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Wintherturerstrasse 190, CH-8057 Zürich, Switzerland
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1 Introduction

The growing precision of high energy collider experiments puts increasing strain on our

ability to make reliable theoretical predictions. Standard techniques for the computation

of perturbative scattering amplitudes often fail when applied to the multi-loop and multi-

leg processes currently produced in abundance at the LHC. Constantly evolving methods

have led to differential predictions at next-to-next-to-leading (NNLO) for 2 → 2 scattering

and N3LO for 2→ 1 processes.1

The need to match experimental precision has led to increasing efforts from the the-

oretical community to develop new techniques for 2 → 3 predictions at NNLO. The first

hurdle has been to compute unknown two-loop amplitudes in which the analytic and alge-

braic complexity causes conventional approaches to integral reduction to fail. Major new

advances that exploit numerical evaluations over finite fields [3–5] have recently produced

the first analytic results for five-parton amplitudes in the leading colour approximation.

Combined with the recently computed analytic master integrals [6, 7] using the canonical

basis approach to differential equations, a form suitable for combination with the unre-

solved contributions to the cross section has been obtained [8–11].

The production of a W -boson together with jets at hadron colliders are important

signatures that can be used as precision probes of the Standard Model. QCD corrections

to W+jets have been a traditional testing ground for new technology. pp → W + j was

among the first 2 → 2 process computed at NLO [12]. The amplitudes for pp → W +

2j were computed using the recently developed on-shell unitarity method [13–16] and

were implemented into MCFM to provide differential cross-section predictions [17]. NLO

1For recent summaries of the state-of-the-art see [1, 2].
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results for associated W -boson production with three or more jets are accessible through

automation and the use of the generalised unitarity method [18–23].

NNLO corrections to pp→W + 2j will open up possibilities for further precision tests

of the Standard Model. The two-loop amplitudes are obvious targets for the new technology

developed for massless five-point amplitudes, yet the off-shell vector boson adds an extra

scale and therefore a new layer of complexity. The first step towards a complete analytic

computation is to set up a procedure that could evaluate the amplitudes numerically using

rational kinematics. It is this benchmark evaluation of the amplitudes that is the subject

of this paper.

The computation of higher order corrections to perturbative scattering amplitudes is a

well studied problem. Amplitudes with two or more loops have relied on the technology of

integration-by-parts (IBP) [24, 25] reduction, which in recent times has involved following

Laporta’s algorithm [26], together with numerical or analytic methods for the evaluation of

the resulting basis of master integrals. For these multi-scale basis integrals with massless

internal propagators the differential equation technique [27–29] has been employed to find

analytic expressions, most recently for the complete set of planar [7, 8] and non-planar

integrals [30–34]. For the case, in which the amplitudes considered here fall, only one

of the three planar families has been evaluated [6]. Combining the master integrals into

complete amplitudes requires the solution of increasingly complicated linear systems of

IBP equations. Considerable effort has led to a variety of efficient solutions [3, 35–38] and

public implementations [39–43]. Applications to five-particle problems have been possible

though yielded large IBP reduction tables [44, 45]. In this paper, we only perform the IBP

reduction numerically over finite fields in order obtain the coefficients of the amplitude in

terms of master integrals. As shown e.g. in refs. [5, 9], when combined with functional

reconstruction techniques, this approach also allows to directly reconstruct analytic results

for amplitudes, sidestepping the need of computing and using large analytic IBP tables,

which are often significantly more complicated.

Another important ingredient has been the development of efficient methods to con-

struct on-shell integrands and integral coefficients. Integrand reduction techniques [46]

combined with the use of a Feynman diagram approach or generalised unitarity have been

very successful for the computation of one-loop amplitudes, in particular to construct scalar

integral coefficients numerically. These techniques have been extended to two loops [47–53]

and methods to employ unitarity cuts [13, 14] to build amplitudes by directly incorporating

IBP decomposition have been established [37, 54–57].

The first steps towards helicity amplitudes for five-point amplitudes were taken through

numerical evaluations of two-loop five point amplitudes in QCD using modular arith-

metic [58–61]. These algorithms have been generalised to allow for a full reconstruction

of the coefficients of the pentagon functions classified in [7] leading to an analytic form of

the single-minus helicity amplitudes [9] and the complete leading colour five-parton helicity

amplitudes within the numerical unitarity framework [10, 11]. The success of computa-

tions in the planar sector has shifted focus to the non-planar sector of massless two-loop

five-point amplitudes with a series of new results in super-symmetric Yang-Mills [32, 62]

and gravity [63, 64] as well as in the all-plus sector of QCD [65].

– 2 –
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In this paper we consider the case of planar amplitudes with an off-shell external leg.

We apply the recently developed technology for the computation of two-loop five-particle

amplitudes using sampling of Feynman diagrams over finite fields. Using a modular ap-

proach, recently presented as part of the FiniteFlow algorithms [5], we are able to numer-

ically evaluate the diagrams and perform an integrand reduction, subsequently reducing

the resulting integrals using integration-by-parts identities. Since the complete set of ana-

lytic master integrals is not known, some of the integrals were evaluated numerically using

sector decomposition [66–68]. Analytic results for the following classes of master integral

are available: one of the three families of the off-shell five-point pentagon-box [6] and four-

point functions with one [69] and two off-shell [70–74] legs. For master integral topologies

for which a numerical evaluation through sector decomposition is challenging, we identified

a basis of master integrals using local numerators [75, 76] with simplified divergence struc-

ture and therefore easier numerical evaluation. We consider both the qQ̄Qq̄′ν̄` and qggq̄′ν̄`

sub-processes in our computation where the decay of the W -boson is also incorporated.

We describe our integrand reduction setup that is subsequently interfaced to IBP

reduction in section 2. In section 3 we discuss the structure of the leading colour W+4

parton amplitude at two loops including its singularity structure. The identification of a

master integral basis with local numerator insertions is elaborated in section 4. Finally,

we present numerical benchmark results for both sub-processes in section 5 and draw our

conclusions in section 6.

2 Calculational framework

The framework described in this section is a modification of the numerical algorithm for

two-loop amplitudes presented in [9] to allow for the use of integrands built from Feyn-

man diagrams as an alternative to generalised unitarity cuts in six dimensions. While

the unitarity method can be very efficient, a fully numerical approach, with rational re-

construction, is also able to avoid the traditional problems associated with the Feynman

diagram approach.

