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Wintherturerstrasse 190, CH-8057 Zürich, Switzerland
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1 Introduction

After the discovery of the Higgs boson, particle physics has entered a new, unprecedented

phase, at least in the recent decades. In spite of the fact that only a small fraction of the

expected full LHC data set has been analysed, we have already been able to confirm the

Standard Model of Particle Physics as the correct theory of Nature with unprecedented

precision and for energies that span an impressively large number of orders of magnitude.

Given this state of affairs, the apparent absence of clear signs of new physics has pushed

the particle physics community into a new era of precision physics. Indeed, by comparing

precise theoretical predictions for suitable observables with equally precise experimental

results, the discovery potential of the LHC can be pushed to energies beyond its direct

reach, increasing our chances to spot elusive signs of new physics phenomena.

Among the ingredients required to produce precise theoretical predictions for complex

observables at the LHC, the calculation of scattering amplitudes for multi-particle final

state processes has an important place. In order to match the experimental precision

of many measurements at the LHC, two-loop corrections for several processes with up

to five external particles are required. While we have a quite robust understanding of

how such calculations should be performed in perturbative quantum field theory, their

technical complexity constitutes often a major bottleneck. Indeed, in spite of the many

advancements which have already brought many previously impossible calculations within

reach, our current technology to treat multi-loop and multi-leg processes has only recently

obtained its first results for processes with more than four external legs and more work is

needed to generalise these to other processes.

There are many reasons why these processes are difficult. In this paper, we focus in

particular on one of them, which has to do with the way we usually approach the calcula-

tion of scattering amplitudes at loop orders higher than one. In fact, while at one loop the

underlying simplicity of the scattering amplitudes has allowed to develop techniques and
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automated tools to deal with these calculations, their generalisation to higher-loop orders

has revealed to be quite non-trivial. The methods of integrand reduction [1, 2] and general-

ized unitarity [3–6] have been extended beyond one loop [7–11] and used to obtain the first

analytic results for two-loop five parton amplitudes in the planar limit [12–14]. Very re-

cently, the first non-planar five-point two-loop amplitudes have also been published [15–19].

In spite of this, a lot of progress will be required before these ideas can be applied generally

to any class of processes.

An alternative approach to compute multi-loop scattering amplitudes, which is in prin-

ciple entirely general and can be applied to any process at any perturbative order, consists

in identifying Lorentz-invariant form factors, which can, in turn, be extracted from the

relevant Feynman diagrams through suitable projector operators. This method has proven

to be very successful in the calculation of a large number of lower-point (i.e. up to four

external particles) scattering amplitudes up to two and three loops in perturbative quan-

tum field theory. In spite of being very general, its applicability to multi-leg processes has

been hindered by the increasing complexity of the relevant projection operators when more

than four external particles are considered. The idea behind this method is very simple.

Given the scattering on n particles of different spin, one parametrises the corresponding

scattering amplitude in terms of a combination of scalar form factors which multiply all

possible tensor structures compatible with the symmetries of the process under consider-

ation. Since the tensors form a basis, for each of these form factors a projection operator

can be defined as a linear combination of the same tensors, whose coefficients are fixed

requiring that the projector singles out the correct form factor. Such tensor structures

are interpreted as generic d-dimensional objects and all manipulations are performed in

conventional dimensional regularisation (CDR). Clearly, the larger the number of external

particles grows, the more independent tensors have to be included, such that going from

four to five external legs typically implies a jump in one order of magnitude in the number

of tensors needed and, therefore, in the corresponding form factors. Moreover, deriving the

projectors requires in general to solve a dense linear system of equations, with as many

equations as the number of independent tensor structures. Solving this system becomes

very soon impractical with conventional computer algebra systems. Even if the solution

can often be easily found using alternative approaches (for example, finite fields and multi-

variate reconstruction [20–23]), the final result will, in general, be extremely cumbersome,

making its practical utility unclear. For these reasons, while progress has recently been

made in defining the required projectors for the case of five-gluon scattering [24], their use

for generic five- and higher-point scattering amplitudes is commonly considered to be a

very difficult endeavour.

In this paper, we will show that this is not necessarily the case. Indeed, while the

tensor decomposition described above implies that external particles are taken to be d-

dimensional, one of the things that modern techniques have taught us is that substantial

simplifications happen when helicity amplitudes with only physical four-dimensional ex-

ternal states are considered. Starting from this insight, in this paper we will show that by

fixing the helicities of the external states, one can define a set of physical projectors which

single out at once the corresponding helicity amplitudes. In general, there will be as many
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physical projectors as many independent helicity amplitudes and each of these projectors

will be expressed as a linear combination of the original tensors, with rational coefficients

that depend on the kinematic invariants. As a matter of fact, for processe with more than

four external legs, the number of physical projectors will typically be much smaller than

the original number of d-dimensional ones. Moreover, in these cases, when expressed in

terms of the original tensors, only a subset of them will contribute and their number will

correspond exactly to the number of independent helicity amplitudes in the process under

consideration. Finally, the corresponding coefficients will be orders of magnitude simpler

than the ones of the original projectors. In order words, the approach described in this

paper allows us to get rid at once of all spurious tensor structures which correspond to

the extra (d − 4) unphysical degrees of freedom associated to the external states and to

define extremely compact projector operators that single out directly the physical degrees

of freedom from the corresponding scattering amplitudes. To demonstrate the effective-

ness of the new projectors, we will apply them to the calculation of one-loop corrections

to five-gluon scattering in QCD. Recently, an alternative approach, which also exploits the

simplifications coming from four-dimensional external states, has been proposed in [25] and

we will comment more later about differences and similarities to our method.

The rest of the paper is organised as follows. In section 2, we start by recalling how

the standard d-dimensional projectors work and elucidate the shortcomings of the stan-

dard approach. Inspired by this, in section 3 we illustrate how to define physical projectors

which overcome most of these issues. In section 4 we use these ideas in order to build

a complete set of physical projectors for the scattering of five gluons in QCD. We then

apply explicitly the newly derived projectors to the calculation of one-loop corrections to

five-gluon scattering in QCD. We stress here that such calculation is usually deemed to

be impractical already at one-loop order with the use of standard d-dimensional projec-

tors. Our approach, instead, allows to complete the analytic calculations of the one-loop

corrections in a few hours on an average laptop computer, by resorting only to standard

computer algebra systems as FORM [26] and Reduze [27]. Finally, we draw our conclusions

in section 5.

