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ABSTRACT

The progressive increase in the earth’s temperature due to anthropogenic activities is a major 

concern for humanity. The ensuing heat stress (HS) severely impacts plant growth, endangering 

ecosystem quality and world food security. Plant growth, physiological processes and final amount 

of edible products are affected by HS to an extent that reflects the physical damages, physiological 
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commotions and biochemical alterations incurred at various growth stages. Therefore, a better 

understanding of plant behaviour in response to HS has pragmatic implications for devising 

counter-measures, alleviation strategies, and for acknowledging the differences between HS and 

the companion drought stress. Conventional breeding, biotechnological and molecular approaches 

are used to develop HS tolerant genotypes in plant species bred for food/feed uses. Recent 

achievements in the omics techniques result in a better knowledge of the molecular mechanisms 

involved in HS. However, shrewd management of crop practices is still helpful to improve plant 

resilience to HS. Suitable sowing time, seed priming, bacterial seed treatment, nutrient and water 

management, exogenous application of osmo-protectants, and conservation of soil moisture are 

important tools to improve plant behaviour under the critical HS scenarios determined by climate 

change and global warming.

Keywords: Crop production, Heat stress, Heat shock proteins, Heat stress management, Oxidative 

damage, Reproduction, Plant response
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Introduction 

The harshly debated fossil fuel usage due to booming population and anthropogenic activities, is 

the major reason for the global warming associated with changing climate patterns. Climate change 

and global warming have devastating impacts on food security (Lesk et al. 2016). Over the last 

250 years, carbon dioxide and methane concentrations in the atmosphere have been increasing by 

30% and 150%, respectively (Friedlingstein et al. 2010). The increase in greenhouse gases 

concentration is the major reason for global warming. In this scenario, heat stress (HS) has become 

a major factor limiting crop production and food security around the globe. The recent increase in 

temperature severely endangers regional crop productions (Lobell et al. 2011a; Abdelrahman et al. 

2017). Globally, annual temperature is expected to rise by 1.8-4.0 °C at the end of the 21st century 

(Bita and Gerats 2013). This increase raises the concern among scientists and governments, as 

temperature directly and indirectly impacts on life forms present on earth. Despite these 

happenstances, world food supply has to be augmented by more than 70% to meet the needs of 

ever booming population: up to 9 billion humans by the year 2050 (Stratonovitch and Semenov 

2015).

Heat stress severely limits the productivity of crop plants. For example, it is assumed that HS limits 

wheat (Triticum aestivum L.) global productivity by more than 6% for each degree (°C) increase 

in temperature (Asseng et al. 2015). However, despite HS negative effects on overall crop 

production, increase in temperature has some beneficial impacts on productivity in colder regions 

(Challinor et al. 2014).

Plants, being sessile organisms cannot move to favourable conditions, thus their activities are 

significantly affected by HS (Lobell and Field 2007; Hatfield and Prueger 2015). Heat stress 

significantly affects plant activities including seed germination, growth, development, 
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photosynthesis, reproduction, resulting in serious impacts on plant growth and ultimate yield of 

useful products (Fig. 1) (Hasanuzzaman et al. 2012). Therefore, for surviving under stressed 

conditions, plants perform various morphological, physiological and molecular responses (Fig. 2) 

(Janská et al. 2010). Specific field management options can be practiced to get good production 

under stressed conditions. 

Fig 1 has to be placed here

Moreover, development of heat tolerant genotypes requires a dire need of knowledge and research 

work at physiological, bio-chemical and molecular level. In the present scenario, more 

investigations are needed for breeding HS tolerant genotypes, and understanding general 

mechanisms supporting HS tolerance in plants. In the present circumstances, developing heat 

tolerant genotypes is a major challenge for the experts (Zhang et al. 2006). In the upcoming time, 

agriculture has to deal with crops growing under sub-optimal conditions in face of enhanced food 

demand, which creates a gap between the current yield accomplishment and yield potential 

(Koevoets et al. 2016). In this review, we discuss the effects of HS, along with plant response to 

HS, and potential management options to enhance the resilience of cultivated plants under the 

current scenario of global warming. 

Yield losses due to heat stress: region wise retrospective and future projections

The unprecedented increase in air temperature in the last few years reveals a range of incongruities 

linked with HS. The negative impacts of high temperature (HT) on different crops have been 

reported globally (Table 1). In the case of rice (Oryza sativa L.), China is a major growing country, 

and rapid increase in temperature during the last few years caused a significant reduction in rice 

production (Tian et al. 2009). High temperature at late growth stages reduces rice yield owing to 
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lower seed production resulting from pollen sterility (Tian et al. 2009). Similarly, analysis of data 

from 1980-2000 indicates that 1% increase in temperature is responsible for the reduction in wheat 

yield by more than 10% (You et al. 2009) in China. Likewise, Easterling et al. (2007) projected 

that India will lose 0.45 ton/ha and China will face a reduction of 5-7% in rainfed wheat 

production, owing to a 0.5% rise in average temperature by the end of 2050. High temperature 

(38-39 °C) in the Philippines during the months of April and May poses a serious threat to rice 

production (Manigbas and Sebastian 2007). More to this, the Indo Gangetic Plains (IGP) produce 

15% of world wheat and will face drought and HT conditions by the end of 2050 (Ortiz et al. 

