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Abstract

Quantile and M-quantile regression have been applied successfully to small area estimation
within the frequentist approach. Quantile regression is applied in the same context but from
a Bayesian perspective. Joint modelling of the quantile function is considered, adopting a non
parametric assumption on the data generating process that nonetheless explicitly includes the
normal distribution as a special case. A specification of the random part of the model that is
simple and consistent with the predictive aim of small area estimation is proposed. Although
the main output of the method is the estimation of the whole quantile function, estimators of the
small area means based on the integration of the quantile function are proposed and discussed.
A simulation exercise is used to assess the frequentist properties of these proposed predictors,
that result at least as efficient as frenquentist small area estimators based on quantile regression
in scenarios characterized by the presence of outliers. The proposed method is illustrated using
data from the European survey on Income and Living Conditions (EU-SILC).

Keywords: Bayesian non-parametrics, Dirichlet process priors, quantile function, survey data,
frequentist properties of Bayesian methods
2010 MSC: 62D05, 62G08, 62P25

1. Introduction

Small area estimation is aimed at predicting finite population descriptive quantities (such
as mean, totals, quantiles, concentration indexes) for sub-populations for which specific sample
sizes are, in all or most cases, not large enough to allow for reliable inference using ordinary,
direct design based estimation methods. These sub-populations are usually labelled as small
areas. More precise predictions can be obtained when auxiliary information is available at both
the sample and the census level.
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Linking auxiliary information to the target variable under consideration requires some form
of modelling. When auxiliary information is available for each statistical unit a unit level model
can be specified. Linear mixed models are the most popular class of models used for this purpose.
A review of the literature on the application of linear mixed models to small area estimation from
both the frequentist and Bayesian perspective can be found in Rao and Molina (2015, chapter 7).

Chambers and Tzavidis (2006) introduce quantile and M-quantile regression as an alternative
class of models for the same purpose relaxing some of the conventional modeling assumptions
such as the normality of the random components and obtaining estimators robust to outliers.
Several developments of their proposal and applications to various research problems appeared
since then; see Bianchi et al. (2018) for a review. All these applications of quantile regression
to small area estimation consider a frequentist approach to inference and are based on separate
fitting of regression planes indexed on different quantiles. Moreover they are focused on the
estimation of point population descriptive quantities and namely the mean.

In this paper, we adopt a Bayesian approach to estimation; more importantly, we consider
simultaneous quantile regression, that amounts to specify a model for the quantile function. This
allows us to widen the scope of estimation to get estimates of the whole quantile function at the
area level, a richer picture that we can get from the estimation of single descriptive quantities.

Early Bayesian papers on quantile regression are based on the idea of estimating regression
planes indexed on different quantiles separately, using the Asymmetric Laplace or some gener-
alization of it as pseudo-likelihood for the data. See Yu and Moyeed (2001) and Kottas and
Krnjajic (2009), among others. Following a different line of research (see Reich et al., 2010;
Tokdar and Kadane, 2012; Yang and Tokdar, 2017), we consider simultaneous linear quantile
regression, in which the estimation of the quantile function is directly targeted.

Specifically, we consider an approach to linear quantile regression due to Reich (2012), Re-
ich and Smith (2013) and adapt it to the purpose of small area estimation by introducing random
effects into the model to describe between area variation not accounted for by the regressors.
Random effects are introduced also in Smith et al. (2015) for the same model; nonetheless our
specification is different as we are interested in inference conditional on the random effects and
in prediction rather than assessing the marginal effects of the covariates.

The considered approach has several advantages. First, although the specification for the
quantile function is non-parametric, it is centered around a parametric baseline that can be re-
covered as a special case. Second, area-specific parameters determine not only the location but
also the scale and shape of the distribution, so area level features can be accounted for. Third, as
under mild conditions a closed form for the likelihood exists, standard MCMC algorithms, such
as Gibbs sampling with Metropolis-Hastings blocks can be used to explore posterior distribu-
tions. As a consequence, not only the quantile functions but also posterior distributions of their
functionals can easily explored. Fourth, prediction of small area level quantile functions, and
their functionals, although non linear, require only averages of auxiliary variables to be known
at the area level and not individual out of sample values.

We will devote a special attention to the estimation of small area means, characterized as
functional of the quantile function. This choice is motivated mainly by comparability purposes:
as most small area literature is focused on mean estimation, we investigate how our approach
compares to others in the estimation of means, despite its purpose is more general. We prove that,
under the considered model and mild conditions on the chosen baseline, small area means can
be expressed as a linear combination of the parameters characterizing the quantile function. The
posterior distribution of these functions of parameters can be explored using MCMC algorithm
and their posterior means proposed as point predictors.
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We are interested in assessing frequentist properties of various estimators of the small area
means based on our model. We do this by means of a simulation exercise, in which they are
compared to selected frequentist alternatives including the M-quantile methods proposed by
Chambers and Tzavidis (2006) and Chambers et al. (2014), the Empirical Best Linear Unbiased
Predictor (EBLUP) (Rao and Molina, 2015, chapter 5) based on the assumption of normality
and its robust version (REBLUP) by Sinha and Rao (2009). The simulation setting is the same
considered in Chambers et al. (2014) and it is focused on the study of the robustness and the
efficiency of the estimators. We also compare our estimators to alternatives from the Bayesian
literature. Specifically, we consider the one based on the Bayesian analysis of the nested error
regression model, known as Battese-Harter-Fuller model in the small area literature, the way it
is proposed by Datta and Ghosh (1991). Quite surprisingly, although the Bayesian literature is
rich of robust extensions of the Fay-Herriot area-level model, there are few proposals of robust
alternatives to the unit-level nested error regression model. We can mention Chakraborty et al.
(2018); nonetheless these authors allow for non-normality of the individual level errors, but keep
the normality for the area level random effects. As far as we know, there are no applications of
Bayesian quantile regression to small area estimation.

We apply the proposed method to the analysis of a real data set. We consider a sample of
households from the survey on Income and Living Conditions (SILC) conducted in Italy as in
most European countries with consistent methodology. We focus on households with at least one
person aged 60 or more and receiving old age benefits (pension earner) and we target the quantile
functions and the mean of the equivalized household income. We are interested in households
with pension earners as they represent a subset of the population particularly exposed to the
risk of poverty and social exclusion. We target equivalized household income as poverty and
inequality measures currently adopted in the EU are based on this variable.

In summary, this research contributes to the literature in two ways: i) it introduces Bayesian
quantile regression based on the joint estimation of quantiles in small area estimation literature
with the aim of directly targeting the estimation of the quantile function at the area level; ii) it
provides the basis for estimating any functional of the quantile function at the small area level.

The paper is organized as follows. In Section 2 we set some notation and review frequentist
approach to quantile regression applied to small area estimation. In Section 3 we introduce the
Reich’s approach to quantile regression and our extension of it, while in Section 4, we prove our
result on the representation of small area means. In Section 5 we present the simulation exercise
and analyze the results, while the application to real data is presented in Section 6. Concluding
remarks and possible extensions are discussed in the Section 7.

