
21 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Gulbrandsen, M.G., Halle, L.H., Hulek, K., Zhang, Z. (2021). The geometry of degenerations of Hilbert
schemes of points. JOURNAL OF ALGEBRAIC GEOMETRY, 30(1), 1-56 [10.1090/jag/765].

Published Version:

The geometry of degenerations of Hilbert schemes of points

Published:
DOI: http://doi.org/10.1090/jag/765

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/806273 since: 2021-02-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1090/jag/765
https://hdl.handle.net/11585/806273


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Gulbrandsen, M. G., Halle, L. H., Hulek, K., & Zhang, Z. (2021). The geometry of 
degenerations of hilbert schemes of points. Journal of Algebraic Geometry, 30(1), 
1-56.  

The final published version is available online at  
https://dx.doi.org/10.1090/jag/765 

Rights / License:    

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1090/jag/765


THE GEOMETRY OF DEGENERATIONS OF HILBERT
SCHEMES OF POINTS

MARTIN G. GULBRANDSEN, LARS H. HALLE, KLAUS HULEK,
AND ZIYU ZHANG

Abstract. Given a strict simple degeneration f : X → C the first
three authors previously constructed a degeneration In

X/C → C of
the relative degree n Hilbert scheme of 0-dimensional subschemes.
In this paper we investigate the geometry of this degeneration,
in particular when the fibre dimension of f is at most 2. In this
case we show that In

X/C → C is a dlt model. This is even a good
minimal dlt model if f : X → C has this property. We compute
the dual complex of the central fibre (In

X/C)0 and relate this to the
essential skeleton of the generic fibre. For a type II degeneration of
K3 surfaces we show that the stack In

X/C → C carries a nowhere
degenerate relative logarithmic 2-form. Finally we discuss the
relationship of our degeneration with the constructions of Nagai.

1. Introduction

The Hilbert scheme parameterizing zero dimensional subschemes of
length n on a variety V is a much studied object, and appears in a
wide range of contexts such as enumerative geometry, representation
theory and mathematical physics, to name a few. In certain cases, the
geometry of V is reflected in the Hilbert scheme; for instance, if V
is smooth, irreducible and of dimension at most two, then it is well
known that Hilbn(V ) is again smooth and irreducible and of dimension
n · dim(V ). On the other hand, if dim(V ) > 2 the geometry of the
Hilbert scheme can become arbitrarily bad as n grows, and, to our best
knowledge, little is known in general if V is singular and dim(V ) > 1.

In previous work [GHH19], the first named three authors studied
the question of how Hilbn(V ) degenerates along with the underlying
variety V . As formulated, this question is obviously too broad; in
order to obtain a useful answer, one needs to impose strong conditions
on the degenerations being used. In [GHH19], so-called strict simple
degenerations were considered. This roughly means a flat morphism
f : X → C where 0 ∈ C is a smooth pointed curve, with smooth
connected fibres except for X0 = f−1(0) which forms a strict normal
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crossings divisor without triple intersections. A canonical degeneration
is given in this case by the relative Hilbert scheme Hilbn(X/C)→ C.
However, due to the presence of singularities in X0, it seems hopeless to
control the geometry of this family if either n is large or if the relative
dimension of f is larger than 1 (with the exception that n and the fibre
dimension are equal to 2).

The main construction in [GHH19] yields a different degeneration
InX/C → C, which coincides with the relative Hilbert scheme over
C \ {0}, but which seems to have far better geometric properties in
general. A key ingredient in this construction is Li’s G[n](∼= (Gm)n)-
equivariant expanded degeneration X[n] → C[n] of the strict simple
degeneration X → C; in fact, InX/C is obtained as a certain GIT quotient
of Hilbn(X[n]/C[n]) by the torus G[n]. The crucial advantage of this
approach is that GIT (semi-)stable subschemes can only be supported
on the smooth locus of the fibres of Li’s expansion and that (semi-
)stability can be determined by a simple combinatorial consideration.
We moreover proved that the stable and semi-stable loci coincide.

It should be remarked that the results in [GHH19] are quite general,
and make no assumption on the fibre dimension of X → C. The purpose
of this paper is to study the degeneration InX/C in detail in the case
where the fibres Xc have dimension at most 2, in which case the Hilbert
scheme Hilbn(Xc) of a general fibre is a smooth variety. We shall focus
especially on the (birational) geometry of InX/C , and on the geometry
and the combinatorial structure of the degenerate fibre (InX/C)0.

1.1. The main results. Our first main result concerns the birational
geometry of the degeneration InX/C → C. Even though X → C is a
semi-stable degeneration, it is too much to hope for in general that
semi-stability passes on to the Hilbert scheme level via our construc-
tion. However, InX/C → C still turns out to have mild, controllable
singularities from the viewpoint of the Minimal Model Program.

To explain this, we need to recall some terminology for pairs (Y,D)
consisting of a normal Q-factorial variety Y and (for simplicity) a
reduced divisor D. Then (Y,D) is called log canonical (lc) if the
discrepancy a(E, Y,D) > −1 for every exceptional divisor E over Y .
An lc pair (Y,D) is moreover called divisorial log terminal (dlt) if
equality occurs if and only if centreY (E) intersects nontrivially the
(open) locus where (Y,D) is snc. If Y admits a morphism f : Y → C
to a smooth pointed curve 0 ∈ C, and D = f−1(0)red (with otherwise
smooth fibres), one calls Y → C a dlt model if (Y,D) is dlt.

Theorem 1.1. Assume that the relative dimension of X → C is at
most 2. Then InX/C is normal and Q-factorial, the special fibre (InX/C)0
is a reduced divisor, and InX/C → C is a dlt model.
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In order to establish this result (Theorem 5.9 in the text), we first
observe that the GIT semi-stable locus Hilbn(X[n]/C[n])ss forms a
semi-stable degeneration when viewed as a scheme over the base curve
C, thus Hilbn(X[n]/C[n])ss → C is, in particular, a dlt model. We
then perform a careful analysis of the G[n]-action to ensure that the
dlt property persists when passing to the GIT quotient InX/C (this is
far from obvious, due to the presence of (finite) non-trivial stabilizer
groups).

A natural, closely related, question we consider is when InX/C → C is
minimal; a projective dlt model Y → C is called a good minimal model
if Y is Q-factorial and if the divisor KY + (Y0)red is semi-ample over C.
We show in Corollary 5.16 that our Hilbert scheme degeneration has
the desirable property of preserving minimality:

Corollary 1.2. Assume that the strict simple degeneration X → C is
a good minimal dlt model. Then also InX/C → C is a good minimal dlt
model.

The combinatorial structure of the special fibre (InX/C)0 is recorded in
its dual complex D((InX/C)0). Generalizing the well known construction
for an snc divisor, the dual complex D(E) of a dlt divisor E = ∑

i∈I Ei
is built up from gluing d-dimensional simplices corresponding to the
connected components of the various (d+ 1)-fold intersections of the
Ei-s, where 1 6 d < |I| (see Subsection 4.2 for a precise definition). By
our assumption that X → C is a strict simple degeneration, its dual
complex is a graph Γ (which we refer to as the dual graph). Our next
main result, Theorem 6.8, yields the following description of the dual
complex attached to InX/C → C:

Theorem 1.3. The dual complex D((InX/C)0) is isomorphic, as a ∆-
complex, to the n-th symmetric product Symn(Γ) of Γ.

Our proof of this result is conceptual, and it might be useful to briefly
explain the strategy here. First of all, we observe that the GIT analysis
and results in [GHH19] can be easily extended to the n-fold product
X[n]×C[n] . . .×C[n] X[n] and the symmetric product Symn(X[n]/C[n]),
giving GIT quotients, denoted P n

X/C and JnX/C , respectively, which are
related by a Sn-quotient map P n

X/C → JnX/C . By a direct computation,
we show that D((P n

X/C)0) ∼= (Γ)n, and that the formation of the dual
complex commutes with the Sn-action so that D((JnX/C)0) ∼= Symn(Γ).
On the other hand, we also show that the Hilbert-Chow morphism on
the smooth fibres extends to a map InX/C → JnX/C , which, in particular,
induces an isomorphism of dual complexes, from which the theorem
follows.

Note that most of the results explained so far do not make strong
assumptions on X → C apart from the requirement that the fibre
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dimension is at most 2. However, in the case where X → C is, say, a
(projective) type II degeneration of K3 surfaces, it is natural to wonder
how the symplectic structure of Hilbn(Xc), with Xc a general smooth
fibre, degenerates as c tends to 0 in C. In order to address this question,
we work with the stack quotient InX/C rather than the GIT quotient InX/C .
The reason for this is that InX/C → C is a semi-stable degeneration of
DM-stacks, hence comes equipped with sheaves of relative logarithmic
d-forms which are locally free for all d > 0. In this setting, we can prove
that the symplectic 2-form in the generic fibre extends to a log 2-form
in the family. We remark that the presence of quotient singularities
prevents InX/C → C to be semistable, or, more generally, log smooth.

Proposition 1.4. The stack InX/C is proper and semi-stable over C,
and carries, if KX/C is trivial, an everywhere non-degenerate relative
logarithmic 2-form.

1.2. Related work. We would like to take the opportunity in this
paragraph to comment on related results, by several groups of authors,
that have appeared during the writing up of this paper.

First of all, Nagai presents in his recent papers [Nag18] and [Nag18]
an entirely different approach to the construction of our Hilbert scheme
degeneration InX/C → C, with X → C a strict simple degeneration
as usual. Using toric methods, he describes the local structure of
the singularities in Symn(X/C), building on the analysis (in [Nag18])
in the case of the local model A3 → A1; (x, y, z) 7→ xy. Based on
this, Nagai goes on to produce an explicit Q-factorial terminalization
Y (n) → Symn(X/C), and, in his main result [Nag18, Theorem 4.3.1],
exhibits an isomorphism InX/C → Y (n) over C.

In [KLSV18], Kollár et. al. study (among other things) minimal dlt
models of 2n-dimensional Hyperkähler manifolds. Most relevant to our
results, is that they establish a strong result linking properties of the
dual complex D(Z0) of the special fibre Z0 of a minimal dlt model Z/∆
and the monodromy action on the second cohomology H2 of a general
fibre of Z. More precisely, in [KLSV18, Theorem 0.10] they prove that
the dimension of the geometric realization of D(Z0) is 0, n and 2n, if
and only if the index of nilpotency of the log monodromy operator on
H2 is 1, 2 or 3 respectively. Starting with a type II degeneration X → C
of K3 surfaces, our degeneration InX/C → C yields a dual complex of
dimension n, and it is indeed well known that the nilpotency index is 2
in this case.

If Y → C is a minimal dlt model, the dual complex D(Y0) can also
be identified with the so-called essential skeleton associated with the
Berkovich analytification of the generic fibre Yη. The essential skeleton
is, in fact, intrinsic to Yη, and can be studied without reference to an
explicit minimal dlt model. In [BM19], Brown and Mazzon study the
formation of the essential skeleton under products and group quotients of
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varieties, by means of tools from Berkovich geometry and log geometry.
Most relevant to this paper is their result [BM19, Corollary 6.2.3], which
states that for a K3 surface X over a non-Archimedean field K, and with
semi-stable reduction over the ring of integers OK , the essential skeleton
of Hilbn(X) is PL homeomorphic to the n-th symmetric product of the
essential skeleton of X. (By [HN18, Corollary 6.1.4], the latter object
is PL isomorphic to either a point, a closed interval, or to the standard
2-sphere.) The reader might want to compare their result with Theorem
6.15 in this paper, which provides an alternative proof based on our
construction of explicit dlt models in Section 5, in the case of a type II
degeneration of K3 surfaces.

1.3. Organization of the paper. We end this introduction with a
short overview of the paper. First of all, in order to make the pa-
per self-contained, we provide in Section 2 a brief overview of the
GIT construction in [GHH19]. In particular, we recall Li’s expansions
X[n] → C[n] of a strict simple degeneration X → C, as well as the
description of the GIT (semi-)stable locus in Hilbn(X[n]/C[n]). In
Section 3, we extend the GIT analysis in [GHH19] to the n-fold product,
resp. the n-th symmetric product, of X[n] → C[n], and obtain GIT
quotients P n

X/C , resp. JnX/C . These objects are related by a Hilbert-Chow
type morphism InX/C → JnX/C and a Sn-quotient map P n

X/C → JnX/C ,
respectively. Section 4 is devoted to a careful investigation of the degen-
erate fibres of the GIT quotients InX/C , JnX/C and P n

X/C . We construct
a stratification of each of these fibres, and we describe how their irre-
ducible components intersect. While being somewhat tedious to derive,
these results are essential for all subsequent work in this paper. In Sec-
tion 5 we establish the key result, Theorem 5.9, saying that InX/C → C
forms a dlt model. We moreover prove in Corollary 5.16 that minimality
of X → C passes on to InX/C → C. In Section 6, we prove that the
three degenerations InX/C , JnX/C and P n

X/C all carry dual complexes. We
show by explicit computation in Proposition 6.5 that D(P n

X/C) ∼= (Γ)n
(with Γ the dual graph of X → C) and derive from this in Proposition
6.6 that D(JnX/C) ∼= Symn(Γ). Lastly, we show in Theorem 6.8 that
the Hilbert-Chow morphism induces an isomorphism of dual complexes.
We moreover give some applications to the Berkovich essential skeleton
of the n-th Hilbert scheme attached to the generic fibre of a type II
degeneration of K3 surfaces. We address in Section 7 the question of
how the symplectic structure degenerates along with our Hilbert scheme
degenerations. Working on the stack quotient (rather than the GIT
quotient) we exhibit a nowhere degenerate relative logarithmic 2-form.
Finally, in Section 8 we compare, for n = 2, our construction with that
in [Nag08].
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1.4. Convention. Throughout this paper, we work over an algebraically
closed field k of characteristic 0. Unless otherwise specified, a point
of a k-scheme of finite type always means a closed point. In Section
2 (except Proposition 2.4) and Section 3, we allow the degeneration
family X → C to have arbitrary relative dimension; from Section 4
until Section 6, we assume that the relative dimension is at most 2;
in Section 7 and Section 8, we restrict further to the case of relative
dimension equal to 2.

1.5. Acknowledgements. LHH would like to thank E. Mazzon and
J. Nicaise for useful discussions and their interest in this project. MGG
thanks the Research Council of Norway for partial support under grant
230986. KH is grateful to DFG for partial support under grant Hu
337/7-1. Finally we thank the referee for their careful reading and
useful suggestions.

2. Review of the GIT construction

We start with the basic objects which we will study in this paper.

Definition 2.1. A strict simple degeneration over a smooth curve C
is a flat morphism f : X → C from a smooth algebraic space X to C,
such that

(i) f is smooth outside the central fibre X0 = f−1(0),
(ii) the central fibre X0 has normal crossing singularities and its

singular locus D ⊂ X0 is smooth,
(iii) all components of X0 are smooth.

The last condition in this definition is equivalent to the assumption
that there are no self-intersections of components of X0. Let Γ(X0) be
the dual graph of the central fibre: the vertices of this graph are given
by the components of X0 and the edges correspond to the irreducible
components of the singular locus of X0. The assumption that X0 has no
self-intersections is then equivalent to saying that the graph Γ(X0) has
no loops. Our assumptions imply that X0 has no triple intersections.
In terms of degenerations of K3 surfaces, one of the main motivations
of our paper, this is saying that we consider type II degenerations, but
not type III degenerations.