2 Shortcomings of the standard approach

Before discussing the general idea behind the definition of physical projectors, we remind

the reader of the way standard d-dimensional projectors work. We will stress why they

are so useful in the context of multiloop calculations and, at the same time, highlight the

shortcomings of the traditional approach.

Typically, multiloop calculations start with the enumeration of the Feynman diagrams

which contribute to the process considered at the corresponding perturbative order. Dia-

grams always take the form of a multiple integral over the momenta of the virtual particles

running in the loops, whose integrand is given by a rational function in the scalar products

among the loop momenta, the momenta of the external particles and all their polarization

structures (polarization vectors, spin-chains, etc). By factoring out all loop-independent

tensor structures, one is then left with a large combination of tensor integrals, which are
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notoriously very difficult to compute as long as the tensor indices are not contracted. On

the contrary, many effective tools are available for the calculation of so-called scalar Feyn-

man integrals, where all loop momenta are contracted either among themselves or with

the momenta of the external particles. Indeed, large numbers of linear relations among

these integrals can be derived, among which the most prominent role is played by the so-

called integration-by-part identities (IBPs) [28–30]. By solving these identities, the large

majority of these integrals can be expressed in terms of a much smaller subset of inde-

pendent master integrals. Moreover, the very same IBPs allow one to derive differential

equations satisfied by the master integrals [31–33], which are typically much simpler to

solve compared to attempting their direct integration over the loop momenta. While these

steps are in general not straightforward, a lot of progress has been recently made in their

systematisation [34–40], and we will not address this aspect in this paper.

Instead, we will focus on the previous step, i.e. on the manipulations required to go

from the tensor integrals stemming from the Feynman diagrams, to the corresponding scalar

integrals for which the technology above can be applied. Different possible solutions to this

problem exist and in what follows we will focus on one possible approach. This consists

in deriving suitable projection operators which, once applied on the relevant Feynman

diagrams, allow one to project out the required combinations of scalar Feynman integrals

in terms of scalar form factors from the overall, non-perturbative, Lorentz and Dirac tensor

structures. To fix the notation, let us consider the scattering of n spin-1 vector bosons,

which we assume to be all outgoing for definiteness, i.e.

0 → V1(p1) + . . .+ Vn(pn). (2.1)

While working with spin-1 particles will allow us to reduce the clutter in the notation, it

should be clear that the inclusion of external particles with different spin (scalar, spinors,

etc) would not change any of the conclusions of the following discussion.

We start by observing that Lorentz invariance alone requires that the scattering am-

plitude for (2.1) can be schematically written as

A(p1, . . . , pn−1) = ǫµ1

1 . . . ǫµn
n Tµ1,...,µn(p1, . . . , pn−1) , (2.2)

where ǫ
µj

j = ǫ
µj

j (pj) are the polarization vectors associated to the external bosons and

Tµ1,...,µn(p1, . . . , pn) is a rank-n Lorentz tensor. This tensor may, in turn, be decomposed

into a tensor basis compatible with the symmetries of the underlying theory and gauge

invariance

T µ1,...,µn(p1, . . . , pn−1) =
M
∑

j=1

Fj T
µ1,...,µn

j , (2.3)

where the Fj are scalar form factors. As it should be easy to realise, the number of

independent tensors M increases extremely fast with the number of external legs. While

their exact number depends on whether the external particles are massless or massive, one

can easily go from a handful of tensors for 3 external bosons, to O(10) for 4, up to O(100)

for 5 and so on.
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Each of the form factors Fj can then be extracted by applying a suitably defined pro-

jection operator Pj on the Feynman diagrams which contribute to the scattering amplitude

in the desired theory and to the desired perturbative order. To derive the projectors we use

the fact that the M tensors are a basis, and write each projector as a linear combination

of the same tensors, contracted with the respective polarisation structures:

Pj = ǫ∗1µ1
. . . ǫ∗nµn

∑

k

cjk T
µ1,...,µn

k . (2.4)

The coefficients cjk = cjk(d; p1, . . . , pn−1) are, in general, rational functions of the number

of space-time dimensions d and of the scalar products among the external momenta pj .

They can be determined by applying each of the projectors on the decomposition in eq. (2.2)

and imposing that
∑

pol

Pj A(p1, . . . , pn−1) = Fj , (2.5)

where the sum runs over the polarisations of the external particles. More explicitly, the cij
can be computed by inverting the following matrix

c−1
ij =

(

∑

pol

ǫ∗1µ1
. . . ǫ∗nµn

ǫ1 ν1 . . . ǫn νn

)

Tµ1,...,µn

i T ν1,...,νn
j . (2.6)

Notice that, in all the equations so far, the polarization vectors are treated symbolically.

After summing them over the external polarization, each ǫ∗i µi
ǫi νi is replaced by the expres-

sion consistent with the gauge constraints that have been applied in defining the basis in

eq. (2.3). In this way, the matrix elements defined in the previous equations are rational

functions of the Mandelstam invariants and the space-time dimensions d.

If the matrix in eq. (2.6) can be inverted, all form factors can in principle be computed

in terms of scalar Feynman integrals, for which the technology of IBPs and differential

equations can be employed. As a next step, one usually starts from the amplitude in

eq. (2.2) and fixes the polarisations of the external states, forcing them in d = 4 space-time

dimensions. This allows one to define helicity amplitudes, which can be written as linear

combinations of the M scalar form factors Fj . We note that this corresponds to working

in the ’t Hooft-Veltman scheme (tHV), where external states are taken in 4 space-time

dimensions, while virtual ones are taken in d continuous dimensions [41].

While this construction is clearly very general, it should be equally clear that finding

the solution of eq. (2.5) (that allows one to define the projectors in the first place) can

become highly non-trivial when a large number of tensor structures is involved. Moreover,

even if a solution can be found, the projectors themselves can become very soon extremely

cumbersome, making their practical use quite difficult. Finally, one might wonder if taking

well engineered linear combinations of tensors (and therefore linear combinations of the

original form factors) as a new basis of objects could simplify the system in eq. (2.5) and

with it, its final solutions. Unfortunately, since virtually any linear combination could work

equally well, there is no obvious criterion to select a basis of tensors over any other.
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To show how the complexity of this approach can easily get out of hand, let us consider

the prototypical example of the scattering of five massless spin-1 particles in a parity-

invariant theory. Among the others, this covers the case of five-gluon scattering in QCD.

