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Abstract: The objective of this work is the calibration of a generalised cost function for the bicycle network links to be used in
conjunction with assignment methods for uncongested networks, as cyclists are generally much less delayed by traffic
congestions with respect to auto-traffic. The calibration's goal is to find a coefficient vector for a linear link-cost function that
maximises the overlap between routes obtained with a minimum cost routing of cyclists' demand and the relative cyclists'
chosen routes, identified by a map-matching procedure of recorded global positioning system (GPS) traces. The calibration
focuses on minimising an objective function through different established evolution-based optimisation algorithms, thus avoiding
the generation of route choice sets. Link cost functions are calibrated for a modified Openstreet network of Bologna, Italy, using
GPS data from the European cycling challenge and Bella Mossa campaign. Results show an improvement of up to 30% of
overlapping routes with respect to pure distance-based routing. It is also demonstrated that the calibrated link-costs are
transferable to a different scenario.

1Introduction
1.1 Problem definition

Most traffic assignment models use several attributes including
travel time and distance as link-costs of a road network, as these
are the most significant attributes for drivers to select the preferred
route. Instead, cyclists perceive link-costs differently: safety,
physical fatigue, health and build-environments are important
issues in the cyclists’ path choice. On the other hand, cyclists are
generally much less delayed by traffic congestions with respect to
auto-traffic [1] – as long as the road remains sufficiently
permeable. In fact, even in cities with high bike mode share,
bicycle congestions may play a minor role, as investigated in [2]
for the greater Copenhagen area. The present study is an effort to
quantify the cyclists’ link-costs of the road network concentrating
on known road attributes.

The scope of this paper is to calibrate parameters of a
generalised cost function of road network links, to be used in
conjunction with either deterministic or stochastic assignment
methods of uncongested networks for solving bicycle traffic
assignment problems.

1.2 Literature review

In the literature, many studies deal with the identification of road
attributes that affect the cyclists’ path choice and different models
have been calibrated to quantify their respective influence [2–10].
In particular, the studies in [3, 6–10] have compared the cyclist's
route choice with the shortest route in order to find attributes that
cause the users to deviate from the shortest path: for example, in
[10] the shortest path has been used to split the global positioning
system (GPS) recorded traces in a set of detour-classes. Moreover,
Rupi et al. [8] calibrated a binominal logit-model able to predict if
a cyclist will choose either the shortest route or a non-overlapping
alternative, based on route-links attributes.

A major problem of such route choice models is the
determination of the choice set among which cyclists can select
their routes – it is generally unknown which routes a cyclist
considers as alternatives between a specific origin and destination,
and in particular how users can detour from the shortest path.
Empirical data on detours have been calculated in different ways,
see for example Rupi et al. [8], Park and Akar [10], Pritchard et al.

[11] and Griffin and Jiao [12]. For example, Park and Akar [10], in
Ohio, found that most bicycle trips (91.1%) include a detour and
that these are 13.5% longer on average than their shortest
alternatives, with large variations. Moreover, Rupi et al. [8], in
Italy, found that detours are 20.7% longer on average with respect
to the shortest path.

A related problem is that alternative routes are mutually
overlapping or cyclists choose a route only because it is the single
feasible alternative. However, different procedures have been
proposed to generate the route choice set, for example, in [13] the
problem is analysed with a data-driven approach, where the route
choice set is defined by effectively chosen routes; another method
eliminates consecutively links on the shortest path and performs a
rerouting after each iteration [4]. Broach et al. [14] have used a
labelling method for generating bicyclist route choice sets,
incorporating unbiased attribute variation. Additionally, Koch et al.
[15] compared the observed routes to those created by a double
stochastic generation function method. Hood et al. [16] used as a
similar method of choice set generation: a network-based
automatic calibration of the ‘doubly stochastic’ method of Bovy
and Fiorenzo-Catalano [17].