2. Review of quantile regression methods in small area estimation

Let’s consider a population P of size N and a partition of it into m small areas
{P1, . . . , Ph, . . . , Pm} of size Nh,

∑m
h=1 Nh = N. Suppose we target a variable y. Several quan-

tities that describe the distribution of y in the small areas can be of interest. Most small area
estimation focuses on the estimation of area level descriptive quantities; in most cases the mean:

Ȳh = N−1
h

∑
i∈Ph

yi.

Sometimes also area-specific τ-quantiles: Qh(τ) = in f {t|N−1
h

∑
i∈Ph

∆(t − yi) ≥ τ} with ∆(t) = 1
when t ≥ 0 and ∆(t) = 0 elsewhere, are of interest.
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Let’s assume that an overall sample s of size n is drawn from the population and that sampling
is non-informative. The sample is partitioned into area-specific samples sh of size nh (nh ≥ 0).
We also assume that a p+1 vector of auxiliary information xi is known for each unit in the sample
(i.e i ∈ s); moreover xi1 = 1. Area-level means of the auxiliary variables x̄h = N−1

h
∑

i∈Ph
xi are

assumed to be accurately known and so are x̄rh = (Nhx̄h −
∑

i∈sh
xi)/(Nh − nh).

We exploit the relationship between the target and the auxiliary variables to improve the
estimation of Ȳh by assuming a super-population model, as we are interested in problems where
nh are so small that estimators of Ȳh based on area-specific sampling are not precise enough. We
focus on predictors in the form:

ˆ̄YP
h =

1
Nh

{∑
i∈sh

yi + (Nh − nh) ˆ̄Yrh

}
. (1)

where Ȳrh =
∑

i∈(Ph−sh) yi and ˆ̄Yrh its predictor.
The nested error regression model proposed by Battese et al. (1988) can be written as:

yi = xt
iβ + zt

iv + ei, (2)

where v is an m vector with independent components for which we assume vh ∼ N(0, σ2
v) while

ei ∼ N(0, σ2
e); zi is an m vector such that zih = 1 when i ∈ sh and 0 otherwise.

Under this model ˆ̄Yrh = x̄t
rhβ̃ + ṽh, where β̃ is an estimate of the regression parameter and

ṽh a prediction of the area-specific random effect. Model (2) is the most popular unit level
model used in small area estimation and inference and is discussed in several papers, under
both the frequentist and the Bayesian approach, (Rao and Molina, 2015, chapter 6). The popular
Empirical Best Linear Unbiased predictor (EBLUP) of Ȳh associated to (2) lacks robustness when
normality of ei, vh fails. Sinha and Rao (2009) introduce M-estimation ideas for the variance
components leading to robustified predictors based on the Battese-Harter-Fuller model.

The recourse to quantile regression offers an alternative to linear mixed models that is par-
ticularly useful when distributional assumption are difficult to specify. Let’ assume the linear
quantile regression model for the variable y associated to unit i in the sample:

q(τ|xi) = xt
iβτ,

where βτ defined as the minimizer of

min
β

E
[
|τ − I(u < 0)|ρ(u)

]
,

with u = (y − xtβ)/στ, στ being a scale parameter. The loss function ρ(u) is given by ρ(u) = |u|
in ordinary quantile regression while it is generalized using M-estimation ideas in M-quantile
regression (Breckling and Chambers, 1988), using for instance the popular Huber loss function:

ρ(u) =

{
(c|u| − c2/2) |u| > c
u2/2 |u| ≤ c.

The constant c > 0 can be fixed to compromise between efficiency and robustness (a common
choice is c = 1.345). Assuming ρ is (a.e.) continuously differentiable and convex, an estimator
of βτ, β̂τ, can be obtained as the solution of the following system of equations∑

i∈s

ψτ

(
yi − xT

i β

σ̂τ

)
xi = 0,
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where σ̂τ is a consistent estimator of στ and ψτ(u) = dρτ(u)/du = |τ − I(u < 0)|ψ(u), with
ψ(u) = dρ(u)/du. An iterative method is needed here to obtain a solution, like an iteratively
re-weighted least squares algorithm or the Newton-Raphson algorithm.

The application of M-quantile regression to small area estimation introduced by Chambers
and Tzavidis (2006) is based on the idea of area-characterizing quantile τh (M-quantile coef-
ficient). For unit i the (unique) M-quantile coefficient τi is the one for which yi = xt

iβτi
hold

exactly. The area-characterizing quantile will be defined as an average of τi for units within the
same area: τh = N−1

h
∑

i∈Ph
τi. The value τ̂h will be a sample based estimator of τh. The authors

observe that if a hierarchical structure does explain part of the variability in the population data,
units within areas defined by this hierarchy are expected to have similar M-quantile coefficients.
This represents an alternative approach to estimating area random effects without the need for
parametric assumptions. Chambers and Tzavidis (2006) propose a predictor in the form

ˆ̄Y MQ
h = N−1

h

{∑
i∈sh

yi + (Nh − nh) ˆ̄Yrh

}
, (3)

where, in this case, ˆ̄Yrh = x̄t
rhβ̂τ̂h

with β̂τ̂h
estimating βτh

in qτh (yi|xi) = xt
iβτh .

This idea proved to be effective and led to many applications and theoretical developments.
See Bianchi et al. (2018) for a review. As predictors in the form (3) tend to be biased, Chambers
et al. (2014) propose a bias-corrected predictor in the form:

ˆ̄Y MQ−BC
h = N−1

h

{∑
i∈sh

yi + (Nh − nh)x̄t
rhβ̂τh

+
∑
i∈sh

wψ
i ξ

(yi − ŷψi
wψ

i

)}
, (4)

where ξ, ψ, such that |ξ| > |ψ|, are influence functions associated to the loss function (3) defined
for different values of the tuning constant c. The second influence function, ξ, is still bounded
but ‘less restrictive’ than ψ, and its purpose is to define an adjustment for the bias caused by
the fact that the first two terms on the right-hand side of equation (4) treat sample outliers as
self-representing; wψ

i is a robust estimator of scale of the residuals yi − ŷψi with ŷψi = xt
iβ̂τh

(see
Chambers et al., 2014, for details).

We note that, although relying on quantile regression, Chambers and Tzavidis (2006) and
subsequent developments are in most cases concerned with the estimation of Ȳh and do not
consider the estimation of the quantile function at the area level as an explicit target.

