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Abstract

Motivation: Protein fold recognition is a key step for template-based modeling approaches to protein
structure prediction. Although closely related folds can be easily identified by sequence homology search
in sequence databases, fold recognition is notoriously more difficult when it involves the identification of
distantly related homologues. Recent progress in residue-residue contact and distance prediction opens up
the possibility of improving fold recognition by using structural information contained in predicted distance
and contact maps.
Results: Here we propose to use the congruence coefficient as a metric of similarity between maps. We
prove that this metric has several interesting mathematical properties which allow one to compute in
polynomial time its exact mean and variance over all possible (exponentially many) alignments between
two symmetric matrices, and assess the statistical significance of similarity between aligned maps. We
perform fold recognition tests by recovering predicted target contact/distance maps from the two most
recent CASP editions and over 27,000 non-homologous structural templates from the ECOD database.
On this large benchmark, we compare fold recognition performances of different alignment tools with
their own similarity scores against those obtained using the congruence coefficient. We show that the
congruence coefficient overall improves fold recognition over other methods, proving its effectiveness as
a general similarity metric for protein map comparison.
Availability: The congruence coefficient software CCpro is available as part of the SCRATCH suite at:
http://scratch.proteomics.ics.uci.edu/

Contact: pietro.dilena@unibo.it, pfbaldi@uci.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Computational approaches for protein structure prediction generally
follow one of two broad strategies (Kuhlman and Bradley, 2019;
Kryshtafovychet al., 2019): template-free (or ab-initio) modeling and
template-based modeling, which uses known protein structures as
templates for the structural modeling of the unknown protein structure.
While closely related templates can easily be detected by using protein
sequence search methods, the detection of distantly related templates
needs more sophisticated fold recognition strategies. Popular approaches
make use of sequence profiles, predicted secondary structure and solvent
accessibility, and exploit diverse computational methods, such as linear
programming, dynamic programming, hidden Markov models, as well
as other machine learning methods (Jones and Thompson, 1993; Lemer

et al., 1995). However, despite considerable progress, remote homology
detection remains a challenging problem.

The most recent Critical Assessment of Structure Prediction
experiment (CASP13) held in 2018 reported a dramatic improvement
in protein structure prediction for both template-free and template-based
modeling (Kryshtafovychet al., 2019). This improvement has been driven
primarily by the successful applications of deep-learning approaches (Di
Lena et al., 2012; Kandathil et al., 2019) and direct coupling analysis (De
Juan et al., 2013) to predict intra-residues distances and contacts (Hou
et al., 2019; Zheng et al., 2019; Shrestha et al., 2019; Senior et al., 2019;
Xu and Wang, 2019).

The recent progress in intra-residue distance and contact prediction
opens up the possibility to further improve fold recognition by database
searches using predicted distance/contact maps. This requires addressing
two distinct problems: i) developing efficient two-dimensional alignment
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2 P. Di Lena and P. Baldi

procedures for map comparison; ii) developing a good scoring function to
measure the fitness between target maps and templates.

In this work we deal explicitly with the second problem, and partially
with the first problem, by exploiting the congruence coefficient (Burt,
1948) as a measure of similarity between aligned maps. The congruence
coefficient bears some similarity to the Pearson’s correlation coefficient,
since its value lies in the [−1, 1] interval and it is insensitive to
multiplication (but not addition) by a constant factor. However, unlike
Pearson’s correlation coefficient, its normalization factor is invariant with
respect to any alignment between two maps, which makes it particularly
suitable as an objective function for alignment procedures.

We prove some interesting statistical properties of the congruence
coefficient, such as a measure of statistical significance and polynomial-
time formulas for computing both the exact mean and variance of the
coefficient over all possible (exponential number of) alignments between
two symmetric matrices. Such statistical properties are complementary.
The statistical significance of the congruence coefficient can be used
to detect statistically significant similarities between two aligned maps,
which improves template ranking for predicted target maps. Conversely,
the mean and variance of the congruence coefficient over all possible
alignments can be used to compute the alignment Z-scores, which give
indications on the quality of the alignments.

We test the fold recognition performances of the congruence coefficient
by recovering predicted maps from the last two CASP editions and over
27,000 structural templates from the ECOD database (Cheng et al.,
2014) that do no share sequence similarity with the CASP targets. In
detail, for performance assessment with predicted contact maps we use
residue-residue predictions at CASP12 and CASP13 and three contact
map alignment software: AlEigen (Di Lena et al., 2010), EigenThreader
(Buchan and Jones, 2017) and Map_Align (Ovchinnikov et al., 2017). All
three tools return an alignment between two input maps together with a
similarity score. Keeping fixed the alignments, we compute the congruence
coefficient between target and structural templates. Performances have
been then assessed by comparing fold recognition accuracy with the
congruence coefficient versus the original similarity score. A statistical
analysis of alignment quality is also provided in order to evaluate to
which extend alignment quality affects fold recognition performances.
Since there is no CASP category for predicted distance maps and there
are no standalone tools for distance map alignment, we assess fold
recognition accuracy by using regular protein structure predictions at
CASP and structural alignment tools CE (Shindyalov and Bourne, 1998)
and TM-align (Zhang and Skolnick, 2005). In this case, we recover
predicted distance maps from predicted structures, use the structural
alignments to induce alignments between distance maps and then compute
the congruence coefficient between the aligned maps. Performance
assessment is achieved by comparison of fold recognition accuracy with the
congruence coefficient versus the specific structural alignment similarity
scores. Also in this case, alignment Z-scores are used to assess alignment
quality and its impact on fold recognition performances. Although fold
recognition with distance maps recovered from structural predictions
may appear artificial, it provides a fair evaluation of fold recognition by
protein distance maps. Overall our tests provide a benchmark to compare
the congruence coefficient to other structural alignment metrics, in both
contact-based and distance-based fold recognition.

