
14 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Bee M.,  Hambuckers J.,  Santi F.,  Trapin L. (2021). Testing a parameter restriction on the boundary for
the g-and-h distribution: a simulated approach. COMPUTATIONAL STATISTICS, 36(3 (September)), 2177-
2200 [10.1007/s00180-021-01078-3].

Published Version:

Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach

Published:
DOI: http://doi.org/10.1007/s00180-021-01078-3

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/809125 since: 2022-02-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s00180-021-01078-3
https://hdl.handle.net/11585/809125


Noname manuscript No.
(will be inserted by the editor)

Testing a parameter restriction on the boundary for
the g-and-h distribution: a simulated approach

Marco Bee · Julien Hambuckers · Flavio
Santi · Luca Trapin

Received: date / Accepted: date

Abstract We develop a likelihood-ratio test for discriminating between the
g-and-h and the g distribution, which is a special case of the former obtained
when the parameter h is equal to zero. The g distribution is a shifted lognormal,
and is therefore suitable for modeling economic and financial quantities. The
g-and-h is a more flexible distribution, capable of fitting highly skewed and/or
leptokurtic data, but is computationally much more demanding. Accordingly,
in practical applications the test is a valuable tool for resolving the tractability-
flexibility trade-off between the two distributions. Since the classical result for
the asymptotic distribution of the test is not valid in this setup, we derive the
null distribution via simulation. Further Monte Carlo experiments allow us to
estimate the power function and to perform a comparison with a similar test
proposed by Xu and Genton (2015). Finally, the practical relevance of the test
is illustrated by two risk management applications dealing with operational
and actuarial losses.
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1 Introduction

Many data-sets in economics and finance are characterized by large skewness
and/or kurtosis, and should be modeled by distributions that are able to ac-
count for these features (Kleiber and Kotz, 2003; McDonald et al., 2013). The
g-and-h distribution (Tukey, 1977) is a flexible model defined by the following
non-linear transformation of the standard normal distribution:

X = a+ b
egZ − 1

g
e
hZ2

2 , Z ∼ N(0, 1). (1)

The parameters g and h are related to skewness and kurtosis, so that the
theoretical skewness-kurtosis range of the g-and-h distribution is larger with
respect to other commonly used distributions (Dutta and Perry, 2006, Fig. 3).

The g-and-h has been mostly employed for operational risk measurement
and insurance modeling (Dutta and Babbel, 2002; Peters and Sisson, 2006;
Degen et al., 2007; Fischer et al., 2007; Jiménez and Arunachalam, 2011; Cruz
et al., 2015; Peters et al., 2016; Bee and Trapin, 2016; Bee et al., 2019a,b),
but there are also applications to financial returns (Drovandi and Pettitt,
2011) and to wind speeds (Dupuis and Field, 2004). A multivariate version
has been introduced by Field and Genton (2006); g-and-h random fields are
proposed in Xu and Genton (2017). Related distributions are the g-and-k
and the generalized g-and-h models (Rayner and MacGillivray, 2002; Prangle,
2017).

If g = 0, the g-and-h distribution becomes symmetric, whereas if g 6= 0
and h = 0 it is a special case of the three-parameter lognormal, also called g
distribution (Cruz et al., 2015, Section 9.4.1). Even though the g distribution
is less flexible than the g-and-h, basic results about the lognormal distribution
guarantee that it can still model skewed and leptokurtic data. In particular, g
governs the variance, the skewness and the kurtosis of the g distribution.

Figure 1 displays the skewness-kurtosis pairs obtained for g ∈ {0, 0.1, . . . , 3}
and h ∈ {0, 1, 2}. Each curve corresponds to a different value of h, with the
case h = 0 being the g distribution. Skewness and kurtosis are computed using
the formulas for the first four moments of the g-and-h (Cruz et al., 2015, p.
320).