For what we want to do, we will further need to choose an orientation
on the dual graph Γ(X0). Given such an orientation, we can associate
to any degeneration f : X → C and any non-negative integer n the
expanded degenerations f [n] : X[n]→ C[n], which were introduced by Li
[Li01] and extensively studied by Li and Wu [LW15]. For a discussion
of this construction in the context we are concerned with, we refer
the reader to [GHH19, Section 1]. The assumption that Γ(X0) has no
loops implies that X[n] is a scheme provided X is a scheme [GHH19,
Proposition 1.9]. Moreover, if we start with a projective degeneration
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X → C, then X[n]→ C[n] is projective if and only if the dual graph
Γ(X0) has no directed cycles [GHH19, Proposition 1.10]. We also recall
that X[n] → C[n] admits a natural action of the n-dimensional split
torus G[n].

In what follows, we will always assume that the morphism f : X → C
is projective. We must also make the additional assumption that the
associated dual graph Γ(X0) is bipartite, i.e., the set of vertices admits
a partition into two disjoint subsets such that none of these subsets
contains two adjacent vertices. A bipartite partition is equivalent to
the choice of an orientation on Γ(X0) such that no vertex is at the same
time a source and a target, and exists if and only if Γ(X0) contains no
cycles of odd length. In this case there are two possible orientations
which define a bipartite partition and the two choices differ by reverting
all arrows.

We will from now on assume that Γ(X0) is a bipartite graph and
that we have chosen one of the two possible bipartite orientations.
Although our restriction to degenerations with bipartite graphs imposes
a condition on the degenerations which we consider, this is not essential;
by [GHH19, Remark 1.17] one can always perform a quadratic base
change on X → C in order to fulfill this condition. Also, it is irrelevant
which of the two possible orientations one chooses, as they produce
isomorphic expanded degenerations by [GHH19, Proposition 1.11].

The crucial point of [GHH19] is the construction of a relatively ample
line bundle L on X[n]→ C[n] together with a G[n]-linearization. The
next step is to consider the relative Hilbert scheme Hilbn(X[n]/C[n]).
We denote by Z ⊂ Hilbn(X[n]/C[n]) ×C[n] X[n] the universal family
and by p and q the first and second projection from Z onto the first
and second factor respectively. Then the line bundle

M` := det p∗
(
q∗L ⊗`

)
is relatively ample when ` � 0. We choose one such ` and remark
that the final construction will not depend on this choice. The line
bundle M` inherits a G[n]-linearization from L . The degenerations
constructed in [GHH19] are obtained by a GIT construction. For this
let Hilbn(X[n]/C[n])s and Hilbn(X[n]/C[n])ss be the sets of stable and
semi-stable points respectively. It was shown in [GHH19, Theorem 2.10]
that these two sets coincide, see Theorem 2.3 below. This theorem also
shows that they do not depend on the choice of `� 0. We then set

InX/C = Hilbn(X[n]/C[n])ss/G[n].
By construction, and the fact that C[n]/G[n] = C, we have a morphism
InX/C → C. We denote by X∗ → C∗ the family away from the origin
and similarly for (InX/C)∗ → C∗. Then Hilbn(X∗/C∗) ∼= (InX/C)∗ and
in this way InX/C → C can be viewed as a degeneration of the Hilbert
schemes of the smooth fibres of X → C.
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A crucial point of this construction is that one has a good understand-
ing of the stability condition: one can formulate an explicit criterion, see
[GHH19, Theorem 2.10], which allows one to determine the (semi-)stable
locus explicitly. In order to recapitulate this we first have to recall the ge-
ometry of the map X[n]→ C[n]. Starting with a local étale coordinate
t on C one obtains coordinates ti, i ∈ {1, . . . , n+ 1} on C[n]. For nota-
tional convenience we shall from now on write [n+ 1] = {1, . . . , n+ 1}.
For any subset I = {i1, . . . , ir} ⊂ [n+1] we denote by C[n]I the locus in
C[n] where the coordinates ti, i ∈ I vanish and by X[n]I the preimage
of C[n]I in X[n]. The structure of the fibre over a point q ∈ C[n] is
determined by the number of coordinate functions which vanish on
q. To describe this, we recall from [GHH19, Section 1] the following
construction. Given the graph Γ = Γ(X0) and any subset I ⊂ [n+ 1],
we construct a new graph ΓI as follows: if I = ∅, then ΓI contains a
single vertex without any arrow; otherwise, we replace each arrow

v• γ−→v′•
in Γ with |I| arrows labelled by I in ascending order in the direction of
the arrow:

vI• i1−→ ◦ i2−→ ◦ → · · · ir−→
v′I• .

(So here r = |I| and i1 < i2 < · · · < ir are the elements in I.) Note
that we no longer demand the new graph ΓI to be bipartite. We colour
the old nodes black and the new ones white. The valence of a white
node is 2, and that of a black node is unchanged from Γ. We label the
black nodes vI , where v is the corresponding node in Γ and label the
white nodes (I, γ, i`), ` = 1, . . . r − 1. Finally, we extend the notation
by letting

(I, γ, 0) = vI , (I, γ,max I) = (I, γ, ir) = v′I .

In this notation [GHH19, Proposition 1.12] can be rephrased as follows:

Proposition 2.2. The following holds:
(i) As an algebraic space over k, X[n]I is a union of nonsingular

components with normal crossings.
(ii) The dual graph of X[n]I is canonically isomorphic to the graph

ΓI .

In view of this description we can write X[n]I as a union of irreducible
components indexed by the vertices of ΓI . We next introduce notation
for these components.

Let Yv denote the component of X0 indexed by the vertex v in
Γ(X0). We denote by (Yv)I the component of X[n]I corresponding
to the (black) vertex vI in ΓI . This is in fact the component which
is mapped birationally onto Yv ×C C[n]I under the birational map
X[n]→ X ×C C[n]. For the remaining (white) vertices in ΓI , let i ∈ I
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be the label of the arrow pointing into that vertex (so i < max I). Then
write ∆γ,i

I for the corresponding component in X[n]I .
For non-empty I it is useful to introduce the synonyms

∆γ,0
I = (Yv)I , ∆γ,max I

I = (Yv′)I
for the black vertex components. We also define ∆i

I as the union of all
∆γ,i
I where γ runs through all arrows in Γ.
We now return to the stability criterion. Let [Z] ∈ Hilbn(X[n]/C[n])

be represented by a subscheme Z ⊂ X[n]q for some point q ∈ C[n].
Then we define the set

I[Z] = {i | ti(Z) = 0} ⊂ [n+ 1].
We write I[Z] = {a1, . . . , ar} and for notational convenience we also set
a0 = 1 and ar+1 = n+ 1. Thus we obtain a vector a = (a0, . . . , ar+1) ∈
Zr+2, which in turn determines a vector va ∈ Zr+1 whose i-th component
is ai − ai−1. The vector va is called the combinatorial support of Z.

We say that Z has smooth support if Z is supported on the smooth
part of X[n]I[Z] . When Z has smooth support, then there exists for
each P ∈ Supp(Z) a unique integer 0 6 i(P ) 6 r such that P ∈ ∆ai(P )

I[Z]
.

The numerical support of Z is then defined as the tuple
v(Z) =

∑
P

nPei(P ) ∈ Zr+1,

where nP is the multiplicity of the point P in Z, and ei(P ) denotes
the i(P )-th standard basis vector of Zr+1. In this way the numerical
support keeps track of the distribution of the underlying cycle of Z on
the strata ∆ai

I[Z]
, for 0 6 i 6 r.

We can now rephrase [GHH19, Theorem 2.10] as follows
Theorem 2.3. A point [Z] ∈ Hilbn(X[n]/C[n]) is stable if and only
if it has smooth support and its combinatorial and numerical support
coincide: v(Z) = va. All semi-stable points are stable.

Finally, assume that the dimension d of the fibres of f : X → C
is at most 2. We write Xsm for the smooth locus of f . Below we
give a comparison of the scheme InX/C to Hilbn(Xsm/C); this result
is fundamental to many applications in this paper. Before giving the
precise statement, we first recall that both Hilbn(Xsm/C) → C and
Hilbn(X[n]sm/C[n]) → C[n], where X[n]sm denotes the smooth locus
of f [n], are smooth of relative dimension dn.
Proposition 2.4. Assume that the dimension of the fibres of X → C
is at most two. Then there is an open inclusion Hilbn(Xsm/C) ⊂ InX/C
whose complement has codimension 2.
Proof. We denote the pullback of Xsm under the map X[n] → X by
X[n]tr. Then X[n]tr is an open subset of X[n]sm, the relative Hilbert
scheme Hilbn(X[n]tr/C[n]) is G[n]-invariant, and the stabilizers of all
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points are trivial. By the stability criterion in Theorem 2.3 we moreover
obtain an open inclusion

Hilbn(X[n]tr/C[n]) ⊂ Hilbn(X[n]/C[n])ss.
Using [MFK94, Proposition 0.2], one finds that the quotient

Hilbn(X[n]tr/C[n])/G[n] ⊂ Hilbn(X[n]/C[n])ss/G[n] = InX/C

is an open subscheme which is naturally isomorphic to Hilbn(Xsm/C).
The complement C of Hilbn(X[n]tr/C[n]) in Hilbn(X[n]/C[n])ss consists
of subschemes of length n in fibres of Hilbn(X[n]/C[n])ss → C[n] with
at least one point in its support belonging to an inserted component
∆γ,i`
I . As the inserted components lie over points in C[n] where at least

two coordinate functions ti vanish, it follows that C has codimension
2 in Hilbn(X[n]/C[n])ss. By taking a Luna slice we then see that the
same holds for

Hilbn(X[n]tr/C[n])/G[n] ∼= Hilbn(Xsm/C)
in InX/C . �

3. Comparison to the symmetric product

In this section we look at similar GIT constructions on the n-fold
product and the symmetric product of the family f [n] : X[n]→ C[n],
and establish the relation among the semi-stable loci of the relative
Hilbert scheme and the above two families.

3.1. Semi-stable loci of the symmetric product. We write
f : X → C

and
f [n] : X[n]→ C[n]

for the corresponding expanded degeneration.
As constructed in [GHH19, Lemma 1.18], we have a G[n]-linearized

line bundle L onX[n], relatively ample over C[n]. The symmetric group
Sn acts on the n-fold product X[n]×C[n] · · · ×C[n] X[n] by permuting
its factors, which leads to the following quotient map
(1) τ : X[n]×C[n] · · · ×C[n] X[n]→ Symn(X[n]/C[n]).
The following functorial construction gives us a relatively ample line
bundle on Symn(X[n]/C[n]).

Lemma 3.1. L induces a G[n]-linearized line bundle M on
Symn(X[n]/C[n]),

relatively ample over C[n].
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Proof. We define the G[n]-linearized line bundle
L �n = L �L � · · ·�L

on X[n]×C[n]X[n]×C[n] · · ·×C[n]X[n]. Since L is relatively ample, L �n

is also relatively ample. The symmetric group Sn acts on X[n]×C[n]
· · · ×C[n] X[n] and L �n by permuting factors. It is clear that the
stabilizer of any closed point acts trivially on the fibre of L �n at that
point. It follows from Kempf’s descent lemma (see e.g. [DN89, Theorem
2.3]) that L �n descends to a line bundle M on Symn(X[n]/C[n]);
namely, τ ∗M ∼= L �n is an Sn-equivariant isomorphism. Indeed, such
an M is uniquely determined (see e.g. [Tel00, Section 3]). To show that
M is relatively ample, we cover C[n] by affine open subschemes Ui’s.
The ampleness of M on each τ−1(Ui) follows from [MFK94, Theorem
1.10(ii)]. �

Remark 3.2. We write any closed point [Z] ∈ Symn(X[n]/C[n]) as a
positive linear combination of closed points in X[n] in the form

[Z] =
∑
P

nP [P ].

Then the fibre of M at [Z] is canonically given by
M ([Z]) =

⊗
P

L (P )nP .

Now we consider the GIT quotient of Symn(X[n]/C[n]) by the group
G[n]. For any closed point [Z] ∈ Symn(X[n]/C[n]), we say Z has
smooth support if the condition in [GHH19, Definition 2.5] is satisfied.
In such a case, we can define its numerical support v(Z) as in [GHH19,
Definition 2.6] and its combinatorial support va as in [GHH19, Section
2.3.3].

The GIT analysis in [GHH19, Section 2] applies literally here. Parallel
to [GHH19, Theorem 2.10], we can conclude the following description
of the GIT (semi-)stable locus:

Proposition 3.3. With respect to the G[n]-linearized line bundle M ,
we have

Symn(X[n]/C[n])ss(M ) = Symn(X[n]/C[n])s(M )

=
{

[Z] ∈ Symn(X[n]/C[n])
∣∣∣∣∣ Z has smooth support

and v(Z) = va

}
.

Proof. The same as [GHH19, Theorem 2.10]. �

Now we consider the following relative Hilbert-Chow morphism; see
e.g. [Ryd08, Paper III, Section 4.3]:
(2) π : Hilbn(X[n]/C[n])→ Symn(X[n]/C[n]).
It is clear that π respects the G[n]-actions. Combining Proposition 3.3
and [GHH19, Theorem 2.10] we have
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Corollary 3.4. For any sufficiently large `, we have
Hilbn(X[n]/C[n])ss(M`)

= Hilbn(X[n]/C[n])s(M`)
= π−1(Symn(X[n]/C[n])ss(M ))
= π−1(Symn(X[n]/C[n])s(M ))

=
{

[Z] ∈ Hilbn(X[n]/C[n])
∣∣∣∣∣ Z has smooth support

and v(Z) = va

}
. �

3.2. Semi-stable loci of the n-fold product. To determine the semi-
stable locus of the n-fold product X[n]×C[n] · · · ×C[n] X[n], we utilize
the following general result which states that the semi-stable locus is
functorial with respect to finite group quotient.

Lemma 3.5. Let W be a quasi-projective scheme over an algebraically
closed field k of characteristic zero. Let H be a finite group acting on
W , and f : W → V the quotient morphism. Let G be a reductive group
acting on W , which commutes with the H-action on W and induces a
G-action on V . Let L be a G-linearized ample line bundle on V . Then
we have

W ss(f ∗L) = f−1(V ss(L));
W s(f ∗L) = f−1(V s(L)).

Proof. We first prove the statement for semi-stable loci. For any closed
point w ∈ W , let v = f(w) ∈ V . We need to show that w is semi-stable
if and only if v is semi-stable.

Assume v is semi-stable. Then there exists s ∈ Γ(V, L⊗n)G for
some positive integer n, such that s(v) 6= 0. Then we have f ∗s ∈
Γ(W, f ∗L⊗n)G and (f ∗s)(w) 6= 0, hence w is semi-stable.

Assume w is semi-stable. Then there exists t ∈ Γ(W, f ∗L⊗n)G, such
that t(w) 6= 0. Then for every positive integer m, the section

tm =
∑
h∈H

(h∗(t))m ∈ Γ(W, f ∗L⊗mn)G

is also H-invariant, and descends to a section sm ∈ Γ(V, L⊗mn)G. Since
t(w) 6= 0, we have tm0(w) 6= 0 for some positive integer m0. It follows
that sm0(v) 6= 0, hence v is semi-stable.

We next show the statement holds for stable loci. Notice that Gw is
a subgroup of Gv, and that the quotient Gv/Gw is bijective to the set

{w′ ∈ W | w′ ∈ G · w and f(w′) = v}.
It follows that |Gv/Gw| < |H| is finite, hence Gv is finite if and only if
Gw is finite.

