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3D Local descriptors - from hand-crafted to
learned

Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano and Federico Tombari

Abstract Surface matching is a fundamental task in 3D Computer Vision, typically

tackled by describing and matching local features computed from the 3D surface.

As a result, description of local features lays the foundations for a variety of ap-

plications processing 3D data, such as 3D object recognition, 3D registration and

reconstruction, and SLAM. A variety of algorithms for 3D feature description exists

in the scientific literature. The majority of them are based on different, hand-crafted

ways to encode and exploit the geometric properties of a given surface. Recently,

the success of deep neural networks for processing images has fueled also a data-

driven approach to learn descriptive features from 3D data. This chapter provides a

comprehensive review of the main proposals in the field.

1 Introduction

Nowadays surface matching is solved by establishing point-to-point correspon-

dences obtained by matching local 3D descriptors [72, 13, 43]. Local 3D descriptors

are also referred to as local features and the paradigm, illustrated in Figure 1, is re-

ferred to as feature-based matching . Examples of 3D computer vision tasks that

leverage local 3D descriptors are:
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• 3D Object Detection: identification within a scene of an object from a library of

models and estimation of its 6D pose.

• 3D Object Reconstruction: recreate the shape and appearance of objects by

registering a set of partial views.

• 3D Object Retrieval: retrieving three dimensional models in large databases

given a similar object as query or given a textual description of the object.

• SLAM (Simultaneous Localization and Mapping): building the map of an un-

known environment while simultaneously localizing the sensor therein.

Descriptors or features are a compact but rich representation of the underlying

3D data designed to be either invariant or robust to a large set of nuisances, like

rotation, point density variations, sensor noise, view point changes, occlusions and

clutter.

Depending on the area involved, we can classify descriptors as either global or

local . Global methods encode the entire 3D model in the descriptor [49, 1, 39] and

are usually applied after a segmentation step to limit the influence of clutter. Local

descriptors, instead, encode a small part of the surface, small with respect to the

overall scene or object being matched (i.e.a neighborhood around a keypoint). The

main advantage of using local descriptors versus global ones is higher robustness to

partial occlusions of the surface and to the presence of clutter. For this reason, the

latter are currently the dominant approach. In this chapter we will focus uniquely on

local descriptors, illustrating the main proposals in the literature and the way they

have evolved from mostly hand-crafted proposals to those based on deep learning.

According to [19], two key aspects for a 3D local descriptor are descriptiveness

and robustness : descriptiveness refers to the capacity to capture predominant traits

of the surface; robustness is the ability to be not sensitive (i.e.to obtain a similar

descriptor) in the presence of disturbances that can affect the data. Choosing the

descriptor offering the right descriptiveness/robustness trade-off for a specific 3D

computer vision application is a crucial step and still an open issue: usually a few

prominent alternatives are tested and the best performing one is used.

Fig. 1 Feature-based matching paradigm. Green lines correspond to good correspondences, while

red lines correspond to mismatches.
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A typical feature-matching pipeline consists of:

• feature-detection: the goal is to identify points of a surface particularly promi-

nent with respect to a given saliency function computed on a local neighborhood

of each point. These points are called keypoints .

• feature-description: as discussed, a descriptor is a compact representation of

geometric properties of a point. Descriptors usually are designed to encode es-

sential characteristic of points and to be invariant to nuisances like variations of

point density and viewpoint. To speed up the overall feature matching process,

typically just the keypoints of an object are described.

• feature-matching: the last phase of the pipeline yields correspondences between

two or more surfaces by finding the most similar descriptors among the sets of

descriptors computed at the keypoints of the surfaces. Several metrics can be

used to compare descriptors, the most popular being the Euclidean distance in

the descriptors space.

2 Background

Before we go into this chapter, let us provide some background definitions for a

better understanding of the related works. We will start talking about the data struc-

tures most commonly used to represent 3D data, then we will introduce the basic

concepts related to the computation of local features, and finally conclude with some

definitions about the most widespread noise sources that can be observed in 3D data.

• Point cloud: A point cloud is a set of points, that describes the shape of 3D

object, characterized by their position in a coordinate system expressed with eu-

clidean coordinates. In addition to the single coordinates, it is also possible to

store information about the color of the points, triple RGB, and their intensity

(alpha channel). Cloud points are unorganized data structures, i.e. simple data

collections, whose closeness in the data structure does not imply closeness in

the observed space. The main limitation of this data structure is the high cost of

searching for neighbours for a point in the 3D coordinate space.

• Polygon Mesh: A polygon mesh is a collection of vertices, edges and faces that

defines the shape of 3D object. The faces usually consist of triangles, quadrilater-

als, or other simple convex polygons. Unlike cloud points, meshes are organized

data structures.

• Feature point: A feature point, denoted by p, is a point belonging to a 3D shape

M, for which the descriptor is being computed. Typically feature points coincide

with keypoints.

• Support: A support of a feature point p, is the set of neighboring points lying

within a spherical ball of radius r > 0 centered at p, denoted by Br(p) = {s ∈
M : ‖p − s‖2 < r}. Alternatively, the support can be made up of a fixed num-

ber of neighbours. Usually to the search for nearby points, a space-partitioning

data structure for organizing points in a k-dimensional space like k-trees [3] is
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utilized. The support of the feature point is used the compute the associated de-

scriptor.

• Local Reference Frame: A Local Reference Frame (LRF) is a local system of

Cartesian coordinates at each point, with respect to which the local geometric

structure around that point is encoded. An LRF L(p) at point p ∈ M is an

orthogonal set of unit vectors:

L(p) = {x̂(p), ŷ(p), ẑ(p)} (1)

Invariance with respect to the object’s pose is a fundamental trait of every 3D

descriptor: state-of-the-art proposals achieve invariance using either a Reference

Axis or a Local Reference Frame (LRF), which co-variate with the object pose.

Before descriptor computation, the support of the feature point is translated and

oriented according to the Local Reference Frame or Reference Axis, effectively

removing the pose change and making subsequent computations on geometric

entities of the support pose invariant. As clear from this description and proven

experimentally in [42], the repeatability of the reference system is key for the

performance of the descriptor.

• Clutter and cluttered scene: The concept of clutter is relate to Object Detection.

In this context we want to recognize a certain number of well-known objects

within a scene. A clutter object is a distracting object that is not part of the set

of known objects but can be present in the scene. Similarly, a scene containing a

clutter object is defined as a cluttered-scene.

• Missing part: Once scanned, objects may present missing parts due to the sen-

sor’s limited field of view or the shadow generated by the presence of other ob-

jects in the scene.

3 Related works

This section reviews the main proposals for local 3D descriptors. In Figure 2 we

show a temporal evolution of the main proposals for 3D descriptors. A large body

of work has been dedicated to define new and more effective solutions to the sur-

face matching problem based on local 3D descriptors in the last 20 years: Point

Signature[10], Spin Images[28], 3D Shape Context[16], Local Surface Patch[9],

Point Feature Histograms[48], Scale-Dependent Local Shape Descriptor[38], Heat

Kernel Signature[58], Fast Point Feature Histograms[47], Intrinsic Shape Sig-

nature[73], MeshHog[71], 3D Surf [32], SHOT[51], Unique Shape Context[60],

Rops[20], Trisi[21], Toldi[68], 3D Match[72], CGF[29], PPF-Net[14] and PPF-

FoldNet[13].