As a general conclusion, fold recognition with predicted contact
maps is significantly improved by using the congruence coefficient score
as a fitness function. In comparison to structural alignment metrics,
the congruence coefficient shows comparable or better fold recognition
accuracy, proving its potential as general similarity metric for protein map
comparisons.

2 Materials and methods

2.1 Congruence coefficient

2.1.1 Definition
The congruence coefficient was first introduced in Burt (1948), with
the name of unadjusted correlation, as a measure of similarity in factor
analysis.

Definition 2.1. Let X,Y ∈ Rm×n be two real matrices. The
congruence coefficient between X,Y is defined by:

rc(X,Y ) =
tr(XY T )√

tr(XXT )tr(Y Y T )
(1)

The rc score is between -1 and +1, with rc = 1 representing the
highest degree of similarity. Although the congruence coefficient appears
quite similar to the Pearson’s correlation coefficient, the latter measures
the deviations from the mean whereas the congruence coefficient measures
the deviations from zero. Like the correlation coefficient, the congruence
coefficient is insensitive to the multiplication of the matrices X,Y by
constant factors different from zero. Unlike the correlation coefficient, it
is sensitive to the addition of constant factors.

Although the rc coefficient can be computed for non-square matrices,
here we focus on protein contact and distance maps, which are both
represented by square (symmetric) matrices. Typically, contact and
distance maps of different proteins have different sizes determined
by the protein sequence lengths, thus the rc coefficient between two
contact/distance maps can be computed only if an alignment between
the two matrices is provided. Aligned matrices can be simply obtained
by introducing rows and (respective) columns of zeroes in the original
symmetric matrices, which correspond to gaps in the alignments. Since
zero (gap) rows/columns do not contribute in the trace of the products in
Equation (1), an equivalent and simpler formulation of the congruence
coefficient with respect to some alignment can be obtained by leaving
unchanged the X matrix and by removing all rows/columns in the Y

matrix that match a gap row/column in the aligned X matrix (Section 3,
Suppl.) In this way, we can just recode the Y matrix as follows.

Definition 2.2. A partial function α : {1, ..,m} → {1, .., n} is an
alignment if ∀i ̸= j such that α(i) ̸= ⊥ and α(j) ̸= ⊥ then:

α(i) < α(j) ⇐⇒ i < j

where α(i) = ⊥ means that α is not defined on i. Given a matrix
Y ∈ Rn×n and an alignment α : {1, ..,m} → {1, .., n}, we define the
new matrix Y α ∈ Rm×m by:

Y α
ij =

{
Yα(i)α(j) if α(i) ̸= ⊥ and α(j) ̸= ⊥
0 otherwise

Now, let X ∈ Rm×m, Y ∈ Rn×n be two symmetric matrices and
α : {1, ..,m} → {1, .., n} an alignment. We define (Section 3, Suppl.)
the congruence coefficient with respect to the alignment α by

rαc (X,Y ) =
tr(XY α)√

tr(XX)tr(Y Y )
(2)

Note that, the normalization factor in Equation (2) is invariant with
respect to any possible alignment α. Such property does not hold for
Pearson’s correlation which measures the deviation from the mean value
and is thus affected by the number of zero rows and columns introduced in
the alignment. The alignment that maximizes the rc coefficient in Equation
(2) is thus simply the alignment that maximizes the trace of the product
between the two aligned matrices.
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Fold recognition by scoring protein maps using the congruence coefficient 3

2.1.2 Statistical properties of the congruence coefficient
Here we show that the congruence coefficient has several desirable
mathematical properties: its statistical significance can be rigorously
assessed, and its mean and variance can be estimated in polynomial time.
The details of our proofs are given in the Supplementary file.