Moreover, let f ss be the restriction of f to W ss(f ∗L). Then f ss is
also given by a finite group quotient, hence a finite map. If the orbit
G ·w is closed in W ss(f ∗L), then its image G · v is also closed in V ss(L).
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If the orbit G · w is not closed, then there is another semi-stable orbit
G · w′ in the closure of G · w. Let G · v′ be the image of G · w′ under
f ss, then G · v′ is also in the closure of G · v. If G · v were closed, we
would have G · v = G · v′ which is a contradiction, as the dimension of
G · v′ is strictly smaller than the dimension of G · v. We conclude that
G ·w is closed if and only if G · v is closed, hence w is stable if and only
if v is stable. �

To apply Lemma 3.5, recall from Lemma 3.1 that we have a G[n]-
linearized relatively ample line bundle L �n on X[n]×C[n] · · ·×C[n]X[n],
which descends to a G[n]-linearized relatively ample line bundle M on
Symn(X[n]/C[n]).

Corollary 3.6. We have
(X[n]×C[n] · · · ×C[n] X[n])ss(L �n)

= (X[n]×C[n] · · · ×C[n] X[n])s(L �n)
= τ−1(Symn(X[n]/C[n])ss(M ))
= τ−1(Symn(X[n]/C[n])s(M ))

=
{

[Z] ∈ X[n]×C[n] · · · ×C[n] X[n]
∣∣∣∣∣ Z has smooth support

and v(τ(Z)) = va

}
.

Proof. This follows immediately from Lemma 3.5 and Proposition 3.3.
�

Remark 3.7. Indeed, we could also perform a GIT analysis that is
similar to [GHH19, Section 2] to obtain the (semi-)stable locus on the
n-fold product X[n]×C[n] · · · ×C[n] X[n], which would give a different
proof of Corollary 3.6 without using Lemma 3.5.

Remark 3.8. We point out that Nagai has made the same observation
in [Nag17, Remark 4.4.1] that the GIT analysis in [GHH19, Theorem
2.10] also works for the families Symn(X[n]/C[n]) andX[n]×C[n]· · ·×C[n]
X[n] over C[n].

4. The strata of the degenerate fibre

4.1. GIT quotients of three families. Let f : X → C be a strict
simple degeneration and fix an integer n > 0. This gives us an expanded
degeneration f [n] : X[n]→ C[n], which in turn gives rise to the following
three families related by the quotient morphism τ , see (1) and the
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Hilbert-Chow morphism π, see (2)

(3) X[n]×C[n] · · · ×C[n] X[n]

**

τ

��
Symn(X[n]/C[n]) // C[n]

Hilbn(X[n]/C[n]).

44

π

OO

All three families come equipped with G[n]-actions, which can be
lifted to some natural line bundles to determine the corresponding
(semi-)stable loci. For simplicity we omit the references to the line
bundles in the notation of (semi-)stable loci from now on. By Corollary
3.4 and Corollary 3.6, we know that the Hilbert-Chow morphism π and
the quotient morphism τ respect GIT stability. Therefore we have the
following commutative diagram of semi-stable loci
(4) (X[n]×C[n] · · · ×C[n] X[n])ss

ϕp

**

τss

��
Symn(X[n]/C[n])ss ϕs // C[n]

Hilbn(X[n]/C[n])ss.
ϕh

44

πss

OO

By Proposition 3.3 or Corollary 3.4, we see that a semi-stable point
in Hilbn(X[n]/C[n]) or Symn(X[n]/C[n]) always has smooth support.
We shall assume, unless explicitly stated otherwise, that the original
family f : X → C has relative dimension at most 2. Then we have

• Hilbn(X[n]/C[n])ss is a smooth variety and ϕh is a smooth
morphism;
• Symn(X[n]/C[n])ss is singular along the diagonal (when nP > 2

for some P ), and πss is a divisorial resolution.
All arrows in diagram (4) are equivariant with respect to G[n]-actions.

Passing to the G[n]-quotients, we obtain another commutative dia-
gramme of the quotients related by natural maps
(5) P n

X/C := (X[n]×C[n] · · · ×C[n] X[n])ss/G[n]
ψp

++

ξ

��
JnX/C := Symn(X[n]/C[n])ss/G[n] ψs // C

InX/C := Hilbn(X[n]/C[n])ss/G[n].
ψh

33

η

OO
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Remark 4.1. We notice that the G[n]-action and the Sn-action on
X[n]×C[n] · · ·×C[n]X[n] commute, from which we conclude immediately
that JnX/C is the Sn-quotient of P n

X/C by Corollary 3.6.

Our primary goal in the next sections is to study the finer structure of
the three families P n

X/C , JnX/C and InX/C . We will focus on the birational
geometry of the three families, the geometry and combinatorics of the
degenerate fibres, as well as understand how these structures are related
via the natural maps ξ and η. After recalling the definition of the dual
complex of the degenerate fibre, we will pursue the first key step in this
section, namely producing the stratification and studying the restriction
relations among components.

4.2. Dual complexes and other preliminaries. Let E be a smooth
k-variety, and let E0 = ∪a∈AEa be a (reduced) strict normal crossing
divisor on E with components Ea. We recall the well-known definition
of the dual complex ∆(E0) attached to E0. This is a combinatorial
object which encodes how the components Ea intersect.

Definition 4.2. The dual complex ∆(E0) of a strict normal crossings
divisor E0 is the unique ∆-complex with the following properties:

(i) The d-dimensional simplices correspond bijectively to the con-
nected components Ei

B of EB = ∩b∈BEb, as B runs through the
subsets ∅ 6= B ⊂ A with |B| = d+ 1.

(ii) Let B and B′ be two non-empty subsets of A. Then Simp(Ei
B)

is a face of Simp(Ei′
B′) if and only if Ei′

B′ ⊂ Ei
B.

In fact, the notion of the dual complex can be defined in a much
more general set-up. We recall [dFKX17, Definition 8], which will be
used in our later discussion.

Definition 4.3 ([dFKX17, Definition 8]). Let E0 = ∪a∈AEa be a pure
dimensional scheme with irreducible components Ea. Assume that

(i) each Ea is normal, and
(ii) for each B ⊆ A, if ∩b∈BEa is non-empty, then every connected

component of ∩b∈BEa is irreducible and has codimension |B|− 1
in E0.

Then the dual complex ∆(E0) can be defined as in Definition 4.2.

In the next few sections, we will be particularly interested in the
dual complexes of the degenerate fibres of the three families P n

X/C , JnX/C
and InX/C . We start with some foundational analysis of the intersection
relation of various strata in the degenerate fibre of the third family.

4.3. The Hilbert scheme. Consider the morphism
ϕh : Hilbn(X[n]/C[n])ss → C[n].
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As noted above, this map is smooth by our assumption that X → C
has relative dimension at most 2. Composition with the natural map
C[n]→ C yields a morphism

φh : Hilbn(X[n]/C[n])ss → C

where the special fibre φ−1
h (0) forms a strict normal crossings divisor

on the smooth variety Hilbn(X[n]/C[n])ss. This is immediate from the
fact that C[n]→ C is obtained as a pullback of An+1 → A1 along the
étale map C → A1.

To ease notation in the following discussion, we shall write H for
Hilbn(X[n]/C[n])ss. Our aim is now to study the geometry of the
components of H0 = φ−1

h (0), and how they intersect. This analysis
forms the foundation of many of the results later on in this paper. At this
stage, we also remark that, as describing H0 only involves computations
over 0 ∈ C, and since C[n]→ An+1 restricts to an isomorphism over the
special fibre (An+1)0 → 0 ∈ A1, we may assume that C = A1 from the
beginning. Consequently, we shall replace C[n] by An+1 in our notation.

4.3.1. We first introduce some notation.
• If n is understood from the context, we shall often write A

instead of An+1, to simplify notation.
• For any subset ∅ 6= I ⊂ [n+ 1], we put AI = V (ti | i ∈ I) and
UI = {(t1, . . . , tn+1) | ti = 0 for all i ∈ I, tj 6= 0 for all j /∈ I}.

We remark that UI is open in AI .
• Let Ic denote the complement of I in [n + 1]. Let moreover
j ∈ Ic, and put Ij = I ∪ {j}. Then we define

UI,j = {(t1, . . . , tn+1) | ti = 0 for all i ∈ I, ti′ 6= 0 for all i′ /∈ Ij}.
The set UI,j forms a partial compactification of UI inside AI ,
where we allow also the j-th coordinate to be zero. Observe
that UI,j \ UI = UIj .
• Let W be a scheme over AI , with irreducible components Wα,
α ∈ A. Then we denote by W ◦ the pullback of W to UI . For
each α, we moreover put

W ∗
α = W ◦

α \ ∪β 6=αW ◦
β .

4.3.2. By smoothness of ϕh : H → An+1 it follows for each I, that
HI = ϕ−1

h (AI)
is a disjoint union of smooth irreducible components (recall that AI is
smooth and irreducible). As it turns out, the components of HI are
somewhat difficult to describe directly. However, by flatness of the
restriction

ϕh|AI : HI → AI ,
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every component C of HI has dense image in AI . Thus, each C equals
the closure in HI of a unique component C◦ of H◦I . Below, we shall
give a useful description of the components of H◦I , which turn out to be
quite easy to describe.

4.3.3. To index the components of H◦I , where I = {i1, . . . , ir} ⊂
[n + 1], we will use the the dual graph Γ = (V,E) attached to the
degeneration X → C. Having fixed a bipartite oriention of Γ, we write
V +, resp. V −, for the set of vertices with only outgoing and incoming
arrows respectively. For each v ∈ V , let moreover E(v)+ denote the
set of edges directed towards v, and let E(v)− denote the set of edges
directed away from v.

We introduce the following additional notation.
• b = {bv}v∈V denotes a collection of non-negative integers.
• s = {sγ}γ∈E denotes a collection of (ordered) tuples

sγ = (sγ,1, . . . , sγ,r−1)
where sγ,l ∈ Z>0.

Definition 4.4. We say that the pair (b, s) is stable with respect to I
if the vector

v(b, s) = (
∑
v∈V +

bv,
∑
γ∈E

sγ,1, . . . ,
∑
γ∈E

sγ,r−1,
∑
v∈V −

bv) ∈ Zr+1

is stable in the sense of Theorem 2.3, i.e., if v(b, s) = va where a is
determined by I.

Remark 4.5. If (b, s) is stable with respect to I, it is a consequence
of Definition 4.4 that ∑v bv +∑

γ

∑
l sγ,l = n.

Proposition 4.6. The irreducible components of H◦I are indexed pre-
cisely by the pairs (b, s) that are stable with respect to I. The component
corresponding to (b, s) is

(HI)◦(b,s) =
∏
v∈V

Hilbbv((Yv)∗I/UI)×
∏
γ∈E

r−1∏
l=1

Hilbsγ,l((∆γ,il
I )∗/UI),

where the products are fibred products over UI .

Proof. For each il ∈ I ∪{0}, (∆γ,il
I )◦ is smooth over UI , with irreducible

fibres of dimension 6 2. It follows that the non-smooth locus of X[n]◦I
is located precisely where the components intersect. In other words,
the smooth locus (X[n]◦I)sm of X[n]◦I → UI is a disjoint union of the
components (∆γ,il

I )∗.
Thus Hilbn((X[n]◦I)sm/UI) ∩H is a disjoint union of schemes of the

form (HI)◦(b,s), where (b, s) runs over pairs that are stable with respect
to I. It is straightforward to verify that each (HI)◦(b,s) is irreducible. �
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4.4. Stratification of the components. For each (b, s), we denote
by (HI)(b,s) the closure of (HI)◦(b,s) in HI . We will next study the
boundary

(HI)(b,s) \ (HI)◦(b,s),

by carefully investigating the strata of (HI)(b,s) over UI,j \ UI , where
j ∈ Ic. In light of our inductive set-up, these strata are again of the
form (HIj)◦(b′,s′), for certain pairs (b′, s′) stable with respect to Ij.

We still need to compute the pairs (b′, s′) that can occur as the index
of a boundary stratum. For this purpose, the following easy lemma
will be quite useful; it tells us that it suffices to produce a point in the
intersection of (HI)(b,s) and (HIj)◦(b′,s′), in order to show containment.

Lemma 4.7. A component (H◦Ij )(b′,s′) of H◦Ij is a subscheme of (HI)(b,s)
if and only if

(H◦Ij)(b′,s′) ∩ (HI)(b,s) 6= ∅.

Proof. Note that H◦Ij is a subscheme of HI . Moreover, they are both
disjoint unions of their irreducible components. Hence, (HIj)◦(b′,s′) is a
subscheme of a unique component (HI)(b,s), and this happens if and
only if they have non-empty intersection. �

4.4.1. We are now ready to formulate the main result of this paragraph,
but first we need to introduce some additional notation. We fix a subset
J = {j1, . . . , jr+1} in [n + 1]. It has r + 1 subsets of cardinality r,
denoted

I(k) = J \ {jk}.
We also fix b′ = {b′v}v∈V and s′ = {s′γ}γ∈E, where s′γ = (s′γ,1, . . . , s′γ,r).
We assume that (b′, s′) is stable with respect to J .

Theorem 4.8. For each k, (H◦J)(b′,s′) is contained in the closure of a
unique component over UI(k), denoted (H◦I(k))(b,s). Both b and s depend
explicitly on k, and can be described as follows:

k = 1:

bv = b′v +∑
γ∈E(v)− s

′
γ,1

sγ = (s′γ,2, . . . , s′γ,r)

1 < k < r + 1:

bv = b′v
sγ = (s′γ,1, . . . , s′γ,k−1 + s′γ,k . . . , s

′
γ,r)

k = r + 1:

bv = b′v +∑
γ∈E(v)+ s′γ,r

sγ = (s′γ,1, . . . , s′γ,r−1).

Proof. We fix k and consider I = I(k) = J \ {jk}. For simplicity, we
assume 1 < k < r + 1; the cases k = 1, r + 1 are entirely similar,
but require slight modifications in notation. Recall moreover that
UJ = UI,jk \ UI .
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Pick a closed point q ∈ UJ . Then we can find a morphism
S = Spec k[[π]]→ UI,jk ,

with π a formal variable, sending the closed point s ∈ S to q, and the
generic point η ∈ S to UI . We define ϕ as the composition

ϕ : S → UI,jk ⊂ AI .

If W is a scheme over AI , we write ϕ∗W for its pullback along ϕ.
We also fix an edge γ ∈ E (this γ will be suppressed in the notation).

For any jl ∈ I, we denote by ∆̃jl
I ⊂ ∆jl

I the open subscheme obtained
by removing from ∆jl

I its intersection with all neighbouring components
in X[n]I . By [GHH19, Prop. 1.12] (which in particular describes the
degeneration of ∆jl

I as tjk tends to zero), we find that ϕ∗∆̃jl → S is
smooth if l 6= k − 1, and if l = k − 1, the generic fibre is smooth, and
degenerates into a normal crossing union (∆jk−1

J )s ∪ (∆jk
J )s over s ∈ S.

In either case, let Ts be a point in the smooth locus of (ϕ∗∆̃jl
I )s. By

[Liu02, Cor. 6.2.13], Ts can be lifted to an S-section T of ϕ∗∆̃il
I . Clearly,

T can also be viewed as a section of ϕ∗X[n]I → S. By construction, it
is contained in the smooth locus.

Now let Ts be a disjoint union of n points contained in the smooth
locus of (ϕ∗X[n]I)s. By the above procedure, we obtain n pairwise
disjoint sections Ti by lifting each point in the support of Ts. Then
we define T = ∪iTi. Being a disjoint union of sections, it is a closed
subscheme of ϕ∗X[n]I , and flat over S.