It is well known that the lognormal distribution plays a key role in eco-
nomics and finance. From the theoretical point of view, various popular eco-
nomic and financial models imply the lognormal distribution. For example,
Gibrat (1931) postulated a process of proportional growth that gives rise to a
lognormal distribution and has important applications in the study of city and
firm size distribution. In quantitative finance, the lognormality of the marginal
distribution of prices follows from the classical hypothesis that the continuous-
time data generating process is a geometric Brownian motion. Finally, there
is evidence that the income distribution of developed countries is, to a large
extent, well described by a lognormal distribution; for example, Clementi and
Gallegati (2005) find that approximately 97-99% of the distribution is lognor-
mal, whereas the top 1-3% is Pareto.
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Fig. 1: Skewness-kurtosis plot (on doubly-logarithmic scale) for the g and the g-and-h
distribution with a = 0 and b = 1. The points on each curve give the skewness-kurtosis pair
corresponding to increasing values of g ∈ {0, 0.1, . . . , 3}.

On the other hand, extensive empirical evidence suggests that in many
setups the lognormal hypothesis is too restrictive, and one needs a more flexible
model, such as the g-and-h distribution.

Not surprisingly, the capability of modeling a very large skewness-kurtosis
range comes at a price. First, the introduction of an additional parameter may
result in less stable parameter estimates. Second, the g-and-h density fgh and
distribution function Fgh are not known explicitly. Bee et al. (2019a) show that
fgh can be approximated numerically, but that approach requires the numerical
inversion of the quantile function, so that the computational burden is rather
heavy. Hence, with the principle of parsimony in mind, it is important to assess
whether the use of the g-and-h instead of the g distribution is justified for the
data at hand. A test for H0 : h = 0 in the g-and-h distribution allows one to: (i)
establish a unified framework characterized by a smooth transition, as h moves
away from zero, from the scaled lognormal (i.e., the g) to the more general
g-and-h distribution; (ii) make a decision, via a theoretically sound testing
approach, about the necessity of a model with an additional parameter.

The contribution of this paper is twofold. First, we develop a likelihood-
ratio test for discriminating between the g-and-h and the g distribution. Given
that the regularity conditions needed for the validity of the chi-squared asymp-
totic approximation do not hold in the present setup, we resort to the limiting
results for the case of true parameter values at the boundary of the parameter
space (Self and Liang, 1987; Xu and Genton, 2015). However, according to
our Monte Carlo analysis, this asymptotic distribution seems to be not very
precise for the sample sizes commonly employed in practice. Hence, we find
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the null distribution via simulation. The power function of the test is studied
via further Monte Carlo experiments. This approach is also compared to the
testing methodology proposed by Xu and Genton (2015), which is based on a
linear approximation of the likelihood function.

The g-and-h distribution is especially useful for fitting loss data and esti-
mating the Value-at-Risk (VaR), which is the most popular measure of risk
in finance and non-life insurance; see, e.g., McNeil et al. (2015) for a review.
The accuracy of the estimated VaR crucially depends on both the flexibility
and the estimation precision of the parametric model chosen to describe the
empirical distribution. Our second contribution is connected to the loss mod-
eling and VaR estimation perspective, since the test is a tool for resolving the
trade-off between parsimony and accuracy related to the choice between the g
and g-and-h distributions.

The test is applied to two real data-sets. We first fit some operational risk
losses recorded at the Italian bank Unicredit between 2005 and 2014. The
second application deals with automobile insurance claims. In both cases we
illustrate the role of the test in selecting the most appropriate distribution for
VaR estimation.

The rest of the paper is organized as follows. In Section 2 we review the
g-and-h and g distributions and work out the details of maximum likelihood
estimation (MLE) of the latter; in Section 3 we introduce the likelihood-ratio
test of H0 : h = 0; Section 4 focuses on the simulation experiments aimed at
studying the null distribution and the power function of the test; in Section 5
we apply the test to the operational risk and automobile insurance datasets;
finally, Section 6 concludes.

2 The g-and-h distribution

The g-and-h distribution is a quantile distribution. Hence, it can equivalently
be defined via its quantile function, which is given by (Cruz et al., 2015, p.
318)

Q(p;θ) = a+ b
egzp − 1

g
e
hz2p
2 , p ∈ (0, 1), (2)

where θ = (g, h)′ ∈ R × R+ is the parameter vector and zp is the p-quantile
of the standard normal distribution. Without loss of generality, we set the
location parameter a and the scale parameter b equal to 0 and 1 respectively
(Degen et al., 2007; Cruz et al., 2015).