Local 3D descriptors can be further categorized into two main categories: those

encoding hand-crafted traits of the support and those obtained as output of a (deep)

learning algorithm. In the latter case, typically a deep neural network is trained

purposely to infer the 3D descriptor given a portion or the entire surface as input.
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Fig. 2 Temporal evolution of 3D feature descriptors.

3.1 Handcrafted local 3D descriptors

A local 3D descriptor creates a compact representation of a 3D surface by collecting

geometric or topological measurements into histograms. According to [19], hand-

crafted local 3D descriptors can be grouped in spatial distribution histogram and

geometric attribute histogram. Spatial distribution histogram count the number of

points falling in each histogram bin taking into account the spatial distribution of the

points on the surface. Conversely, geometric attribute histogram generate histograms

exploiting geometric properties of the surface like normals or curvatures.

In the following we give an overview of methods belonging to both categories.

3.1.1 3D Shape Context

3D shape context (3DSC) directly extends the 2D shape context descriptor [2] to

three dimensions. It was introduced by Frome et al. at ECCV 2004 [16].

The descriptor captures the local shape of a point cloud at a feature point p using

the distribution of points in a spherical grid support. The normal n at p serves as

reference axis to align the north pole of the grid. Within the support region, a set of

bins is constructed by equally dividing the azimuth and elevation dimensions, while

the radial dimension is logarithmically spaced, as shown in Figure 3. Due to this

binning scheme the descriptor is more robust to distortions in shape with distance

from the feature point.

Each point pi in the support is mapped to its corresponding bin using spherical

coordinates, and the bin corresponding to them accumulates a weighted sum of local

point density. The local point density for pi is estimated as the number of the points

in a sphere of radius δ around pi. Relying only on a reference axis and not on a

full 3D reference frame, the descriptor is invariant up to a rotation along the north

pole. Therefore, multiple descriptors for a single feature point have to be described

and matched across different views of a surface, which significantly slows down the

performance of the overall pipeline. The size of the final descriptor is da × de ×
dr, where da, de and dr are respectively the numbers of bins along the azimuth,

elevation and radial axes, and the number of descriptors to be computed for a feature

point is equal to da.
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Fig. 3 Bins of 3D shape context. The grid is divided into several bins along the radial, azimuth

and elevation dimensions.

3.1.2 Unique Shape Context

Unique Shape Context (USC) improves 3DSC by leveraging a definition of repeat-

able and unambiguous Local Reference Frame as pointed out in Figure 4. It was

presented by Tombari et al. at the ACM workshop on 3D object retrieval in 2010.

One of the main drawbacks of 3DSC is the computation of multiple descriptors

at a given feature points. Indeed, to take into account the degree of freedom on

azimuth direction, a vector on the tangent plane at the normal n at the feature point

p is randomly chosen and the grid support is then rotated about its north pole in to da
positions. Each rotation defines a unique Local Reference Frame used to orientate

the sphere grid and to computed the associated descriptor. As a consequence, da
descriptors are estimated and stored for each feature point.

Differently from 3DSC, in USC the authors first estimate a Local Reference

Frame using the same approach presented in 4.1.1 and proposed in [60], then con-

struct the descriptor likewise 3DSC.

Fig. 4 USC unambiguous support. The spatial subdivision of 3DSC is aligned according to a Local

Reference Frame to obtain a unique descriptor for each feature point.
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Thanks to the adopted unique and repeatable Local Reference Frame, USC im-

proves efficiency in terms of both performance and memory footprint with respect

to 3DSC. The size of the final descriptor is the same as 3DSC.

3.1.3 Rotational Projection Statistics

Rotational Projection Statistics (RoPS) is a local 3D descriptor designed to operates

on meshes. It was published on International journal of computer vision by Guo

et al. [20] in 2013. The first contribution of RoPS is the definition of a novel Lo-

cal Reference Frame which rely on the eigenvalue decomposition of the covariance

matrix. Differently from pre-existing approaches, the covariance matrix for a given

feature point p is estimated by aggregating covariance matrices computed for every

single triangle within the support. Each single matrix is weighted differently to mit-

igate the effect of mesh resolution variations and enhance the robustness to clutter

and occlusion. The obtained x̂ and ẑ axes are disambiguated in order to achieve a

unique and repeatable canonical orientation. The third axis ŷ, is derived as ẑ× x̂.

As for the histogram computation, the whole process is illustrated in Figure 4 in

[20]. Given the x̂ axis the points within the support are rotated around it by a given

angle, and projected onto three planes xy, yz and xz. For each projection a distri-

bution matrix D is built by partitioning the plane into L × L bins and counting up

the number of points falling into each bin. The number of bins represents the ma-

trix dimension and is a parameter of the method. The distribution matrix D contains

information about the local surface from a particular viewpoint. Hence, five statis-

tics, including the central moments [12, 25] and Shannon entropy [54] are extracted

from each distribution matrix. Different rotations along the same axis are taking

into account to capture information from various viewpoints. The above mentioned

process is repeated again for the ŷ and ẑ axes. The final descriptor is obtained by

concatenating the statistics of all rotations. The size is 3× 3× 5× drot, where drot
is the number of rotations around each axis.

3.1.4 Point Feature Histogram

Point Feature Histogram (PFH) is designed to capture the surface variations based

on the relationships between points in the local neighborhood and directions of the

estimated normals. Hence, the performance is closely related to the quality of the

surface normal estimations at each point. It was introduced by Rusu et al. [48] at

IROS 2008.

As show in Figure 5, for every pair of points pi and pj , in the neighborhood of

p, a Darboux frame is built by choosing one point as source ps, and the other as

target pt:

u = ns,v = u×
pt − ps

‖pt − ps‖
,w = u× v (2)
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(a) (b)

Fig. 5 PFH overview. (a) The u, v and w vector of a Darboux frame computed for a pair of points.

Given two points pi and pj together with their normal ni and nj , one is chosen as source point,

ps, and the other as target point pt. (b) PFH computation for a feature point p shown in red.

All the points enclosed in the support region are interconnected in a dense mesh. The histogram

is built taking into account the angular features between all pairs of points, leading to O(k2)
computational complexity for a point with k neighbor points. Images from [41].

Next, using the frame defined above, three angular features, expressing the rela-

tionship between normals nt and ns, and between normals and the difference vector

between pt and ps are computed for each pair of points:

α = 〈v,nt〉, φ = 〈u,pt − ps〉/d, θ = arctan(〈w,nt〉, 〈u,nt〉), d = ||pt − ps| |
(3)

Also the length of the difference vector d can be used as feature, although it is

usually not considered as the distance between neighboring points increases with

the distance from the viewpoint with standard 3D sensors. The PFH descriptor is

obtained by binning each feature range with b bins and counting the occurrences for

each bin. The final dimension is b4, or b3 if distance d is ignored.