Assume that Ts is GIT stable, belonging to a component (H◦J)(b′,s′)
over UJ . Using the explicit construction of T , it is straightforward to
verify that the generic fibre Tη is contained in the component (H◦I)(b,s),
where (b, s) is stable with respect to I, and depends on k as specified
above. Hence Ts belongs to the closure (HI)(b,s), as it is a specialization
of Tη. Then Lemma 4.7 asserts that (H◦J)(b′,s′) is a subscheme of
(HI)(b,s). �

4.4.2. We also need analogues of Proposition 4.6 and Theorem 4.8 for
the n-fold product and the symmetric product. With a few modifications,
this follows along the lines of the proof in the Hilbert scheme case, hence
we will be particularly brief on details in this paragraph.

We keep n > 1 fixed, and denote the stable loci by P = (X[n]×C[n]
· · · ×C[n] X[n])ss and S = Symn(X[n]/C[n])ss; both P and S are flat
over C[n]. By Corollary 3.6, P is also smooth over C[n], and there is
an Sn-quotient map

τ ss : P → S.
For each non-empty subset I = {i1, . . . , ir} ⊂ [n + 1], PI is a disjoint
union of its (smooth) irreducible components. Moreover, SI is an Sn-
quotient of the smooth quasi-projective k-variety PI , hence it is normal.
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This implies that SI is a disjoint union of its (normal) irreducible
components, as well.

With these preliminaries at hand, it is entirely straightforward to
treat the symmetric product. One finds that the irreducible components
of S◦I are indexed precisely by pairs (b, s) (as introduced in Paragraph
4.3.3) that are stable with respect to I. Each component (SI)◦(b,s) can
be computed in an analogous way as in Proposition 4.6 (the proof is,
word for word, the same). Also Theorem 4.8, both the statement and
the proof, transfers immediately to the symmetric product case; we
leave the details to the reader.

For the n-fold product, we need to be more precise about the notation.
Recall from Section 2 that the choice of I ⊂ [n+ 1] yields an expansion
ΓI of Γ. We denote the black vertices by vI , where v ∈ V , and the white
vertices by (I, γ, il), where γ ∈ E, and where 1 6 l 6 r − 1. Then the
components of P◦I are indexed by stable tuples, denoted z, in the n-fold
product

V (ΓI)× · · · × V (ΓI),
where V (ΓI) is the set of all vertices of ΓI . Here stability is formulated
as follows:

• For each v ∈ V , define bv as the number of times vI occurs as
an entry in z.
• For each γ ∈ E and l, define sγ,l as the number of times (I, γ, il)

occurs as an entry in z.
• Define the numerical data (b, s) as in Paragraph 4.3.3. We say

that z is stable with respect to I if and only if v(b, s) is stable
with respect to I, in the sense of Definition 4.4

The analogue of Proposition 4.6 can now be easily formulated (left to
the reader). One finds that each component (PI)◦z is a fibred product,
over UI , of schemes of the form (Yv)∗I , resp. (∆γ,il

I )∗, dictated by z.
For the applications in Section 6, it is however necessary to give a

detailed analogue of Theorem 4.8. Let J = {j1, . . . , jr+1} ⊂ [n+ 1], let
I(k) = J \ {jk}, and let z′ ∈ V (ΓJ)× · · · × V (ΓJ) be a stable n-tuple
(with respect to J). Then, by the same method of proof as in Theorem
4.8, one finds:

Theorem 4.9. For each k, (PJ)◦z′ is contained in the closure of a unique
component over UI(k), denoted (PI(k))◦z. The tuple z depends explicitly
on k, and is obtained from z′ as follows:

(i) Every vertex of the form vJ appearing as an entry in z′ is replaced
by vI(k) in the same entry. For the remaining entries, we use
the rules listed below.

(ii) k = 1: (J, γ, j1) is replaced by vI(k), where γ ∈ E(v)−; (J, γ, jl)
is replaced by (I(k), γ, jl) otherwise.

(iii) 1 < k < r + 1: (J, γ, jl) is replaced by (I(k), γ, jl) if l 6= k;
(J, γ, jk) is replaced by (I(k), γ, jk−1).
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(iv) k = r + 1: (J, γ, jl) is replaced by (I(k), γ, jl) if l 6= r; (J, γ, jr)
is replaced by vI(k), where γ ∈ E(v)+.

5. The DLT structure

5.1. DLT models. Our aim here is to show that InX/C → C is a dlt
model. This terminology was explained in Section 1.1.

5.1.1. Let X → C be a projective strict simple degeneration of relative
dimension at most two such that the dual graph has no odd cycles. The
reason why we restrict to fibre dimension at most 2 is that otherwise the
Hilbert schemes are in general neither irreducible nor equi-dimensional.

By construction InX/C → C is a good quotient of the family H → C[n]
by the n-dimensional torus G[n]. Here H ⊂ Hilbn(X[n]/C[n]) is the
GIT stable locus with respect to a certain linearization and C[n] is
the fibre product C ×A1 An+1 with respect to a chosen étale coordinate
t : C → A1 and the (n + 1)-fold multiplication An+1 → A1. By a
coordinate hyperplane in C[n] we mean the inverse image of a coordinate
hyperplane in An+1.

Proposition 5.1. InX/C is normal, has finite quotient singularities only,
and is Q-factorial.

Proof. A good quotient of a normal variety is normal, and our InX/C is
even a geometric quotient of the nonsingular variety H. Moreover all
stabilizer groups are finite, so by Luna’s étale slice theorem, InX/C is
étale locally a finite quotient. This in turn implies Q-factoriality [KM98,
Prop. 5.15] (the reference uses the language of euclidean topology over
C; the same argument works in étale topology). �

5.1.2. Our starting point for showing that InX/C → C is a dlt model is
that H → C is even an snc model. Here we view H as a family over C
via the natural map C[n]→ C, thus the special fibre H0 is the inverse
image of the union of all coordinate hyperplanes in C[n].

Lemma 5.2. (H,H0) is an snc pair.

Proof. H → C[n] is smooth and H0 is the inverse image of the strict
normal crossing divisor which is the union of the coordinate hyperplanes
in C[n]. The claim follows from this. �

5.1.3. Next we observe that there is a natural correspondence between
the components of the special fibres of H and InX/C . This will be
strengthened below in Corollary 5.11 to show that the associated dual
complexes can be identified.

Lemma 5.3. Let π : H → InX/C denote the geometric quotient map.
The rules D = π(E) and E = π−1(D) define a bijection between the
components of H0 and of (InX/C)0.
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Proof. Since π is a geometric quotient and each component E ⊂ H0
is invariant, the image π(E) ⊂ InX/C is closed, irreducible and has
codimension one, hence it is a component of (InX/C)0. Conversely π−1(D)
is closed and has codimension one, so it is a union of components
Ei ⊂ H0. But the fibres of π are exactly orbits, and each Ei is invariant,
so there is room for only one component E = π−1(D). �

5.1.4. To deduce snc properties of InX/C from H we will apply Luna’s
étale slice theorem. Let G = G[n].

Lemma 5.4. Let P ∈ H be a point with stabilizer group GP ⊂ G. There
exists a locally closed nonsingular GP -invariant subvariety WP ⊂ H
containing P , such that

(i) the induced morphism WP/GP → InX/C is étale,
(ii) the special fibre t = 0 in WP is an snc divisor, more precisely

WP ∩H0 = (WP )0 = ∪iFi, where Fi = Ei ∩WP , and
(iii) GP acts set-theoretically freely outside the singular locus of

(WP )0.

Proof. This is an application of Luna’s étale slice theorem (see [Slo89]
and [MFK94]), which works under the assumption that the orbit of
P is closed. This holds for all orbits in our H, as all points are GIT
stable. Luna’s theorem ensures the existence of a locally closed GP -
invariant subvariety WP , such that the induced morphism in (1) is étale.
Moreover, when H is nonsingular, the slice WP can be taken to be
nonsingular as well. The theorem says slightly more than this, but for
our purposes it suffices to note that, in the nonsingular case, the slice
is constructed by assuring that inside the tangent space TP (H), the
tangent spaces to the slice WP and to the orbit G ·P are complementary.

Let Ei ⊂ H run through the set of components of the special fibre
H0 which pass through P . These are invariant under the G-action, so
the orbit G · P is contained in every Ei. In terms of tangent spaces,
this says that inside TP (H) = TP (WP ) ⊕ TP (G · P ) the hyperplanes
TP (Ei) are in general position and contain TP (WP ). It follows that
TP (Ei) = TP (Fi)⊕TP (G ·P ) where Fi = Ei ∩WP and thus the tangent
hyperplanes TP (Fi) inside TP (WP ) are in general position as well. This
says that ∪iFi is snc at P ∈ WP . As snc is an open condition we obtain
(2) after shrinking WP if necessary.

For (3) we note that G acts freely on H outside the singular locus
of H0. This is so as G acts freely outside the singular locus of the
coordinate hyperplanes in An+1, and H is smooth over An+1. As the
restriction of H0 to WP remains snc, with components Fi = Ei ∩WP ,
it follows that the singular locus of H0 restricts to the singular locus of
(WP )0. �
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5.1.5. The Luna slice Lemma above, combined with the observation
that (H,H0) is snc, yields that only nontrivial stabilizer groups prevent
(InX/C , (InX/C)0) from being snc:

Lemma 5.5. The pair (InX/C , (InX/C)0) is snc around the image of every
point P ∈ H with trivial stabilizer.
Proof. Firstly (H,H0) is snc by Lemma 5.2. When P has trivial
stabilizer the Luna slice WP ⊂ H in Lemma 5.4 has the property
that (WP , (WP )0) is normal crossing and WP → InX/C is étale, hence
(InX/C , (InX/C)0) is normal crossing around the image of P .

For strictness, let D ⊂ InX/C be a component and E ⊂ H0 the corre-
sponding component as in Lemma 5.3. As H → InX/C is a universally
geometric quotient, E → D is a geometric quotient. For each point
P ∈ E with trivial stabilizer there is a Luna slice through P which is
smooth over k and étale over D. Thus D is also smooth at the image
of P . �

Remark 5.6. One can check that the nonsingular locus in InX/C coin-
cides with the image of points in H with trivial stabilizer. Thus by the
lemma, the snc locus is exactly the nonsingular locus. We do not need
this fact, so we omit the details.
5.1.6. The next result, an application of Lemma 5.5, is the main
observation assuring that (InX/C , (InX/C)0) is “sufficiently snc” to have a
meaningful dual complex.
Proposition 5.7. Let Y ⊂ ⋂iDi be a component of the intersection of
a given collection {Di} of the components of the divisor (InX/C)0. Then
Y has nontrivial intersection with the snc locus of (InX/C , (InX/C)0).

Proof. It suffices to find a point P ∈ H with trivial stabilizer and
mapping to Y . We will use the following easy observation as building
block: when Gm acts on a ruled variety ∆ by scaling the fibres, there
are finite subschemes Z ∈ Hilbn(∆) with trivial stabilizer group. If
n = 1 we can take any point, otherwise choose n distinct points such
that none is in the µm-orbit of any other for all m ≤ n.

By Proposition 4.6, Y is the image of the closure of one of the loci
(HI)◦b,s, given explictly as a product of Hilbert schemes. Concretely,
this says that P is given by a subscheme Z in the nonsingular locus
of some fibre X[n]t over t ∈ C[n], with the distribution of Z among
the components of X[n]t dictated by (b, s): X[n]t has a number of
components Yv mapping isomorphically onto a component of X0 by the
canonical map X[n]→ X, and Z∩Yv is required to have length bv. The
remaining components of X[n]t are ruled varieties ∆γ,l and if sγ,l is the
length of Z ∩∆γ,`, then stability requires that ∑γ sγ,l > 0. The action
by G[n] is such that the stabilizer group of the base point t ∈ C[n] is
a subtorus which can be written as a product of Gm’s indexed by γ,
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and for each γ the corresponding Gm acts on X[n]t by simultaneously
scaling the fibres of the ruled varieties ∆γ,l for all l. By our initial
observation a general such subscheme Z has trivial stabilizer. �

Corollary 5.8. For any collection {Di} of k components of (InX/C)0,
every component of the intersection ⋂

iDi has codimension k in InX/C.

Proof. By the proposition, every component of ⋂iDi intersects the snc
locus of (InX/C , (InX/C)0) and the claim certainly holds for snc pairs. �

5.1.7. We are now in the position to prove the result we have been
aiming for.

Theorem 5.9. InX/C → C is a dlt model.

Proof. For each P ∈ H, let WP ⊂ H be a Luna étale slice as in Lemma
5.4, so that there are morphisms
(6) WP → WP/GP = VP → InX/C

where the left-hand morphism is finite and the right-hand morphism
is étale. The pair (WP , (WP )0) is snc and in particular log canonical.
Finite ramified covers preserve this property [Kol13, Corollary 2.43],
so VP is log canonical. As VP → InX/C is étale, its image is also log
canonical [Kol13, Proposition 2.15].

Next let Z ⊂ InX/C be a log canonical centre and suppose for con-
tradiction that Z is contained in the non snc locus S ⊂ InX/C . Let
D1, . . . , Ds be the components of the special fibre (InX/C)0 which contain
Z. Thus Z is contained in a component Y of ∩si=1Di. Then Z ⊂ Y ∩ S
so
(7) codimIn

X/C
Z > s

by Proposition 5.7.
Let P ∈ H be a point mapping to Z and again consider the com-

position (6). Shrink WP if necessary so that its image in InX/C hits no
components of (InX/C)0 beyond D1, . . . , Ds. As VP → InX/C is étale there
exists a log canonical centre Z ′ ⊂ VP mapping dominantly to Z [Kol13,
§2.13]. As WP → VP is finite there is a log canonical centre Z ′′ ⊂ WP

mapping dominantly to Z ′ [Kol13, §2.42]. For an snc pair such as
(WP , (WP )0) (and even for dlt pairs, see e.g. [Kol13, Theorem 4.16])
the log canonical centres are precisely the irreducible components of
the intersections of any number of components of the boundary divisor.
But the divisor (WP )0 in WP has precisely s components, so
(8) codimWP

Z ′′ 6 s.

Since Z, Z ′ and Z ′′ all have the same dimension equations (7) and (8)
contradict each other. �
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5.1.8. We end this section by establishing an identification between
the dual complexes of H0 and of (InX/C)0, extending as promised the
bijection between components in Lemma 5.3. Note that Corollary
5.8 ensures that the dual complex of (InX/C)0 is well defined [dFKX17,
Definition 8].
Proposition 5.10. With notation as in Lemma 5.3, let {Ei} be any col-
lection of components of H0 and let {Di} be the corresponding collection
of components of (InX/C)0. Then the rules Y = π(Z) and Z = π−1(Y )
define a bijection between the components of ⋂iDi and the components
of ⋂iEi.
Proof. Repeat the argument in Lemma 5.3 using that all components
of ⋂iDi have the expected dimension by Corollary 5.8, and also noting
that each component of ⋂iEi is G[n]-invariant. �

Corollary 5.11. There is a natural identification between the dual
complexes of H0 and (InX/C)0.
5.2. Minimal models. Let f : X → C be a (projective) strict simple
degeneration of relative dimension at most two such that Γ = Γ(X0)
allows a bipartite orientation. We moreover assume that KX/C is rela-
tively semi-ample. Recall that this means, for m� 0, that (KX/C)⊗m
is relatively basepoint-free, i.e., the canonical map

f ∗f∗((KX/C)⊗m)→ (KX/C)⊗m

is surjective.
Our first goal in this subsection is to prove that, in this situation,

also the relative canonical sheaf of InX/C is relatively semi-ample. This
has the interesting consequence that the property of being a minimal
model is transfered from X → C to the Hilbert scheme degeneration
InX/C .