We start by generating a set of Feynman diagrams using Qgraf [77] and performing

colour decomposition to separate the colour parts of the amplitude from the kinematic

parts that depend only on external momenta {p}. We obtain

A(2)
n ({p}) =

∑
c

Cc A(2)
n,c({p}), (2.1)

where A(2)
n ({p}) is the two-loop colour-dressed n-point amplitude, A

(2)
n ({p}) is the two-loop

colour-stripped n-point amplitude and Cc is the corresponding colour factor. The colour-

stripped amplitude is made up of numerator functions, NT ({k}, {p}), and a set of loop

propagator denominators, Dα({k}, {p}), for each diagram topology T

A(2)
n ({p}) =

∫ 2∏
i=1

ddki

iπd/2e−εγE

∑
T

NT (ds, {k}, {p})∏
α∈T Dα({k}, {p}) , (2.2)

– 3 –
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where ki is the loop momenta, d = 4 − 2ε is the space-time dimension and ds = gµµ is the

spin dimension. The loop amplitude in t’Hooft-Veltman (HV) scheme [78] can be obtained

by setting ds = d, while the Four-Dimensional-Helicity (FDH) scheme [79] can be achieved

by setting ds = 4. Each numerator function, NT (ds, {k}, {p}), that contains numerators

of Feynman diagrams that share the same diagram topology, is processed by applying the

t’Hooft algebra. This is carried out with the help of Form [80, 81] and the Spinney

library [82]. In general, the explicit functional dependence of the numerator function at

this point is given by

NT (ds, {k}, {p}) = NT

(
ds, ki.kj , µij , ki.qj , qi.qj , ū(pi)f(k, q)u(pj)

)
, (2.3)

where qi = {pi, εi} (εi is the polarisation vector of the external vector boson) and

ū(pi)f(k, q)u(pj) is a spinor string made up of slashed momenta (/qi and /ki). The

d-dimensional loop momenta can be decomposed into a four-dimensional part and an extra-

dimensional part

ki = k̄i + k̃i. (2.4)

Due to rotational invariance in the extra dimensions, k̃i can only appear in the numerator

function as µij = −k̃i · k̃j .
We obtain helicity amplitudes by specifying the helicity/polarisation of each external

particles and we further parametrise the dependence on the external kinematics by using

momentum twistor variables, xi [83]. This allows us to express the spinor products of

external momenta (〈ij〉, [ij]) and Mandelstam invariants (sij) uniformly in terms of mo-

mentum twistor variables, where momentum conservation and spinor product relations

like Schouten identities are already built in. At this point we are considering the two-loop

n-point helicity amplitude

A(2),h
n ({p}) =

∫ 2∏
i=1

ddki

iπd/2e−εγE

∑
T

Nh
T (ds, {k}, {p})∏

α∈T Dα({k}, {p}) , (2.5)

where the explicit functional dependence on the helicity-dependent numerator function

Nh
T ({k}, {p}) is

Nh
T (ds, {k}, {p}) = Nh

T

(
ds, xi, ki.kj , k̄i.pj , µij , 〈pa|k̄i|pb], 〈pa|k̄i|k̄j |pb〉, [pa|k̄i|k̄j |pb]

)
. (2.6)

In processing the algebraic expressions in eqs. (2.1), (2.2) and (2.5), we have used in-house

Form [80, 81] and Mathematica scripts.

In this form the helicity-dependent numerator functions in eq. (2.5) must be re-

expressed in terms of integral families that can later be reduced using IBP equations.

To achieve this we apply an integrand reduction algorithm to obtain

A(2),h
n ({p}) =

∫ 2∏
i=1

ddki

iπd/2e−εγE

∑
T

∆h
T (ds, {k}, {p})∏

α∈T Dα({k}, {p}) , (2.7)

where ∆ is the irreducible numerator for an independent topology T . In order to determine

∆, we first need to construct a basis of irreducible scalar products (ISPs). We opt to use

a basis of ISPs in terms of auxiliary propagators that is suitable for IBP reduction.

– 4 –
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To build an IBP compatible integrand basis, we define an integral family

Ga1a2a3a4a5a6a7a8a9a10a11 =

∫
ddk1

iπd/2e−εγE
ddk2

iπd/2e−εγE

× 1

k2a1
1

1

(k1 − p1)2a2

1

(k1 − p1 − p2)2a3

1

(k1 + p4 + p56)2a4

× 1

k2a5
2

1

(k2 − p56)2a6

1

(k2 − p4 − p56)2a7

1

(k1 + k2)2a8

× 1

(k1 + p56)2a9

1

(k2 + p1)2a10

1

(k2 + p1 + p2)2a11
, (2.8)

where pij···k = pi + pj + · · · + pk. Up to cyclic permutations of the external legs, all

integrals appearing in eq. (2.7) can be written in the form of eq. (2.8). We follow the

conventions used in [9] where negative exponents, ai < 0, correspond to the ISPs of the

irreducible numerator, ∆h
T . The irreducible numerators are the most general polynomials

in the ISPs with exponents bounded by renormalisability conditions. As an example, the

parametrisation for the two-mass double-box topology is

∆h

(
k1k2 1

25

4 3

6
)

=
∑

ch(1,a2,1,1,1,1,1,1,a9,a10,a11)(k1 − p1)−a2(k1 + p56)−2a9

×(k2 + p1)−2a10(k2 + p1 + p2)−2a11 , (2.9)

where the figure represents the topology T . The bounds on the exponents are

−4 ≤ a2 + a9 ≤ 0, (2.10)

−4 ≤ a10 + a11 ≤ 0, (2.11)

−6 ≤ a2 + a9 + a10 + a10 ≤ 0. (2.12)

The helicity-dependent coefficients are functions of the spin dimension, ds, and the external

kinematics, ch = ch(ds, {p}). To determine the coefficients we express the numerators in

terms of the propagators and ISPs. This is achieved by expanding the loop momenta in

terms of external momenta

k̄µi =

4∑
j=1

aijp
µ
j . (2.13)

The coefficients of the spanning vectors, pj , are functions of the inverse propagators and

ISPs, aij = aij(Dα, ISPs). aij can be determined by solving a linear system of equations

constructed by contracting eq. (2.13) with the spanning vectors, pj . All variables in the

numerators eq. (2.6) can then be expressed in terms of these coefficients. For example

〈pa|k̄i|pb] =
4∑
j=1

aij〈pa|pj |pb], (2.14)

µij = −1

2

(
(ki + kj)

2 − k2
i − k2

j

)
+

4∑
m=1

4∑
n=1

aimajn pm · pn. (2.15)

– 5 –
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The last relation is obtained by squaring eq. (2.4). The variables are straightforwardly

evaluated on generalised unitarity cuts by setting all propagators to zero without relying

on explicit loop momenta solutions to the cut constraints. We observe that this form is

the starting point for the derivation of the Baikov representation [84], which is obtained

by integrating out angular dependence in the space transverse to the external momenta.