Statistical hypothesis testing of the congruence coefficient between
two aligned maps, under the null hypothesis that the coefficient is zero,
can be reframed as a statistical hypothesis testing on the angle between
two unitary vectors on some N -dimensional unit sphere, under the null
hypothesis that the two vectors are orthogonal. The dimension N depends
on the size and topology of the two input matrices. The p-value can be
then computed as the ratio between the volume of the N -dimensional unit
sphere and the volume of the hyper-spherical cap (Li, 2011) identified by
the angle between the two unitary vectors. In summary, let X ∈ Rm×m

and Y ∈ Rn×n be two symmetric matrices with zero main diagonal, and
α : {1, ..,m} → {1, .., n} an alignment. Then (Section 6 in Suppl.) the
right-tailed p-value of the congruence coefficient rαc (X,Y ) is given by:

Pr(rc > p | X) =


1

2
I1−p2

(
N + 1

2
,
1

2

)
p ≥ 0

1−
1

2
I1−p2

(
N + 1

2
,
1

2

)
p < 0

(3)

where I is the regularized incomplete beta function, p = rαc (X,Y ),
and the degree of freedom N is the number of non-zero elements in the
upper (or lower) triangular portion of X . Given any symmetric matrix
X ∈ Rm×m, Equation (3) gives the probability of uniformly sampling
a random symmetric matrix Y ′ ∈ Rm×m (with zero main diagonal),
such that rαc (X,Y ′) > rαc (X,Y ). We can symmetrically use Equation
(3) with known Y , where the degree of freedom N is the number of
non-zero elements in the upper triangular portion of Y . The condition of
having zero- main-diagonal is necessary, and trivially satisfied by distance
maps, as well as contact maps (contacts between adjacent residues are
typically ignored). In database searches, we use Equation (3) to assess
whether two aligned matrices are significantly similar. That is, given a
target matrix X , a template matrix Y and an alignment α between X

and Y , we ignore template Y if Pr(rc > rαc (X,Y ) | X) ≥ t or
Pr(rc > rαc (X,Y ) | Y ) ≥ t, where t is the Bonferroni-corrected p-
value cutoff 0.05.

The exact mean and variance of the rc score under all possible alignments
can be used to test the quality of a given alignment between two maps (i.e.
Z-score). Given two symmetric matrices X ∈ Rm×m and Y ∈ Rn×n,
the expected value of the congruence coefficient between X and Y with
respect to all possible alignments α is given by (Section 4.2 in Suppl.):

E[rαc (X,Y )] =
tr(XE[Y α])√
tr(XX)tr(Y Y )

(4)

where E[Y α] ∈ Rm×m is the expectation matrix, that averages all
Y α ∈ Rm×m matrices. The expectation matrix can be computed from Y

andm, without the need ofX . Equivalently, the variance of the congruence
coefficient between X and Y with respect to all possible alignments α is
given by (Section 4.3 in Suppl.):

V ar[rαc (X,Y )] =
tr((X ⊗X)V ar[Y α])

tr(XX)tr(Y Y )
(5)

where ⊗ is the Kronecker product and:

V ar[Y α] = E[Y α ⊗ Y α]− E[Y α]⊗ E[Y α] ∈ Rm2×m2

is the variance-covariance matrix of random matricesY α ∈ Rm×m. The
variance-covariance matrix can also be computed using onlyY andm. The

Table 1. Benchmark dataset

Dataset #Targets (#FM) #RR Pred #REG Pred #ECOD templates

CASP12 34 (12) 1,109 2,567 27,077
CASP13 23 (8) 956 1,842 27,112

Benchmark set statistics. #Targets: number of CASP targets with fold
annotation. #FM: number of targets containing FM domains. RR Pred: residue-
residue contact predictions. REG Pred: regular structure predictions. #ECOD
templates: number of sequence homology-free ECOD templates

Table 2. Average running time per prediction

Method Avg Time CASP12 Avg Time CASP13

EigenThreader 41m 52m
AlEigen 2.8h 3.9h
Map_Align 6d 8.7d
CE 4.7d 4.9d
TM-align 2.2h 2.2h

m=minutes, h=hours, d=days

computational time for the expectation matrix in Equation (4) is quadratic
in the product of the lenghts mn, which is reasonably fast for native
contact/distance maps. Instead, the computational time for the variance-
covariance matrix in (5) is quartic in mn, which is challenging for large
matrices. However, an ad-hoc sampling of alignments (i.e. proportional
to the fraction of alignments of a given size) provides an almost exact
estimation of the variance (Section 7.3, Suppl.).

In addition, following the combinatorial approach described in (Kazi-
Aoualaet al., 1995), we can derive closed expressions for the expectation
and variance of the congruence coefficient between two symmetric maps
X and Y over all possible permutations of Y , and with respect to all
possible alignments between X and Y (Section 5, Suppl.). We tried
to exploit permutation statistics as a fast approach for approximating
variance calculations over all possible alignments. However, tests on real
protein contact/distance maps show that both expectation and variance
over permutations poorly approximate expectation and variance over all
possible alignments (Section 7.3, Suppl.). Thus the formula obtained do
not seem to have an immediate application in protein map comparison,
although they have intrinsic theoretical interest and may be useful in other
contexts.