By generating all possible Lorentz structures, one is left with 1724 tensors. Imposing

that the external gluons are transversely polarised, i.e. ǫj · pj = 0 for j = 1, . . . , 5, and

imposing invariance under gauge transformations (or equivalently fixing the gauge of the

external gluons) reduces their number to 142. We proceed then by writing the scattering

amplitude as

A(p1, . . . , p4) = ǫµ1

1 . . . ǫµ5

5

142
∑

j=1

Fj T
µ1,...,µ5

j (p1, . . . , p4) . (2.7)

Following the discussion around eqs. (2.4), (2.5), we can attempt to derive the correspond-

ing 142 projectors

Pj = ǫ∗1µ1
. . . ǫ∗5µ5

142
∑

k=1

cjk(d; p1, . . . , p4)T
µ1,...,µ5

k . (2.8)

The corresponding system of equations for the coefficients cjk is too complicated to be

solved by a naive use of Mathematica or FORM and alternative methods must be consid-

ered. A possible strategy towards a solution has been outlined in [24]. Another possibility

consists in using techniques based on algebraic manipulations over finite fields: the system

can be solved numerically modulo prime numbers and the exact symbolic solution can then

be reconstructed from multiple numerical evaluations (see e.g. refs. [22, 23, 42]). While

these techniques allow us to get to a solution quite easily, it is enough to look at the result-

ing projectors to understand the limits of this method. Indeed, the 142×142 coefficients cjk
in eq. (2.8) occupy alone 1Gb of disk space.1 Having in mind the complexity of the Feyn-

man diagrams required, for example, to compute the scattering of five gluons at two loops

in QCD, it appears evident that such an approach is deemed to fail. Moreover, it should

as well be clear that the perspective of using the same approach for even larger numbers

of external particles (for example in the six-gluon case) appears entirely unfeasible.

Motivated by these problems, in the next section we describe how most of these limita-

tions can be lifted by defining suitable physical projector operators which single out directly

the helicity amplitudes required for the calculation we are interested in. As we will see,

this approach applied to the case of five-gluon scattering will solve at once many problems.

First, the majority of the 142 tensor structures in eq. (2.7) will turn out to be redundant.

Moreover, in comparison with the 1Gb of data required to specify the standard projectors,

our new physical projector operators will end up being extremely compact and easy to use.

1The inversion has been performed using FiniteFlow [23]. The dimension of 1Gb refers to the GCD-

simplified (but not factorized) analytic result written to a file. We stress that this calculation was only done

as a test and it is not required when using the physical projectors we present in this paper. By comparison,

the file attached to this paper as supplementary material contains a full set of physical projectors for the

same process in about 750Kb.
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3 Physical projectors for helicity amplitudes

In this section, we present the main result of this paper. We show that, by projecting

directly onto the helicity amplitudes defined in tHV scheme,2 we can build a set of phys-

ical projectors having compact analytic expressions and involving a substantially smaller

number of tensor structures.

Let us consider once more the general decomposition for the scattering amplitude of

n spin-1 bosons in eqs. (2.2), (2.3). Once more, particles of different spin can be ac-

commodated by a straightforward generalisation of this discussion. Having an explicit

representation for the general amplitude, we can imagine to consider four-dimensional ex-

ternal states and fix their helicities in all possible ways. We define the total number of

helicity amplitudes to be hλ. Clearly, in a case where not all external particles are dif-

ferent, many of the helicity configurations will not be independent and may be obtained

from the independent ones by permutations of the external legs and complex conjugation.

We ignore this detail for now. If the helicity of the boson j is λj , we write the scattering

amplitude as Aλ1,...,λn
(p1, . . . , pn). In the case of n massless external spin-1 bosons, each

particle can have two helicity states, such that there will be in total hλ = 2n different helic-

ity amplitudes. We stress that, while the helicity amplitudes are enough to reconstruct the

full structure of the scattering amplitude, typically their number grows with the number of

external particles much slower than the number of independent tensors. Indeed, for 5 mass-

less external spin-1 bosons, there are only hλ = 32 independent helicity configurations, in

comparison with the M = 142 different tensor structures discussed in the previous section.

For 6 external gluons, there are only hλ = 64. Armed with this observation, we would like

to define projectors operators which, instead of projecting on all “unphysical” form factors

Fj , project only onto the hλ independent helicity amplitudes.

We first recall that, for all helicities λj , we can define explicit polarization states using

the spinor-helicity formalism [44–47], in terms of massless spinors |j〉 = |pj〉 and |j] = |pj ]
with negative and positive helicity. As an example, polarization vectors ǫµλ for massless

bosons can be defined as

ǫµ+(p) =
〈η|σµ|p]√
2 〈η p〉

, ǫµ−(p) =
〈p|σµ|η]√
2 [p η]

, (3.1)

where η is an arbitrary reference vector. Analogous formulas exist for polarization states

of particles with different spin and massive particles as well. Moreover, when one deals

with spinor products, it is often convenient to work with objects which are invariant under

little group scaling

|j〉 → tj |j〉 , |j] → t−1
j |j] . (3.2)

It is always possible to define a rescaled amplitude Aλ1,...,λn
(p1, . . . , pn−1) which is invariant

under little-group scaling by dividing it by a suitable prefactor Kλ1,...,λn
in the spinor

2Our approach actually applies to any dimensional regularization scheme where the external states are

treated in four dimensions. In particular, the projectors built with our method are also valid in the Four-

Dimensional-Helicity scheme [43], since the latter only differs from tHV because of a different treatment of

the internal gluon states. In the remainder of this paper, we still only refer to the tHV scheme for simplicity.
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products

Aλ1,...,λn
=

1

Kλ1,...,λn

Aλ1,...,λn
. (3.3)

While there is no unique choice for the prefactor Kλ1,...,λn
, it can be easily built based on

the external helicities and it is independent of the loop order. Explicit examples will be

given in the next section. The rescaled amplitudes Aλ1,...,λn
are by construction invariant

under the little group transformation (3.2) and thus independent of any spinor phase.