We note that the change of variables to rewrite the numerators in terms of propagators

could be performed directly. However, the choice to apply the substitution using the

integrand reduction approach breaks the problem into a series of linear systems with fewer

parameters, rather than one large system.

At this point we can solve for the coefficients of the integrand parametrisations by

equating them to the diagram numerators. Using the two-mass double-box as example

again, we have the cut equation

∆h

(
k1k2 1

25

4 3

6
)

+

∆h

(
k1k2

1

2

34

5
6

)
(k1 − p1)2

= Nh

(
k1k2 1

25

4 3

6
)

+

Nh

(
k1k2

1

2

34

5
6

)
(k1 − p1)2

, (2.16)

which is valid only when both sides are evaluated on the hepta-cut for the two-mass double

box, i.e. Dα = 0 for α = 1, 3, . . . , 8.

After setting up the integrand reduction system, we write the helicity amplitude as a

linear combination of integrals in the integral family of eq. (2.8),

A(2),h
n ({p}) =

∑
a

cha(xi) Ga, (2.17)

where we sum over tuples a = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11). At this stage IBP

reduction can be applied to the integrals Ga. This basis choice allows for a simple interface

to the IBP reduction. The integrand is never reconstructed analytically but only sampled

numerically. The final results are independent of the particular parametrisation and there-

fore the exact form of the integrand is not the main concern here. Nevertheless, alternative

representations of the integrand, e.g. [85], may lead to improved efficiency.

The integrals with non-zero coefficients after numerical sampling of the integrand are

reduced to a set of master integrals via IBP identities. The IBP relations are generated in

Mathematica using the Laporta approach [26] with the aid of LiteRed [39], and solved

numerically over finite fields within the FiniteFlow framework [5]. We can finally write

the helicity amplitudes in the master integral basis Jk

A(2),h
n ({p}) =

∑
k

cIBP,h
k (xi, ε) Jk({p}, ε). (2.18)

3 Planar two-loop W plus four parton scattering

The number of Feynman diagrams contributing to qQ̄Qq̄′ν̄` and qggq̄′ν̄` processes at lead-

ing colour are 210 and 603, respectively, and the leading colour partial amplitudes are

– 6 –
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extracted according to,

A(L)(1q, 2Q̄, 3Q, 4q̄′ , 5ν̄ , 6`) = nLg2
sg

2
W δ ī2

i1
δ ī4
i3

A(L)(1q, 2Q̄, 3Q, 4q̄′ , 5ν̄ , 6`), (3.1)

A(L)(1q, 2g, 3g, 4q̄′ , 5ν̄ , 6`) = nLg2
sg

2
W

[
(T a2T a3) ī4

i1
A(L)(1q, 2g, 3g, 4q̄′ , 5ν̄ , 6`) + (2↔ 3)

]
,

(3.2)

where n = mεNcαs/(4π), αs = g2
s/(4π) and mε = i(4π)εe−εγE . gs and gW are the strong

and weak coupling constants respectively. We note that the vector boson only couples to

the quark line connecting q and q̄′ and does not couple to the equal flavour quark pair Q, Q̄.

We choose a rational parametrisation of the massless 2 → 4 kinematics using the

momentum twistor parametrisation [83]

Z =


1 0 y1 y2 y3 y4

0 1 1 1 1 1

0 0 0 x5
x2
x6 1

0 0 1 1 x7 1− x8
x5

 , (3.3)

where yi =
∑i

j=1

∏j
k=1

1
xk

and

x1 = s12, x2 = −〈23〉〈41〉
〈12〉〈34〉 , x3 = −〈34〉〈51〉

〈13〉〈45〉 , x4 = −〈45〉〈61〉
〈14〉〈56〉 ,

x5 =
s23

s12
, x6 = −〈5|3 + 4|2]

〈51〉[12]
, x7 =

〈5|(2 + 3 + 4)(2 + 3)|1〉
〈51〉s23

, x8 =
s123

s12
. (3.4)

We stress that while we generate a complete parametrisation for the 2 → 4 scattering

process, analytic expressions could be obtained with only six independent parameters since

the decay of the W boson completely factorises. Since it is easy to generate a rational

parametrisation for n-particle scattering of massless particles, it is simplest to start from

a configuration including the decay of the W boson.

The leading colour partial amplitude is passed through an integrand reduction stage

which projects onto a basis of 453 topologies with irreducible numerators written into the

basis of the 15 maximal cuts shown in figure 1. The remaining integrals are then passed

through a Laporta style IBP reduction to find a basis of 202 master integrals (including

the 5 cyclic permutations). The distinct master integral topologies are shown in figures 2

and 3. The most complicated integrals that need to be reduced are rank 5 pentagon-boxes,

e.g. G11111111−3−1−1 according to the notation defined in eq. (2.8).

Once the amplitude is decomposed in terms of master integrals and the evaluations

of master integrals are available (either analytically or numerically), we can perform a

Laurent expansion in the dimensional regularisation parameter, ε. The ε-expanded partial

amplitude contains a divergent part, manifested by the poles in ε, and a finite part. The

infra-red (IR) divergent part of the partial amplitude, obtained after removing the ultra-

violet (UV) divergences by introducing a set of counter-terms, is universally known [86–89].

– 7 –
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W

W

W

W

W

W

W

W

W

A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 1. Independent maximal cut topologies contributing to planar W + 4 parton scattering at

two-loops. The full set of 15 maximal cuts can be obtained by including 2 permutations of A1, A3,

B1, B2, C1 and C2 topologies.