Numerical MLE for the g-and-h distribution has been developed by Bee
et al. (2019b). We refer to that paper for details and simulation evidence, and
recall here the implementation of the procedure.

Algorithm 1 Given a random sample (x1, . . . , xn)
iid∼ gh(0, 1, g, h), perform

the following steps:

1. For each observation xi (i = 1, . . . , n):
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(a) evaluate pi = Fgh(xi;θ) by numerical inversion of (2);

(b) compute f̂gh(xi) = φ(pi)/Q
′(pi;θ), where φ(·) is the standard normal

density and Q′(·) is the first derivative of the quantile function (2),
which is known in closed form (Cruz et al., 2015, Eq. 9.33).

2. treat f̂gh as the true density and maximize numerically with respect to θ of

the approximated log-likelihood function ˆ̀
gh(θ;x1, . . . , xn) =

∑n
i=1 log f̂gh(xi;θ).

The optimization is performed via the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Byrd et al., 1995), as implemented in the optim R function. Bee

et al. (2019b) suggest to set the starting values θ(0) = (g(0), h(0))′ equal to the
quantile estimators, but they are not guaranteed to belong to the parameter
space. To overcome this drawback, and given the availability of the MLE ĝ for
the restricted model, we set g(0) equal to ĝ, whereas h(0) is still given by the
corresponding quantile estimator ĥq, so that θ(0) = (ĝ, ĥq)′.

Since the BFGS algorithm may not converge to the maximum (or may not

converge at all), we consider two additional starting values θ
(0)
1 = (ĝ−0.1, ĥq−

0.1) and θ
(0)
2 = (ĝ+0.1, ĥq+0.1); if any of them is outside the parameter space,

we set it equal to the boundary value. If the maxima of the three log-likelihood
functions are not identical, the MLEs are the estimated parameter values that
correspond to the largest of the three maximized log-likelihoods.

2.1 The g distribution and its relation to the three-parameter lognormal

The three-parameter lognormal distribution Logn3(γ, µ, σ2) has density

f(x; γ, µ, σ2) =
1√

2πσ(x− γ)
e−

1
2 ( log(x−γ)−µ

σ )
2

1{x>γ}, (3)

with µ, γ ∈ R and σ ∈ R+. The g random variable X ∼ g(a, b, g) has the
following stochastic representation:

X = a+ b
egZ − 1

g
= a+ b

(
egZ

g
− 1

g

)
,

where Z ∼ N(0, 1), a ∈ R, b ∈ R+ and g ∈ R+.
Suppose first that a = 0 and b = 1 (see Sect. 2.2 for the general case).

Noting that egZ ∼ Logn(0, g2) and using two well-known results about linear
transformations of the lognormal distribution we readily conclude that

egZ

g
∼ Logn

(
log

1

g
, g2
)

and
egZ

g
− 1

g
∼ Logn3

(
−1

g
, log

1

g
, g2
)
,
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i.e a three-parameter lognormal with support (−1/g,+∞). It follows from (3)
that the g density is

f(x; g) =
1

√
2πg

(
x+ 1

g

)e− 1
2

(
log(x+ 1

g )−log( 1
g )

g

)2

1{x>− 1
g}, (4)

where 1{A} is the indicator function of the set A.