2.2 Template and Benchmark Data

Benchmark data sets were obtained from the CASP repository (Section
7.1 in Suppl.). For contact-based fold recognition assessment, we selected
all residue-residue contact predictions submitted to the CASP12 and
CASP13 experiments. For distance-based fold recognition assessment,
we decided to simulate predicted distance maps by recovering them from
the structural predictions at CASP12 and CASP13. This was necessary
since distance map predictions were used as an intermediary step, rather
than as a standalone problem, and such predictions were not available. We
considered only the CASP targets for which the experimentally determined
structure was available in the PDB and the fold annotation was available
in the ECOD classification (Cheng et al., 2014).

Template data were obtained from the ECOD database (Section 7.1
in Suppl.). ECOD protein domains are classified with respect to four
groups: the F-group (Family level) groups domains with significant
sequence similarity; the T-group (Topology level) groups domains with
similar topological connections; the H-group (Homology level) groups
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4 P. Di Lena and P. Baldi

domain that are considered homologous based on different attributes (e.g.
functional similarity, literature); and the X-group (Possible Homology
level) groups domains that are potentially homologous although there is
not yet adeguate evidence to support their homology relationship. We
downloaded the ECOD pre-filtered subset at 40% sequence identity. In
order to prevent any sequence homology bias in our tests, we removed
from the ECOD dataset all protein domains found by hmmsearch (Eddy,
2011) and HHsearch (Steinegger et al., 2019) scans of the CASP12 and
CASP13 targets against the ECOD database. Such scans filtered-out all the
ECOD domains at the Family level of similarity with the CASP targets.
In order to identify a subset of hard targets, we matched the FM (Free
Modeling) domains of the CASP targets with the domains identified in
ECOD. Native contact and distance maps were extracted from the ECOD
pdb domain files.

The exact number of ECOD templates used in our experiments, as well
as the targets and FM targets in the two CASP benchmark datasets, are
shown in Table 1.

2.3 Benchmark tools

Contact Maps. We considered three contact map alignment tools for
performance comparison (Section 7.2 in Suppl.): AlEigen (Di Lena
et al., 2010), EigenThreader (Buchan and Jones, 2017), and Map_Align
(Ovchinnikov et al., 2017). We used the three tools to first align target and
template maps and then to rank the templates: i) using the tool-specific
scores; ii) using the congruence coefficient with respect to the alignments
returned by the tools.
Distance Maps. Unlike contact map alignment, the standalone distance
map alignment problem has received little or no attention in the literature.
For this reason, for performance comparison, we decided to use two
popular structural alignments tools (Section 7.2 in Suppl.), CE (Shindyalov
and Bourne, 1998) and TM-Align (Zhang and Skolnick, 2005), and recover
the distance map alignments from the structural alignments computed by
both tools. Also in this case we rank the templates: i) using the tool-specific
scores; ii) using the congruence coefficient with respect to the alignments
returned by the tools.

Our choice of alignment tools has been driven mainly by speed
considerations due to the very large number of comparison performed
in our tests: a total of 57M contact map comparisons, and 122M structure
comparisons, per method (see Table 1). The average running times of the
benchmarked methods are summarized in Table 2.

3 Results

3.1 Fold recognition with predicted contacts

For performance comparison, we search all residue-residue contact
predictions submitted at CASP for a single target against the ECOD
templates. This implies a maximum number of 38 predictions per target
at CASP12 and 46 at CASP13, corresponding to the number of residue-
residue prediction groups in the two CASP editions. More precisely, for a
given CASP target, the ECOD database scan returns a list of mappings of
the form:

<CASP prediction ID, ECOD template ID, similarity score>,

where the similarity score is specific to the alignment method used for the
search. Such list of mappings is sorted according to the similarity score
in order to obtain a similarity ranking of the ECOD templates against
the CASP target. Each ECOD template is ranked according to the first
position in which it appears in the sorted list. Such multiple map approach
for fold recognition has been chosen in order to avoid having to make
an a priori selection of the best predictor(s), or best contact prediction(s),
information that is not available in a realistic blind test. True Positive

Rate (TPR) fold recognition performances are assessed by selecting the
top-1, top-5, top-10, and top-20 templates identified by the search with
multiple predicted maps. For each top-k set, the TPR score is computed by
counting the fraction of targets for which at least one template with similar
fold is in the top-k hits. We assess the TPR performances separately for
the three ECOD classes: Topology Level (T), Homology Level (H), and
Possible Homology Level (X). This implies that, for example, for TPR
assessment at the Topology Level we consider only the CASP targets
that have been annotated at the Topology Level in ECOD. The TPR
performances on the CASP12 and CASP13 benchmark datasets, for the
three map alignment tools AlEigen, EigenThreader, and Map_Align are
summarized in Table 3. The table compares the performances of the three
tools with their specific scoring schemes against those obtained using the
congruence coefficient, indicated by AlEigen+rc, EigenThreader+rc, and
Map_Align+rc, respectively.