The pole structure of the unrenormalised amplitude in the HV scheme at one and two

loops is given by

P(1) = 2I1(ε) +
b0
ε
, (3.5)

P(2) = 2I1(ε)

(
Â(1) − b0

ε

)
+ 4I2(ε) +

2b0
ε
Â(1) − b20

ε2
+
b1
2ε
, (3.6)

where Â(1) is the unrenormalised one-loop amplitude normalised to the tree-level amplitude.

The I2(ε) operator is defined by

I2(ε) = −1

2
I1(ε)

[
I1(ε) +

β0

ε

]
+

N(ε)

N(2ε)

[
β0

2ε
+
γcusp

1

8

]
I1(2ε) +H(2)(ε), (3.7)

while the I1(ε) operators for the W + 4 parton process at leading colour are

IqQ̄Qq̄
′ν̄`

1 (ε) = −Nc
N(ε)

2

(
1

ε2
+

3

2ε

)[
(−s12)−ε + (−s34)−ε

]
, (3.8)

Iqggq̄
′ν̄`

1 (ε) = −Nc
N(ε)

2

{(
1

ε2
+

5

3ε

)[
(−s12)−ε + (−s34)−ε

]
+

(
1

ε2
+

11

6ε

)
(−s23)−ε

}
,

(3.9)

– 8 –
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(2, 3) (1, 3) ∗ (2, 3) ∗

(2, 3) ∗ (2, 3) (1, 3)

(2, 1) ∗ (1, 1) ∗

(2, 2) (2, 2) (1, 6) ∗

(2, 2) (1, 2) ∗ (2, 2) ∗ (2, 1) ∗

Figure 2. Master integrals for leading colour W + 4 parton scattering at two loops with five

external legs. (a, b) represents the number of crossing of external legs (a) and the number master

integral for a given topology (b). A massless (massive) external leg is indicated by a single (double)

line external leg. The ∗ sign identifies master integral topologies that are not known analytically.
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(2, 2) (2, 2) (2, 3) (4, 2)

(4, 1) (4, 1) (4, 1) (4, 1)

(2, 1) (4, 1) (2, 1)

(1, 1) (2, 1) (2, 2) (4, 2) (1, 5)

(4, 1) (4, 1) (4, 1) (4, 1) (2, 1) (2, 2)

(6, 1) (3, 1) (3, 1)

(3, 1) (12, 1) (3, 2) (6, 1) (4, 1)

(6, 1) (6, 1)

Figure 3. Master integrals for leading colour W + 4 parton scattering at two loops with four

external legs or fewer. (a, b) represents the number of crossing of external legs (a) and the number

master integral for a given topology (b). A massless (massive) external leg is indicated by a single

(double) line external leg. All master integral topologies shown are known analytically.
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where N(ε) = eεγE/Γ(1− ε) and

H
(2)

qQ̄Qq̄′ν̄`
(ε) =

1

16ε

{
4γq1 − γcusp

1 γq0 +
π2

4
b0γ

cusp
0 CF

}
, (3.10)

H
(2)
qggq̄′ν̄`(ε) =

1

16ε

{
2 (γq1 + γg1)− 1

2
γcusp

1 (γq0 + γg0) +
π2

8
b0γ

cusp
0 (CF + CA)

}
. (3.11)

Note that the H
(2)

qQ̄Qq̄′ν̄`
(ε) and H

(2)
qggq̄′ν̄`(ε) functions are given in the leading colour limit.

The β function coefficients and anomalous dimensions without the contribution from closed

fermion loops Nf are

β0 =
11

3
CA, (3.12)

β1 =
34

3
C2
A, (3.13)

γg0 = − 11

3
CA, (3.14)

γg1 = C2
A

(
−692

27
+

11π2

18
+ 2ζ3

)
, (3.15)

γq0 = − 3CF , (3.16)

γq1 = C2
F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−961

54
− 11π2

6
+ 26ζ3

)
, (3.17)

γcusp
0 = 4, (3.18)

γcusp
1 =

(
268

9
− 4π2

3

)
CA, (3.19)

where CA = Nc, CF = (N2
c − 1)/(2Nc).

With the pole structures available, we can check that the divergent part of the two-

loop amplitude agrees with the predicted UV and IR poles. On the other hand, we can

obtain the so-called two-loop finite remainder by subtracting the UV and IR poles from

the two-loop amplitude where the pole structure in eq. (3.6) is expanded to O(ε0). The

analytic form of the finite remainder is in general much simpler than the finite part, as

demonstrated in [9–11, 65].

4 Local master integrals

The master integrals appearing in the two-loop leading colour qQ̄Qq̄′ν̄` and qggq̄′ν̄` am-

plitudes, that are not known analytically, are evaluated numerically using sector decompo-

sition [66–68]. In general, it is challenging to obtain results with good numerical accuracy

for complicated master integral topologies (e.g. topologies with 6, 7 or 8 propagators in

figures 2 and 3) within a reasonable amount of time, even for an evaluation in the Eu-

clidean region. Having numerical accuracy under control is particularly essential when

large cancellations occur between different terms in the amplitude. One way in which this

can be achieved is to use a basis of master integral with local numerator insertions [75, 76]

to regulate divergences. This is the approach we explore in this work. Another approach

– 11 –
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well suited to numerical evaluation is to use a quasi-finite basis of integrals [90, 91]. We

did not attempt to compare the two approaches but note that at least two factors are

involved: firstly, in the reorganisation of the amplitude through the change of basis and

secondly, the improved convergence of the resulting master integrals when evaluated with

sector decomposition.