3. Bayesian quantile regression and the Reich’s model

In the Bayesian literature, quantile regression has been studied using different approaches.
Although an accurate review of this literature is beyond the scope of this article, we shortly
discuss what we need to motivate our choice. Some contributions adopt parametric pseudo-
likelihoods such as the asymmetric Laplace (Yu and Moyeed , 2001; Yue and Rue, 2011) or more
flexible alternatives (Taddy and Kottas, 2010; Wichitaksorn et al., 2014) and estimate regression
planes separately for each quantile of interest. These methods are computationally simple but
the use of pseudo-likelihoods has been criticized (see Yang et al., 2016, and the contributions
discussing this paper). Separate estimation of quantile regression planes is also a limitation as
quantile plane crossing can be a problem; moreover inference of functionals of different quantiles
can be difficult as the relationship between different estimated quantiles would be overlooked.
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Among the methods considering joint estimation of all quantile regression planes (see Tokdar
and Kadane, 2012; Yang and Tokdar, 2017) we consider an approach due to Reich (2012) and
Reich and Smith (2013). The reasons for this choice are that, i) although non-parametric the
model for the quantile function is centered on a parametric baseline that can then be obtained as
a special case; ii) if the baseline has a density in closed form, a closed form for the likelihood
can be obtained; iii) the model is analytically tractable and a closed form expression for the
population mean can be obtained.

To describe this method let’s consider a linear quantile regression model in which we assume
that both location and scale of y depend linearly on the auxiliary variables x:

q(τ|xi) = xt
iα0 + xt

iα1q0(τ) = xt
iβ(τ) (5)

=

p+1∑
j=1

xi jα0 j +

p+1∑
j=1

xi jα1 jq0(τ) =

p+1∑
j=1

xi j{α0 j + α1 jq0(τ)} =

p+1∑
j=1

xi jβ j(τ).

The expression q0(τ) is assumed to be the quantile function of a continuous variable with location
equal to 0 and scale equal to 1. If the choice q0(τ) = Φ−1(τ) is taken, where Φ−1(τ) is the
quantile function of a N(0, 1) random variable, it would imply yi|xi ∼ N

(
xt

iα0,α
t
1xixt

iα1
)
, i.e. an

heteroskedastic normal regression model. The impact of the j-th regressor on the scale of the
distribution changes with the quantile whenever α1 j , 0 for some j > 1, otherwise we would
have a simpler homoskedastic model where the auxiliary variables impact only on the location.

Reich and Smith (2013) propose the specification of a more flexible model generalizing the
derivative of q(τ|xi) in τ:

dq(τ|xi)
dτ

= xiα1
d
dτ

q0(τ) =

p+1∑
j=1

xi jα1 j
d
dτ

q0(τ), (6)

assuming d
dτq0(τ) exists. Specifically they propose to replace (6) with a piece-wise derivative

function
dq(τ|xi)

dτ
=

L+1∑
`=1

I(κ`−1 < τ ≤ κ`)xt
iα`

d
dτ

q0(τ), (7)

where the L+1 piece-wise intervals are separated by breakpoints 0 = κ0 < κ1 < · · · < κL < κL+1 =

1. The idea is to obtain a quantile function whose shape is locally that of the baseline q0(τ) but
where each piece is characterized by a different local parameter. Reich and Smith (2013) show
that the continuous quantile function corresponding to (7) is given by:

q(τ|xi) = xt
iα0 +

L+1∑
`=1

xt
iα`B`(τ). (8)

The B`(τ) result from a piecewise decomposition of q0(τ), such that
∑L+1
`=1 B`(τ) = q0(τ); we

report a detailed definition of B`(τ) in the Appendix. In order to have a monotonically increasing
quantile function we must have xt

iα` > 0 ∀`, i, so α` parameters must be constrained in the esti-
mation process. The larger L, the more flexible is the model (and richer in terms of parameters).
According to Reich and Smith (2013) L between 3 and 5 already introduces a reasonable amount
of flexibility, a finding that our result will confirm.

The normal baseline, i.e. q0(τ) = Φ−1(τ), deserves special attention in small area estimation.
In fact the baseline model becomes the actual model whenever α` = α (` = 1, . . . , L) and
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differences in the (estimated) α` can be consistently interpreted as departures from the baseline
model. The normality assumption is considered in the Battese-Harter-Fuller model (2) and plays
a reference role in small area estimation.

Other choices of the baseline are possible provided that its location is set to 0 and its scale
to 1 to guarantee identification (see Reich and Smith, 2013). Additional shape parameters can in
principle be included and treated as additional model parameters. Possible alternatives to Φ−1(τ)
include t, exponential power, generalized hyperbolic, Fréchet distributions.

Note that, in (8), the term xt
iα0 does not depend on τ, so α0 influences only the location of

the conditional distribution. The interpretation of the α`, ` ≥ 1 is that of local scale parameters
that, as such, influence the shape of the distribution (i.e. the tails).

There exists a closed form expression for the density associated to (8) that we report here as
our notation is slightly different from that of Reich and Smith (2013):

f (y|xi,α0,αL) =

L+1∑
`=1

{
I
[
q(κ`−1|xi) < y ≤ q(κ` |xi)

]
xt

iα`
f0

(
y − q(κ`−1|xi) + xt

iα`q0(κ` |xi)
xt

iα`

)}
, (9)

where f0 is the density of the baseline model (that we suppose is well defined). The avail-
ability of (9) is of great importance for computation as it allows the implementation of Gibbs
sampling type of algorithms in the approximation of the posterior distribution. For this reason
the choice of a baseline q0(τ) that admits an associated density function is advisable. The den-
sity (9) has discontinuities at interior breakpoints. Discontinuous densities are rather common in
Bayesian non-parametrics since Ferguson (1973).

4. Extension to small area estimation

In this section we propose the extension of the approach due to Reich (2012), Reich and
Smith (2013) to small area estimation. Section 4.1 presents how the quantile function can become
area-specific by introducing random effects; in Section 4.2 we propose a Bayes point predictor
for small area means under quadratic loss and in Section 4.3 we discuss prior specification for
the model parameters.

4.1. Area-specific quantile functions

We propose to generalize (8) by making the α0 parameters area specific, i.e. α0 becomes α0h:

qh(τ|xi) = xt
iα0h +

L+1∑
`=1

xt
iα`B`(τ). (10)

We do not allow parameters α` to be area-specific as this would lead to a too richly parametrized
model for which it is very likely not to have enough information for reliable estimation.

Specifically, we can express α0h as α0h = α0 + v0h where v0h are 0 meaned random variables.
Note that these random effects are not quantile-specific in line with Koenker (2004), Reich et al.
(2010), Smith et al. (2015), but differently from Geraci and Bottai (2014). The random effects
v0h are actually vector valued: not only the general intercept α01 is allowed to vary across areas,
but also slopes α0 j, j = 1, . . . , p are assumed to be area-specific. A simplified model, more in
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line with usual assumptions in small area estimation (i.e. only the intercepts are assumed to be
random) can be easily obtained by setting

xt
iα0h = α01h +

p+1∑
j=2

xi jα0 j. (11)

As anticipated in the introduction, our specification of the random effects is different, and simpler,
with respect to Smith et al. (2015). The reason is that we are interested in inference conditional on
the random effects and in prediction rather than assessing the marginal effects of the covariates.

