Load-sharing biomechanics of lumbar fixation and fusion with pedicle subtraction osteotomy

- Luigi La Barbera^a (*), Hans-Joachim Wilke^b, Maria Luisa Ruspi^c, Marco Palanca^c, Christian Liebsch^b, Andrea Luca^d, Marco Brayda-Bruno^d, Fabio Galbusera^e, Luca Cristofolini^c
- ^a Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- ^b Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, Ulm, Germany
- ^c Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum Università di Bologna, Bologna, Italy
- ^d Department of Spine Surgery III, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- ^e IRCCS Istituto Ortopedico Galeazzi, Milan, Italy

(*) Corresponding author:

luigi.labarbera@polimi.it

Laboratory of Biological Structure Mechanics Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano

Italy

Supplementary Figure 1: Specimen #1 – Flexion (a) and extension (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 2: Specimen #1 – Lateral bending (LB) left (a) and right (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 3: Specimen #1 – Axial torsion (AT) right (a) and left (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 4: Specimen #2 – Flexion (a) and extension (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 5: Specimen #2 – Lateral bending (LB) left (a) and right (b): tensile (ϵ_1) and compressive (ϵ_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 6: Specimen #2 – Axial torsion (AT) right (a) and left (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 7: Specimen #3 – Flexion (a) and extension (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 8: Specimen #3 – Lateral bending (LB) left (a) and right (b): tensile (ϵ_1) and compressive (ϵ_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).

Supplementary Figure 9: Specimen #3 – Axial torsion (AT) right (a) and left (b): tensile (ε_1) and compressive (ε_2) strain maps measured on the "Intact" condition and following PSO at L4 and posterior instrumentation with 2 primary-rods ("PSO-2"), with 2 rods and supplementary intervertebral cages ("PSO-2+Cages"), and with supplementary accessory rods and intervertebral cages ("PSO-4+Cages"). A picture of the specimen with the correlated areas are reported on the left, indicating the treated level (L4) and the caudal IVD (L4-L5). The DIC strain maps have been obtained using the proprietary software Istra 4D (v4.3.1, Dantec Dynamics, Denmark; URL: https://www.dantecdynamics.com/).