As an example, we consider one of the master integral topologies with 8 propagators,

A1 pentagon-box topology in figure 1. There are three master integrals for this topology

I

(
k1k2

1

2

34

5
6

)[
1
]
, I

(
k1k2

1

2

34

5
6

)[
(k1 + p56)2

]
, I

(
k1k2

1

2

34

5
6

)[
(k2 + p1)2

]
, (4.1)

or

G11111111000, G11111111−100, G111111110−10, (4.2)

labelled according to eq. (2.8). In eq. (4.1), we use a notation for the integral with a

numerator insertion N(ki, pi, µij)

I
(
T
)[
N(ki, pi, µij)

]
=

∫
ddk1

iπd/2e−εγE
ddk2

iπd/2e−εγE
N(ki, pi, µij)∏
α∈T Dα(ki, pi)

, (4.3)

where T is the diagram topology that we will specify by drawing it, and Dα is a set

of massless propagator denominator for a given topology T . The Laurent expansion for

those master integrals starts at O(ε−4) for G11111111000 and O(ε−3) for G11111111−100 and

G111111110−10, hence, getting accurate numerical results for the finite part is a demanding

task. Here we follow the notation used in [92] where the local numerators were applied to

six-gluon all-plus helicity amplitudes in Yang-Mills theory. For the master integral topology

under consideration, we choose the following basis of master integral that exhibits improved

IR behaviour

I

(
k1k2

1

2

34

5
6

)[
〈4|k2|p56|4〉µ11

]
,

I

(
k1k2

1

2

34

5
6

)[
[4|k2|p56|4]µ11

]
, (4.4)

I

(
k1k2

1

2

34

5
6

)[
tr−(1(k1 − p1)(k1 − p12)3)〈4|k2|p56|4〉

]
,

where tr±(ijkl) = 1
2 tr((1 ± γ5)/pi/pj/pk/pl). The first two integrals in eq. (4.4) evaluate to

O(ε) and do not contribute to the two-loop amplitude, while the last integral is finite.

Note that, for this topology the master integral coefficients do not contain any poles in ε,

therefore, the master integrals need to be expanded to O(1). To evaluate the last integral in

eq. (4.4) using sector decomposition method, we first need to write the numerator insertion

in terms of scalar products and momentum twistor variables (ki · kj , ki · pj , xi) using loop

momentum decomposition given in eqs. (2.13)–(2.15)

I

(
k1k2

1

2

34

5
6

)[
tr−(1(k1 − p1)(k1− p12)3)〈4|k2|p56|4〉

]
= I

(
k1k2

1

2

34

5
6

)[
f(ki · kj , ki · pj , xi)

]
.

(4.5)
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T N(ki, pi, µij) δ1 δ2 Crossing

k1k2
1

2

34

5
6

Ω2;4|56 µ11 ε 1

(1↔ 4, 2↔ 3)Ω∗2;4|56 µ11 ε 1

Ψ1;1|2|3 Ω2;4|56 1 1

k1k2
4

5

12
6

3
Φ2;2|3 µ11 ε 1

—Φ∗2;2|3 µ11 ε 1

Ψ1;4|56|1 Φ2;2|3 1 1

k1k2 4

5

1
2 6

3 µ12 ε 1

(1↔ 4, 2↔ 3)Ω1;4|56 Φ2;2|3 1 1

Ω1;4|56 Φ∗2;2|3 1 1

k1k2
1

2

34

5
6 µ11 ε 1 (1↔ 4, 2↔ 3)

k1k2
1 2

34

5
6

1 ε−2 ε

—

Φ1;2|3 1 ε

Φ∗1;2|3 1 ε

Φ1;2|3 Ω2;1|56 1 ε

Φ1;2|3 Ω∗2;1|56 1 ε

Φ∗1;2|3 Ω2;1|56 1 ε

k1

k2

1 2

3

456

Ψ1;2|3|4 ε−1 ε
(1↔ 4, 2↔ 3)

Ψ∗1;2|3|4 ε−1 ε

k1

k2

3 4

5

12

6

Ψ1;4|56|1 ε−1 ε
—

Ψ∗1;4|56|1 ε−1 ε

Table 1. Master integral topologies made up of five external legs with local numerator insertions.

The topology T and numerator N(ki, pi, µij) correspond to the integral definition in eq. (4.3).

Numerator building blocks Ψ, Φ and Ω are defined in eq. (4.6). δ1 is the order at which the

expansion of the master integral starts, while δ2 the highest order in ε needed from the master

integral for the amplitude evaluation.

The integral on the r.h.s. can be directly evaluated using pySecDec [68] by passing the

whole numerator into sector decomposition algorithm. For topologies with four point

kinematics an extra stage of transverse integration is necessary to convert the integrals

into a form compatible with the sector decomposition approach.

In tables 1 and 2, we present a list of master integral topologies with local numerator

insertions, where we use the following shorthand notation for the numerator insertions

Ψi;a|b|c = tr−(a(ki − pa)(ki − pab)c),
Φi;a|b = 〈a|ki|b], (4.6)

Ωi;a|b = 〈a|ki|pb|a〉.
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T N(ki, pi, µij) δ1 δ2 Crossing

k1k2 1

2
5

4 3

6 Ω1;1|23 Ω2;4|56 1 1
(1↔ 4, 2↔ 3)

Ω1;1|23 Ω∗2;4|56 1 1

k1k2 4

52
1 6

3 Ω1;4|56 Ω2;3|12 1 1
(1↔ 4, 2↔ 3)

Ω1;4|56 Ω∗2;3|12 1 1

k1k2
2
1

34

5
6

Ω1;3|12 1 1 (1↔ 4, 2↔ 3)

k1k2

2

1

34

5
6

Ω1;1|23 1 1

(1↔ 4)

(2↔ 5, 3↔ 6)

(1↔ 4, 2↔ 5, 3↔ 6)

Table 2. Master integral topologies made up of four external legs with local numerator insertions.

The topology T and numerator N(ki, pi, µij) correspond to the integral definition in eq. (4.3).

Numerator building blocks Ψ, Φ and Ω are defined in eq. (4.6). δ1 is the order at which the

expansion of the master integral starts, while δ2 the highest order in ε needed from the master

integral for the amplitude evaluation.

We also include in tables 1 and 2 the order at which the expansion of the master integral

starts, O(δ1), the highest order in ε needed from the master integral for the amplitude

evaluation, O(δ2), as well as the list of possible permutations/crossings to obtain the full

list of master integral topologies with local numerator insertions. δ1 > δ2 indicates that

an integral does not contribute to the finite part of the amplitude, while δ1 = δ2 means

that the integral contributes only to the finite part of the amplitude. In this latter case, it

means only the leading order term in the ε expansion of the integral is required.