3.1.5 Fast Point Feature Histogram

The computation of features for each pair of points makes PFH computationally ex-

pensive and not suitable for real-time application. Therefore, Rusu et al. introduced

Fast Point Feature Histogram (FPFH) at IROS 2009 [47]. FPFH is a simplified

variant of PFH and operates in two steps. First a Simplified Point Feature Histogram

(SPFH) is constructed using three angular features α, φ and θ, for each points within

support of and its own neighbors. The computed features are then binned into three

separate histograms and concatenated to form the SPFH descriptor for each point.

Secondly the FPFH descriptor for p is obtained by summing up the SPFH descrip-

tors belonging to each point within the support. The sum is weighted by the distance

between the query point and a neighbor in the support region as shown in Figure

6. The FPFH descriptor can reduce the computational complexity from O(nk2) to

O(nk), where k is the number of neighboring points.
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Fig. 6 FPFH overview. For a given feature point pq , the algorithm first estimates its SPFH values

by creating pairs between itself and its neighbors (illustrated using red lines). Then the SPFH

values of pq are weighted using the SPFH values of its pk neighbors, thus creating the FPFH for

pq . The extra FPFH connections, resultant due to the additional weighting scheme, are shown with

black lines. The connections marked with thicker lines will contribute to the FPFH twice. Image

from [40].

3.2 Learned local 3D descriptor

The success of deep neural networks for processing images has motivated a data-

driven approach to learning features from point clouds. Adaptation of deep learning

to point cloud data is, however, far from straightforward. Indeed, the most effec-

tive deep neural networks deployed to process images, i.e. convolutional neural net-

works, are fed with input data arranged into a regular grid structure, but point clouds

are inherently unstructured: a point cloud is a set of point coordinates without any

obvious orderings between points.

3D deep learning approaches can be classified as:

• View based methods: a 3D object is represented as a collection of 2D views.

Standard 2D CNNs operate on each single view and the learned features are

merged together by a view pooling technique [57]. Moreover, these methods are

suitable for application where the input data is a range image [64].

• Voxel-based methods: early works were based on 3D voxels, regular 3D grids

of occupancy or density of points obtained from point clouds [36, 65, 72, 11, 56].

Although this representation is straightforward to obtain from point clouds, mem-

ory occupancy issues force the algorithm to operate with very small resolutions,

which in turn introduces artifacts and makes it difficult to learn fine details of

geometric structures. To address this limitation, some proposals rely on space

partitions methods like k-d trees or octrees [31, 59]. [44] combine view-based

and voxel approaches to address 3D shape classification.

• Point-based methods: these methods operate directly on unordered point sets.

The first pioneering work in this direction was PointNet [43], where a symmet-

ric function is applied to 3D coordinates to achieve invariance to permutation.

However, PointNet is not able to capture local information around points. Hence,
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the same authors introduced an improved multi-scale architecture, named Point-

Net++ [45], to exploit geometric features in a local points set.

• Geometric Deep Learning: these methods attempt to generalize deep learning

model to non-Euclidean domains such as graphs and manifold [8]. The first for-

mulation of neural networks on graphs was proposed in [52]. More recently, it

has been extended to operate on non-rigid shape analysis [5, 6]. Finally, [63]

proposes a graph convolutions network (GCN) directly on point sets by means

of edge convolution.

When dealing with feature learning, two loss functions are usually taken into

account to preserve in the feature space the proximity of neighboring patches in the

Euclidean space: the contrastive loss [22] and the triplet loss [24], which consider

pairs and triplets of patches, respectively. Usually triplet loss is more favourable

than contrastive loss because takes an anchor example and tries to bring positive

examples closer while also pushing away negative example. However, triplet loss

performance heavily depends on the selection of the anchor, negative, and positive

examples. Within this context we can think the anchor and the positive as the same

3D point captured from two different point of views, while the negative is from a

viewpoint far from both. A graphic example of the difference between contrastive

and triplet loss is show in Figure 4 in [14].

3.2.1 3DMatch

One of the first methods that learns a 3D local feature descriptor by means of deep

learning algorithms is 3DMatch [72]. It was introduced by Zeng et al. at CVPR

2017.

Early work [36, 44] in this field constructed voxel grid in the form of a binary-

occupancy grid to represent sparse unstructured 3D data. 3DMatch extends this idea

to more informative encoding based on the Truncated Signed Distance Function

(TSDF) [62, 37].

In 3DMatch a standard Siamese 3D ConvNet is trained with a contrastive loss

function [22] that minimizes the l2 distance between descriptors generated from

matching points, and maximizes l2 distance between non-corresponding points.

The architecture of the network is inspired from AlexNet [33]. An overview of the

method is depicted in Figure 2 in [72]. The train set consists of RGB-D images of

indoor scenes collected from existing popular datasets [62, 55, 66, 34, 23]. During

the train stage, a local region is extracted around a randomly sampled interest point

and voxelized with a grid of size 0.01m3. Every voxel in the 30× 30× 30 grid thus

obtained stores a TDF value that indicates the distance between the center of that

voxel to the nearest 3D surface. Since TsDF can be computed from meshes, point

clouds or depth maps, anyone of these 3D data structures can be used as input to the

network. The size of the final descriptor is 512.
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3.2.2 PPFNet: Point Pair Feature NETwork

Point Pair Feature NETwork aims to learn a local descriptor by working directly on

point coordinates augmented with handcrafted features. It was originally proposed

by Deng et al. [14] at CVPR 2018.

PPFNet combines the permutation invariant characteristic of PointNet [43] together

with the high descriptive capacity of Point Pair Features (PPF) [15]. The network

is fed by geometries containing information about the local neighborhood of a 3D

point such as raw point coordinates, normals and PPFs. As depicted in Figure 2 in

[14], PPFNet architecture consists of three parts. A first cluster of mini-PointNets,

a concatenation block and a final group of MLPs.

The cluster of mini-PointNets processes N local patches uniformly sampled from

a point cloud and extracts local features. Weights and gradients are shared within the

cluster. With the aid of a max pooling layer acting on local features, a global context

information is created and then concatenated to every local features. Max pool oper-

ation encapsulates the distinct local information capturing the global context of the

whole point cloud. Finally, a group of MLPs merges the global and local features

and creates the learned local descriptor.

PPFNet extends contrastive loss to N-patches by introducing a novel N-tuple loss,

it operates on a set of partial scans belonging to the same environment where

the ground truth transformation T between scans is known. The distance between

learned features of corresponding patches is minimized acting on two distance ma-

trices: a correspondence matrix M ∈ R
N×N , built on the points of the aligned

scans, M = (mij) with

mij = ✶(‖xi −Tyj‖2 < τ) (4)

and ✶ is the indicator function; and a feature-space distance matrix D ∈ R
N×N ,

D = (dij) with:

dij = ‖f(xi)− f(yj)‖2. (5)

By defining the operator
∑∗

(·) as the sum of all the elements in a matrix, the N-

tuple loss can be formulated as:

L =
∑∗

(

M ◦D

‖M‖22
+ α

max(θ − (1−M) ◦D, 0)

N2 − ‖M‖22

)

(6)

where ◦ is the Hadamard product (element-wise multiplication), α is a hyper-

parameter balancing the weight between matching and non-matching pairs, and θ
is the lower-bound on the expected distance between non-correspondent pairs.