5.2.1. To ease notation, we will frequently drop the subscript X/C
and write In, P n and Jn rather than InX/C , P n

X/C and JnX/C . A few
additional obvious simplifications will be made:

• After shrinking C around 0 (if necessary), we can assume that
C is a smooth affine curve, with trivial canonical sheaf. This
implies that, for all schemes Z over C we shall encounter below,
we can identify KZ/C with KZ . The analogous statement holds
for schemes over C[n].
• It is understood that m is also chosen large enough so that

(KIn)⊗m is Cartier (recall that In is Q-factorial).
• Lastly, our assumption on KX implies that we can find finitely

many global sections that generate (KX)⊗m. Using these sec-
tions, we shall produce finitely many global sections that gener-
ate (KIn)⊗m (which implies that (KIn)⊗m is relatively basepoint-
free).



26 M. G. GULBRANDSEN, L. H. HALLE, K. HULEK, AND Z. ZHANG

5.2.2. We first need some preliminary results on the canonical bundle
of the expanded degeneration X[n]→ C[n].

Lemma 5.12. The canonical G[n]-equivariant projection g : X[n]→ X
induces an isomorphism KX[n] ∼= g∗KX .

Proof. By construction (cf. e.g. [GHH19, Section 1]), g is a composition
of maps gi : X[i]→ X[i− 1], where gi factors as

X[i]→ X[i− 1]×A1 A2 → X[i− 1]
with the first map a small resolution and the second map projection
to the first factor. This implies that g∗iKX[i−1] ∼= KX[i], so our claim
follows by induction. �

Lemma 5.13. Let P1, . . . , Pr be a finite collection of points in X[n].
Then we can find a G[n]-invariant section of (KX[n])⊗m not vanishing
at any Pi.

Proof. By assumption, we can for each i find a section s̃i of (KX)⊗m that
does not vanish at pi = g(Pi). Then si = g∗s̃i is a G[n]-invariant section
of (KX[n])⊗m, which does not vanish at Pi by Lemma 5.12. Taking a
k-linear combination s = ∑

i λisi, for sufficiently generic λi ∈ k, yields
a section with the desired properties. �

We consider next the n-fold fibred product
X[n]n = X[n]×C[n] . . .×C[n] X[n].

As an immediate consequence of Corollary 3.6, we note that G[n] acts
freely on the GIT stable locus X[n]n,ss. Thus, the GIT quotient map

α : X[n]n,ss → P n
X/C

forms a G[n]-torsor. This implies that
KX[n]n,ss ∼= α∗KPn

X/C
,

and (by descent for torsors) that pullback along α identifies sections
of KPn

X/C
with G[n]-invariant sections of KX[n]n,ss (and likewise for any

power of these sheaves).

Lemma 5.14. Let Z = (P1, . . . , Pn) ∈ X[n]n,ss. Then we can find a
G[n]-invariant and Sn-invariant section of (KX[n]n,ss)⊗m that does not
vanish at Z.

Proof. Lemma 5.13 asserts that there exists a G[n]-invariant section s
of (KX[n])⊗m which does not vanish at any point Pi. As

KX[n]n ∼= pr∗1(KX[n])⊗ · · · ⊗ pr∗n(KX[n]),
pulling back s from each factor yields an Sn-invariant section s⊗ . . .⊗s.
Its restriction to X[n]n,ss yields a section of (KX[n]n,ss)⊗m which is both
G[n]-invariant and Sn-invariant, and which does not vanish at Z. �
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5.2.3. Let W denote the smooth locus of X → C. For brevity write
W n, W (n) and W [n] for the relative product, symmetric product and
Hilbert scheme of W → C. Furthermore write W n

∗ , W (n)
∗ and W

[n]
∗ for

the respective open loci defined by the condition that the underlying zero
cycle has at most one double point, and let ∆′ denote the complement
of W n

∗ in W n. By a slight abuse of notation, we also denote by ∆′ the
corresponding loci in W (n) and W [n]. In each case the complement ∆′
has codimension 2.

By Proposition 2.4, W [n] is an open subscheme of InX/C whose com-
plement is of codimension 2. Thus, W [n]

∗ is open in InX/C , and its
complement D has codimension 2 as well. Consequently, every section
of K

W
[n]
∗

can be extended uniquely to W [n], and every section of (a
suitable power of) KW [n] can be extended uniquely to InX/C .

We shall make use of the following relative version of a construction
by Beauville [Bea83] (generalizing Beauville’s arguments to the smooth
quasi-projective morphism W → C is straightforward). There is a
commutative diagram (over C)

W̃ n
∗

p //

π1

��

W
[n]
∗

π2
��

W n
∗

q // W
(n)
∗

where the vertical arrows are blowups along the (relative) diagonal
and the horizontal arrows are quotients by the symmetric group Sn.
The latter acts with stabilizer groups at most Z/2Z. Let E be the
exceptional divisor for the blowup π1. It is also precisely the ramification
locus of p, so we have both

K
W̃n
∗
∼= p∗(K

W
[n]
∗

)(E), and
K
W̃n
∗
∼= π∗1(KWn

∗ )(E).
Thus

p∗K
W

[n]
∗
∼= π∗1KWn

∗ .

Proposition 5.15. Assume that KX is semi-ample over C. Then also
KIn is semi-ample over C.

Proof. We want to show the following: there is a fixed integer m > 0
such that for every point ξ ∈ InX/C there exists a section

σ ∈ H0(In, (KIn)⊗m)
with σ(ξ) 6= 0.

Assume first that ξ ∈ W [n]
∗ . Since p∗K

W
[n]
∗
∼= π∗1KWn

∗ , it is enough, for
a fixed m, to produce invariant sections of π∗1(KWn

∗ )⊗m not vanishing
at a given point in W̃ n

∗ . For this in turn, it is enough to produce such a
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section in (KWn
∗ )⊗m. Any point in W n

∗ is the image under α of some
tuple Z = (P1, . . . , Pn) ∈ X[n]n,ss, and any chosen section with the
properties in Lemma 5.14 descends to an invariant section not vanishing
at α(Z).

Now assume that ξ ∈ InX/C is arbitrary. We select a tuple Z =
(P1, . . . , Pn) ∈ X[n]n,ss such that the image of α(Z) under P n

X/C → JnX/C
equals the image of ξ under InX/C → JnX/C . By Lemma 5.14, we can
find an Sn-invariant section σ′ of (KPn)⊗m not vanishing at α(Z). By
restriction, we obtain an Sn-invariant section which descends to a
section σ ∈ H0(W [n]

∗ , (K
W

[n]
∗

)⊗m) which can be extended to a section on
W [n], and thus to InX/C . This section has the property that there exists
a neighbourhood U of ξ (induced by the non-vanishing locus of σ′) such
that σ has no zeroes on U \ U ∩D. But then, since D has codimension
2 in InX/C , it follows that also σ(ξ) 6= 0. �

5.2.4. Good minimal models. Recall [NX16, 2.3.2] that a dlt model
Y → C is a good minimal model if Y is Q-factorial and the Q-Cartier
divisor

KY + (Y0)red

is semi-ample over C.

Corollary 5.16. Assume that X → C is a good minimal model. Then
also InX/C → C is a good minimal model.

Proof. We established in Proposition 5.1 that InX/C is Q-factorial and
in Theorem 5.9 that InX/C → C is a dlt model. As moreover InX/C,0 is a
reduced principal divisor, it follows directly from Proposition 5.15 that
KIn

X/C
+ InX/C,0 is semi-ample over C. �

Remark 5.17. Assume that X/C has relative dimension 2. By similar
(easier) arguments as above, one shows that if KX/C is trivial (resp. tor-
sion), then the same property holds for the relative canonical sheaf of
InX/C over C.

6. Computing Dual Complexes

In (5) we constructed three families P n
X/C , JnX/C and InX/C of GIT

quotients over C. In this section we relate the dual complexes of the
degenerate fibres of the three families, in order to get a more intuitive
understanding of their combinatorics. We still assume the original family
f : X → C to be a strict simple degeneration of relative dimension d 6 2.
We will first prove that dual complexes exist for the degenerate fibres
of these families, then compute them explicitly. In particular, we show
in Theorem 6.8 that the dual complex of InX/C is the n’th symmetric
product of the dual graph of X/C, and in Subsection 6.5 we utilize this
result to compute the dual complex concretely.
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We remark that dual complexes of products of degenerations have
also, independently, been studied in [BM19]. In the particular case of
K3 surfaces, these results in fact suffice in order to describe the essential
skeleton (the skeleton of any good minimal dlt model) of the n-th Hilbert
scheme, without producing an explicit degeneration. Our primary
interest, on the other hand, is to compute the dual complex D((InX/C)0)
attached to a Hilbert scheme degeneration InX/C . For this, only the
assumption that X → C is a projective strict simple degeneration is
necessary. Since the property of being a good minimal dlt model is
preserved by InX/C , Theorem 6.15 below describes the essential skeleton
also for Hilbert schemes of points on more general classes of surfaces.

6.1. Existence of dual complexes. In this section we discuss the
existence of dual complexes for the degenerate fibres. We will show that
the central fibres of all three families in (5) satisfy the requirements in
Definition 4.3, hence admit dual complexes.

Lemma 6.1. The family ψp : P n
X/C → C in (5) is an snc model. In

particular, the dual complex Γp of its degenerate fibre ψ−1
p (0) is well-

defined.

Proof. By Corollary 3.6, we see that (X[n] ×C[n] · · · ×C[n] X[n])ss is
smooth, on which the G[n]-action is free. It follows that the quotient
P n
X/C is smooth. To show that ψ−1

p (0) is an snc divisor, it suffices to
show that the intersection of any subset of irreducible components of
ψ−1
p (0) is smooth of expected dimension.
Without loss of generality we still assume C = A1. As a G[n]-quotient,

P n
X/C has a natural stratification

P n
X/C =

⋃
I⊆[n+1]

ZI

into locally closed subschemes, in which each stratum is given by
(9) ZI = ϕ−1

p (UI)/G[n],
where ϕp is defined as in (4) and UI as in Paragraph 4.3.1.

It is clear that ZI ⊆ ψ−1
p (0) if and only if I 6= ∅. Theorem 4.9

moreover shows that I ⊆ J if and only if Z̄I ⊇ ZJ . Therefore we have
Z̄I =

⋃
I⊆J

ZJ = ϕ−1
p (AI)/G[n],

where AI is defined as in Paragraph 4.3.1. Since ϕp is a smooth
morphism, ϕ−1

p (AI) is smooth, hence its quotient by the free G[n]-
action is also smooth.

It remains to show that each Z̄I is of expected dimension dn+ 1−|I|,
where d = 1 or 2 is the relative dimension of the original family. The
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dimension can be computed on the open subset ZI using (9). Since ϕp
is of relative dimension dn, we have

dimϕ−1
p (UI) = dn+ dimUI = dn+ (n+ 1)− |I|.

It follows immediately that
dimZI = dimϕ−1

p (UI)− dimG[n] = dn+ 1− |I|
as desired. This finishes the proof. �

Lemma 6.2. The dual complex Γs of the degenerate fibre ψ−1
s (0) of the

family ψs : JnX/C → C in (5) is well-defined.

Proof. It suffices to verify that the two conditions in Definition 4.3 are
satisfied by the degenerate fibre ψ−1

s (0). Following the same reasoning
as in Lemma 6.1, we have a stratification

JnX/C =
⋃

I⊆[n+1]
Z ′I

such that
(∗) Z ′I ⊆ ψ−1

s (0) iff I 6= ∅, and Z̄ ′I ⊇ Z ′J iff I ⊆ J ,
(∗∗) Z̄ ′I = ϕ−1

s (AI)/G[n], and of expected dimension dn+ 1− |I|.
We claim that Z̄ ′I is normal for each I ⊆ [n+ 1]. Indeed, by Corollary
3.6 we have

ϕ−1
s (AI) = ϕ−1

p (AI)/Sn,

which is a finite group quotient of a smooth scheme, hence is normal.
It follows that Z̄ ′I is also normal as a geometric quotient of a normal
scheme.

Since Z̄ ′I is normal and equi-dimensional, it follows that every con-
nected component of Z̄ ′I must be an irreducible component. Indeed,
(R1) fails if two irreducible components meet along a divisor, and (S2)
fails if they meet along a locus of higher codimension.

Now we verify the conditions required in Definition 4.3. By (∗), (∗∗)
and the above observation, the irreducible components of ψ−1

s (0) are
given by the connected components of every Z̄I with |I| = 1, which are
all normal of dimension dn, hence the first condition in Definition 4.3
holds.

To verify the second condition, take k distinct irreducible components
of ψ−1

s (0), say, Ci ⊆ Z̄ ′{ti} for 1 6 i 6 k. If ti = ti′ for some i 6= i′, then
their intersection is empty; otherwise, their intersection is either empty,
or an open and closed subscheme of Z̄ ′I with I = {t1, . . . , tk}, which is
of expected dimension and satisfies the property that every connected
component is irreducible. This concludes theproof of the existence of
the dual complex for ψ−1

s (0). �

Remark 6.3. By Theorem 5.9, the family ψh : InX/C → C is a dlt model.
As such, its central fibre satisfies the requirements in Definition 4.3,
hence its dual complex Γh is well-defined.
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6.2. Dual complex for the degenerate fibre of P n
X/C. From now

on we assume that the dual complex Γ for the degenerate fibre of the
original family f : X → C is an ordered graph (i.e., an ordered ∆-
complex with 1-dimensional geometric realization) with a fixed bipartite
orientation. Our next goal is to compute the dual complex Γp for the
degenerate fibre of the family

ψp : P n
X/C −→ C

as in (5). We will show that Γp is the n-fold product Γn equipped with
the canonical structure of a ∆-complex.

6.2.1. We recall some generalities of products of ordered ∆-complexes.
In general, one can compute their products by subdividing the product
of their geometric realizations via the ‘shuffling operation’; see [Hat02,
§3.B, p.278]. Here we give a more detailed account for products of
ordered graphs, which is the case we need.

For each 1 6 i 6 n, let Γi be an ordered graph with geometric
realization |Γi|. The product Γ1 × Γ2 × · · · × Γn can, as a ∆-complex,
be given as follows:

Step 1. For each 1 6 i 6 n, let Si be a cell in Γi (either 0-cell or
1-cell). Then |Γ1|×|Γ2|×· · ·×|Γn| is naturally divided into ‘cubes’ of the
form S1×S2×· · ·×Sn. Among the factors, assume that Si1 , . . . , Sik are
ordered 1-cells while the others are 0-cells, then the product is a k-cube,
which can be viewed as a subset of Rk defined by 0 6 xit 6 1 for each
1 6 t 6 k (with arrows of the 1-cells pointing towards the increasing
direction). For convenience, we call this step a ‘cube decomposition’ of
|Γ1| × |Γ2| × · · · × |Γn|.

Step 2. We further decompose each cube into ordered simplices,
labelled by all possible orders on the set of variables xi1 , . . . , xik . More
precisely, suppose that j1, . . . , jk is a ‘shuffling’ of the indices i1, . . . , ik,
then an ordered k-simplex corresponding to this shuffling is given by
(10) 0 6 xj1 6 · · · 6 xjk 6 1.
It is clear that there are k! possible shufflings and the union of the
corresponding simplices is the entire cube. Therefore these k! simplices
give a subdivision of the k-cube. The faces of the maximal dimensional
simplices, i.e. the simplices of smaller dimensions, are defined by similar
chains of inequalities with some ‘6’ replaced by ‘=’. The number of
equalities in the chain is the codimension of the cell; or equivalently, the
number of inequalities is 1 larger than the dimension of the cell. Such
decomposition of cubes is compatible with specialization; that is, the
decomposition of a face of a cube is the restriction of the decomposition
of the cube to the face. Hence the cube decomposition in Step 1 is
further decomposed into a ∆-complex.
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Definition 6.4. By the product of the ordered graphs Γi, 1 6 i 6 n,
we mean the unique ∆-complex

Γ1 × Γ2 × · · · × Γn
constructed in Step 1 and Step 2 above.
6.2.2. We are now ready to compute the dual complex Γp for ψ−1

p (0).