2008). Climatic models also predict that Central and East Asia, North American and the Indian 

subcontinent will be areas most prone to HS among those growing the major crops rice, wheat and 

maize (Teixeira et al. 2013).

Fig 2 has to be placed here 

The European continent faced a very hot summer in 2003 leading to considerable reduction in 

yield (Ciais et al. 2005). In the near future, devastating effects of HS on crop yields are envisaged 

with alarming frequency for East European countries as Hungary, Serbia, Bulgaria and Romania 

(Olesen et al. 2011). In Western Europe as France; significant reductions in maize (Zea mays L:) 

yield were observed, and are likely to be incurred again, at temperatures above 32 °C (Hawkins et 

al. 2013). The maturation period for wheat is shrinking in Europe, seriously affecting crop yields 

(Semenov et al. 2013). It is further feared that Europe as a whole will experience major crop losses 

engendered by HS more than drought stress (Semenov and Shewry 2011). In Africa, various traits 

combined lead to predict a more than 2% reduction in maize yield as consequence of a 1% rise in 

temperature (Lobell et al. 2011a). The pattern of temperature changes during 1976-2006 indicates 

a reduction of 12% and 17% in maize and soybean (Glycine max (L.) Merr.) production in the 
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USA (Kucharik and Serbin 2008). Similarly, the southern and south-western region of the USA 

will face a loss of more than 5 billon US dollars owing to combined HS and drought stress (NCDC 

2011). It is therefore demonstrated that the present and future increases in temperature will have 

negative impacts on crop production. Therefore, there is a dire need to change the policies globally 

and work collectively to cope with this problem. 

Table 1 has to be placed here 

Heat stress effects on growth and development of plants

Seed germination is the first stage of plant life that may be severely affected by HS. The HS has 

negative impacts on seed germination over a broad range of temperatures; however, the extent of 

the damage largely depends on plant species (Johkan et al. 2011). HS leads to poor seed 

germination resulting in reduced root length, poor stand establishment, lower plant population and, 

therefore, significant reduction in final yield (Kumar et al. 2011; Toh 2008). HS reduces seed 

germination by disturbing the activity of various enzymes that are responsible for the breakdown 

of starch, as well as inducing abscisic acid (ABA) synthesis (Essemine et al. 2010). HS also 

impaired protein synthesis in seed embryo and led to a substantial reduction in seed germination 

of maize above 37 °C (Riley et al. 1981). The growth of coleoptile was completely stopped at 45 

°C in maize seedlings (Akman 2009). At this temperature, germination rate was greatly reduced 

and cell death occurred in tomato (Solanum lycopersicum L.), leading to significant decline in 

stand establishment (Cheng et al. 2009). Additionally, HS reduced plant height, tillering, and dry 

biomass production in wheat (Mitra et al. 2008).

Heat stress reduced cell size and water status, leading to growth reduction in maize and pearl millet 

(Pennisetum glaucum (L.) R. Br.) (Ashraf and Hafeez 2004). Moreover, reduction in crop growth 
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rate and dry matter production occurred owing to HS in various plants (Wahid 2007), and 

specifically sugarcane (Saccharum officinarum L.) (Srivastava et al. 2012). HS also causes many 

morphological symptoms in plants: leaf scorching, sun burning of stems, branches, leaves and 

twigs, discoloration of fruits, leaf senescence and abscission (Rodríguez et al. 2005). Leaf rolling, 

damage of leaf tips, leaf drying and necrosis can also be observed due to HS (Omae et al. 2012). 

In few plant species, HS (30 °C) significantly elongated the stem and bended plant leaves 

(hyponasty), and therefore, resulted in significant reduction in biomass production (Patel and 

Franklin 2009). The decrease in tillers with surge in shoot elongation is also a common symptom 

of HS (Kumar et al. 2011). For instance, in wheat crop tillers decreased per unit area owing to 

increase in shoot elongation under HS (30/25 °C at day/night time) (Djanaguiraman et al. 2010). 

HS also affected plant phenology, shortening plant cycle. For instance, increase in temperature (1-

2 °C) above the optimum level decreased the grain filling period in cereals, resulting in final 

production significantly reduction (Zhang et al. 2006). At extreme HS, programmed cell death 

occurs in specific cells and tissues, owing to protein denaturation. Under moderate HS for a longer 

time, a gradual death is observed. Therefore, both severe and moderate HS lead to leaf shedding, 

flower and fruit abortion and death of complete plant (Hasanuzzaman et al. 2010).

Heat stress in maize reduced photosynthesis while increasing respiration, causing pollen sterility 

and lower kernel development (Crafts-Brander and Salvucci 2002). In soybean, HS at later growth 

stages (grain filling stage) reduced the subsequent seed germination and seedling vigor (Egli et al. 