With these concepts in mind, we start from eqs. (2.2), (2.3) and fix the helicities of

the external particles as

Aλ1,...,λn
(p1, . . . , pn−1) =

1

Kλ1,...,λn

ǫµ1

λ1
. . . ǫµn

λn

M
∑

j=1

Fj T
µ1,...,µn

j . (3.4)

We stress that, while in the previous sections we treated the external states mostly symbol-

ically (i.e. only in order to yield a sum over polarizations), here the external polarization

states ǫ
µj

λj
are explicit polarizations built out of spinors. We can rewrite the previous

equation as

Aλ1,...,λn
(p1, . . . , pn−1) =

M
∑

j=1

Fj R
λ1,...,λn

j (3.5)

where we have defined

Rλ1,...,λn

j =
1

Kλ1,...,λn

ǫµ1

λ1
. . . ǫµn

λn
Tµ1,...,µn

j . (3.6)

Because the objects Rj defined in eq. (3.6) are also invariant under little group transfor-

mations, they can be parametrised in terms of 3n− 10 invariants xj ,

Rλ1,...,λn

j = Rλ1,...,λn

j (x1, . . . , x3n−10). (3.7)

These invariants, in turn, can always be chosen such that all scalar quantities involving

spinors and polarization vectors are rational functions of the xj . We point out that, for

kinematics with external massive particles, the functions Rλ1,...,λn

j will also depend on the

external masses.

This allows us to formulate our central result. In fact, at this point, we simply promote

eq. (3.5) to become a new helicity projection operator by the formal substitution Fj → Pj ,

where Pj is the projector that singles out Fj as defined in eqs. (2.4), (2.5). We have

defined in this way a set of as many helicity projectors as the number of independent

helicity amplitudes

Pλ1,...,λn
=

M
∑

j=1

Rλ1,...,λn

j Pj . (3.8)

By using eq. (2.4) and remembering that all scalar products pi ·pj can be written as rational

functions in the variables xj , we immediately see that the new helicity projectors will be

also written as a linear combination of the original tensors

Pλ1,...,λn
(p1, . . . , pn−1) = ǫ∗1µ1

. . . ǫ∗nµn

M
∑

k=1

Cλ1,...,λn

k Tµ1,...,µn

k (3.9)
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where the Ck = Cλ1,...,λn

k (d;x1, . . . , x3n−10) will be rational functions in d and in the xj .

One should realise here that, while the projectors in eq. (3.9) are defined to project out

the helicity amplitudes Aλ1,...,λn
, the polarisation vectors ǫj that appear on the right-hand

side of the previous equation do not have their polarisation fixed. On the contrary, as

already explained above, they are applied on the Feynman diagrams by summing over

their helicities as described in eq. (2.5). By construction, these projectors single out the

(rescaled) helicity amplitudes

Aλ1,...,λn
=

∑

pol

Pλ1,...,λn
A(p1, . . . , pn−1) . (3.10)

As hinted to above, in general the sum in eq. (3.9) should run over all M independent

tensors and the coefficients Cλ1,...,λn

k will depend explicitly on the number of space-time

dimensions d. Nevertheless, it turns out that for processes with more than four external

legs, this is not the case. In fact, we observe that in order to compute helicity amplitudes

we are allowed to only consider the projection of the tensor Tµ1,...,µn defined in eq. (2.2) onto

the four-dimensional physical space, where the external polarisations live. For processes

with five or more external legs, this four-dimensional space is spanned by four independent

external momenta. Hence, we may restrict the tensor basis to span the physical space

defined by four independent external legs only. This can be effectively achieved in the

decomposition of eq. (2.3), simply by removing all tensors containing the metric tensor

gµν . This can also be seen by observing that in this case we can decompose gµν into a

four-dimensional part and a (−2ǫ)-dimensional part, as

gµν = gµν[4] + gµν[−2ǫ] = gµν[−2ǫ] +O(pµi p
ν
j ), (3.11)

where the last equality states that the four dimensional metric tensor gµν[4] is a linear com-

bination of tensors pµi p
ν
j built out of the four independent external momenta. Hence, we

are allowed to replace gµν → gµν[−2ǫ] in our general tensor decomposition. We then observe

that tensors with gµν[−2ǫ] are trivially orthogonal to the other tensors and the inversion of

the matrix in eq. (2.6) can be performed separately in the four-dimensional and in the

(−2ǫ)-dimensional space. Moreover, all the coefficients Rλ1,...,λn

j multiplying tensors which

depend on gµν[−2ǫ] also vanish by orthogonality. Putting everything together, this is effec-

tively equivalent to removing the metric tensor gµν from the very beginning in the tensor

decomposition. A corollary of this observation is the fact that the physical projectors for

these processes are independent of the space-time dimension d (because such a dependence

may only come from the metric tensor). We stress, again, that this is true only for processes

with more than four external legs.

Let us see what this implies for a generic n-point amplitude with n ≥ 5 vector bosons.

As we just stated, we may build a physical tensor basis directly from tensor of the form

pµ1

j1
· · · pµn

jn
, where all the pjk are drawn from a subset of four (independent) external mo-

menta. In total, we have 4n such combinations. For spin-1 bosons we can always impose

transversality for each external particle, i.e. ǫj · pj = 0, going down in this way to 3n ten-

sors. Moreover, if the bosons are massless, by fixing their gauge, e.g. with the cyclic choice

ǫj · pj+1 = 0, with pn+1 = p1, we are left with a total of 2n independent tensors. This
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is consistent with the fact that, for the scattering of n massless spin-1 bosons, there are

hλ = 2n independent helicity amplitudes and we expect only 2n tensors to be relevant for

their reconstruction. Hence, the inversion needed for computing the physical projectors

can be performed in a (significantly smaller) hλ-dimensional tensor subspace.

We verified this by computing physical projectors in several five-point examples. In

the case of five-gluon scattering (which will be discussed more in detail in the next section),

as we saw in section 2, the general d-dimensional tensor structure requires 142 tensors after

gauge-invariance and transversality conditions have been imposed on the external gluons,

while only the hλ = 25 = 32 structures of the form pµ1

j1
pµ2

j2
pµ3

j3
pµ4

j4
pµ5

j5
turn out to contribute

to the helicity projectors. Similarly, we also studied the scattering of four gluons and

a scalar, which is relevant for Higgs boson plus two jets production at hadron colliders,

gg → Hgg. In this case one has hλ = 24 = 16 independent helicity amplitudes. On the

other hand, the full d-dimensional tensor structure would require 43 different tensors after

gauge-invariance and transversality conditions have been imposed on the external gluons.