Generally, traffic congestions do not seem to alter cyclists’
travel times which greatly simplifies the assignment procedure.
Even for bicycle cities like Copenhagen, the congestion effects on
bikes seem limited: Paulsen and Nagel [2] have shown that, even
by assigning more than a million bicycle trips to the Copenhagen
bike network, travel times of cyclists do not increase significantly.

1.3 Research contribution

The calibration of the link-costs in combination with assignment
method for uncongested networks allows calculating the most
likely route choice while avoiding the problem of choice set
definition. This work presents an unconventional direct method to
calibrate the parameters of a general link-cost function for cyclists.
The method can be applied in a city where GPS traces of bike trips
are available. Once the link-costs are calibrated, they can be used
for uncongested deterministic or stochastic traffic assignments of
cyclist Origin to Destination (OD) demand, reproducing the most
similar flows. Clearly, the calibrated link-costs could be used in ‘all
or nothing’ assignments or as deterministic component in
stochastic link-cost models, such as the Probit assignment method.
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The calibration method is applied to the road network of Bologna
(Italy), using GPS traces from 2014 to 2017.

2Methodology
The methodology requires the definition of a link cost function and
a scalar objective function to quantify the overlap between chosen
and modelled routes. Furthermore, stochastic optimisation methods
are used to find a parameter vector of the link cost function that
maximises the overlap.

2.1 Objective function

Prior to the calibration of the generalised disutility function for
cyclists, a road network must be available, where each network
link a has the link attributes xa (e.g. link length, exclusive bike
access, number of lanes etc.). The routes chosen by the cyclists
must also be known, where each route ri  is a sequence of network
links connecting an OD pair. The chosen route ri can be identified
by a map-matching process [18]: for each trip i, a cyclist has
recorded a sequence of GPS points via a dedicated smartphone
application; the map-matching process matches these geo-
referenced points to a sequence of links of the respective road
network. Successively, a cost function ca β, xa = β′xa + α  of link
a is defined as a linear combination between parameter vector β

and link attribute vector xa, where β is to be calibrated by
minimising the objective function z β  and α is an arbitrary, non-
zero constant. In this work, this objective function is the negative
normalised sum of the length of overlapping links between each
chosen route ri and the respective model route qi, over all routes.
The model route qi is obtained by a Dijkstra routing, connecting the
first and the last link in ri, while assuming the link costs
ca = ca β, xa . Let the overlapping length of route i be defined as
Qi β = ∑∀a Laδai β  where δai β = 1 if a ∈ ri ∩ a ∈ qi (i.e. link a
is contained in chosen route ri and in model route qi), otherwise
δai β = 0.

The factor δai β  clearly depends on the link costs and indirectly
on the link-cost parameter β. Then the objective function to be
minimised can be written as:

z β = −
∑∀i Qi β

∑∀i ∑a ∈ ri
La

(1)

where the numerator represents the total overlap and the
denominator represents the total distance of all routes, as La is the
geometric length of the link a. The objective function can be

interpreted as the negative relative overlap of all routes. In the ideal
case, when all model routes are equal to the chosen routes, then
z β = − 1, while if all links are not overlapping, then z β = 0.
The calibration problem is to find the parameter vector β = β

^

which minimises z β . Unfortunately, this is not a simple
optimisation problem due to the following reasons: the objective
function is neither convex nor continuous and there are multiple
local minima, see Fig. 1 for an example of an objective function
from the dataset explained in Section 3. One can clearly see the
irregular surface with many local minima, but within this rough
surface one can also observe a valley which contains a global
minimum. Due to the many local minima, all optimisation
algorithms based on gradients or Hessians fail to find a global
minimum. For this reason, stochastic optimisation algorithms are
employed to solve this optimisation problem.

2.2 Stochastic optimisation algorithms

Stochastic optimisation algorithms are based on a population of
different parameter vectors which seek to find the function
minimum employing an iterative process. The general principle is
that the more successful members of the parameter population will
influence the parameter values of other members of the population.
In this way, it is hoped that with each iteration at least one member
of the population can decrease the objective function with respect
to the previous step. The location of parameter-vectors can be
constrained in a parameter space defined by minimum parameter
values βmin and maximum parameter values βmax.