2005). The increase in temperature above 30 °C obstructed micro-sporogenesis in common beans 

(Phaseolus vulgaris L.) (Porch 2006) groundnut (Arachis hypogaea L.), sorghum (Sorghum 

bicolor (L.) Moench) (Prasad et al. 2008b), and cotton (Gossypium spp.) (Singh et al. 2007). HS 

at later stages increased pollen sterility and decreased the number of kernels, kernel size and weight 
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in wheat (Farooq et al. 2011). Additionally, HS also causes various types of irregularities, among 

which degradation of tapetum during the microsporic-meiosis (Zinn et al. 2010), and reduction in 

starch accumulation at grain filling stage (Reynolds et al. 2007). The reduction in seed production 

due to HS is also associated with hindrance in the fertility of micro and mega gametophyte (Young 

et al. 2004; Hayat et al. 2009). In conclusion, HS dramatically reduces plant growth and cycle 

length. Therefore, proper measures should be adopted to improve crop production under HS.

Heat stress effects on water relations

Heat stress affects plant osmotic adjustments by enhancing evapotranspiration (Gates 1968), while 

influencing the production of solutes as glucose that plays an imperative role in osmotic adjustment 

(Acevedo et al. 1999). The rate of photosynthesis is decreased (Paulsen 1994), as those of 

respiration and photo-respiration (Lawlor 1979), while leaf senescence is significantly hastened 

(Kramer 1980). All these factors alter solute production for osmotic adjustment. Heat stress is 

directly detrimental for all crops, by altering plant water relationships and affecting various 

physiological processes (Paulsen 1994). HT reduces photosynthesis and plant growth, and disturbs 

plant water relationships depending upon crop species and genotype (McDonald and Paulsen 

1997).  

Heat stress disturbs cell metabolism owing to hampered water balance resulting from reduction in 

water uptake by roots and additional water loss from leaves (Machado and Paulsen 2001). HS also 

hampers leaf water potential (Wahid and Close 2007), and increases the fluidity of membrane 

lipids (Xu et al. 2006) and the production of reactive oxygen species (ROS) (Wahid et al. 2007). 

All these alterations lead to reduction of plant growth (Young et al. 2004; Porter 2005).
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Drought and HS are two of the major constraints for crop production. However, drought stress 

escorts HS particularly in the summer season (Jedmowski et al. 2015). Drought and HS lead to 

dehydration, reduced relative water content (RWC), augmented leaf senescence owing to lower 

chlorophyll content and photo-synthetic activity, and reduction in membrane stability (Pessarakli 

2007; Rivero et al. 2007; Veerasamy et al. 2007). HT results in quick loss of soil water, which 

interacts with drought and HS in reducing tissue moisture and leaf water potential (Machado and 

Paulsen 2001; Wahid and Shabbir 2005). HT also exerts a negative influence on stomatal density, 

pore spaces and conductance of stomata, and all these changes have direct effect on water loss 

from plants (Sharma et al. 2014; Zhou et al. 2017). HT also reduces the RWC and total water 

absorption rate, which leads to serious reduction in final yield (Ashraf and Hafeez 2004).

Heat stress effects on nutrient uptake

High temperature stress reduces water and nutrient uptake, resulting in significant reduction of 

plant growth (Huang et al. 2012). Moreover, HT alters plant source-sink relationships, reduces the 

amount of hormones produced in roots, and affects plant nutrient concentration (Huang et al. 2008; 

Rennenberg et al. 2006).

Less research has been devoted to determine the effects of HS on roots than shoots, and past 

research has mostly focused on the effect of HS on root growth and carbon metabolism, especially 

respiration (Huang et al. 2008). Only a few authors studied how HS affects plant nutrient 

relationships (Bassirirad 2000; Huang et al. 2008; Rennenberg et al. 2006) and most of these 

investigations were performed to study the effects of HS on nutrient concentrations. Additionally, 

most of the past studies were conducted on the roots in response to chronic HS. However, the 
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response to abrupt HS that may differ from chronic HS in the uptake of nutrient by plant roots 

(Wahid et al. 2007), is still poorly understood. 

Heat stress often decreases the concentration of important nutrients in plants; sometimes it also 

reduces the total nutrient content in plants. However, the extent of these effects depends on specific 

nutrients and plant species. HS disrupts the enzymes involved in nutrient metabolism (e.g., nitrate 

and ammonium assimilation) and therefore, decreases nutrient uptake (Klimenko et al. 2006; 

Hungria et al. 2014). Additionally, HS decreases nutrient acquisition possibly due to reductions in 

root biomass, root hair surface, and nutrient uptake per unit root (Bravo and Urib 1981). HS 

reduces nutrient uptake per unit root area owing to depletion of labile carbon (non-structural 

carbohydrates). Moreover, HS also restricts the transport of carbohydrates from the shoots to roots 

and directly affects plant roots (Huang et al. 2008), decreasing production and functions of nutrient 

uptake proteins. In turn, the reduced activity of nutrient uptake proteins decreases nutrient uptake. 

However, the effect of HS on nutrient uptake proteins is still unclear and needs to be further 

explored in future (Huang et al. 2008). 

Heat stress effects on photosynthesis 

Photosynthesis is the most important process in plant physiology, and is also highly sensitive to 

HS (Crafts-Brandner et al. 2002). HT strongly influences the photosynthetic efficiency of C3 and 

C4 plants (Yang et al. 2006). Carbon metabolism in stroma and reactions taking place in the 

thylakoids are the primary activities affected by heat injury (Wang et al. 2009). HT results in major 

alterations in the chloroplast: disorganization of thylakoid, grana swelling and loss (Table 2) 

(Rodríguez et al. 2005). The activity of photo-system II significantly declines or stops under HS, 

in turn reducing the photosynthetic pigments (Marchand et al. 2005).
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High temperature also decreases leaf water content, conductance of stomata and inter-cellular CO2 

concentration (Greer et al. 2012). Moreover, stomata close under HS, which impairs 

photosynthesis and significantly affects the concentration of intercellular CO2 (Ashraf et al. 2004). 

