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1000 Genomes Project

The 1000 Genomes Project (1000 Genomes Project Consortium, 2009) is the first project to sequence the
genomes of a large number of people, to provide a comprehensive resource on human genetic variation.
In phase 1, the 1000 genomes project consortium, by combining low-coverage whole-genome sequenc-
ing (WGS) and high-coverage whole-exome sequencing (WES) of 1092 individuals from 14 populations
drawn from Europe (TSI,Toscani in Italy; IBS,Iberian populations in Spain; GBR, British in England and
Scotland; CEU, Utah residents (CEPH) with Northern and Western European ancestry; FIN, Finnish
in Finland), East Asia (JPT, Japanese in Tokyo, Japan; CHB, Han Chinese in Beijing, China CHS,Han
Chinese South), sub-Saharan Africa (YRI, Yoruba in Ibadan, Nigeria; LWK, Luhya in Webuye, Kenya;
ASW,African Ancestry in Southwest) and the Americas (MXL, Mexican Ancestry in Los Angeles, Cali-
fornia; CLM,Colombian in Medellin, Colombia; PUR,Puerto Rican in Puerto Rico), has identified around
38 million single nucleotide polymorphic positions, 1.4 million short insertions and deletions and more
than 14,000 larger deletions (1000 Genomes Project Consortium, 2009).
In phase 3, the 1000 genomes project consortium, by combining low-coverage whole-genome sequencing
(WGS) and high-coverage whole-exome sequencing (WES) of 2504 individuals from 26 populations from
Europe (IBS, Iberian populations in Spain; TSI, Toscani in Italy; GBR, British in England and Scotland;
CEU, Utah residents (CEPH) with Northern and Western European ancestry; FIN, Finnish in Finland),
East Asia (CDX, Chinese Dai in Xishuangbanna, China; JPT, Japanese in Tokyo, Japan; CHB, Han
Chinese in Beijing, China; CHS, Han Chinese South; KHV, Kinh in Ho Chi Minh City, Vietnam), South
Asia (PJL, Punjabi in Lahore, Pakistan; STU, Sri Lankan Tamil in the UK; BEB, Bengali in Bangladesh;
GIH, Gujarati Indian in Houston, TX; ITU, Indian Telugu in the UK), Africa (GWD, Gambian in West-
ern Division, The Gambia - Mandinka; MSL, Mende in Sierra Leone; ESN, Esan in Nigeria; YRI, Yoruba
in Ibadan, Nigeria; LWK, Luhya in Webuye, Kenya; ASW, African Ancestry in Southwest US; YRI,
Yoruba in Ibadan, Nigeria; ACB, African Caribbean in Barbados) and the Americas (MXL, Mexican
Ancestry in Los Angeles, California; CLM, Colombian in Medellin, Colombia; PEL, Peruvian in Lima,
Peru; PUR, Puerto Rican in Puerto Rico).
All the variant calls of Phase 1 and Phase 3 are stored in VCF format and freely available at the 1000
genome project FTP site: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
integrated_call_sets/ for Phase 1 and ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

for Phase 3.
For both Phase 1 and Phase 3 datasets, we downloaded Variant calls from the 1000 genome project FTP
site, we filtered out structural variants and small InDels and multiallelic SNVs using the VCFTools. For
synthetic chromosomes generation and real data analysis we used VCF files from Phase 1 variant calls,
while for ”Characterization of RoH across worldwide populations” we used Phase 3 variant calls.
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Synthetic Validations

To test the ability of our DIDOH3M2 to detect RoH of different sizes and constituted by different number
of SNPs as a function of the distance between consecutive markers and the genotype probability of each
SNP call, we performed an intensive simulation based on synthetic data. To this end, we generated
synthetic chromosomes by using the genotype calls of bi-allelic SNPs of ten individuals of caucasian
ancestry (CEU) sequenced by 1000GP consortium during Phase 1.
Each synthetic chromosome was generated as a stretch of 10,000 polymorphic positions in which:

• homozygous segments were simulated as N consecutive genotypes sampled from polymorphic posi-
tions predicted as homozygous by the 1000GP.

