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Abstract 

The current fourth industrial revolution significantly impacts on production processes. The personalized production paradigm 

which distinguishes Industry 4.0 enables customers to order unique products, defined by the specific features selected. The 

operators involved in the manual assembly of such workpieces have to process an enormous component variety adapting their 

tasks from product to product with limited learning opportunities. On the other hand, digital technologies significantly evolved in 

the last decade and their adoption in industrial shop floors in increasingly wider. In particular, camera-based marker-less motion 

capture achieved a large popularity since it represents a cheap, reliable and non-invasive solution to track, trace and digitalize 

human movements in different environments. Considering the presented framework, this research proposes an original 

hardware/software architecture to assist in real-time operators involved in manual assembly processes during the training phase 

to support their learning process, both in terms of rate and quality. A marker-less depth camera captures human motions in 

relation with the workstation environment whereas a augmented reality application based on visual feedback guides the operator 

through consecutive assembly tasks during the training phase. An experimental campaign is performed at the Learning factory of 

the Digital production university laboratory to validate the proposed architecture compared to traditional paper-based instructions 

provided for trainings. A real industrial case study is adopted to test and quantitatively evaluate the benefits of the developed 

technology compared to traditional approach in terms learning rate. 
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1. Introduction and literature review 

Today Industry 4.0 era is distinguished by shortened product life-cycles with a huge number of variants defined 

by the specific customer needs [1,2]. This results in very limited learning opportunity for human operator involved in 

assembly processes of such products [3]. These workers are typically involved in training periods of even shorter 

duration to became familiar with the novel product variants to assembly [4,5]. Augmented Reality (AR) techniques 

can be of help to reach this goal. AR deals with the enrichment of the real world by virtual overlays and its main 

ability is to show virtual object and/or instructions directly in the operator field of view [6,7]. However, the most 

relevant disadvantage is represented by the fact that no feedback is provided to the operator concerning the 

correctness of the performed action. This disadvantage represents a severe drawback of such solutions which make 

them not adequate to get a complete feedback loop for aided assembly both during learning and processing phases of 

industrial manufacturing processes [8,9]. To overcome this limitation recent literature contributions are moving 

toward the development of motion capture (MOCAP) devices to accurately evaluate the operator interaction with the 

surrounding environment. Aim of MOCAP is the accurate digitalization of the movements performed by humans 

monitoring the evolution over time of the position and orientation of the different limbs in a common reference 

system with the opportunity to provide him a real time feedback [10-12]. During the last few years, several 

researchers started to conduct pilot studies to implement AR techniques in production lines to improve 

manufacturing and assembly processes [13-15]. 

Starting from this scenario, this paper proposes an original hardware/software architecture (HW/SW) to assist and 

guide in real-time human operators involved in manual assembly processes. A markerless depth camera conceived 

for MOCAP purpose tracks human motions in the workstation environment. This MOCAP technology is configured 

to focus on the upper body of the operator and on his hands in particular. To get a remarkable accuracy of upper 

limbs tracking the monitored area is limited to a workbench equipped with bins for component storage. An AR 

solution assists in real-time the human operator during the performance of consecutive assembly tasks. In particular 

virtual control volumes are displaced on the workbench, around the component bins in particular, and they are 

superimposed on a monitor along with the RGB video to be shown to the operator. A visual feedback indicates 

whether the worker performed an incorrect picking action interacting with a misleading bin. 

Concerning the learning process of manual tasks, the first definition of the learning curve is from the ‘30s for 

aircraft manufacturer observation that the hours needed to assemble airplanes decrease the more planes are 

assembled [16]. Indeed, the rate at which learning take place is not random and it is possible to accurately forecast 

that. Thus, a learning curve can be evaluated considering the percentage decrement of the average assembly time per 

unit each time the cumulative output doubles. Usually, learning curve starts with long assembly time that improves 

with experience, reducing the task duration after each assembly repetition or cycle. According to [17], t1 is the 

execution time of the assembly process at the first cycle, whereas tn is the execution time at nth cycle. The learning 

curve can be expressed as Eq. 1:   𝑡𝑛 = 𝑡1 ∙ 𝑛
−𝑏                      (1) 

The exaction or cycle time of Eq. 1 decreases by a constant percentage  every time the quantity produced doubles.  

is traditionally defined as learning slope or rate, with 0 ≤  ≤ 1 [18]. Thus, another prevalent form of Eq. 1 is this Eq. 

