
manipulating the gear selector, 0x0AF messages.

For this purpose we tried to broadcast the 0x0AF message
with its ‘g’ field set to 0xB (see Table II)—spoofing the gear
selector’s request to reduce the gear by one position.

1We found the message to be occasionally unreliable after broadcasting
spoofed gearbox manipulation messages.

We discovered that this is not enough: the the cyclic
counter value (‘c’), and the complement-to-0xF (‘ḡ’) fields
cannot carry arbitrary values. Failing to provide the right
value for the complement-to-0xF (which needs to be 4, since
0xB+0x4=0xF), or using a wrong cyclic-counter value (with a
value more than 7 off from the expected value of +1), made the
target ECUs (probably the gearbox ECU) ignore our message;
Whereas, using the right values, allowed us to actually make
the gearbox reduce the gear by one, as desired.

We note that even using the right content in the spoofed
message, as explained above, does not guarantee success—
the gear did not always obey the instruction. We assume
that our control over the gearbox was not perfect since our
attempts failed to pass some internal logic-checks implemented
by the gearbox ECU. Such a check may consist of using
internal analog magnetic speed sensors to make sure the chosen
gear fits the current speed of the vehicle, as a self-protection
mechanism, preventing mechanical damage to the gearbox
itself (e.g., the gearbox may ignore instructions to switch to
a too-low gear at high speed).

In addition, we found that broadcasting the spoofed reduce-
gear-message more slowly, at an interval of 50 msec, instead of
broadcasting it at the 0x0AF message’s original 10 msec cycle,
improves the likelihood that the gearbox obeys our instructions.

The outcome of this investigation gave us the ability to
control the chosen gear: i.e., the ability to reduce the gear
almost at will. The only caveat is that this worked as long as
the instruction didn’t contradict other conditions such as when
the speed was too high or when the gas pedal was applied
during our attempt to reduce the gear.

Additional experiments showed us that instructing the gear-
box to shift to the Neutral position (by using the ‘g’ field
value 0x6) was more resilient to the internal gearbox safety
mechanisms, which gave us some additional choices in our
SMManager PoC.

VII. THE SAFE-MODE PROOF OF CONCEPT

A. SMManager implementation

Identifying the relevant messages, and learning how to use
them correctly, allowed us to continue into the final stage of our
PoC — implementing and testing the SMManager. Algorithm
1 shows the pseudo code of our SMManager.

Based on the ability to (at least partially) control the chosen
gear, and to identify the vehicle’s speed and current gear,
we chose the following tactics. We define two parameters
(maxSafeGear and maxSafeSpeed). If the gear position is above
maxSafeGear and the speed is above maxSafeSpeed, and an
attack is detected, then the SMManager attempts to reduce the
gear to the desired level (of maxSafeGear).

In our PoC we used maxSafeGear=1, and maxSafe-
Speed=40Km/h, under the assumption that lower values are
relatively safe and acceptable, even when under attack.

Both the current gear and current speed are continuously
monitored by the SMManager to allow proper reaction. We
achieve this by a background process that analyzes incoming
messages by ID, and processes the relevant ones (e.g., 0x394
for the gear, and 0x30B for the speed); We also needed to



TABLE II
VALUES OF THE GEAR SELECTOR POSITION: MESSAGE ID 0X0AF, MOST SIGNIFICANT NIBBLE (‘g’)

Selector’s position Park P/N intermediate Reverse Neutral Drive S Drive Manual Manual up Manual down
The value of ‘g’ 0x8 0x9 0x7 0x6 0x5 0xC 0xE 0xA 0xB

Algorithm 1 The SMManager pseudo code
1: procedure APPLYSAFEMODE()
2: beginTimer()
3: beginMsgAnalysisProcess(analyzeMsgs())
4: notifyDriver(“Intrusion Alert”)
5: while underAttack do
6: if above (maxSafeSpeed) then
7: ENGAGE()
8: end if
9: end while

10: end procedure
11:
12: procedure ENGAGE()
13: waitForTheRightTime(50 msec)
14: if gasPedalPressed then
15: broadcastMessage(PutInNeutral)
16: voiceMessage=“Please do not accelerate”
17: else
18: if above (maxSafeGear) then
19: broadcastMessage(ReduceGear)
20: voiceMessage=“Shifting gear down”
21: end if
22: end if
23: if (timer % notificationCycle = 0) then
24: broadcastMessage(WarningMsg)
25: notifyDriver(voiceMessage)
26: end if
27: end procedure
28:
29: procedure ANALYZEMSGS
30: for incoming Message m do:
31: id = getMessageID(m)
32: if id in IdList then:
33: processMsg(m)
34: updateState(speed, gear, gasPedal, GSCounter)
35: end if
36: end for
37: end procedure

monitor the gear selector’s 0x0AF messages to ensure we
have the latest cyclic counter value (‘GSCounter’) ready when
the SMManager needs to broadcast its own 0x0AF messages
(procedure analyzeMsgs in Algorithm 1).