Different stochastic optimisation algorithms have different
strategies to generate the next iteration (or with evolutionary
algorithms also called generations) of parameter vectors. For the
present problem, three optimisation algorithms have shown good
performance.

The differential evolution (DE) [19] is based on a scheme for
generating trial parameter vectors. DE generates children
parameter vectors by adding a weighted difference vector between
two population members to a third member. If the resulting vector
yields a lower objective function value than a predetermined
population member, the newly generated vector will replace the
vector with which it was compared in the following generation.

The particle swarm optimisation (PSO) [20–22] has its origin in
the simulation of a bird flock in search for a corn-field. In an
abstract version of the original algorithm, a ‘swarm’ of agents,
each representing initially random parameter vectors, are trying to
optimise a scalar function. Each agent evaluates the objective
function with respect for its own parameter value. In addition, each
agent knows also the parameter vector of the best agent, the one
who has achieved the lowest objective function of all agents.
During an iteration, each agent is changing its parameter vector by
adding an incremental vector. The direction of the incremental
vector points into the direction of the best agent, whereas the size
of the increments takes some random values. The increment
corresponds to the speed with which agents of the swarm change
their ‘positions’ in the parameter space.

The covariance matrix adaptation (CMA) evolution strategy
considers a population of agents, where each agent represents a
parameter vector of an objective function. Each member of the
population will have a certain number of children. The parameters
of the children are multinomial distributed with a mean value
which is equal to the parameters of the parent. Successively only
children with a lower objective function with respect to their parent
are considered. The parameter vector of the parent is also updated
by adding a zero mean, multinomial noise value. The particularity
is that the variances of the single noise components depend on the
parameter values of the component of the best-performing children.
This means the family will improve with each generation. For
details, see [23].

The common property of all three algorithms is that they have
the capacity to find a global optimum because the search is spread
over some predefined parameter space. There are several
limitations of the proposed algorithms: it is not guaranteed that the
global minimum of the objective function will be found, especially
if the dimensions of the parameter space increases; it is possible to

Fig. 1 Illustration of the surface of the objective function z β . For
illustration purposes the beta vector is only two-dimensional: β1 is the
coefficient for the link length and β2 for the exclusive bikeway attribute. The
plot has been computed with the GPS traces from the ECC in Bologna
2015, for details see Section 3
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increase the population size in order to improve the exploration of
all the parameter space, but then computation time increases and
the convergence becomes slower.

Regarding the specific application to link-cost estimations, it is
not clear how much the optimal bike link costs improve the correct
identification of the chosen bike path and whether the calibrated
parameters are transferable to a different scenario. Such questions
are addressed in the next section where the stochastic optimisation
methods are used to calibrate a link cost model for bike routes in
Bologna, Italy.

3Results
The proposed calibration method is applied to the road network of
Bologna, Italy. The road network is extracted from Openstreet data
and the GPS traces are taken from different years: the European
Cycling Challenge (ECC) for the years 2014, 2015 and 2016, and
Bella Mossa (BM) in the year 2017. The recording period is the
month of May of the respective year. Details on the data processing
and map-matching can be found in [6]. The Openstreet network is
converted into a SUMO transport network [24] and edited/
completed manually with a special editor. The software
environment SUMOPy [25] allows to import the Openstreet
network in SUMO, import the GPS traces, do the map-matching
and run the Dijkstra routing. Fig. 2 represents the SUMO transport
network in the software SUMOPy, overlapped with GPS traces of
the ECC of the year 2015. The main calibration script is
implemented in Python, using the stochastic optimisation
algorithms from the stochopy package [26].