• non-homozygous segments were simulated by sampling (10000 − N) genotypes from all the poly-
morphic positions of the Phase 1 individuals. Heterozygous segments were imposed to have SNPs
in a heterozygous/homozygous ratio of 5 : 100. To this end, we sampled one heterozygous genotype
every twenty homozygous SNPs.

The 5 : 100 ratio was imposed to simulate at best the actual heterozygous/homozygous proportion
and to prevent the emergence of false positive homozygous segments.
In order to reproduce the complex architecture and distribution of homozygous and non-homozygous
regions, we generated distances between adjacent SNPs as follows:

• The distances between consecutive SNPs in non-homozygous regions are sampled from the distri-
bution of the distances between adjacent polymorphic positions in the human genome.

• The distances between adjacent polymorphic positions in homozygous regions are fixed to a prede-
fined distance D.

Finally, to simulate calling errors and biases of real sequencing data, for each marker of the synthetic
chromosomes we randomly sampled genotype likelihood from the calls generated by the 1000GP Phase
1 data.
We performed simulations with N = (100, 200, 500, 1000, 2000) and D = (10 bp, 100 bp, 1 Kb, 10 Kb,
100 Kb) and for each combination of N and D we generated 100 synthetic chromosomes: all the synthetic
datasets were analyzed by using different values of the parameters dNorm ( DNorm = 103, 104, 105, 106),
PNorm (from 0.5 to 5 by 0.5), p1 and p2 (from 0.05 to 0.8 by 0.05), R1 (2/100, 3/100, 4/100, 5/100) and
R2 (1/100, 1/1000, 1/10000, 1/100000 and 1/1000000).
To evaluate the performance of DIDOH3M2 for different parameter settings, we calculated sensitivity
(true positive rate, TPR) and specificity (1-FPR, false positive rate). TPR was defined as the number
of markers inside the synthetic RoH called by our approach as homozygous divided by the total number
of markers inside the synthetic RoH. FPR was defined as the number of markers outside the synthetic
RoH called by DIDOH3M2 as homozygous divided by the total number of markers outside the synthetic
ROH.
Supplemental Figure 1.a-b show that R2 has little effect on sensitivity and specificity (for values of
R2 ≤ 1/10000 sensitivity and specificity only depend on R1). On the other hand, R1 has strong effect
on the global performance of our algorithm: the larger (smaller) R1 the larger (smaller) is sensitivity
(specificity).
Concerning parameters p1 and p2, the results of Supplemental Figure 1.c-d are in accordance with those
obtained for the classical H3M2 algorithm (Magi et al., 2014), where the larger p2 the smaller the range
of p1 values that ensure high sensitivity (Supplemental Figure 1.c). In particular, when p2 = 0.1, almost
any value of p1 guarantees the best performance in term of sensitivity. On the other hand, for values of
p1 larger than 0.4 the specificity of our method drastically decreases (Supplemental Figure 1.d). Finally,
Supplemental Figure 1.e-h show that also DNorm and PNorm have strong effect on global performance of
DIDOH3M2. The larger DNorm the smaller (larger) is sensitivity (specificity), on the other hand while
increasing the value of PNorm reduces the number of false positives, it also reduces the sensitivity of our
algorithm, and the value of PNorm that gives the best trade-off between sensitivity and specificity is 1.
As a further test, to evaluate the capability of DIDOH3M2 to detect RoH of different size and comprising
different number of SNPs, we calculated True Positive Rate (TPR) and False Positive Rate (FPR) as fol-
lows: a detected ROH is considered a true positive (TP) if has any overlap with a synthetic RoH, while it is
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considered a false positive (FP) if it has no overlap with a synthetic RoH. These analyses were performed
by setting p2 = 0.1, p1 ∈ [0.05, 0.3], dNorm = (103, 104, 105, 106), R1 = (2/100, 3/100, 4/100, 5/100)
and R2 = (1/100, 1/1000, 1/10000, 1/100000, 1/1000000). As expected, the larger the number of SNPs
falling within a given ROH, the higher the probability to correctly identify the homozygous segment
(Supplemental Figure 2.a.d.). Similarly, the larger the distance between adjacent positions, the higher
the probability to call the region as homozygous (Supplemental Figure 2.b.e.).
A detailed analysis of Supplemental Figure 2.a-c reveals that R1 parameter has strong effect on the the
capability of of DIDOH3M2 to detect ROH made of small number of markers. High values of the pa-
rameter R1 increase the resolution of the algorithm but also the total number of false positive events.
On the other hands, parameter R2 has little effect on the performance of our method, however setting
R2 ge1/10000 reduces the total number of false positive events and increase the capability of our method
in detecting small RoHs (Supplemental Figure 2.d-f).
The results of these simulations (SupplementalFiguresDIDOH3M2.pdf) also show that parameter p1 reg-
ulates the resolution of DIDOH3M2, and increasing p1 allows to detect smaller ROHs at the expenses
of an higher number of FP events.
The Figures of SupplementalFiguresDIDOH3M2.pdf file also show that the parameter DNorm rules the
capability of DIDOH3M2 to detect homozygous segments characterized by variable SNP densities. When
DNorm is set to large values (105, 106), DIDOH3M2 is not able to detect homozygous segments made
of even hundreds of densely distributed SNPs and increasing p1 has poor effect on the resolution of the
algorithm. On the contrary, when DNorm is set to small values (103, 104), DIDOH3M2 becomes able to
detect homozygous segments made of densely distributed SNPS, and increasing p1 has a relevant effect
on resolution.
Taken as a whole, these results suggest that when we want to study only large homozygous segments we
should set large values of DNorm (105, 106) and small values of p1 (0.1). On the other hand, to increase
the resolution of the algorithm and detect small ROHs, small DNorm (103, 104) and large p1 values (0.2,
0.3) are recommended.