HS also leads to loss of chlorophyll pigments owing to lipid peroxidation in membranes and 

chloroplasts (40/30 °C, day/night) (Table 2). HT substantially reduces the Fv/Fm ratio in 

fluorescence, which leads to significant reduction in photosynthesis (Mohammed et al. 2010). HT 

(38 °C) in soybean reduced the photosynthetic pigments, Fv/Fm ratio, and stomatal conductance 

(gs), leading to a reduction in the final production (Tan et al. 2011). Different authors also reported 

that HS reduced the rate of photosynthesis in rice (Hurkman et al. 2009) and grape vine (Vitis 

vinifera L.), owing to stomatal closure (Kepova et al. 2005). HS-induced reduction in 

photosynthesis is related to the reduction in soluble proteins, Rubisco binding protein (RBP), small 

and large sub-units of RBP (Table 2) in light and darkness (Sumesh et al. 2008). HS also reduces 

the activity of various enzymes (phosphate synthase, ADP-glucose pyrophosphorylase, and 

invertase), and therefore leads to reduction in the synthesis of starch and sucrose (Djanaguiraman 

et al. 2009). 

Table 2 has to be placed here

High temperature also affects plant water relations; i.e., it reduces the water potential, leaf area, 

and these factors lead to reduction in photosynthesis (Young et al. 2004). Additionally, under long 

HS the carbohydrate reservoirs are depleted, which is also responsible for reduction in 

photosynthesis (Djanaguiraman et al. 2009). Under HS, chlorophyll a and b are degraded at a faster 

pace (Table 3) (Karim et al. 1999), the degradation being accompanied by the production of ROS 

(Guo et al. 2006). HS alters the distribution of energy and the activities of various enzymes 

including Rubisco, thus changing the regeneration rate of RuBP by disrupting the electron 
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transport chain, and in-activating the oxygen evolving enzymes of PS-II (Salvucci and Crafts-

Brandner 2004). 

High temperature decreases photosynthesis, while increasing the transfer conductance of CO2 

towards the carboxylation sites. Moreover, gs and net photosynthesis (Pn) are strongly hampered 

by HS, because of decreasing activity of Rubisco (Morales et al. 2003). The high temperature also 

increases the catalytic activity of Rubisco. 

Nevertheless, lower affinity of Rubisco for CO2 and its dual nature as oxygenase counter the 

potential increase in Pn. In maize, for instance, Pn was inhibited above 38 °C, and the inhibition 

was stronger upon abrupt than gradual temperature increase (Morales et al. 2003). Generally, the 

photosynthesis rate significantly decreases while the rate of photo-respiration remarkably 

increases under HT, which is one of the most noticeable consequences of HS. Moreover, HT 

enzymatic inactivation and denaturation significantly increase, while the rate of bio-chemical 

reactions decreases, which also leads to reduction in photosynthesis (Nakamoto and Hiyama 

1999). Nonetheless, effect and magnitude of these changes vary significantly with species and 

genotype (McDonald and Paulsen 1997). The rising CO2 concentration will further increase the 

ambient temperature that will, in turn, significantly influence crop production and distribution of 

vegetable species in coming time. 

Table 3 has to be placed here 

Heat stress effects on assimilate partitioning 

Heat stress significantly reduces the source-sink activities, ultimately leading to serious reduction 

in plant growth and final production (Taiz and Zeiger 2006). Nonetheless, considerable disparities 

have been reported in assimilate partitioning under HS conditions (Yang et al. 2002). HS affects 
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plant source and sink relations by reducing the C assimilation and partitioning, and re-distribution 

of C and N in plants (Calderini et al. 2006). These variations negatively affect protein and starch 

metabolism in leaves, which are the premises for serious reductions in yield and quality (Yang et 

al. 2011). The single kernel weight, and total grain yield, depend on sustained Pn during grain 

filling, and re-translocation of assimilates from vegetative organs, as water soluble carbohydrates 

(WSC) stored in plant stem before grain filling (Fischer 2011). Therefore, genotypic variations for 

grain weight are associated with differences in photosynthesis and re-translocation of stored 

carbohydrates under HS conditions (Dreccer et al. 2009).

Under normal conditions, stem reservoirs contribute 30-40% to grain weight (Dreccer et al. 2009). 

However, under HS the contribution of stem stored carbohydrates increases up to 70% (Rebetzke 

et al. 2008). Likewise, C transport to plant apex was significantly reduced under HS in tomato 

(Dinar and Rudich 1985; Fahad et al. 2017). The loading of assimilates from the flag leaf is also 

disturbed under HS. Wheat showed optimum photosynthetic rates at 20-30 oC. The increase in 

temperature above 30 oC leads to significant reduction in photosynthesis and loading of assimilates 

from the flag leaf to the reproductive organs (Wardlaw 1974). HS reduces the displacement of 

water soluble carbohydrates from stem to grain, and results in a significant reduction in the final 

yield (Vignjevic et al. 2015). In conclusion, HS reduces the capabilities of source and sink, 

resulting in a substantial reduction in the final yield and quality.