2.2 Maximum likelihood estimation

Given a random sample (x1, . . . , xn) from g(0, 1, g), using (4) we get the like-
lihood function of the g distribution:

Lg(g;x1, . . . , xn) =

n∏
i=1

1
√

2πg
(
xi + 1

g

)e− 1
2

(
log(xi+ 1

g )−log( 1
g )

g

)2

1{
g<− 1

xi

}. (5)

Clearly, (5) is equal to zero unless g is smaller than −1/xi for all the obser-

vations. Hence the log-likelihood `g(g;x1, . . . , xn)
def
= logLg(g;x1, . . . , xn) is

given by:

`g(g;x1, . . . , xn) =

n∑
i=1

(
− log(2π)− log(gxi + 1)− 1

2

(
log(gxi + 1)

g

)2
)
1{

0<g<− 1
x(1)

},

where x(1)
def
= min1≤i≤n xi. The first derivative of `g(g;x1, . . . , xn) with respect

to g is equal to

d`g
dg

= −
n∑
i=1

{
xi

gxi + 1
−

n∑
i=1

log(gxi + 1)

g2
·
[

xi
gxi + 1

− log(gxi + 1)

g

]}
1{

0<g<− 1
x(1)

}.
(6)

Let ĝ be the MLE of g and g0 the root of (6). In principle, ĝ is obtained
by setting (6) equal to 0. However, three cases should be distinguished:

1. If there exists g0 ∈ (0,−1/x(1)) : d`g/dg|g0 = 0, the MLE is ĝ = g0;
2. If there exists no g0 ∈ (0,−1/x(1)) : d`g/dg|g0 = 0, the MLE

(a) is equal to ĝ = −1/x(1) if d`g/dg|g0 > 0 for all g < −1/x(1);
(b) is equal to to 0 if d`g/dg|g0 < 0 for all g < −1/x(1).

The likelihood equation d`g/dg = 0 can be readily solved numerically by means
of standard optimization routines.

It is easy to check that, if a 6= 0, b 6= 1,X ∼ g(a, b, g),W ∼ Logn3(−1/g, log(1/g), g2)

and Y = a + bW , then X
d
= Y . In this case it is possible to first estimate a

and b by means of the quantile estimation method (Hoaglin, 1985) and then

estimate g via ML using the standardized observations ys
def
= (y − â)/b̂.
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A different technique is developed by Xu and Genton (2015): they propose
a linear approximation of the likelihood function which is exploited to derive
the estimators of the parameters. This method is computationally efficient,
since it bypasses the numerical computation of the g-and-h distribution func-
tion. Moreover, Xu and Genton (2015) study the asymptotic distribution of
the MLEs and of various likelihood ratio test statistics based on this approx-
imation. In Section 4 we will use simulation to compare this method to our
approach.

3 A test for the g-and-h versus the g distribution

Since the g distribution is nested in the g-and-h, it is natural to construct a
log-likelihood ratio test of the null hypothesis H0 : h = 0 versus the alternative
H1 : h > 0. The approximated g-and-h log-likelihood function is

`gh(g, h;x1, . . . , xn)
def
= logLgh(g, h;x1, . . . , xn),

where Lgh(g, h;x1, . . . , xn) =
∏n
i=1 f̂gh(xi; g, h); see Algorithm 1.

Using this notation, the log-likelihood ratio test is defined as

Tgh
def
= −2 log(λ) = −2 log

(
maxg Lg(g;x1, . . . , xn)

maxg,h Lgh(g, h;x1, . . . , xn)

)
= 2

(
max
g,h

`gh(g, h;x1, . . . , xn)−max
g

`g(g;x1, . . . , xn)

)
. (7)

According to the classical theory of likelihood ratio tests, under regularity
conditions first derived by Cramér (1946), the asymptotic null distribution of
(7) is χ2

p−q, where p and q are the dimension of the unrestricted and restricted
parameter space, respectively. Unfortunately, the condition that the true pa-
rameter value is not at the boundary of the parameter space is not satisfied
in the present setup, so that we cannot rely on this limiting result.

For testing problems where the parameter of interest is at the boundary,
the null distribution of the test statistics has been investigated by Self and
Liang (1987). The current framework has one parameter of interest with true
value at the boundary of the parameter space, and one nuisance parameter
with true value not at the boundary, which is “Case 5” in the terminology
of Self and Liang (1987). The corresponding asymptotic null distribution is
a π:(1 − π) mixture of χ2

0 and χ2
1, with π = 0.5 (Self and Liang, 1987). A

thorough discussion of this result for testing problems related to the g-and-h
distribution can be found in Xu and Genton (2015).