We verified explicitly that in order to project directly over helicity amplitudes we need, as

expected, only the 16 tensor structures built out of the 4 independent external momenta

pµ1

j1
pµ2

j2
pµ3

j3
pµ4

j4
.

To summarise, given these considerations, in order to reconstruct the helicity projec-

tors defined in equation eq. (3.8) one never needs to go through the whole d-dimensional

tensor structure. In practice, if the number of external legs is n ≥ 5, we simply reinterpret

all formulas above, i.e. eqs. (3.4), (3.5), (3.8), (3.9) with M = hλ, as the number of the in-

dependent tensors in d = 4 dimensions built from the combinations pµ1

j1
· · · pµn

jn
. This allows

us to simplify even further the derivation of the helicity projectors since, in eq. (2.6), only

a hλ × hλ matrix has to be considered instead of a typically much larger M ×M one. One

may also perform the inversion in eq. (2.6), either in the full tensor space or in the physi-

cal subspace, numerically over finite fields and reconstruct the analytic physical projectors

directly. With the latter approach, using FiniteFlow [23], the analytic reconstruction of

the physical projectors becomes extremely efficient. For five-point processes, it typically

takes a few seconds on a modern laptop.

We conclude this section with an observation about the choice of variables xj , which we

will then make more explicit in the next section with an example. As already stated, one can

choose invariants which offer a rational parametrization of the spinor components, up to a

little group and a Poincaré transformation. With this choice, all the functions Rλ1,...,λn

j and

Cλ1,...,λn

k above are rational. A notable example are momentum twistor variables [48–50].

Alternatively, one may choose to use Mandelstam invariants instead. In this case, one

can still obtain a unique representation for Rλ1,...,λn

j and Cλ1,...,λn

k by identifying a set

of independent square roots and requiring the result to be multilinear in these square

roots. The coefficients of each independent monomial in these square roots, which are

rational functions of the Mandelstam invariants, can be treated independently of each

other. As an example, with massless 5-point kinematics, we have only one square root

which can be identified with the parity odd invariant tr5 = tr(γ5 p1 p2 p3 p4). Every little-

group invariant function R of the spinor variables can thus be written in a unique way
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as R = R+ + tr5R− where the parity-even and odd components R+ and R− are rational

functions of Mandelstam invariants. In practice, in order to obtain such a representation

for our physical projectors, it is often convenient to first get a rational representation of the

Rλ1,...,λn

j in terms of momentum twistors variables and then convert it back to Mandelstam

invariants, since this sidesteps the need of performing tedious spinor algebra. After that,

the parity even and odd components of Cλ1,...,λn

k can be computed from the corresponding

ones of Rλ1,...,λn

j , independently of each other. The same approach easily generalises to the

presence of several independent square roots.

Before going on with an explicit example, it is interesting to compare our method to

the one recently proposed in [25], which also exploits explicitly simplifications coming from

taking external particles in d = 4 space-time dimensions. While this is conceptually similar

to our approach and we expect the conclusions to be equivalent, there are some important

differences. In comparison to [25], we do not need to perform an explicit decomposition of

the external polarisation states in terms of four-dimensional external momenta in order to

see the relevant simplifications in the tensor structure. Using our approach, our helicity

projectors are uniquely written as linear combinations of standard, d-dimensional projector

operators. This allow us to perform all manipulations in the standard tHV scheme, without

having to make sure that our d-dimensional regularisation scheme is consistent. Finally,

this different point of view allows us to see straight-away how the potential of the method

can be fully exploited only starting from n ≥ 5 external particles, where the simplifications

to the tensor structure become more substantial. As described above, for these processes,

we can immediately exclude all tensor structures which are not independent, by using the

formal decomposition in eq. (3.11).

4 Physical projectors for five-gluon scattering

In order to show the potential of the method that we propose, in this section we apply it

to the case of five-gluon scattering in QCD. In section 2, we have already pointed to the

difficulties in applying standard d-dimensional projectors to the scattering of five gluons.

In particular, we have shown that a generic tensor decomposition requires 142 independent

structures, see eq. (2.7), and that the corresponding projector operators given in eq. (2.8)

appear to be extremely cumbersome.

Let us then start off by considering the scattering of five massless gluons

0 → g(p1) + g(p2) + g(p3) + g(p4) + g(p5) ,

with p5 = −p1 − p2 − p3 − p4 and p2j = 0 for j = 1, . . . , 5. The amplitude depends on five

independent kinematical invariants, which we pick to be s12, s23, s34, s45 and s51, where

sij = (pi + pj)
2. The parity-odd invariant

tr5 = tr(γ5 p1 p2 p3 p4)
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will also play an important role in the following discussion. As already outlined in eq. (2.7),

the most general tensor decomposition of the scattering amplitude reads

A(p1, . . . , p4) = ǫµ1

1 . . . ǫµ5

5

142
∑

j=1

Fj T
µ1,...,µ5

j (p1, . . . , p4) , (4.1)

where the tensors Tµ1,...,µ5

j (p1, . . . , p4) are built out of the four independent momenta pµj ,

j = 1, . . . , 4 and the metric tensor gµν . In order to be left with only 142 tensor structures

we have used the fact that ǫj · pj = 0 for j = 1, . . . , 5 and we have also imposed a cyclic

gauge choice on the external gluons as follows

ǫ1 · p2 = ǫ2 · p3 = ǫ3 · p4 = ǫ4 · p5 = ǫ5 · p1 = 0 . (4.2)

While fixing the gauge explicitly is not necessary, it is useful to obtain tensors that are as

compact as possible.