Heat stress effects on respiration

Respiration significantly increases at increasing temperature, reaching a maximum at 40-50 ºC. 

However, above 50 ºC respiration considerably decreases owing to damage to respiratory 

mechanisms (Byrla et al. 2001). HS increases the respiratory carbon losses, reduces ATP 
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production and increases ROS production (Huang et al. 2012). The respiration in wheat flag leaf 

significantly increased under HS, leading to significant decline in photosynthesis and lower 

production (Almeselmani et al. 2012). HS negatively affects the CO2 and O2 solubility, and 

kinetics of Rubisco (Cossani and Reynolds 2012). HS significantly increases the O2 vs. CO2 

solubility in plant leaves, which substantially reduces the efficiency of CO2-concentrating 

mechanisms (Li and Liu 2007). Rubisco is the prominent enzyme that catalyzes photosynthesis 

and photo-respiration, whose rates depend on the respective carboxylase and oxygenase activities 

of this enzyme (Laing et al. 1974). At HT, the mesophyll concentration of CO2 is the major limiting 

factor to carboxylase activity. HS reduces the photo-synthetic efficiency owing to CO2 loss as a 

result of photo-respiration (Jordan and Ogren 1984). Under HS, the oxygenation takes over the 

carboxylation by the formation of phosphor-glycolate, which needs to be re-converted into 

phosphor-glycerate by CO2 loss. Moreover, increase in oxygenase activity of Rubisco significantly 

limits photo-synthesis in C3 plants by photo-respiration (Sharkey 1988). Additionally, HS reduces 

photosynthesis due to lower production of Rubisco, which is due to reduction in enzymatic 

activities and damages at the electron transport system in the PS-II (Salvucci and Crafts-Brandner 

2004b). Lastly, at HT, CO2 diffusion significantly decreases owing to increase in temperature 

sensitivity of photosynthesis, thus leading to increase in photo-respiration (Sun et al. 2013).

Heat stress induced oxidative damage 

Like other abiotic stresses, HS also results in the accumulation of unwanted and harmful ROS 

species, i.e., hydrogen peroxide (H2O2), hydroxyl radical (˙OH) and super oxide (˙O2
-), which are 

responsible for production of oxidative stress in plants (Asada 2006). ROS mainly originate from 
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reaction centers of PS-I and PS-II. However, other plant organelles, i.e., mitochondria and 

peroxisomes, contribute to ROS production (Soliman et al. 2011). 

A linear relationship has been found between PS-II maximum efficiency and ROS accumulation 

in plants, due to HT damage to photosystems leading to lower absorption of photons (Halliwell 

2006). Under HS conditions, when PS-I and PS-II are saturated by incoming photons, the photons 

in excess with respect to those required for CO2 assimilation become the source of ROS (Halliwell 

2006). Among ROS, ˙O2
- is produced by the photo-oxidation reaction (flavour-protein, redox 

cycling), through Mehler reaction in plant chloroplast, during the mitochondrial ETCs reactions 

and glyoxisomal photo-respiration, by NADPH oxidase in plasma membrane, xanthine oxidase 

and membrane polypeptide. Additionally, ˙OH is produced as the reaction of H2O2 with O2 and 

˙O2
- in photo inhibition transferring of electrons of PS-II in the chloroplasts (Savicka et al. 2010; 

Bavita et al. 2012).

The ROS cause various types of physiological disorders in plants. For instance, ˙OH radicals react 

with the photosynthetic pigments, proteins, lipids, DNA and even all cell constituents (Moller 

2007). ˙O2
- oxidizes proteins, unsaturates fatty acids and plant DNA (Karuppanapandian et al. 

2011). ROS also reduce the permeability of membranes, de-nature plant proteins and cause lipid 

per-oxidation (Camejo et al. 2006; Halliwell 2006). A significant reduction in photo-synthetic light 

reactions has been reported even under moderate HS, owing to increase in electron leakage from 

the thylakoid membranes as a results of ROS accumulation (Bavita et al. 2012; Savicka et al. 

2010). HS also increases leaf temperature, which in turn reduces the activities of enzymatic anti-

oxidants and considerably increases the malondialdehyde (MDA) contents in plant leaves 

(Hurkman et al. 2009; Mohammed and Tarpley 2010). The exposure of wheat seedlings to HS led 
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to significant increase in MDA at early growth stages; moreover, MDA contents were further 

increased during later growth stages (Miller et al. 2009). 

ROS also degrade and breakdown the polymeric proteins into soluble forms, resulting in early leaf 

senescence (Young et al. 2004). The prolonged high temperature also results in accretion of ROS 

at the outer surfaces of plant plasma membranes, in turn leading to depolarization of membranes 

(Qi et al. 2010) and activation of Ca-induced respiratory burst oxidase homolog D. Under such 

conditions, ROS accumulated in cells can activate programmed cell death (Qi et al. 2010). 