Proposition 6.5. Suppose that the dual complex for f−1(0) is an
ordered graph Γ with a fixed bipartite orientation. Then the dual complex
Γp for ψ−1

p (0) is Γn.
Proof. First of all, we notice that the vertical maps in the commutative
diagram

X[n]×C[n] · · · ×C[n] X[n] //

��

C[n]

��
X ×C · · · ×C X // C

are G[n]-invariant, hence we have a commutative diagram

(11) P n
X/C

ψp //

τp

��

C

X ×C · · · ×C X
gp // C

where the vertical map τp sends an n-tuple to its support in the original
family f : X → C. It is an isomorphism except on the central fibres,
where it is only surjective.

We prove the statement in two steps, based on the two steps to con-
struct Γn in Paragraph 6.2.1. We will first show that the combinatorial
structure of g−1

p (0) can be encoded in the cube decomposition of |Γ|n
as described in Step 1; then we prove that the further triangulation
via shuffling as described in Step 2 is precisely realized by the map τp.

Step 1. We explain why the combinatorial structure of g−1
p (0) can

be encoded in the cube decomposition of |Γ|n.
Any k-cube in the cube decomposition of |Γ|n has the form

S = S1 × · · · × Sn.
Among the factors, k of them are edges, representing components of the
double locus of f−1(0), while the other (n−k) are vertices, representing
components of f−1(0). We assume that

• the edge factors are Si1 , . . . , Sik ;
• among the vertex factors, h of them belong to V + while the

other (n− k − h) belong to V −.
Here we have k > 0, h > 0 and k + h 6 n.

This cube represents the locus in g−1
p (0) consisting of n-tuples

Z = (z1, . . . , zn) ∈ g−1
p (0),
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such that zi lies in a unique component of f−1(0) if Si is a vertex, or in
a component of the double locus of f−1(0) if Si is an edge.

Step 2. We study the preimage of the locus represented by the cube
S and explain why the map τp in (11) induces a subdivision of S as
described in Paragraph 6.2.1.

The finer combinatorial structure in ψ−1
p (0) is encoded by an extra

parameter I such that
∅ 6= I ⊆ {1, . . . , n+ 1}.

For any such I, suppose |I| = l + 1 for some 0 6 l 6 n. Then one has
to replace each component of the double locus of f−1(0) by l ordered
P1-fibrations, and distribute the n points across the components such
that the resulting n-tuple is stable (recall the description of stability in
Paragraph 4.4.2). More precisely, using the above notation, I can be
written as

I = {h+ 1, h+ t1 + 1, h+ t1 + t2 + 1, . . . , h+ t1 + · · ·+ tl + 1}
where t1, t2, . . . , tl are positive integers such that t1 + · · ·+ tl = k. The
configuration of a smoothly supported n-tuple

Z = (z1, . . . , zn) ∈ ψ−1
p (0)

is encoded, in the notation of Paragraph 4.4.2, by a tuple
z ∈ V (ΓI)× · · · × V (ΓI)

and stability of z boils down to the following condition: among the
k points zi1 , . . . , zik whose images under τp lie on the double loci in
g−1
p (0), tr of them should lie on the r-th inserted P1-fibration (among

those that replace the corresponding double locus) for every 1 6 r 6 l.
If z is stable, the point Z belongs to the stratum (PI)◦z over UI . We
observe that there are k! ways to distribute the points zi1 , . . . , zik on the
various P1-fibrations so that Z is stable, each arising in the following
fashion: let j1, . . . , jk be an arbitrary shuffling of the indices i1, . . . , ik.
Then we require, for each 1 ≤ r ≤ l, that the tr points indexed by
jt1+...+tr−1+1, . . . , jt1+...+tr are placed on the r-th P1-fibration.

Now suppose that j1, . . . , jk is a shuffling of i1, . . . , ik, such that for
any p with t1 + · · ·+ tr−1 < p 6 t1 + · · ·+ tr, the point zjp lies in the
r-th inserted P1-fibration. The locus parametrizing such n-tuples is
represented by an l-cell defined by the chain

0 6 xj1 = · · · = xjt1
6 xjt1+1 = · · · = xjt1+t2

6 · · ·
6 xjt1+···+tl−1+1 = · · · = xjt1+···+tl−1+tl

6 1.
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Using Theorem 4.9 we conclude that if I ⊂ I ′ with |I| = l + 1 and
|I ′| = l′ + 1, then the stratum labelled by I ′ is contained in the closure
of the stratum labelled by I. This is consistent with the fact that
the l-cell corresponding to I is a face of the l′-cell corresponding to
I ′, because the latter is defined by replacing some equalities from the
former by inequalities (one such replacement for each extra element in
I ′\I) without re-shuffling the variables. This verifies that the ∆-complex
Γn we get following the recipe in Paragraph 6.2.1 reflects precisely the
combinatorial structure of ψ−1

p (0), which finishes the proof. �

6.3. Dual complex for the degenerate fibre of JnX/C. Now we turn
to the dual complex Γs for the degenerate fibre of the second family

ψs : JnX/C −→ C

as in (5). Via a comparison to Γp, we will show that Γs is the symmetric
product Γn/Sn.

Proposition 6.6. The map ξ in (5) induces a map of dual complexes
ξΓ : Γp −→ Γs,

which is the quotient map Γn → Γn/Sn.

Proof. Notice that the left column in (11) is equivariant under the
action of the symmetric group Sn, and that both horizontal maps are
invariant under the action of Sn. Hence we can take the Sn-quotient
of the left column and obtain an expansion of (11) as follows:

(12) P n
X/C ξ

//

ψp

))

τp

��

JnX/C

τs

��

ψs

// C

X ×C · · · ×C X //

gp

55Symn(X/C) gs // C

where the quotient map ξ was explained in Remark 4.1. We have seen in
the proof of Proposition 6.5 that the combinatorics of g−1

p (0) is given by
a cube decomposition of |Γ|n, and τp induces the standard subdivision
of the cubes. Our proof is still divided into two steps.

Step 1. We look at the action of Sn on the cube decomposition as
described in Step 1 of the proof of Proposition 6.5.

The symmetric group Sn acts on X×C · · ·×CX, and hence on g−1
p (0),

by permuting the factors. Therefore it also acts on Γn by permuting
the factors and induces an Sn-action on the cube decomposition of
|Γ|n. More precisely, an element σ ∈ Sn sends a cube S1 × · · · × Sn
to Sσ(1) × · · · × Sσ(n), compatible with its parametrization as [0, 1]k.
Hence σ also identifies the standard subdivisions of the source and
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image cubes. In other words, every σ ∈ Sn gives an automorphism of
Γn as an ordered ∆-complex. Therefore the quotient Γn/Sn is again an
ordered ∆-complex.

Step 2. We need to show that the Sn-action on the ordered ∆-
complex Γn is compatible with its action on ψ−1

p (0).
Indeed, this can be checked for an arbitrary σ ∈ Sn and an arbitrary

cube S1 × · · · × Sn. We follow the notation in Step 2 of the proof of
Proposition 6.5. A simplex in such a cube is defined by the chain of
inequalities

0 6 xj1 = · · · = xjt1
6 xjt1+1 = · · · = xjt1+t2

6 · · ·
6 xjt1+···+tl−1+1 = · · · = xjt1+···+tl−1+tl

6 1,
which represents the closure of the locus of n-tuples (z1, . . . , zn), such
that zjp lies in the r-th inserted component if t1 + · · · + tr−1 < p 6
t1 + · · · + tr, for each value of p. The image of this locus under the
action of σ is the closure of n-tuples (z1, . . . , zn), such that zσ(jp) lies in
the r-th inserted component if t1 + · · · + tr−1 < p 6 t1 + · · · + tr, for
each value of p. This locus is in turn represented by the simplex defined
by the chain of inequalities

0 6 xσ(j1) = · · · = xσ(jt1 )

6 xσ(jt1+1) = · · · = xσ(jt1+t2 )

6 · · ·
6 xσ(jt1+···+tl−1+1) = · · · = xσ(jt1+···+tl−1+tl )

6 1,
which is precisely the image of the previous simplex under the action
of σ. This justifies that the Sn-action on ψ−1

p (0) is compatible with
its action on the dual complex Γn. Therefore the dual complex of the
Sn-quotient of the former is the Sn-quotient of the latter, which finishes
the proof. �

6.4. Dual complex for the degenerate fibre of InX/C. Finally we
analyze the relation between the dual complexes for the central fibres of
InX/C and JnX/C . The tool we need is the following general observation:

Lemma 6.7. Suppose that there is a morphism of schemes of the same
pure dimension

η : Y −→ Z

where both Y and Z satisfy the requirements in Definition 4.3. We write
the irreducible components of Z as Zs for s ∈ S with S being the index
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set. Then the morphism η induces an isomorphism between the dual
complexes of Y and Z if the following two conditions are met:

(†) For each s ∈ S, η−1(Zs) is an irreducible component Ys of Y ;
(††) For each subset T ⊆ S and each irreducible component Z ′ of

∩s∈TZs, η−1(Z ′) is an irreducible component Y ′ of ∩s∈TYs.

Proof. It is clear that such a morphism η induces an isomorphism
between the two dual complexes, because their dual complexes are built
up by attaching cells (see [dFKX17]), and η leads to the identical way
of attaching cells at every stage. �

Equipped with this observation, we are ready to prove the following:

Theorem 6.8. The map η in (5) induces an isomorphism
ηΓ : Γh ∼−→ Γs.

In particular, the dual complex Γh for the fibre ψ−1
h (0) is Γn/Sn.

Proof. We will apply Lemma 6.7 to the morphism
η : ψ−1

h (0) −→ ψ−1
s (0).

Following the discussion in Section 4, there is a stratification of ψ−1
s (0)

(resp. ψ−1
h (0)) into locally closed subschemes ZI ’s (resp. WI ’s) indexed

by non-empty subsets I ⊆ [n+ 1], where
ZI = ϕ−1

s (UI)/G[n],
resp. WI = ϕ−1

h (UI)/G[n].

Then Z̄I (resp. W̄I) is the disjoint union of certain irreducible compo-
nents of |I|-fold intersection loci in ψ−1

s (0) (resp. ψ−1
h (0)).

By Proposition 4.6, the irreducible components of Z̄I (resp. W̄I) are
labelled by pairs (b, s) which are stable with respect to I in the sense
of Definition 4.4. Let moreover I = {i1, . . . , ir}. Then we can write

(ZI)(b,s) =
∏
v∈V

Symbv(Y ∗v )×
r−1∏
l=1

(( ∏
γ∈E

Symsr,l(∆γ,il
I )∗

)
/Gm

)
,

resp. (WI)(b,s) =
∏
v∈V

Hilbbv(Y ∗v )×
r−1∏
l=1

(( ∏
γ∈E

Hilbsr,l(∆γ,il
I )∗

)
/Gm

)
,

where Yv is the irreducible component of f−1(0) labelled by the vertex
v ∈ V and ∆γ,il

I is a P1-fibred inserted component. For every fixed l,
the multiplicative group Gm acts on the inserted components ∆γ,il

I for
all γ ∈ E simultaneously. With this notation we have

η−1((ZI)(b,s)) = (WI)(b,s).

Since each Yv and each ∆γ,il
I is a smooth surface (or curve), the Hilbert-

Chow morphism on each of them is birational. It follows that
η|(WI)(b,s) : (WI)(b,s) → (ZI)(b,s)
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is a birational morphism, hence so is the morphism
η|(W̄I)(b,s)

: (W̄I)(b,s) → (Z̄I)(b,s).

Therefore we have verified the condition (†) when |I| = 1 and (††) when
|I| > 1. It follows by Lemma 6.7 that ψ−1

s (0) and ψ−1
h (0) have identical

dual complexes. �

6.5. Symmetric products of graphs. We next demonstrate how to
concretely do computations with the dual complex of the Hilbert scheme
degeneration InX/C . In particular we determine when this ∆-complex is
a simplicial complex.

By Theorem 6.8 the dual complex Γh of InX/C is the symmetric product
Γn/Sn of the dual graph Γ of X → C, equipped with a bipartite
orientation. A first consequence is that the geometric realization of Γh
(as a topological space) depends only on the geometric realization of
Γ. We harvest some further facts on symmetric products of oriented
graphs with the application to InX/C in mind.

Example 6.9. If Γ is a cycle (without regard to the orientation),
then its geometric realization is homoeomorphic to a circle, and so the
geometric realization of Γn/Sn is homeomorphic to the n’th symmetric
product of a circle. Morton [Mor67] has shown that the latter is a disk
bundle over a circle, more precisely the trivial disk bundle when n is
odd and the non orientable disk bundle when n is even.

Example 6.10. If Γ is a tree then |Γ| is contractible and |Γn| is
contractible in an Sn-invariant way. Thus the symmetric product
|Γn/Sn| is contractible as well.

Example 6.11. More generally, the homotopy type of |Γn/Sn| depends
only on the homotopy type of |Γ| by [Lia54]. Any graph Γ has the
homotopy type of a bouquet of circles. The homotopy type of the n’th
symmetric product of a bouquet of m cycles has been determined by
Ong [Ong03]: if m ≤ n it has the homotopy type of an m-torus, and if
m > n, it has the homotopy type of the union of the

(
m
n

)
n-dimensional

subtori in an m-torus obtained by fixing m − n out of the m circle
coordinates.

Theorem 4.8 gives a computationally convenient description of the
dual complex of InX/C and hence for the symmetric product Γn/Sn at
least when Γ is bipartite. In the following Lemma we give a direct
combinatorial argument showing that the same description works for
symmetric products of arbitrary oriented graphs. Recall that for an
oriented graph Γ = (V,E) with vertex set V and arrow set E we write
E+(v) for the set of incoming arrows at the vertex v, and E−(v) for the
set of outgoing edges.
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Lemma 6.12. Let Γ = (V,E) be an oriented graph. For each integer n,
the symmetric product Γn/Sn is isomorphic to the following ∆-complex:

(I) A k-cell is a pair (a, r), where a = {av} is a tuple of nonnegative
integers indexed by the vertices v in Γ and r = {rγ,i} is a tuple of
nonnegative integers indexed by the edges γ in Γ and the natural
numbers i in the range 1 6 i 6 k. These are subject to the
conditions ∑

v

av +
∑
γ,i

rγ,i = n,

and ∑
γ

rγ,i > 0 for all i.

(II) The k + 1 facets (b, s) = di(a, r), for 0 6 i 6 k, are as follows:

i = 0:

bv = av +∑
γ∈E(v)− rγ,1

sγ = (rγ,2, . . . , rγ,k)

0 < i < k :

b = a

sγ = (rγ,1, . . . , rγ,i + rγ,i+1 . . . , rγ,k)

i = k :

bv = av +∑
γ∈E(v)+ rγ,k

sγ = (rγ,1, . . . , rγ,k−1).