5 Numerical results

We select a random Euclidean phase-space point by choosing rational values in the mo-

mentum twistor parametrisation from eq. (3.3),

x1 = −1, x2 =
79

270
, x3 =

64

61
, x4 = −37

78
,

x5 =
83

102
, x6 =

4723

9207
, x7 = −12086

7451
, x8 =

3226

2287
. (5.1)

The numerical results of the leading colour partial amplitudes are obtained by evalu-

ating the master integrals in three different ways:

1. We make use of the master integral solutions that are known analytically and readily

available for evaluation in the Euclidean kinematics [6, 69].

2. Master integrals defined with the local numerator insertions, shown in tables 1 and 2,

are numerically evaluated using pySecDec [68].
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3. The remaining master integrals, which contain either one-loop squared topologies or

5 propagator or fewer two-loop topologies, are evaluated directly using Fiesta [67]

and pySecDec [68].2

Note that there is a class of four-point master integrals with two off shell legs, that are not

covered in [6], but available in [70–72, 74], where the solutions are derived in the physical

region. Instead of taking those results and perform analytic continuations to the Euclidean

region for the numerical evaluation, we choose finite local master integral bases for the

6- and 7-propagator two-loop topologies, as shown in table 2, and directly evaluate the

rest of the integrals in this class numerically.3 To assess uncertainties from the numerical

evaluations via the sector decomposition method, we perform numerical integrations with

three different random number seeds. The final results are obtained by taking the average

and the error is computed by averaging the difference among the three results.

We present the results for unrenormalised qQ̄Qq̄′ν̄` and qggq̄′ν̄` helicity amplitudes,

normalised to the tree level amplitude

Â
(2)
λ1λ2λ3λ4λ5λ6

=
A(2)

(
1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5 , 6λ6

)
A(0) (1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5 , 6λ6)

, (5.2)

with helicities λi. We can further split the amplitude into components of ds − 2

A(2)
(
1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5 , 6λ6

)
=

2∑
i=0

(ds − 2)iA(2),[i]
(
1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5 , 6λ6

)
. (5.3)

In tables 3 and 4 we display numerical evaluations of the helicity amplitudes for qggq̄′ν̄`

and qQ̄Qq̄′ν̄` channels, respectively, using the kinematic point given in eq. (5.1) for each

(ds − 2) component. In tables 5 and 6, we compare the divergent part of our numerical

results against the universal two-loop pole structure in eq. (3.6) in the HV scheme. To

obtain the two-loop pole structure of eq. (3.6) up to the single pole, we need to compute

the one-loop amplitude up to O(ε) for both the qggq̄′ν̄` and qQ̄Qq̄′ν̄` processes. The one-

loop amplitude is computed by processing the Feynman diagrams through our integrand

reduction setup, followed by IBP decomposition into the one-loop master integral basis

consisting of six bubbles, a three-mass triangle, two one-mass boxes, a two-mass easy box,

two two-mass hard boxes and a one-mass pentagon, in a similar fashion to the two-loop

case that is discussed in section 2. The O(ε) part of the two-mass easy box and one-

mass pentagon integrals are evaluated numerically using Fiesta/pySecDec, while the

rest are obtained from available analytic expressions [93, 94]. Therefore, the numerical

values quoted for the poles in tables 5 and 6 are exact up to O(ε−2). We assess the

uncertainty of the O(ε−1) part of the pole structure using the same method as in the

two-loop numerical evaluations.

2The one-loop integrals, required to O(ε2), are evaluated numerically. Since these terms do not cause

any stability issues there was no need to consider optimisation with analytic expressions.
3These integrals belong to the third type of evaluation discussed above. We see no problem in performing

the analytic continuation on the expressions for the double off-shell 2 → 2 integrals. However, since

the approach with local numerators and the sector decomposition worked with sufficient accuracy it was

unnecessary to do this for our example.
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qggq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−++++− 4.50000 -2.38581(9) 17.0943(2) 69.09(3) -137.1(3)

Â
(2),[1]
−++++− 0.00000 -0.62498(3) -147.7288(3) -347.221(9) 863.63(8)

Â
(2),[2]
−++++− 0.00000 0.00000 -0.031254(7) -3.72543(2) -65.7967(5)

qggq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−+−++− 4.50000 -2.3858(1) -16.3282(4) -1.397(3) 70.05(4)

Â
(2),[1]
−+−++− 0.00000 -0.624996(6) 0.7603(2) 4.457(1) 1.04(1)

Â
(2),[2]
−+−++− 0.00000 0.00000 -0.0312498(2) -0.025800(5) 0.72620(5)

qggq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−−+++− 4.50000 -2.38579(5) -22.18117(7) -16.113(6) 90.06(4)

Â
(2),[1]
−−+++− 0.00000 -0.625000(1) 1.131987(9) 5.7364(2) -2.1289(6)

Â
(2),[2]
−−+++− 0.00000 0.00000 -0.0312502(3) 0.005162(2) 1.21279(4)

Table 3. The numerical results of Â(2),[i] (1q, 2g, 3g, 4q̄′ , 5ν̄ , 6`) using kinematic point in eq. (5.1)

for each (ds − 2) component.

qQ̄Qq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−+−++− 2.00000 -6.00283(9) -12.7724(2) 31.869(6) 158.89(6)

Â
(2),[1]
−+−++− 0.00000 -0.583333(1) 0.96122(6) 5.2453(4) 2.853(3)

Â
(2),[2]
−+−++− 0.00000 0.00000 -0.055555 -0.240170(1) -0.25365(2)

qQ̄Qq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−−+++− 2.00000 -6.00282(8) -18.0013(1) 34.592(7) 222.52(6)

Â
(2),[1]
−−+++− 0.00000 -0.583334(1) 2.059832(8) 5.4211(2) -13.5049(5)

Â
(2),[2]
−−+++− 0.00000 0.00000 -0.055555 -0.081689(2) 1.10832(2)

Table 4. The numerical results of Â(2),[i]
(
1q, 2Q̄, 3Q, 4q̄′ , 5ν̄ , 6`

)
using kinematic point in eq. (5.1)

for each (ds − 2) component.