PPFNet is trained using real data scenes from 3DMatch benchmark [72]. The

dataset is described in Sec. 5. To explain how training data are sampled for PPFNet,

however, it is important to anticipate that each of the 62 different real-words scenes

in the dataset contains a variable number of fragments, i.e.partial views, whose reg-

istration reconstructs the full scene.
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Rather than randomly detecting keypoints in each fragment, mini-batches in

PPFNet are created by randomly extracting the fragments and each point in a frag-

ment acts as a keypoint. To reduce the amount of training data each fragment is

down-sampled to 2048 sample points. A radius search of 30 cm around each key-

points is performed to extract a local patch. Then, to increase robustness against

point density variations each patch is down-sampled to 1024 points. If a patch con-

tains less than 1024 points, points are randomly repeated. Due to memory limita-

tions, each batch contains 2 fragment pairs with 8192 local patches. Number of

combinations for the network at per batch is 2× 20482.

4 Methods

Within this section, we provide a detailed presentation of some of the most popular

methods for 3D local features description. The algorithms presented have been cho-

sen on the basis of their heterogeneity, in order to provide a complete overview to the

reader. We present two hand-crafted methods, SHOT [51] and Spin Images [28],

and two methods based on deep learning techniques, CGF [29] and PPF-FoldNet

[13].

4.1 SHOT: Unique Signatures of Histograms for Local Surface

Description

The SHOT descriptor [51] can be used both for surface description, as originally

presented in [60], and for combined shape and texture description [61], if RGB

information are available.

The approach is based on the observation that local 3D descriptors can be cate-

gorized into signatures and histograms (Figure 7):

• signatures: these descriptors use one or more geometric attributes computed sep-

arately at each point within the support to describe the surface. The computed

measurements are encoded according to the local coordinates defined by an in-

variant local reference frame. Signatures are highly descriptive but small errors in

the definition of the local reference frame or small perturbations in the encoded

trait can substantially modify the final descriptor;

• histograms: these descriptors use histograms to capture different characteristics

of the surface. A specific domain of quantization (e.g. point coordinates, curva-

tures, normal angles), is discretized and topological entities (e.g. vertices, mesh

triangle areas) are accumulated into each spatial bin. If the descriptor domain is

based on coordinates, the definition of a local reference frame is again required

to obtain a pose-invariant descriptor. Histogram-like descriptors loses descriptive

power due to the quantization error but offers greater robustness to noise.
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Fig. 7 Signatures and histograms. For the sake of clarity, the figure reports an example in a 2D

domain.

Based on this taxonomy, SHOT was proposed to combine the advantages of

signature-based methods with those of histogram-based methods. Hence, the name

Signature of Histograms of OrienTations (SHOT). This design choice makes SHOT

representation operate at a good trade-off point between descriptiveness and robust-

ness to noise.

4.1.1 Local Reference Frame

According to [67], the local reference frame proposed in SHOT belongs to covari-

ance analysis methods. The computation of x̂, ŷ and ẑ axes rely on the Singular

Value Decomposition (SVD) or Eigenvalue Decomposition (EVD) of a covariance

matrix of the points, pi, lying within a spherical support of radius R centered at

the feature point p. We define k as the total number of points in the support. The

covariance matrix can be obtained using the following equation:

C(p) =
1

k

k
∑

i=0

(pi − p̂)(pi − p̂)T (7)

where p̂ is the centroid of the points lying within the support:

p̂ =
1

k

k
∑

i=0

pi (8)

One of the main disadvantages of this approach is the lack of uniqueness of the

signs of the axes of the estimated local reference system. Indeed, as clearly discussed
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in [7], although the eigenvectors of Equation 7 define the principal directions of the

data, their sign is not defined unambiguously.

The SHOT descriptor proposes a local reference frame estimation that employs a

slightly modified covariance matrix. The contributions of the points within support

are weighted by their distance from p:

Cw(p) =
1

∑

i:di≤R

(R−di)

∑

i:di≤R

(R− di)(pi − p)(pi − p)T (9)

with di = ‖pi − p‖2. By using a weighted covariance matrix the repeatability in

cluttered scenes in object recognition scenario is improved. Furthermore, to reduce

computational complexity the centroid p̂ in (7) is replaced by the feature point p.

Then, similarly to [7], sign ambiguity is addressed by reorienting the sign of each

eigenvector of Cw(p) so that its sign is coherent with the majority of the vectors

it is representing. This procedure is applied to both x̂ and ẑ. So, if we refer to the

eigenvector corresponding to the largest eigenvalue as the x+ axis and we denote as

x− the opposite vector, the sign ambiguity is removed according to:

S+
x =̇

{

i : di ≤ R ∧ (pi − p) · x+ ≥ 0
}

(10)

S−
x =̇

{

i : di ≤ R ∧ (pi − p) · x− > 0
}

(11)

x =

{

x+, |S+
x | ≥ |S−

x |

x−, otherwise
(12)

This results in the x̂ axis pointing in the direction of greater sample density. The

same procedure is used to disambiguate the ẑ axis, while the third unit vector is

computed via the cross-product ŷ = ẑ× x̂.

4.1.2 Histogram Computation

SHOT descriptor encodes the histograms of the surface normals at different spatial

locations. This choice stems from the related field of 2D descriptors. According to

the authors, there are two major reasons behind SIFT effectiveness [35], the most

successful proposal among 2D descriptors. Firstly, SIFT computes a set of local

histograms on specific subsets of pixels defined by a regular grid superimposed on

the patch. Secondly, the elements of these local histograms are based on first or-

der derivatives describing the signal of interest, i.e. intensity gradients. Following

these considerations, SHOT computes a set of local histograms over the 3D vol-

umes defined by a 3D spherical grid superimposed on the support. As for the signa-

ture structure, the spherical grid is partitioned uniformly along the radial, azimuth

and elevation axes. The grid is aligned with the axes given by the estimated local

reference frame. Each local histogram counts the number of points falling into each
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bin according to the cosine of the angle, θi, between the normal at each point ni and

the local ẑk axis. The hybrid structure of SHOT is sketched in 8.

Fig. 8 The hybrid structure of shot. On the left side, the spherical support that acts as a signature,

while on the right side the local histograms accumulate bin counters according to cosθi.

The choice of cosine is mainly motivated by two aspects. The first is computa-

tional efficiency, as it can be computed as cosθi = ẑk ·ni. The second one is related

to the descriptiveness of the algorithm. With an equally spaced binning on cosθi,
small differences in orthogonal directions to the normal, i.e. presumably the most

informative ones, cause points to be accumulated in different bins leading to dif-

ferent histograms. Moreover, in the presence of quasi-planar regions (i.e. not very

descriptive ones), this choice limits histogram differences due to noise by concen-

trating counts in a smaller number of bins.

Since the SHOT descriptor is generated by appending all the local histograms,

the cardinality of the descriptor is related to the number of partitions. The authors

indicate that 32 is a proper number of volumes, resulting from 8 azimuth divisions, 2

elevation divisions and 2 radial divisions. While the number of bins for the internal

histograms is 11, leading to total descriptor length of 352.