4.2. Prediction of small area quantiles and means
The linear quantile function (10) can be straightforwardly used to predict a quantile condi-

tional on a given xi, i ∈ Ph. If we average over all population units in area Ph, i.e. we integrate
out the xi (assuming a constant point mass probability on each population unit), we obtain

q̂h(τ) =
1

Nh

∑
i∈Ph

qh(τ|xi) = x̄t
hα0h +

L+1∑
`=1

x̄t
hα`B`(τ), (12)

i.e. the marginal τ-quantile of y in area h. The hat over q in q̂h(τ) emphasizes that its form
depends on the assumed model. As it is function of the auxiliary variables only through x̄h its
estimation does not require knowledge of individual xi for units not in the sample. Note that,
although the local scale parameters α` are common to all areas, the scale of the distribution
depend on area-specific information through x̄h, so q̂h(τ) are area-specific in both location and
shape.

In most small area applications, estimation of small area means is of interest. For the super-
population mean θh we can obtain, consistently with (12), a useful representation based on the
well known relationship between the expectation of a random variable and its quantile function:

θ̂h =

∫ 1

0
q̂h(τ)dτ,

that leads to the statement of the following result.

Theorem 1. If we assume that
∫ κ`+1

κ`
q0(τ)dτ exists and can be expressed as

∫ κ`+1

κ`
q0(τ)dτ =

g{q0(κ`)} − g{q0(κ`+1)} for some non-negative function g such that g{q0(0)} = g{q0(1)} = 0 then

θ̂h =

∫ 1

0
q̂h(τ)dτ = x̄t

hα0h + x̄t
h

[ L∑
`=1

(α`+1 − α`)
{
g
(
q0(κ`)

)
− (1 − κ`)q0(κ`)

}]
. (13)

Proof. Let’s start from ∫ 1

0
q̂h(τ)dτ = x̄t

h

[
α0h +

∫ 1

0

L+1∑
`=1

α`B`(τ)dτ
]
,

and note that α` are vectors of size p, but B`(τ), see the Appendix for a detailed definition, is a
scalar function of τ that multiplies each component of α`. For this reason we can work on the
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integral above component-wise. For simplicity we will denote α` a generic component of α`. Let
q̃B(τ) =

∑L+1
`=1 α`B`(τ), then∫ 1

0
q̃B(τ)dτ =

∫ κ1

κ0

q̃B(τ)dτ +

∫ κ2

κ1

q̃B(τ)dτ + · · · +

∫ κ`+1

κ`

q̃B(τ)dτ,

where κ0 = 0 and κ`+1 = 1. If τ < κ1 then q̃B(τ) = α1q0(τ) so
∫ κ1

κ0
q̃B(τ)dτ = −α1g{q0(κ1)}.

If κ1 < τ ≤ κ2 then q̃B(τ) = α1q0(κ1) + α2{q0(τ) − q0(κ1)} = (α1 − α2)q0(κ1) + α2q0(τ) and∫ κ2

κ1
q̃B(τ)dτ = (α1 − α2)(κ2 − κ1)q0(κ1) + α2

[
g{q0(κ1)} − g{q0(κ2)}

]
. As a consequence∫ κ2

κ0

q̃B(τ)dτ = (α1 − α2)(κ2 − κ1)q0(κ1) − (α1 − α2)g{q0(κ1)} − α2g{q0(κ2)}.

More generally, if κ` < τ ≤ κ`+1 then

q̃B(τ) =
∑̀
j=1

(α j − α j+1)q0(κ j) + α`+1q0(τ),

that implies∫ κ`+1

κ`

q̃B(τ)dτ = (κ`+1 − κ`)
∑̀
j=1

(α j − α j+1)q0(κ j) + α`+1
[
g{q0(κ`)} − g{q0(κ`+1)}

]
In view of

∫ κL+1

κL
q0(τ)dτ = αL+1g{q0(κL)} formula (13) follows from simple algebra.

The conditions in the statement of Theorem 1 are satisfied, for instance, by Φ−1(τ) for which∫ κ`+1

κ`
Φ−1(τ)dτ = φ(κ`) − φ(κ`+1) along with other distributions such as the t or the Frechet distri-

butions.
Equation (13) allows to express θh as a linear function of the α = (α0,α`) parameters. Note

that g{q0(κ`)} are known constants that depend on the chosen knots κ1, . . . , κL and the baseline
q0(τ). In fact the terms in (13) can be re-arranged in order to express θ̂h directly as a linear
combination of the α:

θ̂h = x̄t
hα0h + x̄t

h

{ L+1∑
`=1

α`b`
}

= x̄t
h

{
α0h +

L+1∑
`=1

b`α`
}
, (14)

with b` = g{q0(κ`−1)} − g{q0(κ`)}+ (1− κ`)q0(κ`)− (1− κ`−1)q0(κ`−1) provided that conventionally
we assume q0(κL+1) = q0(κ0) = 0.

A Bayes point predictor under quadratic loss for the small area mean Ȳh can then be expressed
as:

ˆ̄YQR
h = E

[
N−1

h

[∑
i∈sh

yi + (Nh − nh)x̄t
rh

{
α0h +

L+1∑
`=1

b`α`
}]
|d
]

(15)

= E
[
N−1

h

[∑
i∈sh

yi + (Nh − nh) ˆ̄Yrh

]
|d
]
,
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where d is a shortcut notation for the data, that is d = (ys,Xs, x̄h). Posterior standard deviation
sd

( ˆ̄YQR
h |d

)
can consistently be used to evaluate uncertainty around ˆ̄YQR

h .
If the normal baseline is assumed, i.e. q0(τ) = Φ−1(τ) then (13) specializes to

θ̂h|q0 = x̄t
hα0h + x̄t

h

[ L∑
`=1

(α`+1 − α`)
{
φ
(
Φ−1(κ`)

)
− (1 − κ`)Φ−1(κ`)

}]
, (16)

as the function g coincides with the density φ in this case. If α1 = · · · = αL+1, then θh = x̄t
hα0h,

that is the expectation does depend only on the location of the distribution and not on its shape.
In this sense our representation of θh generalizes normal random effects models that are popular
in small area estimation: if we have no evidence of departures from normality the model reduces
to the nested error regression model (2).

4.3. Prior specification for the random effects and other hyperparameters
In the specification of the distribution of the random effects α0h we consider three alternatives

of increasing complexity. The first is simply to assume independent normal distributions:

α0h j ∼ N(α0 j, ζ
−1
j ) (17)

where ζ−1
j are precision parameters. The second alternative is represented by

α0h j ∼ t(α0 j, g j, ζ
−1
j ), (18)

i.e. independent t-distributions with g j degrees of freedom and ζ j as before. We assume g j ∼

Exp(0.1). In both (17) and (18) we assume ζ j ∼ Gamma(.01, .01), a standard assumption for
the precision motivated by computational convenience. Diffuse independent normal priors are
considered for parameters α0 j. The rationale for (18) is that of introducing some flexibility in the
prior of α0h j with respect to (17) while keeping computational convenience. Both these priors
are not flexible enough to accommodate general configurations of the random effects and are not
consistent with the non-parametric specification of the rest of the model.