However, there are two difficulties with this approach. First, the results
require some regularity conditions about the first three derivatives of the log-
likelihood function of the model (Self and Liang, 1987, p. 605), which are
difficult to check in the present case. Moreover, for small sample sizes, the
limiting approximation may be too crude. In particular, as noted by Xu and
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Genton (2015, p. 84), the probability of h being estimated as zero is usually
larger than 0.5. Hence, we simulate the null distribution of Tgh.

In the latter approach, the p-value results from the following steps:

Algorithm 2

1. Given an iid random sample (x1, . . . , xn), compute the MLEs ĝ and ĥ of
the g-and-h distribution;

2. For i = 1, . . . , B and B “large”:
(a) sample n observations (x∗1, . . . , x

∗
n) from g(ĝ);

(b) use x∗1, . . . , x
∗
n to estimate via MLE the parameters of both the g and the

g-and-h distribution, compute maxg `g(g;x∗1, . . . , x
∗
n), maxg,h `gh(g, h;x∗1, . . . , x

∗
n)

and the log-likelihood ratio test

T ∗gh,i = 2(max
g,h

`gh(x∗1, . . . , x
∗
n)−max

g
`g(x∗1, . . . , x

∗
n));

3. compute the p-value psim
def
= #{T ∗gh,i > T obsgh }/B, where T obsgh is the observed

value of the test.

4 Simulation experiments

In this section we carry out simulation experiments aimed at:

1. Studying the null distribution and the power function of the test;
2. Comparing the performance of our Monte Carlo (MC from now on) test

and the test by Xu and Genton (2015) (XG from now on);
3. Assessing the impact of the choice of the distribution (g or g-and-h) on the

estimated VaR.

4.1 Null distribution

To measure the goodness of the asymptotic approximation of the llr test, we
sample n observations from the null distribution g(0, 1, g) with g ∈ {0.5, 1.5}
and compare selected quantiles of the simulated and theoretical null distribu-
tions, where the latter is a 50:50 mixture of χ2

0 and χ2
1. The two values of g

used in the simulation are representative of instances with different skewness;
the latter is also close to the values estimated in the applications of Sect. 5
and to the range found by Dutta and Perry (2006) in an extensive empirical
investigation concerning operational losses. The experiments are performed
with n ∈ {100, 500, 1000} and the number of replications B is equal to 2000.
The results are shown in Table 1.

Table 1 suggests that, for the sample sizes used in this experiment, the con-
vergence towards the theoretical null distribution is rather slow, and strongly
dependent on the true value of g. In the following we study the power function
using simulation-based critical values. The estimated power of the test with
the asymptotic critical values is reported in the online supplementary material.
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Table 1: Selected quantiles of the theoretical and simulated null distributions of the MC
test for n ∈ {100, 500, 1000}, g ∈ {0.5, 1.5} and quantile levels q ∈ {0.9, 0.95, 0.99}.

q = 0.9 q = 0.95 q = 0.99

Theoretical quantile 1.642 2.706 5.412

Simulated quantile, g = 0.5
n = 100 4.360 8.648 24.174
n = 500 2.749 4.715 11.401
n = 1000 2.219 4.079 8.267

Simulated quantile, g = 1.5
n = 100 1.691 5.655 29.411
n = 500 0.110 2.054 6.072
n = 1000 1.02× 10−5 1.049 5.700

Apart from sampling variability, the empirical size of the MC test is iden-
tical to the nominal size. Table 2 shows the empirical size ESα,g̃,n of the XG
test, estimated with B = 2000 Monte Carlo replications. ESα,g̃,n is computed
as follows.

1. For i = 1, . . . , B:
(a) simulate n observations from the g-and-h distribution with parameters

g = g̃ and h = 0 (i.e., the g distribution with parameter g̃);
(b) compute the XG test and record whether the null hypothesis is rejected

using a nominal size equal to α;
2. Compute ESα,g̃,n as the fraction of rejections in the B replications of the

experiment.

Analogously to the results obtained by Xu and Genton (2015), when g = 0.5
the empirical size of the XG test is smaller than the nominal size for all sample
sizes. On the other hand, when g = 1.5, the empirical size is too large at the
5 and 1% level, too small at the 10% level.