In a first step, the performances of the three stochastic
optimisation methods have been determined. For this purpose, only
two road link attributes are considered as attribute vector
x′a = La, LaBa : the link length La and the exclusive bikeway
attribute Ba (where Ba = 1 if link a is an exclusive bikeway,
otherwise Ba = 0) The constant α has been fixed to one. The
constant is meant to account for all not considered costs per link.;
the most important not included variable is likely to be the waiting
time at junctions. Note that α is constant but the parameters β of
the other attributes will adjust their value relative to α during the

optimisation. All elements of βmin were initially set to − 2, and all
elements of βmax are set to + 2. The definition of the parameter-
space has been found after some initial estimation trials, clearly the
larger the parameter space, the longer it takes for the algorithms to
converge. The cost functions have been calibrated with 2619 trips
from the ECC 2014. The performance of the calibrated link cost
functions has been quantified by measuring the improvement of the
objective function with respect to the simple shortest path routing,
which is equivalent to link cost functions with parameters
βSP = 1, 0 : for the ECC 2014, the objective function results in
z βSP = − 0.380 in this case. As shown in Table 1, the objective
function value becomes more negative when routing with the
calibrated link cost functions. The improvements are 21% with
respect to the shortest routes when link-costs are calibrated with
the PSO method, see Table 1. Comparable improvements are
obtained by calibrating with the CMA method. Note that the signs
of the estimated parameters are reasonable for all optimisation
methods: the first parameter is positive as an increased link length
increases the perceived costs, while the second parameter is
negative because in case the link is a reserved bikeway then the
perceived link cost is reduced. However, the parameter vectors
from the different optimisation methods vary considerably because
each method does apparently find different local minima of the
objective function. An increase of the population could improve
the results, forcing the algorithms to find the same, global minima
for all methods.

Successively only PSO has been considered to perform further
calibrations with different parameter vectors.

In general, it has been found that a parameter space greater than
three dimensions did not improve the results, or the algorithm gets
trapped in an insignificant local minimum. This limitation may be
overcome by optimising the algorithm-internal parameters, as
described in [21], which would be the first step to pursue in future
works.

Starting with two dimensions, the general link cost attribute
x′a = La, Xa  has been tested, where Xa has taken one of the
following link attributes: exclusive bikeways, bikeways with
pedestrian access, road width, maximum allowed speed, low-
priority roads, presence of traffic lights, number of entering roads
at the entry node of the link and number of incoming roads from
the right side. The outcome has been that all attributes but the
‘exclusive bikeway’ attribute showed only minor improvements of
the overlap. It could not be clarified why the optimiser has not been
sensible to many of the tried road attributes. It may be due to
inconsistent network information (for example intersections with
minor, irrelevant roads), or the optimisation is not able to identify
the parameters due to the roughness of the objective function. Note
that slopes have not been considered as they play a marginal role in
most parts of Bologna, but may be relevant in hilly cities. The
attribute which delivered the best results remained the presence of
exclusive bikeways.

For the following investigation, two different attribute vectors
have been taken into consideration: the attribute vector with a
constant exclusive bikeway xa

C = La, Ba ′  and xa
P = La, LaBa ′

where the exclusive bikeway attribute is proportional to the link
length La, in accordance with other studies [4, 8, 27].

The calibration of the link-cost functions with both attribute
vectors and for different data sets is summarised in Table 2. For
example, the calibration with attribute vector xa

C using the GPS
traces from ECC 2016 achieved a minimum objective function of
−0.39468, which means that 39% of the length of all model routes
do overlap with the effectively chosen route.