Our third alternative consists in a non-parametric prior based on the Dirichlet process. Actu-
ally we specify a Dirichlet process prior, truncated for implementation purposes. We follow the
lines of Ohlssen et al. (2007) and we adopt also their notation and their strategy in the specifica-
tion of the priors for the hyperparameters:

α0h j ∼ T DP(γ j,G0 j,Tc j) (19)
G0 j = N(µ0 j, σ

2
0 j)

The acronym T DP stays for Truncated Dirichlet process. Ohlssen et al. (2007) discuss the choice
of Tc j which is related to the prior chosen for γ j. Consistently with their proposal we set Tc j = 50
that results adequate also in terms of measure of approximation to the full Dirichlet process and
γ j ∼ Uni f orm(0.3, 10). The hyper-location parameters µ0 j are given a diffuse normal prior:
µ0 j ∼ N(0, 100), while we assume σ0 j ∼ Uni f orm(0, 50). The prior (19) offers the advantage
of being very flexible and it is in line with the non-parametric specification of the model. The
main drawback is that is computationally demanding and its implementation in practical MCMC
algorithm can slow down computations. In all cases priors for different α0h j are assumed to be
independent.
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The consideration of alternative distributions for the random effects will allow us to make
comparisons and checking the sensitivity of relevant posterior summaries to alternative specifi-
cations of the distribution assumed for the random effects.

For the α` (` ≥ 1) we adopt the same latent variable approach suggested by Reich and Smith
(2013) to guarantee the monotonicity of the quantile function. Specifically, the derivative of the
quantile fuction qh(τ|xi) is positive if and only if xt

iα` > 0,∀i, ∀` ≥ 1. We assume that covariates
are scaled so that xi j ∈ [−1, 1], ∀i, j = 1, . . . , p; the quantity wc(α`) = α`1 −

∑p+1
j=2 |α` j| defines

the worst case for the positiveness of xt
iα`, reached when either xi j = −1 and α` j > 0 or xi j = 1

and α` j < 0, j > 1. In line with Reich and Smith (2013) we build the prior by introducing a set
of latent unconstrained parameters α? = (α?`1, . . . , α

?
`p) and set

α` j =


α?` j wc(α?` ) > 0,

ε1( j = 1) wc(α?`) ≤ ε,

where ε > 0 is a small constant. Theorem 1 in Reich and Smith (2013) shows how these re-
strictions on α` are note severe and allow for a flexible prior. Differently from Reich and Smith
(2013) we consider a simpler specification for α?` j: we select independent normal priors instead
of multivariate normal priors with an auto-regressive variance-covariance structure controlled by
an additional parameter ρ j.

5. Simulation exercise

We now present a simulation exercise aimed at assessing the frequentist properties of the
Bayesian predictors of the small area means discussed in Section 4. Quantile regression has
been introduced in small area estimation as a distribution-free robust alternative to linear mixed
models, thereby we focus on the ability of quantile regression based predictors to deal with
outliers.

We consider the same simulation exercise presented in Chambers et al. (2014), Section 5,
simply adding new predictors to those they study.

For each Monte Carlo iteration, population data are generated within area h (h = 1, . . . ,m =

40) according to the following model:

yi = 100 + 5xi + vh + εi, i ∈ Ph (20)

where sub-populations Ph have size Nh = 100. Samples are selected by simple random sampling
without replacement within each area with nh = 5. With respect to Chambers et al. (2014) the
case nh = 15 has not been considered. The auxiliary variable values are generated according to a
log-normal distribution, i.e. xi ∼ LogN(µ = 1, σ = 0.5).

The random components vh and ei are generated according to four different scenarios:

Scenario [0, 0], no outliers: v ∼ N(0, 3) and ε ∼ N(0, 6);
Scenario [e, 0], individual outliers only: v ∼ N(0, 3), ε ∼ δN(0, 6) + (1 − δ)N(20, 150) where
δ

ind
∼ Bernoulli(0.97);

Scenario [0, v], area outliers only: v ∼ N(0, 3) for areas h = 1, . . . , 36 and v ∼ N(9, 20) for areas
h = 37, . . . , 40; ε ∼ N(0, 6);
Scenario [e, v], outliers in both area and individual effects: v ∼ N(0, 3) for areas h = 1, . . . , 36
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and v ∼ N(9, 20) for areas h = 37, . . . , 40; ε ∼ δN(0, 6) + (1 − δ)N(20, 150) where δ
ind
∼

Bernoulli(0.97).

Note that when outliers are present at the individual level they contaminate each area; the
outlier perturbation of area effects always concerns the same group of areas. This makes possible
comparing the behaviour of estimators in area that are outliers and in those that are not. The
outliers are introduced by means of additive perturbation of residuals. This choice is motivated
by the creation of residuals’ distribution skewed and heavy tailed, and not simply heavy tailed as
it would result from scale mixtures.

As our methods are based on MCMC algorithm and therefore computationally demanding,
we limit the number of Monte Carlo replications to R = 250. All codes are written in R, while
for MCMC we use our own codes in jags called through the R package rjags (Plummer et al.,
2016).

We consider models with q0(τ) = Φ−1(τ), L = 3 and κ` = 0.25, 0.5, 0.75, which is also the
default in the BSquare package (Smith and Reich, 2013). More complex models with L = 5
and κ` = 0.1, 0.25, 0.5, 0.75, 0.9 will only be considered to illustrate how performances can be
improved in situations where the residuals distribution exhibits heavy tails.

Posterior summaries are based on 10,000 samples, while the length of burn-in in set to 5,000.
TPD priors (19) are assumed for the random effects, unless in cases where the use of normal or
t priors (18) is explicitly mentioned. To speed up convergence we choose the initial values in
the simulation in this way: we generate one sample from the simulation design, that we label
‘iteration 0’ as it is not considered in the subsequent analysis. For these data we run the model
without the random effects using the BSquare package, (Smith and Reich, 2013) in order to get
initial values for the α`, ` ≥ 1. We use these and randomly generated values for the remaining
parameters to run our model. The posterior expectations obtained after convergence are then
used to initialize the models for all the samples generated in the simulation.