Fold recognition performances with predicted contact maps are
influenced by three main factors: i) contact map prediction accuracy; ii)
accurate alignments between target and templates; iii) proper scoring of
the fitness between target and templates. The influence of a good scoring
function is particularly evident for fold recognition performances in the
CASP12 benchmark set (see Table 3), where the fold recognition precision
is dramatically improved by the usage of the congruence coefficient for
fitness ranking. We remark that for the computation of the rc coefficient
we use the alignments returned by the three packages, thus the low TPR
performances of the three tools with their specific fitness functions are
not an immediate consequence of poor contact map predictions or poor
alignments. The improvement in fold recognition accuracy with rc scoring
can be observed also on the CASP13 benchmark set (see Table 3). In
this case, the improvement is still significant, although less pronounced,
since all the three methods show overall better performances with their
own scoring functions in comparison to those achieved for CASP12. To a
large extent, this can be imputed to better contact predictions for CASP13,
which compensate for the lack of a good scoring function. In fact, if
we restrict our tests to contact predictions submitted only by the top
ranked predictors (using the official CASP rankings), we notice a general
improvement in fold recognition accuracy for all methods (Section 7.4.1,
Suppl.). Interestingly, the improvement is almost negligible or absent for
rc ranking performances, which indicates that the congruence coefficient
can filter out most of the noisy similarities. This is partially a consequence
of the statistically significant p-value cutoff applied to the rankings (Section
7.4.4, Suppl.).

For each CASP target in our benchmark set there is a highly variable
number of related (i.e. similar) templates in ECOD. In particular, the
number of related templates per target varies from 2 to 3373 for CASP12
targets, and from 46 to 1444 for CASP13 targets. In Table 3 we assess fold
recognition performances by considering only the top-scored templates,
but this does not tell us how all the templates related to a given target are
ranked during a search. In Figure 1, we show the ranking distributions of all
the templates related to the CASP12 and CASP13 targets. The probability
density functions in Figure 1 are estimated from the observed rankings
in our tests for both CASP12 and CASP13 targets, using the density
function available in R. In order to detect whether there is a statistically
significant difference in template rankings with or without the congruence
coefficient, we use the Wilcoxon paired signed-rank test to compare the
template ranks obtained with an alignment tool’s own scoring function
against the ranks obtained with the congruence coefficient. In all three cases
(i.e. AlEigen+rc vs AlEigen, EIGENthreader+rc vs EIGENthreader and
Map_Align+rc vs Map_Align) the Wilcoxon’s test detects that the median
rank obtained with the congruence coefficient is significantly shifted to the
left (i.e. lower ranks) with p-value < 2.2e-16. In fact, by observing Figure
1, it is clear that the congruence coefficient shifts the ranking distribution of
related templates closer towards 1, uniformly for all methods. However,
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Table 3. Fold recognition performances with predicted contacts

top-1 hit top-5 hits top-10 hits top-20 hits

Method Benchmark set T H X T H X T H X T H X

AlEigen CASP12 0.07 0.07 0.06 0.07 0.07 0.09 0.07 0.10 0.12 0.07 0.10 0.15
AlEigen+rc 0.18 0.27 0.29 0.25 0.30 0.35 0.25 0.33 0.44 0.39 0.43 0.53
EigenTHREADER 0.00 0.00 0.00 0.00 0.00 0.09 0.04 0.03 0.09 0.11 0.10 0.15
EigenTHREADER+rc 0.21 0.27 0.29 0.39 0.40 0.50 0.46 0.50 0.62 0.50 0.53 0.62
Map_Align 0.07 0.07 0.06 0.07 0.07 0.06 0.07 0.10 0.12 0.11 0.10 0.15
Map_Align+rc 0.43 0.43 0.50 0.46 0.50 0.56 0.50 0.53 0.65 0.64 0.67 0.71

AlEigen CASP13 0.11 0.20 0.26 0.17 0.25 0.35 0.22 0.30 0.43 0.22 0.30 0.43
AlEigen+rc 0.28 0.30 0.43 0.33 0.35 0.61 0.50 0.50 0.65 0.56 0.55 0.70
EigenTHREADER 0.11 0.10 0.13 0.11 0.20 0.26 0.17 0.20 0.30 0.22 0.25 0.35
EigenTHREADER+rc 0.33 0.35 0.52 0.50 0.60 0.70 0.61 0.65 0.74 0.61 0.65 0.78
Map_Align 0.28 0.35 0.48 0.28 0.35 0.48 0.33 0.40 0.52 0.44 0.45 0.57
Map_Align+rc 0.39 0.40 0.48 0.56 0.60 0.65 0.61 0.65 0.74 0.72 0.75 0.78

True Positive Rate (TPR) fold recognition performances on CASP12 and CASP13 benchmark sets. Comparison of TPR performance
achieved by AlEigen, EigenThreader and Map_Align with their own scoring system against those obtained by using statistically
significant congruence coefficient, AlEigen+rc, EigenThreader+rc and Map_Align+rc, respectively. The TPR performances are
assessed with respect to the top-1, top-5, top10 and top-20 ranked hits. ECOD hierarchy: (T) Topology Level (28 targets in CASP12,
18 targets in CASP13), (H) Homology Level (30 targets in CASP12, 20 targets in CASP13), (X) Possible Homology Level (34 targets
in CASP12, 23 targets in CASP13). Best TPR performances per column on CASP12 and CASP13 benchmark sets are highlighted in
bold.