In general, the overlaps for the two attribute vectors xa
C and xa

P

are similar for the same data set, where the attribute vectors xa
P

generally result in slightly better overlaps. However, the different
data sets show considerable differences in overlap and
improvements with respect to the shortest distance routing. The
parameter vectors β

^
 calibrated for different years using attribute

vectors xa
C are similar in magnitude. The parameter vectors using

attribute vectors xa
P are more variable, especially the 2017 data set

shows diverse parameters with respect to the other data sets. As the

Fig. 2 Bologna SUMO transport network (in blue), overlapped with GPS
traces from the ECC (yellow) recorded in 2015. The graphics are generated
by the GUI from SUMOPy

 
Table 1 Link cost calibration results. All stochastic
optimisation methods use a population size of 26 as
recommended by the Stochopy documentation [17] for a two-
dimensional optimisation problem
Method β

^
Calibrated with

ECC 2014
z β

^
 ECC

2014

Improvement ECC
2014, %

DE [1.5314, −0.449] −0.44356 16.72
PSO [0.2429, −0.4289] −0.46227 21.65
CMA [0.7156, −0.1216] −0.45963 20.96
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first parameter of β
^
 for BM 2017, using xa

P, is close to the
parameter boundary of 2.0, this boundary has been extended to 5.0
for this particular estimation. However the extended parameter
space did not result in an improvement of the overlap. Note that the
objective function is spiky and even a close point in the parameter
space may result in a very different overlap. The surface of the

objective function seems to be even rougher than suggested in
Fig. 1 because its relatively low space resolution has a smoothing
effect.

In an attempt to further increase the overlap, another attribute
has been added: the attribute vector xa

P = La, LaBa, LaWa ′ has
been used, where Wa corresponds to the road width of link a. The
parameter vector obtained from calibration with data set ECC 2014
becomes β

^
′ = 1.1851, − 0.2521, 4.0629  resulting in a

z β
^

= − 0.4610, which is marginally below the overlap found
without considering the road width. Running the same calibration
with the BM 2017 data set, the parameters
β
^
′ = 1.1614, − 0.2364, 4.1972  have been obtained and

z β
^

= − 0.47987, which is slightly better than the overlap using
the cost function without the road width. Also, note that the two-
parameter vectors are similar.

Before interpreting these results it is interesting to look into
some statistical analysis of the improved overlaps. The relative
overlap z~i of a single route i by can be defined by the overlapping
length over the total route length, hence

z~i β =
Qi β

∑a ∈ ri
La

⋅ (2)

The following analysis refer to the data set ECC 2016 calibrated
with xa

P (link length proportional bikeway attribute). Other data sets
showed qualitatively the same results. The frequency of the routes
over the relative overlap is shown in Fig. 3, for both models: the
simple shortest path model and the calibrated link cost model. The
figure shows clearly that using the simple shortest distance model,
there is a high share of trips with low overlap (green distribution
below 40%). Instead, with the calibrated link cost model, there are
more routes with high relative overlaps (red distribution).
However, even with the calibrated link cost model, there is an
almost even distribution of trips from zero to total overlap, with a
reduced frequency at the total overlap z~i = 1 .

It is further interesting to ask whether this improvement in
relative overlap depends on the route length. The improvement in
overlap for each trip can be quantified by Δi = z~i β

^
− z~i βSP . The

average improvements over the route length are shown in Fig. 4 for
the data set ECC 2016. It can be seen that there is no improvement
in overlap for short distances of less than ∼500 m. This can be
explained by the fact that simple short routes have typically few
route choices and deviations from the shortest path are less likely.
Otherwise, it appears from Fig. 4 that the improved overlap with
the calibrated link costs are independent of the route length. These
results are confirmed applying the same analysis to all other data
sets.

The question of whether the proposed link-cost model is
transferable can be addressed in two approaches: 

(i) If the parameter vectors calibrated with different data sets from
different scenarios are similar, then it can be assumed that the

Table 2 Link cost calibration results using both attribute vectors xa
C and xa

P and improvements with respect to the shortest path
routing, see text for definitions
Data set, year Attribute vector type β

^
 (transposed) z βSP z β

^ Improvement over shortest path, %

ECC, 2014 xa
C [0.3031,  − 1.1545] −0.3800 −0.4407 15.98

ECC, 2014 xa
P [0.2429,  − 0.4289] — −0.4623 21.65

ECC, 2015 xa
C [0.5857,  − 1.6071] −0.3305 −0.3807 15.19

ECC, 2015 xa
P [0.2050,  − 1.2343] — −0.3887 17.62

ECC, 2016 xa
C [0.2018,  − 1.3182] −0.3269 −0.3947 20.74

ECC, 2016 xa
P [0.6539,  − 0.1969] — −0.4274 30.74

BM, 2017 xa
C [0.1992,  − 1.2397] −0.3775 −0.4644 23.02

BM, 2017 xa
P [1.9991,  − 0.3522] — −0.4733 25.38

Population size equals 26 for all calibrations.
 