PLINK, VCFtools and BCFtools settings on WES and WGS data

PLINK

PLINK implements an algorithm (--homozyg option) that scan each chromosome by moving a fixed size
window along the whole length of the genome in search of stretches of consecutive homozygous SNPs.
A given SNP is considered to potentially be in an ROH by calculating the proportion of completely
homozygous windows that encompass that SNP. If this proportion is higher than a defined threshold, the
SNP is designated as being in a ROH. The --homozyg option of PLINK allows to set several parameters
that include: Sliding window size in SNPs, Sliding window size in kb, Heterozygote allowance and Window
threshold to call a RoH.
To run PLINK on the 200 individuals, we converted the information stored in VCF format into MAP
and PED formats usable by PLINK using VCFtools. For the detection of homozygous segments we used
the --homozyg option specifying the following parameter settings for both WES and WGS datasets:

• Heterozygote allowance (--homozyg-window-het) 0/1

• Sliding window size in SNPs (--homozyg-window-snp) 100

• Window threshold to call a RoH (?homozyg-window-threshold) 0.05

• Sliding window size in kb (--homozyg-window-kb) 50

• Minimum SNP density to call a RoH (--homozyg-density) 50

• Maximum gap before splitting RoH (--homozyg-gap) 1000

• Kb threshold to call a RoH (--homozyg-kb) 50/100/200

For the following parameter, we specified different parameter settings for WES and WGS datasets:
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• SNP threshold to call a RoH (--homozyg-snp) 50/250/500 for WES dataset, 500/1000/2000 for
WGS dataset

BCFtools

To detect RoH, BCFtools/RoH uses a 2 state hidden Markov model (HMM). The 2 hidden states represent
extended homozygosity (H) and non-homozygosity (N) within the sample. The emission probability is
determined by the Hardy-Weinberg model and depends on the minor allele frequency of any marker and
on the genotype likelihoods provided by the variant calling algorithm.
The HMM takes as input the genotype data, where genotypes are represented by RR for a homozygous site
matching the reference, RA for a heterozygous site and AA for a homozygous alternate (non-reference)
site. H segments can only include RR and AA sites, while N tracts can include sites of any genotype.
BCFtools/RoH option allows to set the 2 transition probabilities from autozygous to Hardy-Weinberg
(–az-to-hw) state and from Hardy-Weinberg to autozygous state (–hw-to-az) as starting parameters.
For comparison analyses, after testing several combinations of transition probabilities we selected the
configuration achieving the best results in terms of precision and recall: –hw-to-az 0.01, –az-to-hw 0.01.
BCFtools was run on the 200 individuals separately by using the allele frequency estimated by the 1000GP
consortium and stored in the AF tag of the INFO field and ignoring genotype likelihoods (–GTs-only 0).