2:   𝑡𝑛 = 𝑡1 ∙ 𝜙
𝑙𝑜𝑔2(𝑛)                                   (2) 

Both b and  are related to the steepness of the learning curve and the slope relationship between b and  is 

represented by this Eq. 3 [19]:    𝑏 = −𝑙𝑜𝑔2(𝜙)                                              (3) 

Furthermore, the standard time of any task is named t∞ and it is defined as the task duration once the learning process 

is finished, e.g. after infinite task execution. According to [20] t1 can be estimated with a good accuracy as function 

of t∞ and  by Eq. 4:    𝑡1 = 𝑡∞ ∙ (53.7 − 57.1 ∙ 𝜙)                      (4) 

Thus, for  = 90% the first cycle time (t1) is about 2.5 times longer than its standard time (t∞). Accordingly, 

manufacturing companies shall prefer high learning rate to limit the long assembly duration during the intial 

production cycles of inexperienced workers during the training phase. The grater the learning rate , the lower the 

number of assembly cycles needed to achieve the standard time is. 

The aim of this paper is twofold. The first goal is to demonstrate the applicability of the proposed AR solution, 

able to assists in real-time the human operator during the performance of consecutive assembly tasks to reduce the 

learning time of inexperienced workers. The second aim is to analyse how, the learning rate  is influenced by the 

adopted training method represented by the technology used to give information to operators. Traditional paper 

information system is compared to the original AR solution developed. An experimental campaign based on a real 
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industrial application is developed to test and compare both these approaches. 

The reminder of this paper is organized as it follows. The next Section 2 describes the proposed HW/SW 

architecture for human operator real-time tracking which results in an original AR app developed for assistance and 

visual feedback during the learning process of manual assembly tasks presented in Section 3. An experimental 

campaign is carried out to investigate the performances of the developed technology in comparison with traditional 

approaches to learn novel assembly processes and it is summarized in Section 4. The benefit to adopt such HW/SW 

architecture in comparison to traditional paper based information system is quantitatively assessed and discussed in 

detail in Section 5 thanks to the learning curves obtained by the experimental campaign outcomes. Finally, Section 6 

concludes the paper with final remarks and future research opportunities. 

 

2. Hardware and software architecture 

This Section presents the technology adopted and the digital procedure developed to provide a unique hardware 

and software (HW/SW) architecture able to assist in real-time the operators performing assembly activities with 

multiple possible variations of the executed tasks. Therefore, this architecture is conceived to be adopted to aid 

workers during their training phase required to learn a novel mounting sequence of a certain product or a specific 

variant. Concerning the hardware architecture, the markerless depth camera technology is adopted as a flexible and 

non-invasive solution to monitor and track the operator movements in a 3D environment. The time-of-flight 

technology is selected leveraging a pair of RGB color and infrared depth sensors. Furthermore, the camera firmware 

has been customized to maximize the motion capture accuracy in an industrial environment affected by flashing 

lights and metallic materials. The markerless technology does not require the worker to wear any cumbersome suit. 

Finally, the wide and deep camera field of view makes this motion capture solution adaptable to several workplace 

layouts overcoming possible tracking occlusions (Fig. 1). 

Fig. 1. Camera disposition for station layout, front (left) and top views (right side). 