in Figure 1 we can see that the peak of the rc-related distributions is
around ranking position607, which is still quite far from the top-20 interval
considered in Table 3. To this extent, it is interesting to ask how much fold
recognition performances are affected by inaccurate contact predictions.
In order to answer this question, we tested fold recognition accuracy by
using only the top-ranked contact predictions per target, using the official
CASP rankings (Section 8 in Suppl.). Consistently with the observations
reported by restricting to top ranked predictors, we notice an overall
improvement in fold recognition performances, particularly for the three
alignment methods with their own scoring functions. More generally, we
can observe an overall good correlation between prediction accuracy and
template rankings (Section 8 in Suppl.). However, while highly accurate
predictions generally enhance fold recognition, there are also several cases
of inaccurate predictions (according to CASP evaluation) that still provide
good fold recognition performances (Section 8 in Suppl.).

A more stringent analysis of the fold recognition performances can
be done on CASP targets that contain at least one FM (Free Modeling)
domain. There the fold recognition performances are assessed only for
the FM domains of such targets. The TPR performances are summarized
in Table 4. To improve readability, we show only the results for the top-
20 recovered templates (complete results in Section 7.4.1, Suppl). With
Map_Align+rc we can exceed 40% fold recognition accuracy on FM
targets at the Topology evel for both CASP12 and CASP13. While leaving
room for improvements, such performance is still interesting. Recall that
for both CASP12 and CASP13, the ECOD database was pre-filtered by
removing all domains that share a significant sequence similarity with the
CASP targets. Hence, although we do not have many FM targets in our
benchmark sets, the results in Table 4 suggest that contact prediction is at a
sufficiently high level of accuracy to improve fold recognition for distantly
related homologs.

Finally, we look at the quality of the alignments provided by the three
methods. We measure the alignment quality through the Z-score of the
congruence coefficient between two aligned maps, where the mean and
standard deviation are computed over all possible alignments between
the two maps. The alignment quality measure is independent of the
similarity between the two maps being aligned: optimal alignments can be

computed for two unrelated maps, and poor alignments can be computed
for similar maps, which may affect fold recognition performances. In
Figure 2, we plot the Z-score distribution of all the alignments between
CASP12/CASP13 targets and templates maps. TheZ-scores are computed
using the true mean of the congruence coefficient over all possible
alignments, and the sampled standard deviations (Section 7.3, Suppl.).
The Z-score distributions are computed separately for all the alignments
between a target map and all its related templates in ECOD, and between
a target map and all unrelated templates. First of all, in Figure 2 we
can notice that, independently of the chosen method, the alignment Z-
score distribution is similar for related and unrelated templates. This
indicates that the alignment quality of each method is independent of the
similarity between the two input maps, i.e. on average one cannot expect
to see better alignments for related maps than for unrelated maps. Overall,
Map_Align provides better alignments that the two other methods. This is
consistent with the performances reported in Table 3, where Map_Align,
especially with the correlation coefficient as its scoring function, achieves
overall best fold recognition accuracy. In contrast, EigenTHREADER
provides on average lower quality alignments. In particular, in a non-trivial
number of cases the rc scores with respect to the alignments computed
by EigenTHREADER are lower that the expected mean. However,
EigenTHREADER’s fold recognition performances are no dramatically
affected when coupled with the congruence coefficient. This is further
evidence that the congruence coefficient provides an effective measure of
map similarity.

EigenTHREADER’s fold recognition performances in Table 3 are
somewhat disappointing in comparison to those reported in Buchan and
Jones (2017). This may be due to the specific characteristics of the
CASP benchmark dataset, which contains several inaccurate predictions
of multi-domain proteins. In contrast, the EigenTHREADER’s original
benchmark dataset contains highly accurate predictions of single domain
proteins. Furthermore, the EigenTHREADER’s scoring function has
been fitted on single domain proteins only. In order to further test
the congruence coefficient, we assessed fold recognition performances
on the EigenTHREADER’s dataset (Section 7.4.3, Suppl.), consisting
of 150 single domain proteins with their associated contacts predicted
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Fig. 1. Estimated ranking distribution of templates searched with predicted contacts.
Comparison of the ranking distribution for templates related to the target proteins in
CASP12 and CASP13. Probability density function estimated from observed rankings in
CASP12 and CASP13 benchmark sets. The Wilcoxon paired signed-rank test detects a
statistically significant shift (p-value <2.2e-16) to the left of the median rank obtained
with the congruence coefficient for all three comparisons AlEigen+rc vs AlEigen,
EIGENthreader+rc vs EIGENthreader and Map_Align+rc vs Map_Align.