VCFtools

The –LRoH option of VCFtools (http://vcftools.sourceforge.net/man_latest.html) implements
the HMM algorithm described in (Auton et al., 2009) that allows to detect long Runs of Homozygosity
(LRoH).
The HMM consists of two states for each SNP, which represent LROH or heterozygous region respectively.
For each state, the emission probabilities at each SNP are dependent on the probability of observing a
heterozygote (based on the heterozygosity of the SNP within the population) and the estimated rate of
genotyping error. Transition probabilities between the two states are a function of the per-generation
recombination rate between SNPs and the (assumed) number of generations since a common ancestor
of the two chromosomes. A LROH is called when the HMM reports the homozygous state as being the
most likely state in a region of at least 1cM and containing at least 50 SNPs with a minimum minor allele
frequency of 5%.
The –LRoH option of VCFtools does not allow for any parameter setting.

Real data analysis

In order to test the performance of our method for the identification of homozygous segments on real
data, we applied DIDOH3M2 to the WGS and WES genotype data of 200 individuals (50 CEU of Euro-
pean ancestry, 50 YRI of African ancestry, 50 PUR of American ancestry and 50 CHS of Asian ancestry)
sequenced by 1000GP consortium during Phase 1 by using the following parameter settings: p2 = 0.1,
p1 = 0.1, dNorm = 105, R1 = (1/100, 2/100, 3/100, 4/100, 5/100) and R2 = (1/1000, 1/10000, 1/100000).
As a first step, we studied the RoHs identified by our method in terms of their cumulative global size and
number for both WGS and WES data. We found that while using higher values of R1 increase both size
and number of homozygous segments, the use of smaller values of R2 increase the number but decrease
the cumulative size of RoHs (Supplemental Figure 4).
These results are a direct consequence of the role of R1 and R2 parameters in our heterogeneous HMM.
R1 represents the proportion of heterozygous markers that defines non-homozygous segments and all the
segments that have a heterozygous proportion smaller than R1 are identified as homozygous. For this
reason, the larger R1 and the larger the total size and number of homozygous segments identified by
our model. On the other hands, R2 represent the proportion of heterozygous markers that our HMM
tolerates in a homozygous region. Larger values of R2 allows to identify as homozygous regions with a
higher number of heterozygous markers, while for small values of R2 homozygous regions are called only
if they contain a smaller fraction of heterozygous markers.
Hence, increasing the value of R2 impose the algorithm to split large homozygous regions (with a frac-
tion of heterozygous markers larger than R2) in small segments (with a fraction of heterozygous markers
smaller than R2) thus increasing the total number of detected ROHs and decreasing their cumulative
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size.
By setting the most conservative set of parameters (R1 = 1/100 and R2 = 1/100000), DIDOH3M2

detected an average of around 90 Mb for WGS (around 1000 RoHs) and 30 Mb (around 20 RoHs) for
WES data, while using more inclusive parameters (R1 = 5/100 and R2 = 1/1000) it detected around 800
MB of homozygous segments for WGS (around 20000 RoHs) and 450 Mb (around 1200 RoHs) for WES
data.
Subsequently, we compared the results of DIDOH3M2 with those obtained by the other three tools that
use genotype calls for RoHs identification: PLINK, the RoH option of BCFTools and the LROH option
of VCFTools. To allow for a comprehensive evaluation of the performance of PLINK, we defined six
different parameter configurations for this tool (see ”PLINK, VCFtools and BCFtools settings on WES
and WGS data” section).
VCFTools identified an average of 500 Mb of homozygous segments (25,000 RoHs) for WGS and less
than 50 Mb (500 RoHs) for WES data. Although we tested several parameters configurations, the re-
sults obtained by BCFTools are completely unreliable, since it detected more than 2 Gb of homozygous
segments with both WGS and WES genotype data.
By using the most conservative configuration (--homozyg-window-het 0 and --homozyg-window-threshold