The use of histograms could render the description very sensitive to boundary

effects. Furthermore, due to the spatial subdivision of the support, boundary ef-

fects may also occur due to perturbations of the local reference frame. A commonly

adopted solution is to perform linear interpolation between the point being accumu-

lated into a specific local histogram bin and its neighbors, i.e. the neighboring bin

in the local histogram and the bins having the same index in the local histograms

corresponding to the neighboring subdivisions of the grid. In SHOT, this results in

a quadri-linear interpolation, where each bin is incremented by a weight of 1 − d
for each dimension. As for the local histogram, d is the distance of the current en-

try from the central value of the bin. As for elevation and azimuth, d is the angular

distance of the entry from the central value of the volume. Along the radial dimen-

sion, d is the Euclidean distance of the entry from the central value of the volume.

Along each dimension, d is normalized by the distance between two neighbor bins

or volumes. Figure 9 illustrates a graphic description of the quadrilinear interpo-

lation process. Finally, the whole descriptor is normalized to have Euclidean norm

equal to 1, to increase robustness to point density variations.
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Fig. 9 SHOT quadrilinear interpolation. (a) Interpolation on normal cosines. (b) Interpolation on

azimuth. (c) Interpolation on elevation. (d) Interpolation on distance.

4.2 Spin Images

The Spin Images is a surface representation technique that was initially introduced

in [28]. The name gives an intuitive description about how the algorithm works.

The term image means that a point is described using a 2D array, while spin mimics

the process of constructing the image that can be thought as a 2D plane spinning

around the normal at the keypoint and collecting counts of points of the support in

the entries of the array. The spin image generation process is visualized in Figure 6

in [27].

4.2.1 Oriented Basis

Differently from descriptors based on a local reference frame, Spin Images achieves

rotation invariance using a reference axis. The surface normal at each point can be

used to compute a 2D oriented basis as shown in Figure 2 in [27]. We define an

oriented point O on the surface of an object using the 3D position of the point p and

the surface normal n at the point. An oriented point allows us to define a partial sys-

tem of cylindrical coordinates centered at the point. Only two coordinates are used:

α is the radial coordinate defined as the perpendicular distance to the line through

the surface normal, and β represents the elevation coordinate defined as the signed

perpendicular distance to the tangent plane defined by n at p. The polar angle co-
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ordinate is omitted because it cannot be defined robustly and unambiguously using

just surface position and normal.

4.2.2 Histogram Computation

Using an oriented point basis, we can define a function called spin-map So : R3 →
R2 that projects a 3D point x to the 2D cylindrical coordinates of a particular basis

(p,n) corresponding to the oriented point O:

So(x) → (α, β) = (
√

‖(x− p)‖2 − (n · (x− p))2, n · (x− p)) (13)

In order to create a spin image for an oriented point p, the space α-β is then

discretized into a 2D array. Then, for each point xi in the support region the coordi-

nates α and β are computed as in (13) and the bin indexed by (α,β) is incremented.

Given a fixed bin size (b), the size of the resultant spin-image (imax, jmax) can be

calculated as:

imax =
2βmax

b
+ 1 jmax =

αmax

b
+ 1 (14)

where αmax and βmax are the maximum α and |β| values for all the oriented

points within support region. The elevation coordinate β can be both positive and

negative, this is the reason why the size of the spin-image in the β direction is twice

βmax. Finally, the mapping between cylindrical coordinates α, β and the spin image

is computed as:

i = ⌊
2βmax − β

b
⌋ j = ⌊

α

b
⌋ (15)

The discretization of the α-β domain makes the result of the spin image very sen-

sitive to noise. Therefore, the contribution of the point is bi-linearly interpolated to

the four surrounding bins in the 2D array. The creation of a 2D array representation

of a spin image can be seen in Figure 4 from [27].

The bilinear weights used to increment the bins in the spin image can be obtained

as:

a = α− ib b = β − jb (16)

Spin images that are created using three different oriented points can be seen in

Figure 3 in [27]. Dark pixels correspond to bins with a high number of points.

4.2.3 Parameters

The generation of a spin image is regulated by three parameters: bin size, image

width and support angle.
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The bin size is the width of each of the bin in the spin image. It is an important

parameter because it defines the size in memory of the descriptor. As illustrated in

Figure 3 in [28], the size in memory of a spin image relates also to the descriptive-

ness of the spin image: having small sized bins creates descriptive histograms. A

common practice is to set the bin size approximately equal to the mesh or cloud

resolution, i.e.the median distance between vertices/points in the mesh/cloud.

The image width defines the number of rows and columns in a square spin image.

The product between bin size and image width constitutes a new parameter called

support distance (Ds). As show in Figure 4 in [28] this parameter acts on the amount

of local versus global information embedded in the descriptor.

The support angle (As) allows to filter the points that contribute to the calcula-

tion of the spin-image and make the spin image less sensitive to the effect of self

occlusion and clutter. We can define As as the maximum angle between the normal

at the point for which we are computing the spin-image and the normal of points

that are allowed to contribute to the spin image. Suppose p is the oriented point for

which we are computing the spin-image and pi is one of its oriented points within

the support, the contribution of pi will be accumulated in the histogram of p if:

acos(np · npi
) < As (17)

The most appropriate value for this parameter represents the right tradeoff be-

tween shape descriptiveness and matching robustness. Decreasing support angle de-

creases the descriptiveness, while increasing it increases the sensitivity to occlusion

and clutter. Typically the support angle is kept small in object recognition and kept

large in surface registration.

4.3 CGF: Compact Geometric Features

Compact Geometric Features (CGF) learns a mapping f : RN → R
n from high-

dimensional handcrafted representations to a very low-dimensional feature space. It

was introduced by Khoury et al. [29] in ICCV 2017.

The authors try to overcome the point cloud representation problems by using

an hand-crafted approach to represent the raw local geometry around points. The

neural networks performs a dimensionality reduction in order to compute compact

embedding. Thanks to its low dimensionality, CGF enables faster nearest-neighbor

queries during the matching stage.

The network is trained using the triplet embedding loss [24]. In this regard, CGF

is coupled with an effective negative sampling strategy which produces a highly

discriminative embedding, described in Sec. 4.3.3.
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4.3.1 Point cloud parametrization

Before CGF, the standard way to adapt point clouds to deep learning algorithms was

to discretize the input into a uniform voxel grid. However, such representation is not

efficient due to the high number of empty cells [26].

CGF captures the local geometry around each point into a handcrafted feature

called spherical histogram. Inspired by 3DSC [16], a spherical histogram encodes

the distribution of points in a local neighborhood with a non uniform binned radial

grid. A simplified view is shown in Figure 2 from [29].

Given a feature point p a sphere S of radius r is centered at p. To obtain rotational

invariance, the local neighborhood is aligned to axes of a local reference frame

computed as in 4.1.1. Considering the ẑ axis of the estimated lrf and the normal n

at point p, if the dot product 〈n, ẑ〉 < 0, the signs of all three vectors in the local

reference frame is flipped.