Table 2: Empirical size of the XG test for n ∈ {100, 500, 1000}, g ∈ {0.5, 1.5} and nominal
levels α ∈ {0.1, 0.05, 0.01}.

α = 0.1 α = 0.05 α = 0.01

g = 0.5
n = 100 0.042 0.021 0.007
n = 500 0.039 0.017 0.003
n = 1000 0.062 0.028 0.002

g = 1.5
n = 100 0.092 0.078 0.073
n = 500 0.074 0.051 0.032
n = 1000 0.076 0.055 0.032

All the simulation experiments have been performed via parallel computing
techniques, using the parLapply function of the parallel R package on a i7@3.40
GHz processor with 8 cores. Average computing times are shown in Table 3.
Not surprisingly, the XG test is much faster.
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Table 3: Computing times per 1000 replications (in seconds) for the computation of the
MC and XG test.

MC XG

n = 100 549 28
n = 500 3188 51
n = 1000 6284 100

4.2 Power function

The power function has to be estimated via simulation. Given h ∈ {0.005, 0.01, . . . , 0.1},
for the MC test a pseudo-code description of the procedure is as follows:

Algorithm 3

– For i = 1, . . . , B, with B = 1000:
– Sample n observations from the g-and-h distribution gh(0, 1, g, h);
– Compute the maximized likelihood under the null and alternative hy-

potheses;

– Compute the test statistic T
(i)
gh .

– Compute the power #{T (i)
gh > T ∗,αgh }/B, where T ∗,αgh is the α% critical value

computed via simulation (see Section 4.1).

For the XG test, the procedure is identical, but the critical value is the asymp-
totic one.

Figures 2, 3 and 4 show the empirical power function for g = 0.5 and
n ∈ {100, 500, 1000}. In each plot, panels (a) and (b) refer to the MC and XG
test respectively.

Figure 2 shows that the MC test is more powerful for all values of h and at
all significance levels when n = 100. For n = 500 the MC test is more powerful
when h < 0.015, whereas the XG test has more power for the remaining values
of h. Similarly, for n = 1000 the MC test is more powerful when h = 0.005 and
less powerful for the remaining values of h. Moreover, the former test seems to
have a better performance when α is larger, and the latter when α is smaller.

Figures 5, 6 and 7 show the empirical power function for g = 1.5. When
n = 100 (Figure 5), MC is better for α ∈ {0.05, 0.1} and worse when α = 0.01.
When n = 500, MC is always better at all levels. When n = 1000, they are
basically equivalent; only for the smallest values of h, and when α > 0.01, XG
is slightly better.

All in all, in terms of power there is no clear winner. However, it should
be remembered that the MC test has the correct size, whereas we know from
Table 2 that the empirical size of the XG test is significantly smaller than the
nominal size.

The empirical size and the power function of the MC test have been com-
puted also with respect to the asymptotic null distribution, i.e. by applying
Algorithm 3 with T ∗,αgh equal to the α% asymptotic, instead of simulated, crit-
ical value. The results are reported in tables A.1 and A.2 and in figures B.1
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Fig. 2: Power function of the tests for g = 0.5 and n = 100.
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to B.6 of the online supplementary material. When g = 0.5 the MC test is
more powerful than the XG test (compare to panels (b) of figures 2 to 4). On
the other hand, as can be seen in Table A.1, the empirical size is significantly
larger than the nominal size. When g = 1.5, the empirical size is close to the
nominal size and the power of the test is similar to the XG test (see panels
(b) of figures 5 to 7). However, the overall conclusion is that, for the sample
sizes considered in these experiments, the null distribution of the test and the
empirical size are still dependent on the true values of the parameters. Hence,
it is preferable to use the simulation-based critical values.

4.3 Confidence intervals

The plausibility of the null hypothesis of interest can be assessed by con-
structing a simulation-based confidence interval for h and checking whether it
contains 0. Since the value of interest coincides with the lower bound of the
parameter space, in the present setup the 1−α% confidence interval contains 0
if #{ĥ : ĥ = 0}/B ≥ α. From the computational point of view, the simulation
procedure is identical to Algorithm 3.