Beyond controlling the gear we also demonstrate a driver
notification capability (recall section III-C): when safe-mode
is engaged we activate an existing Skoda functionality, which
consists of showing a “Press brakes” text and a warning symbol
on the dashboard display (Figure 6). To do so the SMmanager
broadcasts a message triggering this dashboard feature at a
(configurable) rate of about once every 5 seconds, to create a

‘blinking-warning effect’. The triggering message itself is the
gear position 0x394 message with a special data field of: [25
4D 00 50 00 00 00 00]. Note that this special message does
not follow the structure we identified in other 0x394 messages,
nor does it bear any clear relationship with a gear position; we
have no explanation for this.

In addition, we added voice notifications, to keep the driver
aware of both the identified attack, and the chosen reaction
(lines 4 and 25 in Algorithm 1). Doing so improves the
effectiveness of the system, by allowing the driver to cooperate
(e.g., when the system asks the driver not to accelerate when the
car is above the chosen safe speed), and reduces the probability
of undesired driver reactions.

The initial testing showed us that the gearbox tends to ignore
our request to reduce the gear at high speed or when the
gas pedal is pressed (recall Section VI-C)—thus making our
system effective only with ‘cooperative drivers’ that do not try
to accelerate when safe-mode is engaged; i.e., drivers that obey
the displayed “Press brakes” warning and voice notifications.

This made us modify our tactics: for demonstration purposes,
we added the option to switch the gear to Neutral, when the
gas pedal is pressed. For this purpose we also monitored the
gas pedal’s position (message 0x391). The combined control
appears in procedure Engage() in Algorithm 1: When the
vehicle speed and gear position are above the predefined safe
limits, we reduce the gear by one when the gas pedal is not
pressed, and shift the gear to Neutral otherwise. This allows
us to demonstrate SMManager’s ability to override insecure
actions of a ‘non-cooperative’ driver (or a more aggressive
attacker). We note that switching to Neutral is generally an
unsafe action. We believe that in a real system, additional,
or different actions are merited to safely handle scenarios in
which safe-mode is engaged and down-shifting the gear is not
possible, e.g., when the vehicle is on a downhill.

B. Live Tests

After implementing the SMManager PoC we connected it
to our vehicle and took it for some test drives. We observed
the desired behavior when we simulated an attack detection

Fig. 6. The driver notification alert triggered by a transmission of a pre-existing
CAN message: picture taken from one of our test drive videos [10].



trigger: the SMManager gradually reduced the gear down to
the first gear, slowing the car down to 40Km/h, while blinking
the warning message on the dashboard: and if the driver tried
to press the gas pedal—the gear switched to Neutral.

Testing with a ‘Cooperative Driver’

A short video of one of our test drives, with a ‘cooperative
driver’, can be found at [11]. The video begins with a voice
notification to the driver, letting him know that the system is up
and running, and that the chosen maxSafeSpeed value was set
at 40Km/h. A few seconds later (at timestamp 0:51), when the
vehicle is driving at 77Km/h in D6 (sixth gear), the SMManager
alerts the driver of a detected intrusion (manually simulated by
the experimenter).

From this moment on, and as long as the vehicle is above the
chosen safe speed of 40Km/h, the SMManager asks the driver
to slow down using both visual and voice notifications (e.g., see
timestamps 0:56 and 1:00). During this time, the SMManager
also tries to slow the vehicle down by manipulating the gear
(recall procedure ENGAGE, in Algorithm 1). Since the driver
is ‘cooperating’ and does not try to accelerate after the attack
was detected, the SMManager chooses to shift the gear down
(line 19 in Algorithm 1) as long as it is above the chosen
maxSafeGear (which is set to first gear in this video). Examples
of this behavior can be observed at timestamps 0:52 and 0:56,
where the RPM jumps up, and the gear position indicator (in
the upper-middle part of the dashboard’s display) switches into
3, and 2, accordingly.