We additionally perform another check of our results by independently processing the

two-loop Feynman diagrams through a numerical diagram-based integrand reduction into

an integrand representation consisting of four-dimensional ISPs and the extra-dimensional

part of the loop momenta µij . The integrals containing µij are first written as dimension-

shifted integrals and all integrals appearing in the amplitude are evaluated directly using

Fiesta/pySecDec. This approach is similar to the method we employed for the numerical

evaluation of the planar two-loop five gluon amplitude [58]. The results obtained using this

method are in perfect agreement with the results reported in this paper.
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qggq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2)
−++++− 4.50000 -3.63577(3) -277.2182(7) -344.56(1) 2051.1(2)

P
(2)
−++++− 4.5 -3.63576 -277.2186 -344.569(6) —

Â
(2)
−+−++− 4.50000 -3.63581(9) -13.6826(2) 6.143(5) 66.21(7)

P
(2)
−+−++− 4.5 -3.63576 -13.6824 6.145(1) —

Â
(2)
−−+++− 4.50000 -3.63579(5) -18.79219(7) -6.633(6) 79.02(4)

P
(2)
−−+++− 4.5 -3.63576 -18.79212 -6.6303(5) —

Table 5. The numerical comparison of Â(2) (1q, 2g, 3g, 4q̄′ , 5ν̄ , 6`) with the universal pole structure

P(2) defined in eq. (3.6), using kinematic point of eq. (5.1), in the HV scheme.

qQ̄Qq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â
(2)
−+−++− 2.00000 -7.16949(9) -9.9055(2) 39.922(6) 154.79(7)

P
(2)
−−+++− 2 -7.16944 -9.9054 39.9245(8) —

Â
(2)
−−+++− 2.00000 -7.16948(8) -12.9371(1) 41.432(8) 189.53(6)

P
(2)
−−+++− 2 -7.16944 -12.9370 41.4353(6) —

Table 6. The numerical comparison of Â(2)
(
1q, 2Q̄, 3Q, 4q̄′ , 5ν̄ , 6`

)
with the universal pole structure

P(2) defined in eq. (3.6), using kinematic point of eq. (5.1), in the HV scheme.

6 Conclusions

In this article we have presented numerical results for the planar two-loop helicity ampli-

tudes for the scattering of a W -boson with four partons for the first time. This computation

is the first step towards obtaining analytic expressions using the reconstruction of rational

functions with finite field arithmetic.

A number of important steps remain to be completed in order for this to be a feasible

target. Firstly, the complete list of master integrals should be evaluated analytically since

the sector decomposition approach is still too CPU intensive for phenomenological applica-

tions. This seems a reasonable aim owing to the recent success of the planar and non-planar

pentagon functions [32–34, 62–64, 95], though the efficient numerical implementation of the

resulting analytic functions will require further study. Secondly, the coefficients of the mas-

ter integrals still have a high degree of algebraic complexity. As shown in applications to

five-parton scattering, direct reconstruction of the finite remainder after subtraction of UV

and IR poles leads to a substantial reduction in complexity [9–11].

We hope that the work presented here presents valuable information that can be used

to achieve these goals, as well as providing encouragement that they are realistic in the

near future.
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A Kinematic invariants at the benchmark phase space point

From the momentum twistor parametrisation in eq. (5.1) it is possible to evaluate all

kinematic quantities in the external momenta. Since it may be useful to have reference

values in momentum space we list here six two-particle and three three-particle invariants,

s12 = −1, s23 = − 83

102
, s34 = −41584363779551

5620028969511
,

s45 = −12273437608210253843

7292047345210578060
, s56 = −137742730207986944

607670612100881505
,

s16 = − 58362131580049744

321707971112231385
, s123 = −3226

2287
,

s234 = −14812055408288

9603846973215
, s345 = −1726859228425207273

1394067874819669335
. (A.1)

In four dimensions only eight of these are independent due to the vanishing of the Gram

determinant of the five independent momenta.
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[44] R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin,

arXiv:1802.06761 [INSPIRE].

[45] H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes

within the integration-by-parts approach, Phys. Rev. D 99 (2019) 076011

[arXiv:1805.09182] [INSPIRE].

[46] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar

integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

[47] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering

Amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

[48] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate

Polynomial Division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

[49] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic

Geometry Methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

[50] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes,

JHEP 04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

[51] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop

Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev. D 87 (2013)

085026 [arXiv:1209.4319] [INSPIRE].

[52] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop Integrand Reduction for

Dimensionally Regulated Amplitudes, Phys. Lett. B 727 (2013) 532 [arXiv:1307.5832]

[INSPIRE].

[53] P. Mastrolia, T. Peraro and A. Primo, Adaptive Integrand Decomposition in parallel and

orthogonal space, JHEP 08 (2016) 164 [arXiv:1605.03157] [INSPIRE].

[54] D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev. D 85 (2012)

045017 [arXiv:1108.1180] [INSPIRE].

[55] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012)

026 [arXiv:1205.0801] [INSPIRE].

[56] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop

Four-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. Lett. 119 (2017) 142001

[arXiv:1703.05273] [INSPIRE].

[57] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading Poles in the

Numerical Unitarity Method at Two Loops, Phys. Rev. D 95 (2017) 096011

[arXiv:1703.05255] [INSPIRE].

[58] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop

five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]

[INSPIRE].

[59] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon

Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946]

[INSPIRE].

– 21 –

https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05610
https://arxiv.org/abs/1802.06761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.06761
https://doi.org/10.1103/PhysRevD.99.076011
https://arxiv.org/abs/1805.09182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09182
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://arxiv.org/abs/hep-ph/0609007
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0609007
https://doi.org/10.1007/JHEP11(2011)014
https://arxiv.org/abs/1107.6041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.6041
https://doi.org/10.1016/j.physletb.2012.09.053
https://arxiv.org/abs/1205.7087
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.7087
https://doi.org/10.1007/JHEP09(2012)042
https://arxiv.org/abs/1205.5707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5707
https://doi.org/10.1007/JHEP04(2012)055
https://arxiv.org/abs/1202.2019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2019
https://doi.org/10.1103/PhysRevD.87.085026
https://doi.org/10.1103/PhysRevD.87.085026
https://arxiv.org/abs/1209.4319
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4319
https://doi.org/10.1016/j.physletb.2013.10.066
https://arxiv.org/abs/1307.5832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5832
https://doi.org/10.1007/JHEP08(2016)164
https://arxiv.org/abs/1605.03157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03157
https://doi.org/10.1103/PhysRevD.85.045017
https://doi.org/10.1103/PhysRevD.85.045017
https://arxiv.org/abs/1108.1180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1180
https://doi.org/10.1007/JHEP10(2012)026
https://doi.org/10.1007/JHEP10(2012)026
https://arxiv.org/abs/1205.0801
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0801
https://doi.org/10.1103/PhysRevLett.119.142001
https://arxiv.org/abs/1703.05273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05273
https://doi.org/10.1103/PhysRevD.95.096011
https://arxiv.org/abs/1703.05255
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05255
https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02229
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03946


J
H
E
P
0
9
(
2
0
1
9
)
1
1
9

[60] S. Badger et al., Applications of integrand reduction to two-loop five-point scattering

amplitudes in QCD, PoS(LL2018)006 (2018) [arXiv:1807.09709] [INSPIRE].