As argued in detail in the previous section, since the scattering amplitude depends on

4 independent momenta and we are interested in projecting directly on the physical helicity

amplitudes, we can drop all tensors in (4.1) which depend explicitly on the metric tensor

gµν . In this way we are left, as expected, with the 32 tensors

Tµ1,...,µ5

1 = pµ2

1 pµ3

1 pµ4

1 pµ5

2 pµ1

3 , Tµ1,...,µ5

2 = pµ2

1 pµ3

1 pµ4

2 pµ5

2 pµ1

3 ,

Tµ1,...,µ5

3 = pµ2

1 pµ3

1 pµ4

1 pµ1

3 pµ5

3 , Tµ1,...,µ5

4 = pµ2

1 pµ3

1 pµ4

2 pµ1

3 pµ5

3 ,

Tµ1,...,µ5

5 = pµ2

1 pµ4

1 pµ3

2 pµ5

2 pµ1

3 , Tµ1,...,µ5

6 = pµ2

1 pµ3

2 pµ4

2 pµ5

2 pµ1

3 ,

Tµ1,...,µ5

7 = pµ2

1 pµ4

1 pµ3

2 pµ1

3 pµ5

3 , Tµ1,...,µ5

8 = pµ2

1 pµ3

2 pµ4

2 pµ1

3 pµ5

3 ,

Tµ1,...,µ5

9 = pµ3

1 pµ4

1 pµ5

2 pµ1

3 pµ2

4 , Tµ1,...,µ5

10 = pµ3

1 pµ4

2 pµ5

2 pµ1

3 pµ2

4 ,

Tµ1,...,µ5

11 = pµ3

1 pµ4

1 pµ1

3 pµ5

3 pµ2

4 , Tµ1,...,µ5

12 = pµ3

1 pµ4

2 pµ1

3 pµ5

3 pµ2

4 ,

Tµ1,...,µ5

13 = pµ4

1 pµ3

2 pµ5

2 pµ1

3 pµ2

4 , Tµ1,...,µ5

14 = pµ3

2 pµ4

2 pµ5

2 pµ1

3 pµ2

4 ,

Tµ1,...,µ5

15 = pµ4

1 pµ3

2 pµ1

3 pµ5

3 pµ2

4 , Tµ1,...,µ5

16 = pµ3

2 pµ4

2 pµ1

3 pµ5

3 pµ2

4 ,

Tµ1,...,µ5

17 = pµ2

1 pµ3

1 pµ4

1 pµ5

2 pµ1

4 , Tµ1,...,µ5

18 = pµ2

1 pµ3

1 pµ4

2 pµ5

2 pµ1

4 ,

Tµ1,...,µ5

19 = pµ2

1 pµ3

1 pµ4

1 pµ5

3 pµ1

4 , Tµ1,...,µ5

20 = pµ2

1 pµ3

1 pµ4

2 pµ5

3 pµ1

4 ,

Tµ1,...,µ5

21 = pµ2

1 pµ4

1 pµ3

2 pµ5

2 pµ1

4 , Tµ1,...,µ5

22 = pµ2

1 pµ3

2 pµ4

2 pµ5

2 pµ1

4 ,

Tµ1,...,µ5

23 = pµ2

1 pµ4

1 pµ3

2 pµ5

3 pµ1

4 , Tµ1,...,µ5

24 = pµ2

1 pµ3

2 pµ4

2 pµ5

3 pµ1

4 ,

Tµ1,...,µ5

25 = pµ3

1 pµ4

1 pµ5

2 pµ1

4 pµ2

4 , Tµ1,...,µ5

26 = pµ3

1 pµ4

2 pµ5

2 pµ1

4 pµ2

4 ,

Tµ1,...,µ5

27 = pµ3

1 pµ4

1 pµ5

3 pµ1

4 pµ2

4 , Tµ1,...,µ5

28 = pµ3

1 pµ4

2 pµ5

3 pµ1

4 pµ2

4 ,

Tµ1,...,µ5

29 = pµ4

1 pµ3

2 pµ5

2 pµ1

4 pµ2

4 , Tµ1,...,µ5

30 = pµ3

2 pµ4

2 pµ5

2 pµ1

4 pµ2

4 ,

Tµ1,...,µ5

31 = pµ4

1 pµ3

2 pµ5

3 pµ1

4 pµ2

4 , Tµ1,...,µ5

32 = pµ3

2 pµ4

2 pµ5

3 pµ1

4 pµ2

4 . (4.3)

With these tensors we can therefore rewrite (4.1) as

A(p1, . . . , p4) = ǫµ1

1 . . . ǫµ5

5

32
∑

j=1

Fj T
µ1,...,µ5

j (p1, . . . , p4) +O(gµν[−2ǫ]) , (4.4)
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where O(gµν[−2ǫ]) indicates tensor structures which live in the (−2ǫ)-dimensional space and

do not contribute to helicity amplitudes.

Starting from this tensor, we put to zero all terms proportional to O(gµν[−2ǫ]) and fix

the helicities of the five external gluons in all possible ways by using the spinor-helicity

formalism. For every helicity configuration, we then define a rescaled amplitudeAλ1λ2λ3λ4λ5

which is invariant under little group transformations, see eq. (3.2). This can be achieved

by dividing the corresponding amplitudes by a suitable prefactor Kλ1λ2λ3λ4λ5
for the hλ =

25 = 32 different helicity configurations. For the helicity configurations which are zero at

tree-level in QCD we choose

K+++++ =
s212

〈12〉〈23〉〈34〉〈45〉〈51〉 , K−++++ =
(〈12〉[23]〈31〉)2

〈12〉〈23〉〈34〉〈45〉〈51〉 (4.5)

and cyclic permutations thereof. For the MHV amplitudes, instead, we can choose the

tree-level Parke-Taylor amplitudes as rescaling factor, e.g.

K−−+++ =
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 , (4.6)

and similarly for the remaining 9 configurations. Scaling factors for the helicity configu-

rations with three or more negative helicities can be obtained by complex conjugation of

eqs. (4.5), (4.6).

Before deriving the helicity projectors, it is convenient to obtain a rational parametri-

sation of the spinor products 〈ij〉, [ij] and of the external invariants sij , since this avoids

the need of performing tedious spinor algebra. For the case of five massless external parti-

cles, we can use the parametrisation in terms of momentum twistors [48] provided in [51].