Heat stress effects on reproduction 

All the plant tissues and development stages are sensitive to HS. However, reproduction is most 

sensitive to HS and a few degree increase in temperature during flowering can significantly 

decrease the final yield (Lobell et al. 2011b). A brief HS period at the onset of the reproductive 

stage can reduce the floral buds and cause flower abortion. However, the extent of this depends on 

plans species and genotype (Sato et al. 2006). HS at the early reproductive stage results in no 

flower leading to no seed or fruit setting (Maheswari et al. 2012). HS also impairs meiosis in sex 

organs (male and female), and curbs germination of pollen, growth of pollen tube and viability of 

ovules, resulting in significant increase in sterility. Higher temperature at reproductive stage also 

decreases the number of pollen grains retained by the stigma, and endosperm and pro-embryo 

growth. All these factors together are responsible for increased sterility and consequent reduction 

in final yield (Cao et al. 2008).

Heat stress (33 °C) at plant heading in wheat reduced anther dehiscence and pollen fertility, leading 

to reduction in quantity of pollens on plant stigma and, consequently, decline in ovule fertilization 

and significant reduction in seed production (Ahamed et al. 2010). HT (> 35 °C) actually increased 
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sterility of pollen and reduced its germination and consequently the seed yield in maize (Suwa et 

al. 2010). Genotype variability within a species plays a role in sensitivity to HT (Hurkman et al. 

2009).

Additionally, HT causes a significant increase in ethylene production resulting in male sterility of 

pollen. The production of ethylene also inhibits the enzymes involved in sugar-starch metabolism, 

weakening the sink strength, i.e. constraining grain filling with the final result of grain sterility. 

HT at reproductive stages decreases ear length, spikelet and fertile floret numbers, and leads to 

reduction in grain yield (Prasad et al. 2008a). HS at flowering stage is considered more noxious 

that at grain filling stage (Zhang et al. 2013). HS also increases flower and fruit abortion and 

abscission, and thus leads to reduction in seed/fruit production (Tubiello et al. 2007; Tan et al. 

2011).

Morphological mechanisms of heat tolerance

Avoidance

Plants own various mechanisms enabling them to withstand HS under two time frames: short term 

avoidance or acclimation, and long term phenological and morphological changes. The short term 

mechanisms include leaf rolling or change in leaf position and lipidic membrane composition, and 

cooling as the result of transpiration. Long term morphological changes in response to HS include 

increased density of leaf stomata and hair, and larger vessels (Srivastava et al. 2012). Some crops 

mature earlier under HT, which leads to small yield losses and is an important escape mechanism 

in plant ecology (Adams et al. 2001). Plants growing in hot climates also have the ability to reduce 

light absorption thanks to small hairs on leaf blade that work as protective cover ensuring plant 

survival. Leaf rolling is another important adaption: plants roll leaf blade in parallel to sun rays, 
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thus reducing the absorption of solar radiations. Plants with smaller leaves more easily avoid the 

HS compared to plants with larger leaves. Small leaves disperse the heat to external environment 

more rapidly due to lower resistance of air boundary layer, compared to larger leaves. 

Plants have some other mechanisms, e.g., intensive transpiration that lowers leaf temperature up 

to 6-10 °C and therefore, prevents HS (Fitter and Hay 2002). HS also determines leaf rolling that 

is a way to increase water leaf use efficiency (Sarieva et al. 2010). Plants are highly sensitive to 

HS during the active growth stages. However, some selected plants as bulbous barley (Hordeum 

spp.) and cocksfoot (Dactylis glomerata L.) increase their resistance in summer while others as 

lucerne (Medicago sativa L.) and potato (Solanum tuberosum L.) show higher tolerance during 

winter dormancy (Fitter and Hay 2002). It has been reported that dormant plants become more 

resistant to HS than non-dormant plants on the arrival of HS. There is a close relationship between 

drought and HS, and the consequences of either stress on plants are difficult to distinguish. 

Therefore, plants must be adapted to avoid both heat and drought stress (Fitter and Hay 2002). 

Phenotypic flexibility

Plants also have some phenotypic flexibility under HS, which is also similar to that under drought 

stress. Generally, plants reduce their size, close stomata, reduce water loss, and increase the xylem 

vessels in roots and shoots (Anon et al. 2004). HS increases membrane permeability and damages 

mesophyll cells (Zhang et al. 2005). Some species also produce polymorphic leaves at the onset 

of HS, and decrease water loss owing to the bi-modal behaviour of stomata (Sayed 1996). Plants 

also undergo modifications at sub cellular levels under HS, as substantial changes in structural 

organization of thylakoids, which significantly affect photosynthesis (Karim et al. 1997). 
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Additionally, under HS mesophyll cells become round shaped, stroma lamellae swollen, vacuole 

contents clustered, and mitochondria get empty (Zhang et al. 2005). All these changes lead to 

antenna depletion of PS-II and therefore, reduce the activities of photosynthesis and respiration 

(Zhang et al. 2005). Changes in HS generally occur at both cellular and sub-cellular level, resulting 

in stunted growth and poor production. 