Proof. Given a k-cell (a, r), form the cube S1×S2×· · ·×Sn in Γn, where
each Si is either a vertex v or an edge γ, such that each vertex v occurs
av times, each edge γ occurs ∑j rγ,j times and the ordering is arbitrary.
Construct a k-simplex in this cube as follows: let p0 = (v0,1, v0,2, . . . , v0,n)
be the initial vertex in the cube, i.e.

v0,i =

v if Si = v is a vertex
src(γ) if Si = γ is an edge.

Let p1 = (v1,1, v1,2, . . . , v1,n) be the vertex obtained from p0 by the
following procedure: run through all the edges γ and arbitrarily choose
rγ,1 among the indices i satisfying Si = γ. For each chosen index i
replace v0,i = src(γ) by v1,i = tgt(γ); let v1,j = v0,j for the remaining
indices j. Similarly define p2 by replacing rγ2 among the vertices
v1,i = src(γ) by v2,i = tgt(γ) and so on; eventually pk is the final vertex
in the cube with

vk,i =

v if Si = v is a vertex
tgt(γ) if Si = γ is an edge.

The k-simplex 〈p0, . . . , pk〉 in the cube is a k-cell in Γn, and the k-cells
obtained from (a, r) in this way for all choices of orderings along the
way form an Sn-orbit and hence a k-cell in Γn/Sn. It is then straight-
forward to verify that the procedure defines a bijection between the
sets of k-cells compatible with face maps. �



GEOMETRY OF DEGENERATIONS OF HILBERT SCHEMES 39

Proposition 6.13. Let Γ be an oriented graph. Then Γn/Sn is a
simplicial complex for all n if and only if Γ, without the orientation, is
a tree.

Proof. If Γ is not a tree, then it contains a cycle. First suppose it
contains an oriented cycle. Let n be the length of that cycle, and define
a 1-simplex (a, r) in Γn/Sn by a = 0 and

rγ =

1 if γ is in the cycle
0 otherwise.

Then the two vertices of (a, r) coincide, so Γn/Sn is not a simplicial
complex.

Next suppose Γ contains a non directed cycle. The cycle thus consists
of an even number 2N of directed paths with alternating orientation,

λi :
vi• → • → · · · → wi•

and
λ′i :

wi• ← • ← · · · ←
vi+1•

where the subscripts are read modulo N . Let n be the length of the
cycle minus N . Define two 1-cells (a, r) 6= (a′, r′) in Γn/Sn by

av =

1 if v is an inner vertex of λi for some i
0 otherwise

rγ =

1 if γ is an edge of λ′i for some i
0 otherwise

and (a′, r′) similarly with λi and λ′i interchanged. Then (a, r) and (a′, r′)
have the same pair of vertices, so Γn/Sn is not a simplicial complex.

Now suppose Γ is a tree. We first show that the k + 1 vertices of any
k-simplex of Γn/Sn are pairwise distinct. If not, there is a 1-simplex
(a, r) in Γn/Sn whose two vertices coincide. Let γ1 be such that rγ1 6= 0.
For the two vertices of (a, r) to coincide, there must be an arrow γ2
with src(γ2) = tgt(γ1) and rγ2 6= 0. Then there must be an arrow γ3
with src(γ3) = tgt(γ2) and rγ3 6= 0 and so on. Since Γ is finite, the
process must produce a directed cycle in Γ, which is a contradiction.

It remains to show that, if Γ is a tree, then any k-cell (a, r) in Γn/Sn

can be reconstructed from its set of (pairwise distinct) k + 1 vertices.
Note that a vertex in Γn/Sn is a 0-cell (c, t): here t is the empty tuple
and hence we shall write simply c. By iterating the face maps in Lemma
6.12 one finds that the vertex c = (a, r)i opposite to the facet di(a, r) is
given by

cv = av +
∑
j6i

∑
γ

src(γ)=v

rγ,j +
∑
j>i

∑
γ

tgt(γ)=v

rγ,j.

It is enough to prove that each simplex (a, r) is uniquely determined
by one of its facets (b, s) = di(a, r) together with the remaining vertex
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c = (a, r)i. So we consider (b, s) and c as known, and the task is to
reconstruct (a, r).

Consider the case 0 < i < k. Then a = b, and from s we know all
rγ,j except for rγ,i and rγ,i+1, and also the sum
(13) rγ,i + rγ,i+1

for all edges γ. Using c, we also know, for each vertex v,
(14)

∑
γ

src(γ)=v

rγ,i +
∑
γ

tgt(γ)=v

rγ,i+1.

If v is a leaf, there is only one edge with v as vertex so (14) determines
either rγ,i or rγ,i+1, and then (13) determines the other. Fix a root
vertex in Γ, and complete the proof by descending induction on the
distance from a vertex to the root: for each vertex v (except the root
itself), exactly one edge γ connects v to a vertex closer to the root.
Thus, by induction, all terms except one in the sum (14) are known,
enabling us to reconstruct either rγ,i or rγ,i+1, and thus, with the aid of
(13), both.

Consider the case i = 0. Then s determines all rγ,j except rγ,1, and
then bv and cv determines

av +
∑
γ

src(γ)=v

rγ,1 and av +
∑
γ

tgt(γ)=v

rγ,1

If v is a leaf, there is only one edge γ with v as vertex so the two sums
above determine av and rγ,1. The proof is completed by descending
induction on the distance from v to a chosen root.

The case i = k is similar to i = 0. �

6.6. The essential skeleton of a Hilbert scheme degeneration.

6.6.1. Let C denote a smooth connected curve over k, and let 0 ∈ C
be a base point. We fix a local parameter t at 0, and put C∗ = C \ {0}.
Let Z∗ → C∗ be a smooth and projective family of varieties, with KZ∗

semi-ample over C∗. We denote by (Z∗)an the Berkovich analytification
of the base change of Z∗ along the obvious map Spec k((t))→ C∗.

In what follows, we shall recall some terminology and results from
[NX16]. Given a non-zero regular pluricanonical form ω on Z∗ ×C∗
k((t)), one can define a weight function wtω : (Z∗)an → R ∪ {∞}. The
Kontsevich-Soibelman skeleton Sk(Z∗, ω) is by definition the minimality
locus of the function wtω.

Definition 6.14. The essential skeleton of Z∗ is the union
Sk(Z∗) =

⋃
ω

Sk(Z∗, ω)

in (Z∗)an, where ω runs over the set of non-zero regular pluricanonical
forms.
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The essential skeleton can also be described in terms of suitable models
of Z∗ over C. Let Z → C be a (not necessarily proper) snc model of Z∗.
Then the dual complex D((Z0)red) of Z0 can be embedded into (Z∗)an
in a natural way; its image is called the skeleton Sk(Z) associated to
Z. If Z is proper over C, the weight function wtω is piecewise affine
when restricted to Sk(Z), and the union of the closed faces where wtω is
minimal is precisely equal to Sk(Z∗, ω). This approach can be extended
to the case where Z → C is only dlt, by setting Sk(Z) = Sk(Zsnc).
Moreover, by [NX16, Thm. 3.3.3] one has Sk(Z∗) = Sk(Zmin) for any
good minimal dlt model Zmin → C of Z∗. (Z∗ admits a good minimal
model by our assumption that KZ∗ is semi-ample over C∗.)

6.6.2. Let X → C be a strict simple degeneration of relative dimension
at most two. We assume that the dual graph Γ = Γ(X0) admits a
bipartite orientation, and that KX∗ is semi-ample over C∗. By Theorem
5.9, InX/C is again a dlt model, and, if we set D = D((InX/C)0), Theorem
6.8 asserts that D = Symn(Γ). If X/C is moreover a good minimal
model, the same holds for InX/C , by Corollary 5.16. This immediately
gives the following result:

Theorem 6.15. Assume that X∗/C∗ admits a strict simple degenera-
tion X/C, which is also a good minimal model. Then

Sk((X∗)[n]) = Symn(Sk(X∗)).

6.6.3. In the remainder of this subsection, we would like to explain
that, at least in the case where KX∗ is trivial, the assumption that the
(projective) strict simple degeneration X/C is also a good minimal model
can be dropped in Theorem 6.15. For this purpose, we need to introduce
some terminology. Let Z → C be a dlt model with reduced special fibre
Z0 = ∑

i∈I Ei. Let ξi denote the generic point of Ei, and let ω denote a
non-zero regular m-canonical form on Z∗. We denote by ordξi(ω) the
order of vanishing of ω at ξi, and we define min(ω) = mini∈I{ordξi(ω)}.
We shall say that Ei is ω-minimal if ordξi(ω) = min(ω).

6.6.4. We now return to our strict simple degeneration X/C. We write
X0 = ∑

i∈I Ei, and fix a pluricanonical form ω on X∗.

Definition 6.16. We denote by Γ(ω) the subcomplex of Γ spanned by
the vertices vi corresponding to components Ei that are ω-minimal.

Pulling back ω from every projection of the fibred product (X∗)n, and
taking the tensor product, yields an Sn-invariant form Ω. By similar
arguments as in Subsection 5.2, Ω descends to a pluricanonical form on
(X∗)[n] = Hilbn(X∗/C∗), which we continue to call Ω. We first prove
a lemma that will allow us to do computations on (X∗)n rather than
on (X∗)[n]. Let W denote the smooth locus of X → C; to simplify
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notation, we still write W0 = ∑
i∈I Ei. The components of (W n)0 will

be denoted
EA = Ea1 × . . .× Ean ,

where A = {a1, . . . , an} runs over the multisets of elements in I of
cardinality n.

Lemma 6.17. Let EA be an irreducible component of (W n)0. Then

ordEA(Ω) =
n∑
j=1

ordEaj (ω).

Thus, EA is Ω-minimal if and only if Eaj is ω-minimal for each aj ∈ A.

Proof. We shall use the standard formula

KWn/C =
n⊗
j=1

pr∗j(KW/C),

where prj : W n → W denotes the j-th projection. Let ξA be the generic
point of EA. Then prj(ξA) = ξaj , and taking the stalk at ξA yields

(KWn/C)ξA =
n⊗
j=1

((KW/C)ξaj ⊗OW,ξaj OWn,ξA).

For every i ∈ I, (KW/C)ξi is trivial as OW,ξi-module, and we fix a
generator ωi. Consequently, (KWn/C)ξA is generated by the element
⊗nj=1ωaj .

As all Ei appear with multiplicity one in the divisor W0, our chosen
uniformizer t at 0 ∈ C also yields a uniformizer in the local ring
OW,ξi . This means that in (KW/C)ξi , ω can be written (up to a unit)
as ω = tmi · ωi, for some mi ∈ Z. Then ordξi(ω) = mi, and the lemma
follows easily from this description. �

Proposition 6.18. Let D(Ω) denote the subcomplex of D spanned by
the vertices corresponding to Ω-minimal components of (InX/C)0. Then
D(Ω) = Symn(Γ(ω)).

Proof. Let ∆ ⊂ W n denote the ‘big’ diagonal. Removing ∆ yields an
open subset denoted W n

◦ = W n\∆. We can likewise define open subsets
W (n)
◦ , resp. W [n]

◦ , of the symmetric product, resp. the Hilbert scheme.
Restricting to these loci, the quotient map

q : W n
◦ → W (n)

◦

is étale, and the Hilbert-Chow morphism
π2 : W [n]

◦ → W (n)
◦

is an isomorphism.
In order to compute the Ω-minimal components of (InX/C)0, it suffices

to work on the open subscheme
W [n]
◦ ⊂ InX/C ,
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as it contains the generic point of every component of (InX/C)0. Moreover,
as this is an étale local computation, we can replace W [n]

◦ by its étale
cover W n

◦ , so that Lemma 6.17 applies. This shows that the Ω-minimal
vertices of D arise precisely by making an unordered selection of n
vertices in Γ(ω) (allowing repetition). The fact that the span D(Ω)
of these vertices inside D equals Symn(Γ(ω)) is immediate from our
constructions in Subsections 6.2, 6.3 and 6.4. �

6.6.5. To conclude, we apply the above results to a family X∗/C∗ of
surfaces, where we assume that KX∗ is trivial.
Corollary 6.19. Let X∗ be as above, and assume moreover that it
extends over C to a projective strict simple degeneration X/C. Then

Sk((X∗)[n]) = Symn(Sk(X∗)).
Proof. Since KX∗ is trivial, Sk(X∗) = Sk(X∗, ω) for any choice of
generator ω for the canonical bundle (the skeleton does not change by
scaling such a form). As K(X∗)[n] is trivial as well, we likewise find that
Sk((X∗)[n]) = Sk((X∗)[n],Ω), where Ω is the form induced by ω.

We claim that Sk((X∗)[n],Ω) equals the span of the Ω-minimal vertices
in D = D(InX/C,0). Indeed, by [NX16, Proposition 3.3.2], we have
Sk((X∗)[n],Ω) ⊂ Sk(InX/C). Furthermore, we can find a projective
birational morphism h : Z → InX/C such that (Z,Z0) is snc, and such
that h restricts to an isomorphism over the snc locus of InX/C . Then
Sk(InX/C) ⊂ Sk(Z), and the claim follows from [MN15, Theorem 4.7.5].
Thus Sk((X∗)[n],Ω) = D(Ω). We likewise find that Sk(X∗, ω) = Γ(ω),
so the assertion follows from Proposition 6.18. �

7. The symplectic form

Assume that X → C is a projective strict simple degeneration of
relative dimension two such that the dual graph has no odd cycles. In
Section 5, we proved that InX/C → C forms a dlt model (Theorem 5.9)
which is moreover minimal if X → C is minimal (Corollary 5.16). If
KX/C is in addition trivial (e.g. if X → C is a type II degeneration of
K3 surfaces), then also KIn

X/C
is trivial.

In this section, we consider instead the GIT stack InX/C → C. In
this case, we can improve the above mentioned results. We first make
the (easy) observation that InX/C → C is semi-stable (as a DM-stack).
This implies that InX/C → C is log smooth with respect to the natural
divisorial log structures in source and target, hence the sheaves of
relative log differentials are locally free. In the situation where KX/C is
trivial, we then explain that this has the interesting consequence that
InX/C → C carries, in a natural way, a symplectic structure. In other
words, working on the level of stacks allows us to describe how the
symplectic structure on Hilbn(Xc) degenerates as c ∈ C tends to 0 ∈ C.
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Remark 7.1. A natural question is whether one could have worked
directly on the GIT quotient, in order to describe the degeneration of
the symplectic structure. However, one can show that InX/C → C fails
in general to be log smooth, due to the presence of (non-symplectic)
transversal quotient singularities.

7.1. Semi-stable DM-stacks.

7.1.1. Let S be a smooth connected curve of finite type over k. We
fix a closed point 0 ∈ S. Let f : Z → S be a flat morphism, locally of
finite type. We say that f is semi-stable if Z is smooth over k, Z0 is a
reduced divisor with normal crossings and the fibres Zs are otherwise
smooth. Note that, as we do not require the irreducible components of
Z0 to be smooth, being semi-stable is an étale local notion.

Definition 7.2. Let Z be a Deligne-Mumford stack which is flat and
locally of finite type over S. We say that Z → S is semi-stable if
there exists an étale atlas E → Z such that the composition E → S is
semi-stable.

Lemma 7.3. The stack InX/C is semi-stable over C.

Proof. In Lemma 5.4, we produced for each GIT stable point P ∈ H
a slice WP which, in particular, is semi-stable over C. Taking the
disjoint union of the WP ’s, as P varies over the points in H, we obtain
a semi-stable étale atlas E → InX/C . �

7.1.2. We will make use of some standard results from log geometry; a
short summary of the (easy) facts we need is given below. For proofs
and further details, the reader will find a detailed treatment in [GR15,
Chapter 9]. Our log structures are defined with respect to the étale
topology.