The proper artificial neural network encoded in the camera SDK evaluates at 30 Hz the absolute geometric 3D 

coordinates (x,y,z) of each of the 20 human body joints detected by the camera. The real-time location of the 

operator limbs is a valuable information if properly leveraged, in particular referring these measures to the 

workstation layout. The Control Volumes (CVs) concept is proposed for this purpose. A CV is a virtual object of any 

geometrical shape with defined dimensions and known 3D position within the monitored area. The CVs can be 

displaced on any relevant location of the productive environment, as on workbenches, inside boxes or around bins 

ensuring a remarkable flexibility. Checking if the 3D position of the operator body joints enters/exits to/from a 

particular CV enables to evaluate in real-time the interaction between the worker and his productive environment 

(Fig. 2). Finally, a visual feedback is provided to the worker through a monitor representing a powerful AR solution 

superimposing on the RGB live video the mannequin of the operator digitalization and its interaction with the virtual 

CVs displaced around physical objects validating right activities and highlighting wrong actions (see Section 5). 

Fig. 2. Interaction between the operator hands and the CVs displaced on the workbench (left) and workstation shelves (right). 
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3. Aided assembly app 

The proposed HW/SW architecture is leveraged to develop an original digital application to aid the worker during 

manual assembly both for training and for process assistance purposes. The proposed app relies on three consecutive 

phases as it follows: 

1. CVs positioning. The virtual CVs are displaced within the productive environment leveraging the motion 

capture of a human trainer which indicates the CV locations through proper gestures previously encoded in 

the app. This feature represents one the greatest strength of the developed app. The remarkable adaptability, 

scalability and absence of any physical infrastructure enable to displace the CVs wherever is needed. 

2. Expert system. A skilled human operator executes the sequence of tasks required by the product variety to be 

assembled performing consecutive and ordered accesses with his hands to a subset of CVs. The app acts as an 

expert system which benefits from this execution storing the ordered access sequence to CVs and associating 

this to the considered product variety. 

3. Real-time assistance. Automatic identification of the next CV to access considering the product variety and 

the assembly tasks progression. Visual feedback to the operator through a monitor about the correctness of 

the executed action. In particular, a AR solution is conceived to guide the worker through the sequential 

assembly tasks highlighting on a screen the next virtual CV to visit overlaid to the physical bin containing the 

right component to pick. The correct picking is validated through a positive visual feedback proposing 

through the monitor the next CV to access. Incorrect picking actions are detected immediately and 

highlighted by a distinctive visual message preventing errors in the component mounting (Fig. 3). 

Fig. 3. Positive (left) and negative (right) visual feedback to the human operator. 

 

4. Experimental campaign 

An experimental campaign is performed at the Digital Production University Laboratory to test and compare the 

developed augmented reality architecture (ARA) for operator assistance with traditional paper-based instructions 

(PBI) used by operators during the training period to learn a novel manual assembly sequence. The other elements 

which distinguish the performed tests are listed in the followings: 

• Assembly station with U-shaped layout, final product (telephone) made of 8 different components, each 

stored in a bin, namely 2 on the left, 3 in front and 3 on the right of the operator (Fig. 4). 

• Assembly cycle performed by 12 different inexperienced operators, both female and male with varius 

anthropometric parameters (o=1,…,12): 

o The former NPBI =6 of these (o=1,…,6) use paper-based instructions to get the required information 

and mounting sequence to perform the ordered assembly tasks of the cycle. 

o The latter NARA=6 of these(o=7,..,12)use the developed AR HW/SW architecture for same purpose. 

• Each operator o performs the assembly cycle 15 times (n=1,…,15). For each of these the total assembly 

duration is timed (tn,o). The number of assembly cycle repetition (n) is defined according Eqs. (1-4) to reach 

t∞ at assembly iteration end. 

• For each assembly cycle n the assembly duration is calculated as the average between the different 

operators involved, both for PBI and ARA (Eqs. 5 and 6 respectively). 

𝑡𝑛
𝑃𝐵𝐼 = ∑ (𝑡𝑛,𝑜

6
𝑜=1 /𝑁𝑃𝐵𝐼)    (5);   𝑡𝑛

𝐴𝑅𝐴 = ∑ (𝑡𝑛,𝑜
12
𝑜=7 /𝑁𝐴𝑅𝐴)    (6) 

OK NO
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Fig. 4. Assembly station layout (left) and final product to assembly (right). 