[61] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton

Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

[62] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for

a two-loop five-particle amplitude, Phys. Rev. Lett. 122 (2019) 121602 [arXiv:1812.11057]

[INSPIRE].

[63] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude

in N = 8 supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

[64] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop

five-particle amplitude in N = 8 supergravity, JHEP 03 (2019) 115 [arXiv:1901.05932]

[INSPIRE].

[65] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude,

Phys. Rev. Lett. 123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

[66] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent

multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

[67] A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support,

Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

[68] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,

Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[69] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[70] T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for

qq′ → V1V2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].

[71] A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for

gg → V1V2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].

[72] J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the

production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090

[arXiv:1402.7078] [INSPIRE].

[73] F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the

production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014)

043 [arXiv:1404.5590] [INSPIRE].

[74] C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop Master Integrals with the

Simplified Differential Equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114]

[INSPIRE].

[75] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop

Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[76] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[77] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279

[INSPIRE].

– 22 –

https://doi.org/10.22323/1.303.0006
https://arxiv.org/abs/1807.09709
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.09709
https://doi.org/10.1007/JHEP11(2018)116
https://arxiv.org/abs/1809.09067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.09067
https://doi.org/10.1103/PhysRevLett.122.121602
https://arxiv.org/abs/1812.11057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.11057
https://doi.org/10.1007/JHEP03(2019)123
https://arxiv.org/abs/1901.08563
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.08563
https://doi.org/10.1007/JHEP03(2019)115
https://arxiv.org/abs/1901.05932
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.05932
https://doi.org/10.1103/PhysRevLett.123.071601
https://arxiv.org/abs/1905.03733
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.03733
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0004013
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03614
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09692
https://doi.org/10.1016/S0550-3213(01)00057-8
https://arxiv.org/abs/hep-ph/0008287
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0008287
https://doi.org/10.1007/JHEP09(2015)128
https://arxiv.org/abs/1503.04812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04812
https://doi.org/10.1007/JHEP06(2015)197
https://arxiv.org/abs/1503.08835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08835
https://doi.org/10.1007/JHEP05(2014)090
https://arxiv.org/abs/1402.7078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.7078
https://doi.org/10.1007/JHEP09(2014)043
https://doi.org/10.1007/JHEP09(2014)043
https://arxiv.org/abs/1404.5590
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5590
https://doi.org/10.1007/JHEP01(2015)072
https://arxiv.org/abs/1409.6114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6114
https://doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6032
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/search?p=find+J+%22J.Comput.Phys.,105,279%22


J
H
E
P
0
9
(
2
0
1
9
)
1
1
9

[78] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[79] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop

QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271]

[INSPIRE].

[80] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys.

Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

[81] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

[82] G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors,

Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].

[83] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135

[arXiv:0905.1473] [INSPIRE].

[84] P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its

application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].

[85] J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive Unitarity, JHEP 06 (2017) 059

[arXiv:1704.05460] [INSPIRE].

[86] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427

(1998) 161 [hep-ph/9802439] [INSPIRE].

[87] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[88] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905]

[arXiv:0901.0722] [INSPIRE].

[89] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

[90] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales,

JHEP 03 (2014) 071 [arXiv:1401.4361] [INSPIRE].

[91] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop

Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].

[92] S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills

amplitudes, JHEP 08 (2016) 063 [arXiv:1606.02244] [INSPIRE].

[93] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002

[arXiv:0712.1851] [INSPIRE].

[94] C.G. Papadopoulos, Simplified differential equations approach for Master Integrals, JHEP 07

(2014) 088 [arXiv:1401.6057] [INSPIRE].

[95] D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018) 164

[arXiv:1712.09610] [INSPIRE].

– 23 –

https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22
https://doi.org/10.1103/PhysRevD.66.085002
https://arxiv.org/abs/hep-ph/0202271
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0202271
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://arxiv.org/abs/1203.6543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6543
https://arxiv.org/abs/1707.06453
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06453
https://doi.org/10.1016/j.cpc.2011.06.007
https://arxiv.org/abs/1008.0803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0803
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473
https://doi.org/10.1016/S0168-9002(97)00126-5
https://arxiv.org/abs/hep-ph/9611449
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9611449
https://doi.org/10.1007/JHEP06(2017)059
https://arxiv.org/abs/1704.05460
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05460
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439
https://doi.org/10.1088/1126-6708/2009/06/081
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
https://doi.org/10.1103/PhysRevLett.102.162001
https://arxiv.org/abs/0901.0722
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0722
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1091
https://doi.org/10.1007/JHEP03(2014)071
https://arxiv.org/abs/1401.4361
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4361
https://doi.org/10.1007/JHEP02(2015)120
https://arxiv.org/abs/1411.7392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7392
https://doi.org/10.1007/JHEP08(2016)063
https://arxiv.org/abs/1606.02244
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02244
https://doi.org/10.1088/1126-6708/2008/02/002
https://arxiv.org/abs/0712.1851
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1851
https://doi.org/10.1007/JHEP07(2014)088
https://doi.org/10.1007/JHEP07(2014)088
https://arxiv.org/abs/1401.6057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6057
https://doi.org/10.1007/JHEP05(2018)164
https://arxiv.org/abs/1712.09610
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09610

	Introduction 
	Calculational framework 
	Planar two-loop W plus four parton scattering 
	Local master integrals 
	Numerical results 
	Conclusions 
	Kinematic invariants at the benchmark phase space point