The volume bounded by S is divided into bins along the radial, elevation, and

azimuth directions. The azimuth direction is split into A = 12 bins, each of extent

2π/A. The elevation direction is subdivided into E = 11 bins, each of extent π/E.

The radial direction, which has total span r, is logarithmically subdivided into 17

bins using the following thresholds:

ri = exp

(

ln rmin +
i

R
ln

(

r

rmin

))

. (18)

Subdividing the radial direction in this fashion makes the histogram more robust

to changes in shape near the center p. The resulting spherical histogram has a size

of 2,244 bins.

The value inside each bin reflects the point density of the local neighborhood

around p. Let N ⊂ P be the set of neighboring points that lie inside the sphere

S. Each point q ∈ N , is converted from euclidean to spherical coordinates and the

corresponding bin that contains q is incremented. The final histogram is normalized

by dividing each bin by |N |.

4.3.2 Network architecture

CGF deep network maps supports from the high-dimensional space of spherical

histograms to a very low-dimensional Euclidean space. The architecture is a fully-

connected network with 5 hidden layers. Each hidden layer contains 512 nodes and

is followed by a ReLU non-linearity. Weights are initialized from a normal distribu-

tion with mean 0 and standard deviation 0.1. The mini-batch size is 512 and Adam

[30] is used as optimizer. The dimension of the learned embedding which is then

used as descriptor is 32.

As far as the loss function is concerned, a standard triplet loss [24] tries to keep

similar features together while pushing dissimilar features apart. Starting from a

mini-batch of triplets of input histograms T = {(xa
i ,x

p
i ,x

n
i )}i. Vector xa

i is re-
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ferred to as the anchor of triplet i, vector x
p
i is a positive example and vector xn

i is

a negative example. Given such a set of triplets, triplet loss is written as:

L(θ) =
1

|T |

|T |
∑

i=1

[

‖f(xa
i ;θ)− f(xp

i ;θ)‖
2

− ‖f(xa
i ;θ)− f(xn

i ;θ)‖
2 + 1

]

+
, (19)

where θ are the learned parameters and [·]+ denotes max(·, 0).

4.3.3 Train data

Triplet loss is often used to learn discriminative features. During training, a triplet

of input histograms, T = {(xa
i ,x

p
i ,x

n
i )}i is fed into the model as a single sample.

The idea behind this is that distance between the learned embedding of anchor and

positive should be smaller than that between anchor and negative embedding. In

order to achieve this, it is essential to samples negatives accurately. A common

choice is to draw as negative, random points that are pretty far from the anchor.

Khoury et al. use a smarter strategy. Given a set of point clouds {Pi}i that de-

scribe overlapping scans of a 3D object or scene, let {Ti}i be a set of rigid transfor-

mations that align the point clouds {Pi}i in a common coordinate frame. Consider

the set O of overlapping pairs of point clouds from {Pi}i. Each point p ∈ Pi in

each pair (Pi,Pj) ∈ O generates 40 triplets. These 40 triplets use as anchor point

p ∈ Pi, while positives are grabbed from the local neighborhood of p in TjPj . With

that in mind, we can denote as N j
p,τ in Pj the set of neighbors points that are at dis-

tance at most τ from p. In addition consider N j
p,2τ , the set of points in Pj that are

at distance at most 2τ from p. While the points in N j
p,τ are good correspondences

for p in Pj , the set N j
p,2τ \ N j

p,τ contains difficult negative examples for p. This

is visualized in Figure 3 in [29]. They have similar local geometries of p, but are

far enough from it. Hence, 15 triplets are constructed by sampling negatives from

Np,2τ and 25 are constructed by randomly sampling negatives from other scans.

4.4 PPF-FoldNet

PPF-FoldNet [13] is an extension of another descriptor [14], and it has been pre-

sented by Deng et al. at CVPR 2018. The main limitations of learned 3D descrip-

tors are the big amount of labeled data required, sensitivity to rotations and the use

of hand crafted input preparation. PPF-FoldNet improved upon these limitation by

proposing an unsupervised rotation invariant local descriptor. FoldingNet [69] intro-

duced the idea of deforming a 2D grid to decode a 3D surface as a point set, given

a latent codeword encoding the 3D surface, and offered an interesting paradigm for
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unsupervised learning with point clouds. Similarly, PPF-FoldNet uses folding oper-

ation to reconstruct the point pair feature [15, 4] of a support.

4.4.1 Point cloud parametrization

The local patch of a feature point p is represented by a collection of pair features,

computed between p and the neighboring points:

FΩ = { f(p,p1) · · · f(p,pi) · · · f(p,pN ) } ∈ R
4×N−1 (20)

As far as Point Pair Features (PPFs) are concerned, for two points x1 and x2 the

features are defined as:

ψ12 = (‖d‖2,∠(n1,d),∠(n2,d),∠(n1,n2)) (21)

where d denotes the difference vector between points, n1 and n2 are the surface

normals at x1 and x2, ‖·‖ is the Euclidean distance and ∠ is the angle operator

computed in a numerically robust manner as in [4]:

∠(v1,v2) = atan2
(

‖v1 × v2‖ , v1 · v2

)

(22)

∠(v1,v2) is guaranteed to lie in the range [0, π).
The main motivation behind the use of PPFs is their invariance to rotations. Ro-

tation invariance is an essential trait for every local descriptor and the PPFs are

invariants under Euclidean isometry as distances and angles are preserved between

every pair of points. A visualization of some local patches and their correspondent

PPF signatures is shown in Figure 2 in [13].

4.4.2 Network architecture

PFF-FoldNet leverages on an encoder-decoder architecture, shown in Figure 1 in

[13], to reconstructs a set of PPFs computed on a local patch around a given fea-

ture point p. The encoder is composed by a three-layer, point-wise Multi Layer

Perceptron (MLP) followed by a max-pooling layer that aggregates individual point

features into a global one similar to [43, 69]. After the concatenation with skip-links,

a two-layer MLP compress these features to the encoded codeword.

The decoder takes inspiration from FoldingNet [69], and try to deform a low-

dimensional grid structure using the information encoded in the codeword learned

by the encoder. Differently from [69], the decoder uses a deeper architecture, each

folding operation rely on a 5-layer MLP. This choice is mainly due to higher dimen-

sional of the reconstructed set, 4D vs 3D. The loss involved is the Chamfer distance

between PPFs:
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d(F, F̂) = max

{

1

|F|

∑

f∈F

min
f̂∈F̂

‖f − f̂‖2,
1

|F̂|

∑

f∈F̂

min
f∈F

‖f − f̂‖2

}

(23)

where F is computed as in 20 and the ˆ operator refers to the reconstructed set. The

learned latent dimensional vector is called codeword and used as local descriptor

of the underlying geometry around which the patch is extracted. The weights of the

network are initialized using Xavier initialization [17]. The loss is minimized by

ADAM Optimizer [30]. Batch size is 32, while the size of the final descriptor is

512.

4.4.3 Train data

Thanks to the unsupervised approach, the network is trained by random sampling

points from the fragments of the 3DMatch dataset. For each keypoint the PPFs are

computed using its neighboring points in a 30 cm vicinity. Since the number of

points in a local patch is not fixed, each local patch is downsampled to an arbitrary

number of points, thereby facilitating the train by organizing the data into regular

batches, and increasing the robustness to noises and different point densities.