We consider various predictors for comparison. In the first place, we consider the standard
EBLUP predictor associated to the nested error regression model (2) that can play the role of
benchmark because of its popularity, but that is known to be sensitive to outliers because of the
normality assumption on the random components. We also consider the posterior mean of θh ob-
tained from the Bayesian analysis of model (2) as it is implemented in hbsae package (Boonstra,
2012), with default choices for the priors. This implementation is essentially based on Datta and
Ghosh (1991). We denote this predictor as HB-NER. We consider also the REBLUP associated
to model (2) and defined according to the methodology of Sinha and Rao (2009), the M-quantile
(MQ) and the bias-corrected M-quantile (MQ-BC) defined in (3) and (4), respectively. Other
Bayesian predictors, and namely the one proposed by Chakraborty et al. (2018) quoted in the in-
troduction, are not considered, as comparisons would be unfair: they do not allow for non-normal
random effects and their assumption on the individual level errors do not encompass asymmetric
contamination of scenarios [e, 0] and [e, v].

A sample code, along with data and initial values, written in the R language is available in
the supplementary material associated to the paper.

We compare the predictors in terms of median values (across areas) of relative bias (RB) and
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of relative root mean square error (RRMSE) defined for specific areas as

RBh =
1
R

R∑
r=1

ˆ̄Y∗hr − Ȳhr

Ȳhr

RRMS Eh =

√
1
R
∑R

r=1( ˆ̄Y∗hr − Ȳhr)2

1
R
∑R

r=1 Ȳhr
,

where ˆ̄Y∗hr denotes the generic predictor being considered. Median values will be denoted as mRB
and mRRMS E.

Table 1: Model-based simulation results: performances of predictors of small area means in scenarios [0,0] and [e,0].

Scenario [0, 0] [e, 0]

Predictor mRB mRRMSE mRB mRRMSE
EBLUP 0.02 0.81 -0.02 1.22
HB-NER 0.01 0.82 -0.03 1.22
REBLUP 0.03 0.82 -0.39 1.01
MQ 0.02 0.82 -0.43 1.03
MQ-BC 0.02 0.91 -0.28 1.24
ˆ̄YQR 0.02 0.80 0.19 1.18
ˆ̄YQR|L = 5 0.02 0.83 0.02 0.98

Results in Table 1 show that in the [0, 0] scenario, all predictors perform similarly (with the
only MQ-BC being slightly less efficient). Probability intervals calculated as the range between
the 0.025 and 0.975 quantile of ˆ̄YQR posterior distributions show a frequentist coverage between
0.94 and 0.96. We note how EBLUP and HB-NER perform very closely. This is not true only
for this scenario, but also for all the remaining ones, so we will not insist on this point.

When outliers are introduced in the unit-level residuals (scenario [e, 0]), all robust frequentist
predictors are negatively biased. This could be expected, as they downweight outliers that are,
according to the design of scenario [e, 0], all positive, thus improving efficiency at the price of
some negative bias (see also Chambers et al., 2014). On the contrary, ˆ̄YQR exhibits a positive
bias: we have a scale parameter ruling the right tail of the distribution and the chosen threshold
with L = 3 is the quantile 0.75 so that all the last quarter of the distribution is influenced by the
outliers. To confine the impact of outliers only to the extreme of the right tail we can explore a
model with more nodes. In fact, if we set L = 5 (and κ` = 0.1, 0.25, 0.5, 0.75, 0.9) only the last
decile is influenced by outliers and as result we have a much smaller bias and a predictor more
efficient in terms of mRRMSE. As far as the frequentist coverage of posterior intervals in scenario
[e, 0] are concerned it is close to 0.95 for ˆ̄YQR|L = 5, while between 0.88 and 0.92 when L = 3.
We note that when L = 5 the Bayes predictor we propose is more efficient than all alternatives,
with the exception of REBLUP (that is nonetheless more biased), so it seems that more nodes
would lead to more efficient estimators. It has a price in terms of computational burden that may
be unnecessary in scenarios less extreme than those considered in this simulation. A large L may
also lead to poor estimation of shape parameters ruling the tails unless the sample is very large;
in this case the computational burden can be heavy. In this exercise we do not explore the choice
L > 5.
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Table 2: Model-based simulation results: performances of predictors of small area means in scenarios [0, v]. (N), (t),
(TDP) means that a Normal. a t or a Dirichlet process prior has been specified for the random effects, see Section 4.3 for
details.

Areas [1 − 36] [37 − 40] [1 − 36] [37 − 40]

Predictor mRB mRRMS E
EBLUP 0.10 -0.54 0.85 0.97
HB-NER 0.10 -0.50 0.88 1.00
REBLUP 0.11 -0.47 0.84 1.02
MQ 0.09 -0.94 0.83 1.46
MQ-BC 0.03 -0.07 0.92 0.86
ˆ̄YQR (N) 0.09 -0.59 0.87 1.04
ˆ̄YQR (t) 0.06 -0.33 0.83 0.94
ˆ̄YQR (TDP) 0.07 -0.27 0.82 0.91

When we introduce perturbed random effects (scenario [0, v], Table 2), we observe negative
biases in the outlying areas as modified random effects have a positive mean and estimators are
only partially able to accommodate it. For the Bayesian predictors it means that, despite the
assumed prior is flexible, it is not flexible enough to fully account for the extreme outliers con-
sidered in the [0, v] scenario. We also observe a positive median bias for the non-outlying areas
because of the over-estimation of variance components due to a variance inflation effects caused
by the presence of outliers. Only MQ-BC, that follows a different logic and is explicitly bias-
adjusted, is very close to unbiasedeness (in median) in both groups of areas. For the Bayesian
predictors, the amount of bias depends on the flexibility of the specified prior. In table 2 we
compare Normal, t and TDP priors; clearly the more flexible the prior the smaller is the median
bias observed in the outlying areas. Note that the improvement from Normal to t looks bigger
than that from t to TDP; this is interesting especially in view of the fact that Normal and t have
similar levels of computational complexity in MCMC algorithms, while TDP is computationally
more demanding. In terms of mRRMS E, ˆ̄YQR endowed with the TDP prior is more efficient than
MQ-BC in non-outlying areas, while it is slightly less performing in the outlying ones. Frequen-
tist coverage of posterior intervals reaches 0.95 for areas [1-36] and lies between 0.9 and 0.95
for the outlying ones. We observe that this slight undercoverage is quite usual when the posterior
distribution is not centered on the actual value of the parameter.

Results for scenario [e, v] are presented in Table 3. This scenario is quite extreme as we have
big outliers at both the unit and the area level. For this complex data structure we found that
predictors based on L = 5 perform significantly better than those based on L = 3 and is in this
case the best predictor among those considered. In summary, the method we propose has the
potential to improve the efficiency of many popular predictors in a variety of situations, with and
without outliers contaminating the data.

6. An application to Italian income survey data

In this section we apply our methodology to the analysis of data from the 2013 Italian sample
of the EU-SILC survey. This survey is conducted yearly across many European countries by the
relevant National Institutes of Statistics using harmonized questionnaires and survey methodolo-
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Table 3: Model-based simulation results: performances of predictors of small area means in scenarios [e, v].