Figure 8 reports the results for g = 0.5 (panels (a) and (b)) and g = 1.5
(panels (c) and (d)). Note that, to ease comparison, the same scale is used in
both panels.

When g = 0.5 numerical MLE is clearly better for all sample sizes. When
g = 1.5 the outcomes are similar, with approximate MLE slightly better for
n = 100. However we have noticed, analogously to Xu and Genton (2015, p.

84), that the simulated probability of ĥ being equal to 0 is larger than 0.5.
Given also the lack of theoretical justifications (Xu and Genton, 2015, p. 88),
this result may not be completely dependable.

4.4 Value-at-Risk

The g and g-and-h distribution tend to become more and more different as h
increases. How does this difference impact the VaR figures computed under
the two distributional assumptions? To assess this, we carry out the following
simulation experiment.

– For each h ∈ {0, 0.02, . . . , 0.2}:
1. Simulate n = 100 observations x∗1, . . . , x

∗
n from the gh(0, 1, g, h) distri-

bution;
2. Compute both the g and g-and-h MLEs;
3. Use the estimators to compute the VaRs at level α.

– Repeat B times the preceding three steps;
– Compare the VaRs, obtained by averaging over the B replications, to the

true g-and-h quantiles.

The experiment is performed with g ∈ {0.2, 2} and α ∈ {0.95, 0.99, 0.995};
the results are displayed in figures 9 and 10. For both values of g, the VaR
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Fig. 10: Estimated and true VaR under the g and g-and-h distribution with g = 2.

based on the g distribution quickly becomes severely underestimated as h
increases. Hence, the decision about the use of the g versus the g-and-h distri-
bution has a strong impact on the estimated VaR and is therefore crucial for
risk management purposes.
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Fig. 11: Stem-and-leaf plot of the EPWS operational losses.

5 Applications

5.1 Operational risk

We fit the g-and-h and g distribution to a data-set of operational risk losses
recorded at the Italian bank Unicredit between 2005 and 2014, and scaled by
an unknown factor for confidentiality reasons. The data have already been
analyzed in various setups by Hambuckers et al. (2018), where a detailed de-
scription can be found, Bee et al. (2019a) and Groll et al. (2019).

We apply the testing methodology developed above to the losses of the
“Employment Practices and Workplace Safety” (EPWS) business line, using
the n = 97 observations of 2014. The data-set, displayed in Fig. 11, is charac-
terized by large skewness and kurtosis. For comparison purposes, in addition
to the g and g-and-h VaR, we also use the Peaks-over-Threshold (POT) ap-
proach (see, e.g., McNeil et al., 2015). Since the POT method only focuses on
the tail, it is expected to yield quite accurate VaR estimates.

The MLEs computed under the two distributional assumptions, along with
standard errors computed via non-parametric bootstrap, are reported in Table
4, where the observed value of the test and the corresponding p-value are
displayed as well. The null hypothesis cannot be accepted. Analogously, the
XG test is equal to 6.302 with p-value 0.006.

For the sake of completeness, Table 4 also displays the percentage of ĥ
equal to zero in the bootstrap distribution. Although this value would suggest
to accept the null hypothesis, we recall that this result may not be very reliable
(see Section 4.3).
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Table 4: Operational risk, business line EPWS: Parameter estimates and MC test of H0 :
h = 0. psim is the p-value obtained from the simulated null distribution. Standard errors are
in parentheses.

g h max ` −2 log(λ) psim % of ĥ : ĥ = 0

g-and-h
1.526 0.092 −174.611

5.699 0.007 29.8%
(0.295) (0.055)

g
1.270 - −177.460

(0.384)

Table 5 shows the VaR at three different confidence levels. The POT results
are based on a threshold equal to the 0.9 quantile. The VaR computed from
the g distribution is underestimated with respect to the g-and-h VaR, the
POT VaR and the empirical quantile. The numerical values of the g-and-
h and POT VaR measures are similar: consider that, given the small sample
size, the standard errors of the VaR estimators are inevitably rather large, and
therefore the VaR estimates are not significantly different from each other. In
conclusion, the g-and-h seems to be a better model than the g distribution.