200 kb), PLINK (--homozyg-snp 2000 for WGS and --homozyg-snp 500 for WES) detected an average of
around 10 Mb (tens of ROHs) of homozygous segments for WGS and 50 Mb for WES (few RoHs). On the
other hand, using the less stringent configuration (--homozyg-window-het 1 --homozyg-window-threshold
50 kb), PLINK (--homozyg-snp 500 for WGS and --homozyg-snp 50 for WES) detected an average of
600 Mb for WGS and more than 1 Gb for WES data (thousands of RoHs).
As a further step, to evaluate DIDOH3M2 ability to identify ROH from WES and WGS data and to
compare its performance with respect to the other three state of the art methods, we generated a gold
standard dataset of RoHs by using the genotype calls generated by the 1000GP consortium for the afore-
mentioned 200 individuals. For WGS we considered the entire map of biallelic single nucleotide variants
discovered by the 1000GP (around 38 millions of markers), while for WES we included only the around
1.5 millions of SNVs that belong to coding sequence of the genome (see methods of main manuscript for
more details).
For both WGS and WES experimental design, we considered as genuine RoHs all the regions larger than
100 kb and containing at least 200 consecutive markers in homozygous state. To test the performance of
the four methods we calculated precision and recall in the following manner:

• To calculate precision, we considered all the polymorphic positions called in ROHs by each of the
four methods and we then calculated the fraction of these positions that were called as homozygous
also in the gold standard datasets.

• To calculate recall, we considered all the polymorphic position called in ROH in the gold standard
dataset and we then calculated the fraction of these positions called as homozygous by each of the
four state of the art methods.

The plots of panels (a) and (c) of Figure 2 of the main manuscript show that the performance of
DIDOH3M2 is mainly governed by changes in parameter R1. Setting R1=5/100 and 4/100 gives high
recall rate at the expenses of precision, while using R1=1/100 improves precision and drastically de-
crease recall. On the other hands, R2 has little effect on both precision and recall. The combination of
parameters that ensure the best trade-off between precision and recall is different for WGS and WES ex-
perimental design: for WES we found the best setting as R1=2/100 and R2=1/1000, for WGS R1=4/100
and R2=1/1000.
As previously reported in (Magi et al., 2014), also the performance of PLINK is profoundly altered by
changes in parameter configurations. The high recall rate reached by PLINK with less stringent pa-
rameter settings (--homozyg-window-het 1 --homozyg-window-threshold 50 kb) is obtained paying a
tremendous cost in terms of precision. On the other hand, attempts to improve precision adopting con-
servative parameter configurations (--homozyg-window-het 0 and --homozyg-window-threshold 200
kb), lead to a drastic deterioration of recall rates.
Regarding the two other tools studied in this paper, although VCFTools obtained good performance for
WES data, all the other simulations clearly show that the homozygosity algorithms at the base of these
two software packages are not well suited for this kind of analysis and need computational improvements.
Finally, in order to study the accuracy of the four algorithms, we examined the proportion of heterozygous
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variants within the ROHs detected by each of the four methods and we found that the ROHs detected
by DIDOH3M2 are characterized by the smallest fraction of heterozygous variants.
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Supplemental Figure 1: DIDOH3M2 algorithm and parameter settings on synthetic chromosomes. The con-
tourplots of panels a and b show the sensitivity and specificity of DIDOH3M2 for different combinations of
values of R1 and R2 parameters. Panel c and d show the sensitivity and specificity of DIDOH3M2 for different
combinations of values of p1 and p2 . Panel e-h shows the sensitivity and specificity of DIDOH3M2 as a function
of the parameter DNorm and PNorm.
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Supplemental Figure 2: Performance evaluation of the DIDOH3M2 algorithm in the detection of ROHs on
synthetic chromosomes. Panels a, b and c report the performance of DIDOH3M2 as a function of parameter R1,
while panels d, e and f as a function of parameter R2. Panels a and d show TPR vs the number of SNPs within
the detected ROH. Panels b and e show the TPR as a function of the distance between consecutive polymorphic
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DIDOH3M2.
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Supplemental Figure 3: Performance comparison between DIDOH3M2, PLINK, BCFtools and VCFtools on
the WGS and WES data of the 200 individuals sequenced by the 1000 Genomes Project Consortium. Panels a
and c report the results of the precision-recall analysis for WGS and WES data respectively. The bar plots of
panels b and d report the fraction of heterozygous single nucleotide variants that belong to all ROHs detected by
the four algorithms. The performance of the DIDOH3M2 algorithm have been reported for different settings of
the R2 (R2 = 1/1000,R2 = 1/10000,R2 = 1/100000) and R1 (1/100, 2/100, 3/100, 4/100, 5/100) parameters and
p1 = 0.1, p2 = 0.1, PNorm = 1, dNorm = 100000. The performance of PLINK have been reported for different
values of heterozygote allowance (PL-H = 0 and PL-H = 1), different values of kb threshold (-kb 50/100/200) and
different values of SNP threshold to call a ROH (-snp= 50, 250, 500 for WES, -snp=500, 1000, 2000 for WGS).
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Supplemental Figure 4: Performance comparison between DIDOH3M2, PLINK, the RoH option of BCFTools
and the LROH option of VCFTools on the WES and WGS data of 200 individuals sequenced by the 1000 Genomes
Project Consortium. The bar-plots of panels a and c show the average total length of ROH detected by the four
approaches in WES (a) and WGS (c) data respectively. The bar-plots of panels b and d shows the average total
number of ROHs detected by the four approaches in WES (b) and WGS (d) data respectively.
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to simulate pairs of chromosomes
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becomes associated with a founder-tracking label