We define a momentum twistor Zj for each momentum and write the parametrisation in

matrix form as

Z =















1 0 1
x1

1+x2

x1x2

1+x3(1+x2)
x1x2x3

0 1 1 1 1

0 0 0 x4

x2
1

0 0 1 1 x4−x5

x4















, (4.7)

where the xj are momentum twistor variables. The kinematic invariants can the be

written as

s12 = x1 , s23 = x1x4 , s34 = x1(x4 + x3x4 − x2x3 + x2x3x5)/x2

s45 = x1x5 , s51 = x1x3(x2 − x4 + x5) . (4.8)

Similarly, for the parity-odd invariant we find

tr5 = −x21
(

x3 (x5 − 1)x22 + (2x3 + 1)x4x2 − (x3 + 1)x4 (x4 − x5)
)

/x2. (4.9)

An explicit parametrisation of the spinor components in terms of these variables is given

in eq. (5.10) of [22] (see also ref. [50] for a generalisation to other processes).
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For each helicity configuration, we now proceed with defining the functions Rλ1,...,λ5

j ,

see eq. (3.6), as rational functions of the momentum twistor variables. As pointed out at

the end of section 3, we may now choose to continue using the variables xj or alternatively

switch back to Mandelstam invariants. In this example we pick the latter option. It is

straightforward to invert the relations in eqs. (4.8), (4.9) and write

Rλ1,...,λ5

j = Rλ1,...,λ5

+,j (sij) + tr5R
λ1,...,λ5

−,j (sij), (4.10)

where Rλ1,...,λ5

±,j are rational functions of the Mandelstam invariants sij . Notice that this

representation is unique.

Having defined the functions Rλ1,...,λ5

j , we are now ready to reconstruct our physical

projectors, defined as in eq. (3.8). We use FiniteFlow [22] to invert the 32 × 32 matrix

and reconstruct directly the physical projectors as linear combinations of the 32 tensors

in (4.3)

Pλ1,...,λ5
= ǫ∗1µ1

. . . ǫ∗5µ5

32
∑

k=1

Cλ1,...,λ5

k Tµ1,...,µ5

k . (4.11)

Similarly to the coefficients Rλ1,...,λ5

j above, we can write the Cλ1,...,λ5

k in eq. (4.11) as

Cλ1,...,λ5

k = Cλ1,...,λ5

+,k + tr5 Cλ1,...,λ5

−,k (4.12)

where the parity even and odd parts Cλ1,...,λ5

+,k and Cλ1,...,λ5

−,k are rational functions of the

Mandelstam invariants sij and are only determined by Rλ1,...,λ5

+,j and Rλ1,...,λ5

−,j respectively.

Explicit expressions for the coefficients Cλ1,...,λ5

±,k for a full set of helicity configurations are

given in ancillary files. As exemplification, we write down explicitly the coefficients of the

parity-even part of the projector on the all-plus helicity amplitude. By defining

C+++++
+,k =

4s23s34s45s51√
2 s12∆(p1, p2, p4, p4)2

C+++++
+,k

where ∆(p1, p2, p4, p4) is the Gram-determinant of the four momenta

∆(p1, p2, p4, p4)

= (−s23s34 + s12 (s23 − s51) + s45 (s34 + s51))
2 + 4s34 (s12 + s23 − s45) s45s51 ,

we find

C+++++

+,1 = (s12 + s23 − s34 − s45) (s23 + s34 − s51)
2,

C+++++

+,2 = (s23 + s34 − s51)
(

s223 − (s45 + s51) s23 + s12 (s23 − s51) + (s34 + s45) s51
)

,

C+++++

+,3 = (s23 + s34 − s51)
2 (s12 − s34 + s51) ,

C+++++

+,4 = (s23 + s34 − s51) (s12 (s23 − s51) + (s23 + s34 − s51) s51) ,

C+++++

+,5 = (s12 + s23 − s45) (s23 + s34 − s51) (s23 − s45 − s51) ,

C+++++

+,6 = (s12 + s23 − s45) (s23 + s34 − s51) (s23 − s45 − s51) ,
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C+++++

+,7 = − (s23 + s34 − s51) (s12 − s34 + s51) (−s23 + s45 + s51) ,

C+++++

+,8 = (s23 + s34 − s51) (s23 − s45 − s51) (s12 + s51) ,

C+++++

+,9 =
(

s212 + (s23 − s34 − s45) s12 + s23 (s23 − s45 − s51)
)

(s23 + s34 − s51) ,

C+++++

+,10 = (s23 − s51) s
2
12 +

(

2s223 − 2 (s45 + s51)s23 + (s34 + s45) s51
)

s12 + s23(−s23 + s45 + s51)
2,

C+++++

+,11 = s12 (s23 + s34 − s51) (s12 − s34 + s51) ,

C+++++

+,12 = s12
(

s223 − s45s23 + s12 (s23 − s51) + (s34 − s51) s51
)

,

C+++++

+,13 = (s12 + s23 − s45) (s23 + s34 − s51) (s23 − s45 − s51) ,

C+++++

+,14 = (s12 + s23 − s45) (s23 − s45 − s51) (s12 + s23 − s45 − s51) ,

C+++++

+,15 = 0,

C+++++

+,16 = s12 (s12 + s23 − s45) (s23 − s45 − s51) ,

C+++++

+,17 = s23 (s12 + s23 − s45) (s23 + s34 − s51) ,

C+++++

+,18 = s23 (s12 + s23 − s45) (s23 + s34 − s51) ,

C+++++

+,19 = s23 (s23 + s34 − s51) (s12 − s34 + s51) ,

C+++++

+,20 = s23 (s23 + s34 − s51) (s12 + s51) ,

C+++++

+,21 = − (s12 + s23 − s45)
(

−s223 + (−s34 + s45 + s51) s23 + s34 (s12 − s34 + s51)
)

,

C+++++

+,22 = (s23 + s34) (s12 + s23 − s45) (s23 − s45 − s51) ,

C+++++

+,23 = − (s12 − s34 + s51)
(

−s223 + (s45 + s51) s23 + s12s34
)

,

C+++++

+,24 = (s23 − s45 − s51) (s12 (s23 + s34) + s23s51) ,

C+++++

+,25 = s23 (s12 + s23 − s45) (s23 + s34 − s51) ,

C+++++

+,26 = s23 (s12 + s23 − s45) (s12 + s23 − s45 − s51) ,

C+++++

+,27 = 0,

C+++++

+,28 = s12s23 (s12 + s23 − s45) ,

C+++++

+,29 = − (s12 + s23 − s45)
2 (s12 − s23 − s34 + s51) ,

C+++++

+,30 = (s12 + s23 − s45)
2 (s23 − s45 − s51) ,

C+++++

+,31 = −s12 (s12 + s23 − s45) (s12 − s34 + s51) ,

C+++++

+,32 = s12 (s12 + s23 − s45) (s23 − s45 − s51) . (4.13)

As a check of the consistency of our approach, we can obtain the same result starting

from a full d-dimensional tensor decomposition. In particular, we could ignore the fact

that gµν is not linearly independent and decide to start from the full d-dimensional tensor

in eq. (4.1). If we do so, we can formally write the physical helicity projectors as linear

combinations of the original 142 d-dimensional projectors. We then use FiniteFlow [22]

to invert the corresponding 142 × 142 matrix in eq. (2.6) numerically and use this to

reconstruct only the physical projectors directly in terms of the original tensor structures

Tµ1,...,µ5

j , as we did in eq. (3.9). The analytic reconstruction takes a couple of minutes on a

modern laptop. As a result, as expected, we find that all the coefficients which multiply the
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tensors which depend on gµν turn out to be zero and we can recover the very same result

discussed above. Clearly, by removing the (−2ǫ)-dimensional tensors from the beginning,

all manipulations are much simpler and reconstruction procedure runs through only in a

few seconds.