Table 5: Operational risk, business line EPWS: VaR estimates under the g-and-h and g
assumptions; “empirical VaR” is the quantile of the empirical distribution. Standard errors
are in parentheses.

α = 0.95 α = 0.99 α = 0.995

g-and-h
12.409 61.839 121.051
(4.086) (53.098) (159.086)

g
5.913 17.067 25.275

(2.874) (14.534) (25.948)

POT
16.776 52.799 75.805
(4.871) (52.763) (174.730)

empirical VaR 15.645 39.121 -

5.2 US automobile insurance

This application uses the AutoClaims dataset from the insuranceData R

package (Wolny-Dominiak and Trzesiok, 2014). The 6773 observations are the
amounts paid on closed claims in dollars from a large Midwestern (US) prop-
erty and casualty insurer for private passenger automobile insurance. For the
subsequent analysis, we employ a random sample of 200 observations, which
are displayed in Figure 12 along with the sample skewness and kurtosis. Ta-
ble 6 shows numerical values of the parameter estimates and of the MC test
statistics.

The results in Table 6 suggests that the null hypothesis H0 : h = 0 can-
not be rejected. Furthermore, the standard errors of the parameter estimates
are similar. Hence, using the g-and-h distribution should not yield any major
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Fig. 12: Stem-and-leaf plot of the US automobile insurance claims.

Table 6: US automobile insurance: Parameter estimates and MC test of H0 : h = 0. psim is
the p-value obtained from the simulated null distribution. Standard errors are in parentheses.

g h max ` −2 log(λ) psim % of ĥ : ĥ = 0

g-and-h
1.125 0.007 −280.154

0.850 0.108 48.6%
(0.210) (0.049)

g
1.087 - −280.579

(0.210)

advantage with respect to the g distribution also in terms of VaR estimation.
The XG test is equal to 0.236 with p-value equal to 0.314, and hence leads to
the same decision.

VaR estimates and standard errors are displayed in Table 7. With respect
to both POT and g-and-h VaR, the g VaR estimates are mostly closer to the
empirical VaR; the standard deviation of the VaR based on the g distribution
is also smaller, especially for large α. Hence, the g distribution seems to be
preferable in this application, both in terms of VaR accuracy and precision.

6 Conclusion

In this paper we have developed a likelihood ratio test for discriminating be-
tween the g-and-h and the g distribution. We have studied numerically the null
distribution and the power function of the test, which has also been compared
to the testing methodology proposed by Xu and Genton (2015). Finally, we
have applied it to two real data-sets.
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Table 7: US automobile insurance: VaR estimates under the g-and-h and g assumptions;
“empirical VaR” is the quantile of the empirical distribution. Standard errors are in paren-
theses.

α = 0.95 α = 0.99 α = 0.995

g-and-h
4.518 11.966 17.615

(1.334) (8.004) (15.606)

g
4.357 10.055 13.488

(1.011) (3.692) (5.707)

POT
4.395 10.149 18.211

(0.844) (4.495) (8.586)
empirical VaR 4.395 9.019 10.247

From the statistical performance point of view, the power of our test is
mostly higher for small sample size, whereas the XG test has some advantage
when the sample size increases. According to the simulation results, the setup
where the distribution is more skewed (g = 1.5) is more favorable to our test,
whereas in the setup with smaller skewness (g = 0.5) the XG test tends to be
more powerful. However, the empirical size of the XG test is quite different
from the nominal size, whereas in our test, by definition, the empirical and
nominal sizes are equal. In terms of computational burden, the XG test is
preferable.

From a modeling perspective, the test is a valuable tool for assessing when
the increased flexibility of the g-and-h distribution is worth the price of the
additional computational burden. The results suggest that, when the evidence
against the null hypothesis is not sufficient to reject it, the g distribution
is a model that allows one to accurately estimate the tail of the empirical
distribution.
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