Let f : Z → S be a semi-stable morphism. We denote by S+ the
scheme S equipped with the divisorial log structure induced by {0} ⊂
S. Likewise, Z+ denotes the scheme Z equipped with the divisorial
log structure associated to Z0 ⊂ Z. Then f induces a morphism
f+ : Z+ → S+ of log schemes. To f+, one can define a sheaf of relative
log differentials, denoted Ω1

Z+/S+ . It is locally free, since f+ is log smooth
(as f is semi-stable).

Let g : Z ′ → Z be an étale morphism, and equip also Z ′ with the
log structure associated to Z ′0 ⊂ Z ′. Then g+ is log étale, and the
fundamental short exact sequence of log differentials reduces to an
isomorphism
(15) (g+)∗Ω1

Z+/S+ → Ω1
(Z′)+/S+ .

In particular, let Zsm ⊂ Z be the smooth locus of the morphism f .
Then Ω1

Z+/S+ restricts to Ω1
(Zsm)+/S+ , and it is straightforward to verify

that this sheaf coincides with Ω1
(Zsm)/S.
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Let E → InX/C be an étale map, with E a scheme. By Lemma 7.3
fE : E → C is then semi-stable, thus the sheaf Ω1

E+/C+ is locally free of
rank 2n, the relative dimension of E over C. Now let Ei → InX/C , i = 1, 2
be two étale maps, and g : E1 → E2 a morphism commuting with the
respective maps to InX/C . Then g induces a morphism g+ : E+

1 → E+
2

of log schemes such that f+
E1 = f+

E2 ◦ g
+ and, by (15), an isomorphism

(g+)∗Ω1
E+

2 /C
+ → Ω1

E+
1 /C

+ .

One also checks that the cocycle condition [Vis89] holds for triples of
such étale open sets. In conclusion, the data

{E → InX/C ,Ω1
E+/C+}

forms a locally free sheaf, denoted Ω1
(In
X/C

)+/C+ , on (InX/C)et.

7.2. Symplectic structure of InX/C → C. We now make the addi-
tional assumption that KX/C is trivial. Let us also remark that, as
X → C is semi-stable we can identify KX/C with the sheaf of relative
logarithmic 2-forms Ω2

X+/C+ . Let us fix a nowhere vanishing section ω of
KX/C ; by a slight abuse of notation, we denote also by ω the restriction
of this form to Xsm. The same argument as in [Bea83, 6], adapted
to the relative setting Xsm → C, shows that ω induces a 2-form θ in
Ω2

Hilbn(Xsm/C)/C such that θn is nowhere vanishing.
Now we consider Hilbn(Xsm/C) as an open representable substack

of InX/C . For any étale E → InX/C with E a scheme, we let
E◦ → Hilbn(Xsm/C)

denote the restriction to Hilbn(Xsm/C). Then E◦ is open in E, with
complement E \ E◦ of codimension 2.

Lemma 7.4. Let θE◦ denote the pullback of θ to E◦. Then θE◦ extends
uniquely to a form θE in Ω2

E+/C+, and θnE is nowhere vanishing.

Proof. Let {Eα → E}α be an étale cover over which Ω2
E+/C+ trivializes.

Since each Eα is regular, the pullback of the rational section θE◦ extends
uniquely to a global section θEα of Ω2

E+
α /C+ . It is straightforward to

check that the elements θEα glue to a section θE on E, and that θnE is
nowhere vanishing. �

Proposition 7.5. The stack InX/C is proper and semi-stable over C. It
is moreover symplectic, in the sense that it carries a nowhere degenerate
logarithmic 2-form.

Proof. The sections θE produced in the above lemma are easily seen
to be compatible when E → InX/C runs over the étale open subsets of
InX/C , and thus define a global section of Ω2

(In
X/C

)+/C+ . �
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8. Comparison to Nagai’s work

8.1. The comparison. In this section we compare our construction
to Nagai’s original degeneration [Nag08]. We start with a strict simple
degeneration of surfaces

f : X → C.

Nagai’s work in [Nag08] is concerned with degree 2 Hilbert schemes.
He constructed a strict simple degeneration of fourfolds as a resolution
of the relative Hilbert scheme Hilb2(X/C). His work does not use that
the dual graph has a bipartite orientation, but as we want to compare
it with the GIT construction we now assume that Γ(X0) has a bipratite
orientation.

For simplicity, we denote Nagai’s family by
H2
X/C −→ C.

On the other hand, we also have the family
I2
X/C −→ C,

constructed via expanded degenerations. Obviously, over any closed
point t ∈ C\{0}, the fibres of I2

X/C and H2
X/C are both the Hilbert

scheme Hilb2(f−1(t)), hence the total spaces of both families are bira-
tional.

The two families I2
X/C and H2

X/C can be related by explicit birational
maps and the situation can be summarized in the following diagram
(16)
Bl∆(X[2]×C[2] X[2])ss/G[2]

��

Z2 // Hilb2(X[2]/C[2])ss/G[2]

��

I2
X/C

(X[2]×C[2] X[2])ss/G[2]

β

��

Z2 // Sym2(X[2]/C[2])ss/G[2]

��

X ×C X
Z2 // Sym2(X/C)

Bl∆(X ×C X)

OO

Z2 // Hilb2(X/C)

OO

H2
X/C .

oo

We will explain the diagram in the following discussion.

8.2. The lower square. The lower two rows of (16) reflect how the
family H2

X/C in [Nag08] is constructed. The relative Hilbert scheme
Hilb2(X/C) is constructed as the Z2-quotient of the blowup of X ×C X
along the diagonal ∆. Nagai observed that the total space has A1-
singularities. He resolved these singularities by blowing up Hilb2(X/C)
along some carefully chosen irreducible components of the central fibre.
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He also proved that the space H2
X/C obtained in this way is a semistable

degeneration.

Remark 8.1. We remark that a related construction can be found in
[CK99], in the context of the symmetric square of family of smooth
curves degenerating to a nodal curve.

8.3. The upper square. The upper two rows of (16) reflect how the
family I2

X/C in [GHH19] is constructed. This construction is based on
the expanded degeneration

f [2] : X[2]→ C[2].
On this family one can perform a similar construction of the relative
Hilbert scheme as follows

Bl∆(X[2]×C[2] X[2])ss

��

Z2 // Hilb2(X[2]/C[2])ss

��

(X[2]×C[2] X[2])ss Z2 // Sym2(X[2]/C[2])ss.

Here we only take semi-stable pairs of points (or closed subschemes of
length 2) into consideration. In particular, they must be supported
on the smooth locus of f [2] by [GHH19, Theorem 2.10]. Therefore the
product (X[2]×C[2] X[2])ss and its diagonal are both smooth, as well
as the blowup Bl∆(X[2] ×C[2] X[2])ss. It is also easy to see that the
G[2]-action commutes with the Z2-action. By taking the G[2]-quotient
we get the upper square of diagram (16).

8.4. The middle square. The middle square, in particular the map
β, is the key that links the two constructions. The existence of such a
map follows easily from the construction of the expanded degeneration.
Indeed, the commutative diagram
(17) X[2]

��

// X

��
C[2] // C

defines a morphism
(18) α : (X[2]×C[2] X[2])ss → X ×C X.
Also notice that the diagram (17) respects the G[2]-action on the left
column. Therefore α descends to a morphism

β : (X[2]×C[2] X[2])ss/G[2]→ X ×C X.
In the next result we will show that β is a resolution of singularities,
obtained by blowing up (a disjoint union of) Weil divisors in X ×C X.
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Proposition 8.2. The morphism
β : (X[2]×C[2] X[2])ss/G[2] −→ X ×C X

is a small resolution of singularities given by blowups along Weil divisors.

Proof. To prove the statement, we will construct a blowup BlT (X×CX)
and show that there is an isomorphism
(19) g : (X[2]×C[2] X[2])ss/G[2]→ BlT (X ×C X).
The proof will be given in several steps.

Step 1. We first construct BlT (X ×C X).
We denote the irreducible components of X0 by Yi for i ∈ V , where

V is the vertex set of Γ(X0). Then it is clear that the irreducible
components of the central fibre of X ×C X are given by

Yij = Yi × Yj,
for any i, j ∈ V , each of which is a Weil divisor in the total space
X ×C X. Since we assume that Γ(X0) has a bipartite orientation, we
write V0 for the set of vertices with no incoming arrows. We write

T =
⋃

i,j∈V0

Yij.

Because of the bipartite orientation, T is a disjoint union of irreducible
Weil divisors. Following the idea in [Nag08, Theorem 4.3], we write the
blowup of X ×C X along T by
(20) π : BlT (X ×C X)→ X ×C X.

Take any point (p, q) ∈ X ×C X. If either p ∈ Xsm
0 or q ∈ Xsm

0 , it
is clear that in a neighborhood of (p, q), the total space X ×C X is
smooth, and the central fibre is locally an snc divisor. Therefore the
blowup π is an isomorphism in such a neighborhood.

Now we assume p and q are both in the singular locus of X0. Then
an open neighborhood of (p, q), say U ⊂ X ×C X, is parameterized by
local coordinates

(x+, y+, z+, x−, y−, z−)
subject to the relation

x+y+ = t = x−y−.

Without loss of generality, we may assume that x+ = 0 and x− = 0 cut
out the irreducible components of X0 labelled by vertices in V0 in the
neighborhoods of p and q respectively. Then the open neighborhood
π−1(U) ⊂ BlT (X ×C X) is obtained by blowing up the ideal (x+, x−),
hence is given by local coordinates
(21) (x+, y+, z+, x−, y−, z−, [u : v])
subject to the relation

[u : v] = [x+ : x−] = [y− : y+].
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It is clear from the construction that the total space BlT (X ×C X) is
smooth, and π is a small resolution.

Step 2. We claim that the morphism α can be lifted to a morphism
h making the following diagram commutative

(22) (X[2]×C[2] X[2])ss

α ))

h // BlT (X ×C X)
π

��
X ×C X.

The only potential issue for the existence of the lifting is the ex-
ceptional locus of π. For this purpose, we need to write down local
coordinates near a point (p′, q′) ∈ (X[2] ×C[2] X[2])ss with α(p′, q′) ∈
Xsing

0 ×Xsing
0 . By [Wu07, Section 4.2] or [GHH19, Proposition 1.7], a

relevant open neighborhood in X[2] is parametrized by coordinates
(x, y, z, t1, t2, t3, [u1 : v1], [u2 : v2])

with relations
[u1 : v1] = [t1 : x] = [y : t2t3],
[u2 : v2] = [t1t2 : x] = [y : t3].

We write r = [v1 : u1] ∈ P1 and s = [u2 : v2] ∈ P1. Then a point in the
same neighborhood of X[2] is given by coordinates

(t1, t2, t3, r, s, z)
with the only relation rs = t2. Therefore a point in (X[2]×C[2] X[2])ss
is given by coordinates

(t1, t2, t3, r+, s+, z+, r−, s−, z−)
subject to the relations

r+s+ = t2 = r−s−.

Using the above coordinates, we define the morphism locally by
h : (X[2]×C[2] X[2])ss → BlT (X ×C X)(23)

(t1, t2, t3, r+, s+, z+, r−, s−, z−) 7→ (x+, y+, z+, x−, y−, z−, [u : v])
by requiring

x± = r±t1;
y± = s±t3;(24)

[u : v] = [r+ : r−] = [s− : s+].
It is easy to see that the relations are preserved, hence the morphism is
well-defined.
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Step 3. We show that h descends to a morphism g making the
following diagram commutative

(X[2]×C[2] X[2])ss h //

G[2] **

BlT (X ×C X)

(X[2]×C[2] X[2])ss/G[2].

g

OO

For this purpose we need to check that h is G[2]-invariant, which only
needs to be cheked on the open neighborhood described above. Take
any element σ = (σ1, σ2, σ3) ∈ G[2] (with σ1σ2σ3 = 1). Its action on a
point

(t1, t2, t3, r+, s+, z+, r−, s−, z−)
is given by

(σ1t1, σ2t2, σ3t3, σ
−1
1 r+, σ

−1
3 s+, z+, σ

−1
1 r−, σ

−1
3 s−, z−).

By the relations (24), it is easy to observe that
h(σ1t1, σ2t2, σ3t3, σ

−1
1 r+, σ

−1
3 s+, z+, σ

−1
1 r−, σ

−1
3 s−, z−)

= h(t1, t2, t3, r+, s+, z+, r−, s−, z−).
Therefore h is G[2]-invariant hence g is well-defined.

We also recall that (X[2]×C[2]X[2])ss is smooth because semi-stability
requires the pair of two points to have smooth support. Furthermore,
since the two points are ordered, the G[2]-action is free, hence (X[2]×C[2]
X[2])ss/G[2] is also smooth. Therefore, g is a morphism between smooth
varieties.

Step 4. Finally we need to show that g is an isomorphism. By the
G[2]-equivariance of both h and α in diagram (22), we get a commutative
diagram

(X[2]×C[2] X[2])ss/G[2]

β **

g // BlT (X ×C X)
π

��
X ×C X.

It is clear from the construction in Step 1 that the restriction of the
morphism π is an isomorphism over the open subset

W = (X ×C X)\(Xsing
0 ×Xsing

0 ).
By the description of the expanded degeneration in [GHH19, Section
1.3], it is also easy to see that the restriction of β over the same open
subset W ⊂ X ×C X is an isomorphism. Therefore the restriction

g|β−1(W ) : β−1(W )→ π−1(W )
is an isomorphism.

To show that the entire g is an isomorphism, we only need to construct
a morphism g−1 in an open neighborhood of the exceptional locus
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BlT (X ×C X)\π−1(W ). Without loss of generality, we only consider
the affine chart given by v = 1 in the neighborhood parameterized by
coordinates (21). By (23) we obtain

h−1(x+, y+, z+, x−, y−, z−, [u : 1])

=
{(

x−
λ
, uλµ,

y+

µ
, uλ, µ, z+, λ, uµ, z−

)∣∣∣∣∣λ, µ ∈ Gm

}
.

This shows that h is a trivial G[2]-fibration over this affine chart.
Therefore g−1 is an isomorphism on this affine chart after passing to
the G[2]-quotient. This concludes the proof that g is an isomorphism.

Step 5. To summarize, we have exhibited the morphism β as the
composition of g and π in (19) and (20). We proved in Step 1 that π
is a small resolution of singularities by blowups along Weil divisors in
T . We also constructed g in Steps 2 and 3, and proved that g is an
isomorphism in Step 4. This finishes the proof of the proposition. �

From the proof of the above proposition, it is easy to see that β is
Z2-equivariant. Therefore we have justified the middle square of the
diagram (16).

8.5. Degenerations via symmetric products. Recently, Nagai has
independently obtained similar results in [Nag18], [Nag17]. Indeed,
in [Nag18], Nagai studied the symmetric product of a strict simple
degeneration. Based on this and using methods from toric geometry, he
constructed a relative minimal model Y (n) for the degeneration family
of Hilbert schemes. In [Nag18, Section 4.9], he compared the minimal
model Y (2) with the family H2

X/C (which is denoted by H(2) in his
papers) and concluded that they differ by a flop. Then, in [Nag17], he
compared Y (n) and the family InX/C that we constructed using GIT in
[GHH19] and concluded that they are isomorphic. The fact that H2

X/C

and I2
X/C differ by a flop follows from the above two results.

We point out that both approaches have their own advantages. Na-
gai’s approach gives a toric interpretation of a local model of InX/C for all
n. In the meanwhile, our argument in this section reveals the relation
between H2

X/C and I2
X/C from a more global perspective.
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