Areas [1 − 36] [37 − 40] [1 − 36] [37 − 40]

Predictor mRB mRRMS E
EBLUP 0.17 -1.59 1.37 2.39
HB-NER 0.15 -1.51 1.38 2.33
REBLUP -0.36 -1.00 0.99 1.44
MQ -0.32 -0.99 1.01 1.57
MQ-BC -0.26 -0.30 1.26 1.49
ˆ̄YQR 0.46 0.02 1.31 1.33
ˆ̄YQR|L = 5 0.34 -0.26 1.07 1.19

gies (Atkinson and Marlier, 2010, chapter 2). We consider a subset of these data focusing on
people aged 60 or more and receiving old age or survivor benefits (in short, pension earners).

The target variable is the equivalized income, defined as the total disposable household in-
come divided by an equivalence factor, in this case the so called modified-OECD equivalence
factor (see Fusco et al., 2010, for more details). The goal of our estimation exercise is to esti-
mate the average equivalized income of pension earners at the level of local labour systems also
known as travel to work areas. We limit our attention to central Italy (i.e. region ITE according
to the Nomenclature of Territorial Units for Statistics).

Our target population is divided into 113 areas. The overall sample size is 2,779 individuals.
Area-specific sample sizes range from 0 (39 cases) to 496. For the areas with at least one sample
household, the median sample size is equal to 19, so many of them are not large enough to
provide estimates of average equivalized income of pension earners with an adequate precision.
To evaluate the precision of the direct estimators, we follow the suggestions of Statistics Canada
(2007) and we count the number of small areas with values of the coefficient of variation (CV)
less than 16.6% (reliable for general use), between 16.6% and 33.3% (to be accompanied by a
warning to users) and over 33.3% (unreliable). We have that only 32 areas are endowed with
reliable estimates, 31 with estimates publishable with a warning and 11 completely unreliable.
Moreover we have 39 areas for which we do not have any sample.

Pension income is a component of total individual income, thereby of total household in-
come used in the definition of our target variable. The relationship between pension income
and equivalized income for units in our sample is described in Figure 1. This relationship can
be exploited in small area estimation as total (and average) pension income which is known at
the municipal and thereby at the local labour system level from administrative (fiscal) archives.
Nonetheless, from Figure 1 we get that this relationship is characterized by the presence of out-
lying observations and heteroskedastic residuals, a situation that can be dealt with using quantile
regression.

To model the quantile function we consider a normal baseline, q0(τ) = Φ−1(τ) and compare
models based on L = 3 (κ = 0.25, 0.5, 0.75) and L = 5 (κ = 0.1, 0.25, 0.5, 0.75, 0.9), along with
different assumptions on the random effects.

We fit all models using the MCMC sampler jags (Plummer et al., 2016). Initial values
for regression parameters are obtained by running the model (without random effects) using the
BSquare package (Smith and Reich, 2013). We run a conservative burn-in of 10,000 draws and
base our posterior summaries on a 40,000 MCMC sample.
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Figure 1: Pension income vs Equivalized income, values in thousend euros (left panel). Focus on values less than 100 on
both axes (right panel).

We start with a T DP prior for the random effects. Regardless of the chosen L, the posterior
distribution of the hyperparameter γ introduced in (19) is negatively skewed with a peak close to
the upper limit of its domain. This indicates that the random effects distribution is close to the
base distribution assumed in the T DP specification, in our case the normal (see Ohlssen et al.,
2007). We compare models with either normal or t distribution for the random effects in terms
of DIC (Spiegelhalter et al., 2002); it provides a slight preference in favour of the model with
normal random effects. This provides evidence that there are no outlying random effects and
assuming their normality is a tenable assumption. We also considered simplified models where
only the intercepts are area-specific while the slopes are not, as described in (10), in both the
L = 3 and L = 5 cases models with random effects on both intercepts and slopes exhibit a lower
DIC.

Eventually, the model with L = 5 is to be preferred in terms of DIC to that with L = 3. This is
in line with the evidence provided by the simulation exercise of Section 5 for the [e, 0] scenario,
characterized by unit level but not area level outliers, similarly to the data currently analyzed.

A limited sensitivity exercise on the priors for the hyper-parameters has been made. Specifi-
cally for the degrees of freedom of the t distribution we considered beside the exponential prior
quoted in section 4.3, a Gamma(2, 0.01) prior discussed in Juárez and Steel (2010), finding
no appreciable impact on the posterior distributions of parameters relevant to this analysis and
namely the α parameters. Similarly we modified the parameters of the Gamma distributions used
for precisions considering Gamma(1, 1), Gamma(1, 0.1) and Gamma(.1, .1) alternatives without
finding these choices to have any impact on the posterior of the αs. Eventually, we did a limited
sensitivity exercise for γ j parameter in TPP prior specification. Also in this case we did not find
any relevant effect of these modifications. In Figure 2 (left panel) the posterior expectation of
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Figure 2: Left panel: Estimated quantile functions for Rome (black) and Porto Sant’Elpidio (red). Right panel: same
plot but range on y axis limited.

quantile function E(q̂h(τ)|d) is plotted for two different areas: Rome (which is the richest on av-
erage according to direct estimates) and Porto Sant’Elpidio (a rural area near the Adriatic coast),
the poorest. It is apparent how the model is flexible enough to accommodate the skew distri-
bution of the data despite the adopted normal baseline. Area-specific intercepts move the curve
for Rome up to stochastically dominate the quantile function estimated for Porto Sant’Elpidio.
The differences between the two curves can be better evaluated from the right panel, where the
influence of the x̄h on the α parameters lead to a steeper curve for Porto Sant’Elpidio right of
τ = 0.75, as we can expect for an area where pensions are more concentrated on lower quantiles.

Small area estimators can be often thought as composite estimators that complement the
information from the area-specific sample with that provided by all other areas in the sample.
This is true also for the method that we propose. In Figure 3 we compare the empirical quantile
functions of two areas with the quantile function E(q̂h(τ)|d) estimated from the model. In the left
panel we show the situation for the Local Labour system of Florence. Although the area-specific
sample is adequate (nh = 127) the empirical quantile function exhibits a short tail; the observed
maximum equivalized income in Florence is less than half of the maximum in Rome, which
does not make much sense in view of our prior knowledge of the problem and can be attributed
to a sample effect. The model-based estimated right tail of the distribution is thereby more
realistic. In the right panel of Figure 3 we show the results for the Local Labour system of Jesi
(a middle sized town in the Marche administrative region). The sample here is smaller (nh = 79)
but the presence of an observation in the highest percentile of the (overall) sample distribution
has an impact on the empirical quantile function. The model based estimated quantile function
moderates the impact of the outlier.