5 Dataset and Evaluation

Within this section we will validate some of the proposed algorithms in sections 3

and 4 using the popular 3D Match Benchmark Dataset [72]. This dataset is a collec-

tion of different real-world scenes retrieved from a pool of previous published ones

such as Analysis-by-Synthesis [62], 7-Scenes [55], SUN3D [66], RGB-D Scenes

v.2 [34] and Halber and Funkhouser [23]. The dataset includes indoor scenes like

living rooms, offices, bedrooms, tabletops, and restrooms. Each scene is equipped

by one or more RGB-D video sequences captured by real sensors, like Microsoft

Kinect and Intel RealSense, together with camera intrinsic parameters. In order to

be robust to noise point clouds for the fragments belonging to a single scene are

generated by fusing 50 consecutive depth frames. The overall number of scenes in

the dataset is 62, splitted in 54 for train and validation and 8 for benchmarking.

As for the selected descriptors, we have chosen: FPFH [47], Spin Image [28],

SHOT [51], USC [60], 3DMatch [72], CGF [29], PPFNet [14], PPFFoldNet [13].

The main reasons behind the choice of hand-crafted descriptors is to compare fea-

tures based on point density, such as Spin Images and USC, and algorithms that

operate on geometric properties such as FPFH and SHOT. On the other hand, for

the learned ones we rely on the most recently proposals.

To test the rotation invariance of 3D feature descriptors, in [13] a rotated version

of the 3D Match Benchmark Dataset is proposed. The fragments in the test split are

rotated around random sampled axis with a random chosen angle. We refer to it as

Rotated 3D Match Benchmark.
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A good way to check the performance of a given descriptor is to use it within

a registration pipeline. Given a set of K fragments available for each scene in the

dataset, the aim is to find the rigid transformation matrix, G, that aligns every pair

of overlapping fragments. Each scene in the dataset comes with a list of overlapping

fragments and the rigid transformations Tij ∈ SE(3) between them. In order to

check the performance of a given 3D local feature descriptor, the following steps are

performed. For all the fragment pairs (Vi, Vj) with overlap at least 30 %, a list of cor-

respondences between all the keypoints detected in Vi and all the keypoints detected

in Vj is formed by finding all the pairs that lie mutually close in the feature space by

applying nearest neighbor search [13]. The set containing all the correspondences

is called Ci,j . Then, given a pair of matched keypoints (ki, kj), ki ∈ Vi, kj ∈ Vj ,

the set of correct correspondences, Cgndi,j
, can be identified based on the available

ground truth transformations by checking whether the matched keypoints lay within

a certain distance τ1 in the canonical reference frame:

Cgndi,j
= {(ki, kj) : ‖ki −Tijkj‖ ≤ τ1} (24)

We can define the inlier ratio for Ci,j as the percentage of true matches in Ci,j ,

rin = |Cgndi,j
|/|Ci,j |. Instead of using the estimated correspondences within a

RANSAC pipeline and check the resulting rigid transformation, a fragment pair is

considered correctly aligned if rin > τ2.

Given a set of fragment pairs S = {(P,Q)} that are used in the evaluation, the

quality of a given feature descriptor is measured by the recall R of fragment pairs

matched in S:

R =
1

|S|

|S|
∑

i=1

✶

(

rin
(

Si = (Pi,Qi)
)

> τ2

)

(25)

On both 3D Match Benchmark and Rotated 3D Match Benchmark, τ1 and τ2 are

set to 10 cm and 5%, respectively. For each fragment, descriptors are computed on

5000 randomly sampled feature points, provided by [72]. The radius support used to

compute descriptor is 18 cm and for normal estimation is 9 cm. For the handcrafted

descriptors we used the public implementation in PCL[50], while for the learned

descriptors since the implementations are not public, the results were taken from

[13].

6 Results

The experimental results on the standard 3D Match Benchmark are shown in ta-

ble 1. From the results it is clear how the descriptors based on geometric attribute

histograms tend to outperform those based on spatial distribution histograms. In-

deed, SHOT, PPFFoldNet build up their representations leveraging properties of the

surface like normals. Except for SHOT and USC, PPFNet and PPFFoldNet man-
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Table 1 Results on the 3DMatch benchmark. Test data comes from SUN3D [66], except for Red

Kitchen which is taken from 7-scenes [55].

FPFH [47] Spin Image [28] SHOT [51] USC [60] 3DMatch [72] CGF [29] PPFNet [14] PPFFoldNet [13]

Kitchen 0.4802 0.5079 0.7470 0.7016 0.5830 0.6030 0.8972 0.7866

Home 1 0.7115 0.6987 0.8141 0.7756 0.7240 0.7110 0.5577 0.7628

Home 2 0.5769 0.6010 0.7548 0.6683 0.6150 0.5670 0.5913 0.6154

Hotel 1 0.6770 0.5973 0.7920 0.7788 0.5490 0.5710 0.5796 0.6814

Hotel 2 0.5673 0.5769 0.7692 0.6635 0.4810 0.5380 0.5796 0.7115

Hotel 3 0.7407 0.7222 0.8704 0.8148 0.6110 0.8330 0.6111 0.9444

Study 0.4486 0.4247 0.6918 0.5856 0.5170 0.3770 0.5342 0.6199

MIT Lab 0.3896 0.3506 0.5974 0.4675 0.5070 0.4550 0.6364 0.6234

Average 0.5740 0.5599 0.7546 0.6820 0.5730 0.5820 0.6231 0.7182

Table 2 Results on the rotated 3DMatch benchmark. Test data comes from SUN3D [66], except

for Red Kitchen which is taken from 7-scenes [55].

FPFH [47] Spin Image [28] SHOT [51] USC [60] 3DMatch [72] CGF [29] PPFNet [14] PPFFoldNet [13]

Kitchen 0.4921 0.5375 0.7470 0.7095 0.0240 0.6050 0.002 0.7885

Home 1 0.6987 0.7308 0.8141 0.8269 0.0380 0.7120 0.0000 0.7821

Home 2 0.5913 0.6250 0.7404 0.6490 0.0530 0.5720 0.0144 0.6442

Hotel 1 0.6903 0.6416 0.8053 0.7788 0.0180 0.5720 0.0044 0.6770

Hotel 2 0.5673 0.5673 0.7788 0.7115 0.0670 0.5380 0.0000 0.6923

Hotel 3 0.7407 0.7963 0.8519 0.8519 0.0190 0.8330 0.0000 0.963

Study 0.4555 0.4589 0.6952 0.6404 0.0270 0.3870 0.0000 0.6267

MIT Lab 0.4286 0.4675 0.6364 0.5714 0.0390 0.4550 0.0000 0.6753

Average 0.5831 0.6031 0.7586 0.7174 0.0360 0.5850 0.0026 0.7311

aged to match a higher number of fragment pairs compared to the other methods.

This is a clear demonstration of how learning the descriptor using a stable and rich

representation rather than using hand-crafted techniques allows achieving higher

performances.