4.1 Five-gluon scattering at one-loop in QCD

As a validation of the helicity projectors newly derived, we have used them to compute

the one-loop corrections to five-gluon scattering in QCD. While this calculation is rather

simple using modern one-loop techniques based on either generalised unitarity or integrand

reduction, see for example ref. [52], it would clearly constitute a challenge using standard

projection-based techniques.

Following common practice in these calculations, we decompose the tree-level and one-

loop five-gluon helicity amplitudes in terms of coloured-ordered primitive amplitudes. It is

well known that all one-loop primitive amplitudes can be obtained from the coefficient of

the colour structure Tr(T a1T a2T a3T a4T a5) of the following helicity configurations

A+++++ , A−++++ , A−−+++ , A−+−++ .

In order to compute these amplitudes, we first generate all relevant Feynman diagrams

with QGRAF [53] and sort them selecting only the ones corresponding to the relevant

colour-ordered amplitudes. We then proceed by applying on each diagrams the projectors

defined in eq. (4.11). In practice, we prefer to compute for each diagram the 32 contractions

with the 32 tensors in eq. (4.3) independently. More explicitly, for every Feynman diagram

Dj , we extract the gluon polarisation vectors

Dj = (ǫ1µ1
. . . ǫ5µ5

)Dµ1,...,µ5

j ,

and compute the quantity

Djk =
∑

pol

(

ǫ∗1µ1
. . . ǫ∗5µ5

ǫ1 ν1 . . . ǫ5 ν5
)

Tµ1,...,µ5

k Dν1,...,ν5
j . (4.14)

Due to the transversality and gauge constraints that we imposed on the tensor structures,

our polarisations sums are given by

∑

pol

ǫ∗1,µ1
ǫ1 ν1 = −gµ1ν1 +

p1,µ1
p2,ν1 + p2,µ1

p1,ν1
p1 · p2

, (4.15)

and cyclic permutations thereof. Once all Djk have been computed, the relevant helicity

amplitudes can be computed by summing all Feynman diagrams and assembling them

together as in eq. (4.11). While all these manipulations could be performed efficiently

using FiniteFlow [23], the simplicity of the tensor structures and of the helicity projectors

allow us to perform them using FORM [26] and Reduze [27] in few hours on a laptop. In

our calculation we have included the full dependence on the number of colours Nc and

the number of fermions Nf and we have verified explicitly that our unrenormalised helicity

amplitudes agree with known results, even before substituting the explicit analytical results

for the master integrals [54].

– 16 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
4

5 Conclusions

We presented an efficient method for building physical projector operators for helicity am-

plitudes, which is suitable for applications to multi-leg processes. While it is common belief

that a projector-based approach to compute multi-loop multi-leg scattering amplitudes in

perturbative QFT becomes soon impractical due to the proliferation of the number of ten-

sor structures and of the complexity of the corresponding projectors required, in this paper

we have shown that this is not necessarily the case. In particular, we have demonstrated

that if one aims to build projection operators that reconstruct only physical helicity ampli-

tudes, huge simplifications take place due the large redundancy of the generic d-dimensional

tensor structure. It turns out that, when considering the scattering of n ≥ 5 particles of

arbitrary spin, the number of different helicity amplitudes hλ provides a higher bound for

the number of different tensor structures that are required in order to reconstruct them.

Hence, in these cases, one can obtain a full set of independent helicity amplitudes from

the contraction of the amplitude with no more than hλ tensor structures. Moreover, the

corresponding projection operators turn out to be substantially simpler.

Starting from n = 5 external legs, this method yields additional drastic simplifications

compared to traditional projector-based approaches. Indeed, in this case the entire four-

dimensional space can be spanned by the four independent external momenta and all

tensor structures which involve the metric tensor gµν turn out to be redundant. We have

demonstrated this explicitly by studying the tensor decomposition for five-gluon scattering

in QCD and comparing the standard d-dimensional approach with our method. We have

found that, while in the standard approach there are 142 independent tensor structures and

thus 142 rather cumbersome projection operators, their number drops to 32 when projecting

directly on the independent helicity amplitudes. As expected, 32 is also the number of

different helicity configurations 25 = 32. We derived explicitly the helicity projection

operators, which are attached to the arXiv submission of this paper, and we validated them

by computing the tree-level and one-loop corrections to five-gluon scattering in QCD. The

simplifications obtained in this way were so substantial that the whole calculation could

be completed in few hours on a laptop computer with a straightforward application of

standard computer algebra systems. Similar simplifications were observed when computing

projector operators for other five-point processes, such as the scattering of four gluons and

a (massive) scalar.

While recent progress in integrand reduction and generalised unitarity has considerably

improved the possibilities of computing multi-leg helicity amplitudes, enhancing the spec-

trum of techniques which can tackle these processes is definitely useful for further progress.

Given the generality, the relative easy-of-use and the familiarity of projector-based ap-

proaches compared to alternative techniques, we believe that making them applicable to

more complex processes will prove beneficial to future calculations. We also stress that,

despite being commonly seen as an alternative, integrand reduction may in principle be

applied in conjunction with projection operators.

While this constitutes a very interesting development in view of the calculations of two-

loop corrections to other processes which involve five particles in the final state, we note

– 17 –
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that one should expect even more substantial simplifications when considering even more

particles in the final state. Clearly, we are well aware of the fact that these calculations

are extremely complicated irrespective of the approach used. Nevertheless, we believe

that this paper provides an important contribution to substantially simplify one of the

computationally most demanding steps required.
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