Note that during this entire drive, the gear selector was fixed
in the Drive position, and that the driver manually activated the
hazard lights for safety reasons.

The SMManager stops interfering with the gear operation
when the vehicle reaches the desired safe speed of 40Km/h
(timestamp 1:16), letting the driver ‘limp back home’, or as
advised by the SMManager—try to “find a safe place to stop
and reset the vehicle”, under the assumption that a proper reset
could help end the attack (e.g., non-volatile components were
not effected). The video ends when the driver stops the vehicle.

Testing with a ‘Partially-Cooperative Driver’

The second video [12] captures a more complex scenario,
in which the driver tries to accelerate after the intrusion is
detected, making the SMManager choose different tactics. To
show this, we captured the screen of a secondary laptop
(connected through the OBD-II port of the vehicle), running
a VCDS diagnostic software [35] tracking the RPM and Gas
Pedal levels. The two graphs can be seen from timestamp 0:35
at the bottom right corner of the video.

On this drive, we manually triggered the intrusion detection
at timestamp 0:54 (vehicle at 70kph, D6). This time, the driver
ignored the manager’s initial request and continued to apply
the gas pedal for the first 18 seconds (from timestamp 0:54
to 1:12), causing the SMManager to issue a voice notification
of “Please do not accelerate” (timestamp 1:06). During this
time the SMManager also tried to slow down the vehicle by
switching the gear to the Neutral position, to mitigate the
driver’s acceleration (recall line 15 in Algorithm 1).

When the driver eventually leaves the gas pedal (timestamp
1:12), the SMManager switches to the action observed in the
first video [11], shifting the gear down toward the chosen
maxSafeGear of one. This driver action can be observed in
the overlaying video, when the green line of the gas pedal
graph levels with its idle position marked line. We observe the
gear down-shifts at timestamps 1:14 and 1:21: the RPM gauge
jumps up, and the engine noise increases.

The vehicle reaches the chosen safe speed of 40km/h a few
seconds later. From this point onward, the SMManager does
not try to manipulate the gear any more, since the vehicle is
driving below the chosen safe speed limit. An example of that
can be seen after timestamp 1:23, with a normal car action of
up-shifting from D2 to D3, leaving the driver with the ability
to ‘limp back home’, or stop for a reset as requested by the
SMManager.

VIII. CONCLUSION

In this paper we described both a concept, and an imple-
mentation, of vehicle safe-mode — a mechanism that may help
reduce the damage of an identified cyber-attack to the vehicle,
its driver, the passengers, and its surroundings. Unlike other
defense mechanisms, that try to block the attack or simply
notify of its existence, the VSM mechanism responds to a
detected intrusion by limiting the vehicle’s functionality to
safe operations, and optionally activating additional security
counter-measures. This is done by adopting ideas from the
existing mechanism of Limp-mode, that was originally designed
to limit the potential damage of a mechanical, or an electrical,
malfunction, and let the vehicle “limp back home” in safety.

We also demonstrated that the vehicle safe-mode can be
implemented as an after-market add-on, by developing a proof-
of-concept system, and actively testing it on an operating Skoda
Octavia vehicle. Once activated, our VSM system restricts
the vehicle to Limp-mode behavior by guiding it to remain
in low gear, taking into account the vehicle’s speed and the
driver’s actions. The system overrides some of the normal gear-
shifting logic by careful manipulation of the relevant CAN bus
messages. Our system does not require any changes to the
ECUs, or to any other part of the vehicle, beyond connecting
the safe-mode manager to the correct bus.

We implemented the safe-mode manager to work in real-
time when connected to the vehicle’s CAN bus, and tested it in
multiple driving scenarios, taking the VSM-augmented vehicle
onto the roads and successfully demonstrating it’s functionality.

We believe that the VSM concept, using ideas from vehicle
safety such as the Limp-mode in conjunction with cyber-
defense ideas of intrusion detection and prevention, is a
strong combination. In a safety oriented automotive domain,
any type of reaction to a cyber-incident must balance safety
considerations with the attack severity. Our proof-of-concept
demonstrates that such a balanced combination is realistic, and
can be built even without the cooperation of the vehicle or
ECU manufacturers. However, if ECU manufacturers incor-
porate “VSM-ready” capabilities, and vehicle manufacturers
include the VSM logic when integrating intrusion- or anomaly-
detection technologies, taking into account the right balance



between the IDS possible alarms, and the chosen reactions,
much better solutions can be developed.
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