Results on the rotated benchmark are illustrated in Table 2. They show how a

robust local reference frame is an essential aspect for any descriptor. Comparing

the results from 1 and 2, FPFH, Spin Images, SHOT, USC and CGF demonstrate

robustness to rotations. Their performance remains stable despite the introduction

of random rotations in the data. The significant drop in performance achieved by

3DMatch and PPFNet also demonstrates how these descriptors hardly learn pose

invariance directly from data. The best performance is obtained by PPFFoldNet and

SHOT: this proves how the use of rotation-invariant features, such as Point Pair

Features, or a stable local reference frame, can lead to a robust and descriptive rep-

resentation.

7 Open Challenges

Within this chapter we have outlined how over the past few years there has been an

intensive research activity in learning features for 3D data. Nevertheless, many chal-

lenges are still open. Although the use of deep learning algorithms has boosted the

performance of local 3D descriptors, learning a rotation-invariant descriptor directly

from 3D data such as point clouds remains an open problem. Indeed, most state-of-
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the-art methods achieve rotation invariance by relying on hand-crafted features that

are by design invariant to rotation. Moreover, many deep learning approaches still

use handcrafted methods to operate on 3D data.

Additional open problems that 3D local descriptors will need to face in forth-

coming years are the robustness to geometric transformation and noise. This is par-

ticularly relevant with learned-based approaches which suffer from the well-known

domain shift problem when tested under unseen working conditions and data do-

mains. Scalability towards large datasets (e.g. large scenes, many objects) and in

general computational efficiency is also an important issue, especially considering

the higher and higher relevance that mobile applications (such as, e.g., robotics,

autonomous driving, augmented reality) are assuming in the context of 3D data pro-

cessing.

8 Further Reading

We have presented an overview of methods proposed over the last two decades to

describe the local properties of a 3D surface and successfully match it under rigid

transformations and in the presence of noise, clutter, and occlusions.

Interestingly, the successful research avenue aiming at adapting neural network

architectures such as CNNs and auto-encoders to process 3D data - and in particular

point clouds - has blurred the line between the standard distinction between global

and local 3D descriptors, since such architectures could be employed indifferently

under both fashions and for most 3D processing tasks. To name a few methods, we

refer the reader to the recent point cloud-based auto-encoders proposed in AtlasNet

[18] and FoldingNet [69], or recent multi-resolution 3D descriptors for point clouds

such as PointNet++ [45] and Fully-convolutional Point Networks [46]. All these

methods have been, or could be, used for both global and local description tasks.

Although this chapter focuses on local features for 3D data, it is interesting to

analyze how also in the field of images there has been a parallel line of research.

One of the most remarkable works is represented by Lift [70]. For a more detailed

discussion of learned 2D features we refer the reader to the following survey [53].

9 Hands-on 3D Descriptors

As a supplement to this chapter we provide some code snippets that show how

to calculate some of the 3D descriptors presented in this chapter. The following

examples use the open source implementations available in the Point Cloud Library

(PCL) [50]. In particular, the descriptors currently available are: SHOT, FPFH, Spin

Images and USC.

In the following snippets 1 2, we provide the code to compute two of the de-

scriptors seen in this chapter, SHOT and USC respectively. As an exercise, we leave
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to the reader the extension of the presented snippets to the other aforementioned

descriptors available in PCL.

1 #include <pcl/io/pcd_io.h>

2 #include <pcl/features/normal_3d.h>

3 #include <pcl/features/shot.h>

4

5 using namespace pcl;

6 using namespace std;

7

8 typedef PointXYZ PointT;

9 typedef Normal NormalT;

10 typedef SHOT352 ShotT;

11

12 int main(int argc, char** argv)

13 {

14 /*Create point cloud for coordinates*/

15 PointCloud<PointT>::Ptr cloud(new PointCloud<PointT>);

16 /*Create point cloud for normals*/

17 PointCloud<NormalT>::Ptr normals(new PointCloud<NormalT>);

18 /*Create point cloud for descriptors */

19 PointCloud<ShotT>::Ptr descriptors(new PointCloud<ShotT>());

20

21 /*Read a point cloud from the disk, exit in case of failure*/

22 if (io::loadPCDFile<PointT>(argv[1], *cloud) != 0)

23 return -1;

24

25 /*Estimate the normals*/

26 const int number_of_neighbours_for_normals = 17;

27

28 NormalEstimation<PointT, NormalT> estimator_normals;

29

30 estimator_normals.setInputCloud(cloud);

31 estimator_normals.setKSearch(number_of_neighbours_for_normals

);

32

33 estimator_normals.compute(*normals);

34

35 /*Estimate shot descriptor*/

36 SHOTEstimation<PointT, NormalT, ShotT> shot;

37 shot.setInputCloud(cloud);

38 shot.setInputNormals(normals);

39

40 const double radius_shot = 0.18;

41 shot.setRadiusSearch(radius_shot);

42

43 /*Set the radius to compute the Local Reference Frame*/

44 shot.setLRFRadius(radius_shot);

45

46 shot.compute(*descriptors);

47

48 /*Print descriptors*/

49 for(ShotT shot : (*descriptors))

50 {
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51 for (int i = 0; i < shot.descriptorSize(); i++)

52 cout << shot.descriptor[i] << endl;

53 }

54 }

Listing 1 Compute SHOT descriptor

1 #include <pcl/io/pcd_io.h>

2 #include <pcl/features/usc.h>

3

4 using namespace pcl;

5 using namespace std;

6

7 typedef PointXYZ PointT;

8 typedef Normal NormalT;

9 typedef UniqueShapeContext1960 UscT;

10 typedef ReferenceFrame FrameT;

11

12 int main(int argc, char** argv)

13 {

14 /*Create point cloud for coordinates*/

15 PointCloud<PointT>::Ptr cloud(new PointCloud<PointT>);

16 /*Create point cloud for descriptors */

17 PointCloud<UscT>::Ptr descriptors(new PointCloud<UscT>());

18

19 /*Read a point cloud from the disk, exit in case of failure*/

20 if (io::loadPCDFile<PointT>(argv[1], *cloud) != 0)

21 return -1;

22

23 /*Estimate USC descriptor*/

24 UniqueShapeContext<PointT, UscT, FrameT> usc;

25 usc.setInputCloud(cloud);

26

27 const double radius_usc = 0.18;

28 usc.setRadiusSearch(radius_usc);

29

30 /*Set the radius to compute the Local Reference Frame*/

31 usc.setLocalRadius(radius_usc);

32

33 /*The minimal radius value for the search sphere*/

34 const double radius_minimal = radius_usc / 10.0;

35 usc.setMinimalRadius(radius_minimal);

36

37 /*Radius used to compute the local point density for the

neighbors*/

38 const double radius_density = radius_usc / 5.0;

39 usc.setPointDensityRadius(radius_density);

40

41 usc.compute(*descriptors);

42

43 /*Print descriptors*/

44 for(UscT usc : (*descriptors))

45 {

46 for (int i = 0; i < usc.descriptorSize(); i++)
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47 cout << usc.descriptor[i] << endl;

48 }

49 }

Listing 2 Compute USC descriptor
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