Phenological changes

Plants act remarkable phenological changes to withstand HS, and their sensitivity to HS depends 

on growth stages. However, this still depends on species and genotype, as in many other factors of 

HS (Howarth 2005). The development stage at which HS occurs determines the severity of the 

ensuing damage. However, it is still unclear if the detrimental effects of all HT episodes at all 

growth stages are cumulative or not (Wollenweber et al. 2003). All the vegetative as well as 

reproductive stages may be affected. HS during the vegetative stages undermines gas exchange 

activities, while at reproductive stages, a rapid arrival of HS leads to flower abortion and lower 

seed production. However, this effect is still variable among species (Young et al. 2004). Some 

plants have early heading, which is an advantage owing to a higher retention of green leaves at 

anthesis, resulting in lower yield loss (Tewolde et al. 2006). Consequently, it is imperative to detect 

growth stages and processes that are sensitive to HS, to determine the heat tolerance potential of 

plants. 

Tolerance mechanisms

Heat stress tolerance that refers to the ability of crop plants to grow and produce economically 

under HS, is a special plant trait. It varies among species, and even within the same plant organs 
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and tissues. Plants own various mechanisms ensuring their survival under HS. There are short term 

mechanisms, i.e., avoidance and acclimation, and long term evolutionary mechanisms. 

Plants have major tolerance mechanisms, i.e., ion transport, abundance of late embryogenesis 

proteins, presence of osmo-protectants, and anti-oxidant defense system (Rodríguez et al. 2005). 

Plants also change leaf orientation, perform intensive transpiration cooling, and change the lipid 

composition of membranes to ensure survival under HS (Rodríguez et al. 2005; Radin et al. 1994). 

Plant tissues show significant variations in their exposures and responses to HS (Queitsch et al. 

2000). Plants have ionic and osmotic adjustment, change membrane permeability in response to 

HS, protect and repair the proteins and cell membranes damaged by HS (Vinocur and Altman 

2005).

Physiological mechanisms of heat tolerance

Waters relations

Plants maintain a consistent water status under non-limiting water supply regardless of 

temperature; nonetheless, HT impairs plant ability to maintain tissue water status under limiting 

water supply (Mazorra et al. 2002). Insufficient water supply mostly occurs in field conditions; 

under these conditions HT reduces plant ability to maintain tissue water status (Simoes-Araujo et 

al. 2003). High temperature at night time reduced the leaf water potential of Lotus creticus (L.) 

plants grown under water limiting conditions (Anon et al. 2004). In sugarcane, leaf water potential 

changed considerably even under optimum water supply, indicating the influence of HS on the 

hydraulic conductance of roots (Wahid and Close 2007). Likewise, in tomato it was observed that 

HS leads to significant reduction in plant water relations and hydraulic conductance of roots 

(Morales et al. 2003). The maintenance of tissue water status during stress conditions upkeeps 
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physiological processes and ensures plant survival under HS. Nonetheless, HT during day time 

increases transpiration, induces water deficiency and disturbs plant physiological processes 

(Tsukaguchi et al. 2003). 

Osmolyte accumulation 

Plants accumulate a variety of low molecular mass compounds under HS in order to increase their 

survival. These low molecular weight substances are known as osmolytes (Sakamoto and Murata 

2002). Plants accumulate different osmolytes under high temperature, e.g., sugars, proline, 

ammonium and sulphonium compounds (Sairam and Tyagi 2004). The accumulation of osmolytes 

increases plant survival under stress conditions, by protecting the cellular structure, and is 

considered a central dogma in plant stress physiology (Hare et al. 1998). 

Glycine-betaine (GB) is an important osmolyte whose concentration increases under various 

abiotic stresses (Sakamoto and Murata 2002). However, GB synthesis varies among species and 

genotypes (Ashraf and Foolad 2007). For instance, a higher GB synthesis was observed in maize 

as compared to sugarcane (Wahid and Close 2007). Conversely, some plant species, e.g., rice, 

mustard (Sinapis spp.), tobacco (Nicotiana tobacum L.) and Arabidopsis thaliana (L.) Heynh. 

cannot synthesize GB naturally under stress conditions,. To close this gap, genetic engineering has 

introduced the bio-synthetic pathways for GB in GB-deficient plants (Sakamoto and Murata 2002; 

Quan et al. 2004). Plants also accumulate proline under HS conditions (Kavi-Kishore et al. 2005), 

and both GB and proline buffer the cellular redox potential under HT conditions (Wahid and Close 

2007). Likewise, sugars accumulate under HS, providing greater implication for HS tolerance 

(Wahid and Close 2007). HS disrupted the sugar metabolism and proline transport during 

reproductive stage, and thus reduced the fruit setting in tomato (Sato et al. 2006). In conclusion, 
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osmolytes perform significant roles in the deployment of HS tolerance, and their accumulation can 

be increased in plants through breeding approaches, genetic engineering and marker assisted 

selection (Ashraf and Foolad 2007).