5. Simulated 1KGP genotypes in the index offspring are 
used to detect ROH by DIDOH3M2 and to calculate 
RLOD for each ROH

Supplemental Figure 5: Generation and identification of ROHs in simulted genome maps of offspring to consan-
guineous parents. SNP backbones were built on a genetic map generated by picking up SNPs from Rutgers map
markers and assigned to family founders (orange-colored individuals) to simulate pairs of chromosomes. Mark-
erdrop simulates recombination patterns along the pedigree (conditional on a disease-linked locus), associating
founder-tracking labels (numbers) with each dropping chromosome haplotype. 1KG haplotypes were assigned to
the SNP backbones of the founders, so that each 1KGP SNV becomes associated with a founder-tracking label.
1KGP haplotypes were superimposed on the SNP backbones of the index offspring (blue-colored individual) ac-
cording to the recombination patterns traced by Markerdrop. Simulated 1KGP genotypes in the index offspring
were used to detect ROH by DIDOH3M2 and to calculate RLOD for each ROH. Autozygous ROH were identi-
fied as those ROH with alleles of both haplotypes associated with the same founder-tracking label in the index
offspring.
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Supplemental Figure 6: Performance comparison between RLOD and RoH size to identify true autozygosity
with allele frequencies calculated on different sample sizes. Results of the analysis carried out in the simulated
in the simulated WES/WGS of offspring to consanguineous parents. Precision-recall plots of WES (panels a-d)
and WGS (panels e-h) data are shown for the 4 different gF ranges from high (left) to low (right) inbreeding
levels: F1: 0.066-1; F2: 0.023-0.066; F3: 0.00105-0.023; F4: 0-0.0105. RLOD and RoH size performances are
depicted as dotted and continuous lines, respectively, while colors indicate that allele frequencies applied to RLOD
calculation were obtained on different sample compositions and sizes (EUR: Europeans; GLB: Global; AF: Allele
Frequencies).
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Supplemental Figure 7: Mutation-surrounding (ms)RoH prioritization by RLOD and RoH size in simulations.
Results of the analysis carried out in the simulated WES (a and c) and WGS (b and d) of offspring to con-
sanguineous parents are shown as a whole (all) or split into the 4 different gF ranges. Panels a and b report
the percentage of times the msRoH ranked as 1st among all the identified ROH by both or neither of the two
measures, while panels d and f report the percentage of times the msRoH ranked higher, equal or lower by RLOD
than size.
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