We now turn our attention to the estimation of small area means. Although integrating the
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Figure 3: Empirical quantile function (grey) versus model based estimated quantile function (black). Left panel: Flo-
rence. Right panel: Jesi

whole quantile function is liable to outlier influence, we note that these shape parameters α` are
estimated on the whole sample; moreover the influence of outliers is limited to just one of the
shape parameters. Figure 4 shows the difference between direct and model based estimators, that
diminishes as the sample size grows. We limited the x-axis to 150 to show more clearly what
happens with small and medium sample sizes.

If we compare the posterior standard deviations sd
( ˆ̄YQR

h |d
)
, to the standard deviations of di-

rect estimators (i.e. sample means) we find that they are much smaller: 66% smaller in median
and 67% in mean; we find similar numbers when comparing coefficient of variations. The pos-
terior standard deviations sd

( ˆ̄YQR
h |d

)
are also much smaller than those associated to the HB-NER

estimator (see section 5) that reduce the coefficient of variation by 20% in median; a poor perfor-
mance due to the failure of the normality assumption that lead to over-estimation of the random
effects variance. Estimates for out-of-sample areas can be straightforwardly be obtained using
the formulas of our predictors. With reference to the Statistics Canada (2007) guidelines all
estimates obtained using the small area method can be labelled as reliable.

We finally test whether the model-based and direct estimates proposed have the same ex-
pected value using the approach by Brown et al. (2001) who considered model-based estimates
as unbiased predictors of direct estimates and proposed a goodness-of-fit diagnostic based on
the null hypothesis that the model-based estimates are equal to the expected values of the direct
estimates. In particular, the following Wald statistic, distributed according to a χ2(m) under the
null hypothesis is proposed:

W =

H∑
h=1

( ˆ̄Yh −
ˆ̄YQR

h
)2

Var
( ˆ̄Yh

)
+ V

( ˆ̄YQR
h |d

) (21)
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Figure 4: Difference between the direct estimator and ˆ̄YQR
h plotted against the sample size (up to 150).

where Var
( ˆ̄Yh

)
denotes the sampling variance of ˆ̄Yh. The p-value is in our case 0.139, so we do

not have evidence against the null hypothesis. As the procedure proposed by Brown et al. (2001)
assumes that the sample sizes in the small areas are sufficient to justify central limit assumptions,
we repeat the calculation on the 36 areas with sample size at least 20: the p-value is in this case
0.331.

7. Conclusions

In this article we introduce Bayesian analysis of quantile regression models in the context of
small area estimation. Our distributional assumptions are very flexible but we keep normality,
that often plays a central role in small area estimation, as a special case.

With the proposed method, we obtain an estimate of the whole quantile function at the area
level. The method can be applied to the estimation of quantities defined as functionals of the
quantiles. In this research we focused on the mean, that is the most common target of small area
estimation. The estimator of the mean assumes a simple, interpretable form. We compare the
predictors we propose with those based on quantile regression under a frequentist approach and
we find that ours are at least as performing in terms of bias and mean square error under different
scenarios. We also find that probability intervals based on posterior quantiles have frequentist
coverages close to their nominal levels. Our research can be extended to other functionals of
the quantiles as concentration indexes, headcount ratios, quintile share ratios that are used in the
analysis of the income distributions.
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Posterior distributions are explored by means of MCMC algorithms that can be implemented
using standard softwares, such as jags we consider in our application. Nonetheless it is com-
putationally demanding, especially when the sample size is large. For this reason we considered
only solution based on relatively simple specifications, based on a limited number of nodes.
More efficient, faster algorithms represent an area for possible future research.

Acknowledgements

The work of Nicola Salvati has been carried out with the support of project InGRID 2 (grant
agreement 730998, EU) and of project PRA2018-9 (‘Fromsurvey-based to register-based statis-
tics: a paradigm shift using latent variable models’).

References

Atkinson, A.B., Marlier, E. (2010), Income and living conditions in Europe, Eurostat Statistical books, Publication
Office of the European Union, Luxembourg.

Battese, G., Harter, R. and Fuller, W. (1988), An error-components model for prediction of county crop areas using
survey and satellite data, Journal of the American Statistical Association, 83, 28–36.

Boonstra, H.J. (2012), hbsae: Hierarchical Bayesian Small Area Estimation, R package version 1.0., URL:

https://CRAN.R-project.org/package=hbsae.
Breckling, J. and Chambers, R. (1988), M-quantiles, Biometrika, 75, 761–771.
Bianchi, A., Fabrizi, E., Salvati, N., Tzavidis, N.(2018), Estimation and Testing in M-quantile regression with applica-

tions to small area estimation, International Statistical Review, 86, 541–570.
Brown, G., Chambers, R., Heady, P. and Heasman, D. (2001) Evaluation of small area estimation methods. An application

to unemployment estimates from the UK LFS. In Proc. Symp.Achieving Data Quality in a Statistical Agency: a
Methodological Perspective. Ottawa: Statistics Canada.

Chakraborty, A., Datta, G.S., Mandal, A. (2018), Robust hierarchical Bayes small area estimation for nested error linear
egression model, arXiv:1702.05832 [stat.ME]

Chambers, R., Tzavidis, N. (2006), M-quantile models for small area estimation, Biometrika, 76, 47–69.
Chambers, R., Chandra, H., Salvati, N., Tzavidis, N. (2014), Outlier robust small area estimation, Journal of the Royal

Statistical Society, B 93, 255–268.
Datta, G.S., Ghosh, M. (1991), Bayesian prediction in linear models: applications to small area estimation, Annals of

Statistics, 19, 1748–1770.
Ferguson, T. S. (1973), A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209–230.
Fusco, A., Guio, A.C., Marlier, E. (2010), Chracterizing the income poor and the materially deprived in European

countries, in Eurostat Statistics books: Income and living conditions in Europe, (Atkinson A.B. and Marlier E. (eds.),
Publication Office of the European Union, Luxembourg.

Geraci, M., Bottai, M. (2014) Linear Quantile Mixed Models, Statistics and Computing, 24, 461–479.
Koenker, R. (2004), Quantile regression for longitudinal data, Journal of Multivariate Analysis, 91, 74–89.
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Appendix

We report the definition B`(τ) introduced in (8). It is presented also in Reich and Smith
(2013) but our notation is slightly different. We restrict to the case L = 3 (generalization to larger
L is trivial):

• if τ ≤ κ1 then

B1(τ) = q0(τ)
B`>1(τ) = 0

• if κ1 < τ ≤ κ2 then

B1(τ) = q0(κ1)
B2(τ) = q0(τ) − q0(κ1)

B`>2(τ) = 0

• if κ2 < τ ≤ κ3 then

B1(τ) = q0(κ1)
B2(τ) = q0(κ2) − q0(κ1)
B3(τ) = q0(τ) − q0(κ2)

• if τ > κ3 then

B1(τ) = q0(κ1)
B2(τ) = q0(κ2) − q0(κ1)
B3(τ) = q0(τ) + {q0(κ3) − q0(κ2)}
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