 

5. Results and discussions 

This Section illustrates and discusses the experimental campaign results obtained adopting both PBI and ARA for 

operator assistance during the training phase. As shown in Fig. 5 (right), the duration of the first assembly cycle 

(n=1) is very different comparing the two aiding solutions, e.g. PBI and ARA. Indeed, the adoption of the developed 

AR HW/SW architecture enables to decrease the first assembly cycle duration time of about 50%, compared to PBI 

(486s for PBI, 233s for ARA). Moreover, the trends of assembly cycle duration over the iterations (Fig. 5, left) 

suggests different learning rates  for PBI and for ARA aided solution, e.g. 𝜙𝐴𝑅𝐴=0.772 and 𝜙𝑃𝐵𝐼=0.634. This 

relevant outcome suggests that to achieve the same t∞ (around 85 sec.) after about 15 assembly cycles, the learning 

process provided by PBI is much slower than the one fostered by ARA. 

A further relevant outcome to highlight deals with the 2 types of learning [20], namely “cognitive” and “motor” 

learning. Both types follow the traditional learning curves presented in Eqs. 1-3, but with different values for b and 

. Cognitive learning includes decision making, following instructions, searching for cues, etc. This learning process 

tends to be very fast, i.e. high value for b and low value for . On the other hand, motor learning is more mechanical 

since it includes all the physical movements needed to accomplish the task. It is a far slower learning, with low value 

of b and high value for . At the first stages of a new learning process, the cognitive component is usually prevalent. 

As the assembly cycle iterations (n) increase, the cognitive processes begin to have a lower impact and the motor 

processes start to dominate the learning curve, until eventually only motor learning operates. According to the results 

presented in Fig. 5, it is possible to state that, the usage of the developed AR HW/SW architecture during the 

operator training phase, let the learning process to switch from cognitive to motor first, compared to traditional PBI. 

This relevant outcome results in a skip of the first stage of the learning process, with a very positive impact on the 

duration of the first assembly cycles, e.g. for n=2,…,5 𝑡𝑛
𝐴𝑅𝐴 is lower from 15% to 20% than the corresponding 𝑡𝑛

𝑃𝐵𝐼 . 

 

   

Fig. 5. Experimental campaign results: pattern (left) and values (right) of 𝑡𝑛
𝑃𝐵𝐼and 𝑡𝑛

𝐴𝑅𝐴
 for n=1,…,15 along 

with  and b value for both PBI and ARA as operator assistance. 

n    𝒕𝒏
𝑷𝑩𝑰 𝒕𝒏

𝑨𝑹𝑨 

1 486 233 

2 182 150 
3 157 128 

4 151 124 

5 134 115 

6 124 118 

7 108 113 
8 97 103 

9 99 96 

10 96 91 

11 83 98 

12 90 94 
13 87 83 

14 77 89 

15 80 84    

 0.634 0.772 

b 0.678 0.381 
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6. Conclusions 

This research proposes an original hardware/software architecture to assist in real-time operators involved in 

manual assembly processes during the training phase to support their learning process. A marker-less depth camera 

captures human motions in relation with the workstation environment whereas a augmented reality application based 

on visual feedback guides the operator through consecutive assembly tasks during the training phase. An 

experimental campaign is performed with an industrial case study to validate the proposed architecture compared to 

traditional paper-based instructions provided for trainings in terms learning rate. The obtained outcomes suggest that 

the duration of the first assembly cycle is much lower with ARA than with PBI assistance (-51%). Moreover, the 

trends of assembly cycle duration over the iterations suggests a learning rate remarkable improvement (+22%) using 

ARA instead of PBI aided solution.  

Future research should focus on the improvement and further development of the AR HW/SW architecture 

considering the promising results of the presented experimental campaign. An audio feedback should be provided as 

alert to the operator just in case of error, to enable the operator to focus more on the assembly tasks. Of major 

interest is the adoption of the proposed technology for mixed-model assembly processes. ARA learning rate could 

probably be even more convenient compared to PBI for this production configuration. 
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