Table 4. Fold recognition performances with predicted contacts
on FM targets (top-20 hits)

CASP12 CASP13

Method T H X T H X

AlEigen 0.14 0.12 0.08 0.17 0.29 0.25
AlEigen+rc 0.29 0.38 0.42 0.50 0.43 0.62
EigenTHREADER 0.00 0.00 0.17 0.17 0.14 0.12
EigenTHREADER+rc 0.29 0.38 0.42 0.50 0.43 0.62
Map_Align 0.14 0.12 0.08 0.17 0.29 0.25
Map_Align+rc 0.43 0.50 0.42 0.50 0.57 0.50

Comparison of TPR performance achieved on FM targets by AlEigen,
EigenThreader and Map_Align with their own scoring system against
those obtained by using statistically significant congruence coefficient,
AlEigen+rc, EigenThreader+rc and Map_Align+rc, respectively.
ECOD hierarchy: (T) Topology Level (7 targets in CASP12, 6
targets in CASP13), (H) Homology Level (8 targets in CASP12,
7 target in CASP13), (X) Possible Homology Level (12 targets in
CASP12, 8 targets in CASP13). Best TPR performances per column
are highlighted in bold.

(with high accuracy) by MetaPSICOV (Jones et al., 2015) and 13k fold
library domains recovered from SCOP 1.75 (Andreeva et al., 2020).
Overall, these comparison tests confirm what was already reported in
Buchan and Jones (2017): when homology is present in the fold library,
sequence-based methods (in particular HHsearch) outperform contact
based fold recognition tools. Conversely, in a low homology setting,
map alignment tools outperform sequence-based fold recognition methods.
Consistently with the results of our tests on the CASP benchmark dataset,
when homology is present, the congruence coefficient provides little
or no improvement (Section 7.4.3, Suppl.). However, when low or
no homology is present in the fold library, the congruence coefficient
fitness function helps to improve fold recognition performances on the
EigenTHREADER’s benchmark data set for all the map alignment tools.
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Fig. 2. Estimated Z-score distribution of contact map alignments for templates related
and unrelated to the target proteins in CASP12 and CASP13. The alignment Z-score
distribution is similar for related and unrelated templates for every alignment method.
Map_Align provides the most accurate alignments, EIGENthreader the lower quality
alignments.

3.2 Fold recognition with predicted distances

For distance maps, we run tests similar to those performed with contact
maps. Here we use two structural alignment tools, CE and TM-Align. Also
here we compare the fold recognition capabilities of CE and TM-Align
with their own scoring schemes, CE’s Z-score and TM-score, respectively,
against those obtained by using the congruence coefficient, CE+rc and
TM-Align+rc, respectively. The goal of these tests is to show whether the
congruence coefficient is suitable also for distance map comparisons and
thus for distance map-based fold recognition. Furthermore, this provides a
preliminary comparison between contact-based versus distance-based fold
recognition.

The true positive rate performances on the CASP12 and CASP13 sets
are summarized in Table 5, while performances on the FM targets are in
Table 6 (Section 7.4.2, Suppl. for the complete table). Unlike the contact
results, in these tests fold recognition capabilities are mainly affected
by the quality of the predicted structures. In particular, the overall fold
recognition performance for CASP13 is better than for CASP12, a direct
consequence of the improvements in protein structure prediction reported
at CASP13. Furthermore, the restriction to structural predictions by the top
performing methods overall does improve fold recognition on CASP12,
and for some methods also on CASP13 (Section 7.4.2, Suppl.). We observe
exactly the same trend if we restrict to top predictions (Section 8 in Suppl).
Furthermore, and consistently with our observations for contact-based fold
recognition, although better predictions improve fold recognition accuracy
there are several cases of inaccurate structural predictions–as evaluated in
CASP– that still yield good fold recognition performances (Section 8 in
Suppl.).

In terms of fold recognition performances, the congruence coefficient is
comparable to TM-score and CE’s Z-score, two metrics adopted by CASP.
In some cases, the congruence coefficient achieves slightly better accuracy.
However, we do not observe significantly strong differences between
the TM-Align vs CE, and TM-score/Z-score vs congruence coefficient,
since no approach is overall better than another in all cases. This is
consistent with what we observe in Figure 3, which shows that the ranking
distributions of related templates are practically undistinguishable among
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Table 5. Fold recognition performances with predicted distances/structures

top-1 hit top-5 hits top-10 hits top-20 hits

Method Benchmark set T H X T H X T H X T H X

CE CASP12 0.29 0.37 0.35 0.43 0.53 0.56 0.43 0.53 0.56 0.46 0.53 0.56
CE+rc 0.36 0.40 0.35 0.43 0.47 0.50 0.54 0.57 0.56 0.54 0.57 0.56
TM-Align 0.21 0.33 0.35 0.39 0.43 0.53 0.54 0.57 0.59 0.61 0.60 0.62
TM-Align+rc 0.36 0.40 0.35 0.43 0.50 0.47 0.50 0.53 0.53 0.54 0.60 0.59