Fig. 3 Route frequencies of the relative overlaps z~i β  using the bin width
of 0.01. The green distribution represents the routes modelled with the
simple shortest path parameters z~i βSP , while the red distribution is

modelled with the calibrated link cost function z~i β
^

 using β
^

  = [0.6539, − 
0.1969]’. The dark area represents the intersection of both distributions.
The green vertical bar shows the negative objective function with shortest
distance z βSP  while the red vertical bar shows the negative objective

function z β
^

. Calibrated with data set ECC 2016 and attribute vector xa
P

 

Fig. 4 Overlap improvement Δi over route length (m). The overlap
improvements have been averaged within length intervals of 100 m.
Calibrated with data set ECC 2016 and attribute vector xa

P
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model is transferable. Looking at Table 2 one can see that the
parameters calibrated with the same attribute vectors are similar –
the parameters calibrated with xa

C are identical in sign and similar
in magnitude; the parameters calibrated with xa

P differ more, but
have the same size and are in the same order of magnitude. The
differences can be explained, in part that the data sets are different
(e.g. different participants) and in part that the algorithm converged
into different local minima.
(ii) The model calibrated for ECC 2016 has been applied to other
data sets and networks from different years (ECC 2014, ECC 2015,
ECC 2016 and BM 2017). Table 3 summarises the outcomes and
improvements. The improvements between 16 and 25% of
scenarios from four consecutive years show that the link cost
model is transferable. Note that not only the data sets but also the
network has changed throughout the years as new bikeways have
been constructed and added to the model. As the cost-function has
been calibrated for the year 2016, it is obvious that ECC 2016
results in the highest improvement with respect to shortest path
routing.

4Conclusions
A novel calibration method has been proposed that allows to
determine a link cost function for cyclists based on routes from
map-matched GPS traces. The link costs have been calibrated and
validated with an OpenStreetmap-based network from Bologna,
Italy, and GPS-traces recorded in four consecutive years.

The main result has been that the calibration method can
improve the correctness of bicycle routing by approximately 16–
30% in terms of overlapping route length between the modelled
and effective route, with respect to the simple shortest path. With
the calibrated link costs, the relative overlaps are approximately
equally distributed from zero (no overlap) to one (complete
overlap), while a simple shortest path routing generates a higher
share of routes with low overlap between shortest route and
effectively chosen route. It has further been shown that the
improvements in overlap do not depend on the route length, except
for routes shorter than ∼500 m.

There is strong evidence that the obtained link cost functions
are transferable to three different data sets from different years but
from the same city, Bologna. This means the same link cost
function may be usable for deterministic or stochastic traffic
assignments in other cities. However, the present method does not
estimate the dispersion parameter needed to perform stochastic
traffic assignments.

In comparison with conventional, likelihood-function based
calibration methods, the present calibration method does not
require route choice set generation. However, one important
disadvantage is the impossibility to determine p values which
would allow validating the significance of single model
parameters.

One of the biggest current restriction of the employed stochastic
optimisation methods is their poor convergence for parameter
spaces greater than three. Adding a third attribute to the cost
function has hardly improved the overlap. In future research, the
objective function could be smoothed by spatial filtering with the
effect that the number of local minima is reduced. This would

improve the speed of convergence and allow the consideration of
more than three-parameter dimensions. Another possibility is to
optimise the parameters of the stochastic optimisation algorithms
such as population size and spread of the particle population.
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