CE CASP13 0.33 0.40 0.43 0.39 0.50 0.57 0.44 0.55 0.65 0.50 0.55 0.65
CE+rc 0.39 0.45 0.48 0.56 0.60 0.61 0.61 0.65 0.70 0.61 0.65 0.74
TM-Align 0.50 0.55 0.61 0.50 0.60 0.70 0.56 0.65 0.74 0.56 0.65 0.74
TM-Align+rc 0.39 0.45 0.48 0.56 0.60 0.61 0.56 0.60 0.65 0.61 0.65 0.70

True Positive Rate (TPR) fold recognition performances on CASP12 and CASP13 benchmark sets. Comparison of TPR
performance achieved by CE and TM-Align with their own scoring system against those obtained by using statistically
significant congruence coefficient, CE+rc and TM-Align+rc, respectively. The TPR performances are assessed with respect
to the top-1, top-5, top10 and top-20 ranked hits. ECOD hierarchy: (T) Topology Level (28 targets in CASP12, 18 targets
in CASP13), (H) Homology Level (30 targets in CASP12, 20 targets in CASP13), (X) Possible Homology Level (34 targets
in CASP12, 23 targets in CASP13). Best TPR performances per column on CASP12 and CASP13 benchmark sets are
highlighted in bold.
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Fig. 3. Estimated ranking distribution of templates searched with predicted
structures/distances. Comparison of the ranking distribution for templates related to the
target protein. Probability density function estimated from observed rankings in CASP12
and CASP13 benchmark sets. The Wilcoxon paired signed-rank test detects a statistically
significant shift to the left of the median rank obtained with the congruence coefficient for
the comparisons CE+rc vs CE (p-value = 7.106e-05) and TM-Align+rc vs TM-Align
(p-value <2.2e-16).

all benchmarked approaches. However, the Wilcoxon paired signed-rank
test detects a positive shift of the median rank towards the left for the
comparison CE+rc vs CE with p-value = 7.106e-05 and with p-value
<2.2e-16 for the TM-Align+rc vs TM-Align comparison.

In Figure 4, we show the Z-scores distributions of the alignments
provided by CE and TM-Align. Unlike map alignment tools, structural
alignment tools tend to compute slightly better alignments between a
target and its related templates than against unrelated templates. However,
not surprisingly, in most of the cases the rc coefficients related to such
alignments are lower than the expected coefficient over all possible
alignments. This is because CE and TM-Align perform local alignments,
while the maximum rc score between two maps is achieved by performing
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Fig. 4. Estimated Z-score distribution of contact map alignments for templates related
and unrelated to the target proteins in CASP12 and CASP13. The alignment quality
is slightly better for related templates than for unrelated templates with both alignment
methods.

a global alignment. Specific distance map alignment tools may provide
better global alignments and may further improve fold recognition with
predicted distances. Although most of the local alignments computed
by CE and TM-Align are not optimal global alignments, the rc p-value
is generally statistically significant, due to the large degree of freedom
associated with distance maps. Thus, unlike the case of contact-based
searches, the p-value cutoff for distance maps does not seem to improve
database searches.

Finally, distance-based fold recognition does not outperform contact-
based fold recognition. If anything, the converse is true when looking at
Tables 4 and 6 summarizing fold recognition performances on FM targets.
While the limited number of targets in our benchmark sets does not allow
one to draw strong conclusions, these tests at least confirm that contact
map comparison is a valuable approach for detecting protein structure
similarities.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



i
i

“main” — 2020/9/7 — 7:25 — page 8 — #8 i
i

i
i

i
i

8 P. Di Lena and P. Baldi

Table 6. Fold recognition performances with predicted
distances/structures on FM targets (top-20 hits)

CASP12 CASP13

Method T H X T H X

CE 0.00 0.12 0.17 0.33 0.43 0.50
CE+rc 0.29 0.38 0.42 0.33 0.43 0.50
TM-Align 0.29 0.38 0.33 0.33 0.43 0.50
TM-Align+rc 0.29 0.38 0.33 0.33 0.43 0.50

Comparison of TPR performance achieved on FM targets
by CE and TM-Align with their own scoring system against
those obtained by using statistically significant congruence
coefficient, CE+rc and TM-Align+rc, respectively. ECOD
hierarchy: (T) Topology Level (7 targets in CASP12, 6
targets in CASP13), (H) Homology Level (8 targets in
CASP12, 7 target in CASP13), (X) Possible Homology Level
(12 targets in CASP12, 8 targets in CASP13)

4 Conclusion
We exploited the congruence coefficient as a measure for detecting
map similarities. We proved that the congruence coefficient has several
important mathematical properties allowing one to rigorously assess its
statistical significance and efficiently compute its average and standard
deviation. We compared contact map-based and distance map-based fold
recognition performances of the congruence coefficient against those
of contact map alignment and structural alignment tools. Overall, the
congruence coefficient score improves the fold recognition accuracy,
particularly for contact-based fold recognition, proving its effectiveness
as a general similarity metric for protein map comparisons. Furthermore,
contact-based fold recognition accuracy is comparable or better than
distance/structure-based fold recognition, suggesting its potential as
a general approach for improving the detection of protein structure
similarities.
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