Cell membrane thermostability

Heat stress substantially reduces membrane permeability and leads to significant alterations in 

photosynthesis and respiration. The sustained functions of cell membrane under HS are important 

for the process of photosynthesis and respiration (Blum 1988). HS augments kinetic energy and 

accelerates the movements of various molecules athwart the plant membranes that, consequently, 

lose the chemical bindings among their molecules. HS denatures proteins and increases the 

concentration of unsaturated fatty acids, and therefore, makes membranes more fluid and porous 

(Savchenko et al. 2002). Membrane biological functions and integrity are severely affected by HS 

that affects the structure (tertiary and quaternary) of membrane proteins and increases membrane 

permeability and electrolyte leakage. The increase in electrolyte leakage decreases membrane 

thermo-stability in different crop plants as barley (Hordeum vulgare L.), cotton (Gossypium spp.), 

sorghum and cowpea (Vigna unguiculata L.) (Wahid and Shabbir 2005; Wahid et al. 2007). The 

electrolyte leakage in plants varies among tissues, organs, growth stages, and depending on the 

growing season. For instance, in the maize crop, injure to plasma-lemma owing to heat was more 

severe in older than younger leaves (Karim et al. 1999). In sugarcane, the concentration of 

saturated fatty acids increased under HS, as consequence of elevated leaf temperatures reducing 

plant heat tolerance (Wahid et al. 2007). Likewise, in Arabidopsis it was reported that under HS 

the total lipid content of membrane decreased by more than 50%, and the ratio of unsaturated to 

saturated fatty acids decreased by 30% (Somerville and Browse 1991). Both circumstances are 
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conductive to reduction in heat tolerance. However, in some other species it was observed that 

lipid saturation cannot be correlated with heat tolerance, suggesting that other factors may be 

limiting for crop growth, rather than reduction in membrane stability. The relationships between 

crop yield and cell membrane thermo-stability (CMT) varies among species and even within the 

same species. For instance, a significant positive association was noticed between CMT and final 

grain yield in sorghum (Sullivan and Ross 1979), whereas no relationship was recorded between 

yield and CMT in wheat (Shanahan et al. 1990). 

Hormonal changes

Plant hormones play a significant role in plant behaviour under stress conditions. Cross-talk in 

hormonal signaling is the basis for plant ability to retrieve multiple inputs and respond 

appropriately. HS clearly influences hormone synthesis and degradation, and allocation to diverse 

plant organs (Maestri et al. 2002). Ethylene (C2H4) and Abscisic acid (ABA) are plant stress 

hormones that regulate various physiological processes acting as the signal molecules. It is 

generally acknowledged that under HS the level of ABA considerably increases. However, the 

level of ABA did not increase under HS in bentgrass (Agrostis stolonifera L.), although it was 

accumulated when plant recovered from the stress, which gives an evidence of its role during the 

late stress phase (Larkindale and Huang 2005). ABA changes gene expression, modulates the up 

and down regulations of different genes, and improves plant acclimation and adaptation under HS 

(Swamy and Smith 1999; Xiong et al. 2002). ABA also leads to induction of several heat shock 

proteins (HSP), which improve plant heat tolerance (Pareek et al. 1998; Rojas et al. 1999). 

Ethylene, too, regulates several processes in plants, i.e., germination, flowering, fruiting and plant 

tolerance to stress conditions. HS alters C2H4 concentration in plant species (Arshad and 
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Frankenberger 2002). For instance, the concentration of C2H4 was significantly inhibited in wheat 

at 35 °C; in soybean it was increased up to 40 °C, but it was severely inhibited when temperature 

rose to 45 °C. In kiwifruit, HT up to 35 °C increased the C2H4 concentration significantly, whereas 

temperature above 35 °C significantly inhibited C2H4 production (Antunes and Sfakiotakis 2000). 

In maize, it was noticed that C2H4 was maximum and minimum at the top and middle of the ear, 

respectively. A major role is, thereby, evinced for C2H4 in assimilate partitioning at grain filling 

(Fenglu et al. 1997). C2H4 is assumed to counter the inhibitory effects of HS by increasing the 

activities of mannanase, which improves the seed germination by breaking the endosperm 

(Nascimento et al. 2004).

Salicylic acid (SA) is an imperative hormone involved in plant response to HS. It participates in 

the signaling pathway referred to the systemic acquired resistance (SAR), and the hyper-sensitive 

responses (HR) (Kawano et al. 1998). SA induces HS tolerance through involvement in both Ca2+ 

homeostasis and antioxidant system (Wang and Li 2006b). 

Sulpho-salicylic acid (SSA) is the imitative of SA that removes a large part of H2O2 and increases 

plant ability to withstand HS. Cucumber seedlings treated with SSA showed an increase in catalase 

(CAT) activity that effectively removed H2O2 (Shi et al. 2006). The activities of glutathione 

peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) were also 

increased, but they did not effectively remove H2O2. The other derivatives of SA, i.e., cetyl-SA 

and methyl salicylate (MeSA) have additional functions (Dat et al. 1998). They also act as 

signaling molecules, and enhance HS tolerance in the holm oak by increasing xanthophyll de-

epoxidation, and the leaf concentrations of ascorbate, anti-oxidants and tocopherol (Wang and Li 

2006a).
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Gibberellins (GA) and cytokinins also have a substantial role in heat tolerance. For instance, 

exogenously applied GA impaired GA synthesis and significant improved heat tolerance in wheat 

(Vettakkorumakankav et al. 1999). In bentgrass, the level of cytokinins decreased in the roots and 

shoots in association with the reduction in dry matter production (Liu and Huang 2005). Moreover, 

Banowetz et al. (1999) found that the reduction in cytokinins owing to HS in wheat was responsible 

for the decrease in kernel filling and final dry weight (Banowetz et al. 1999). Brassinosteroids 

were also discovered as important hormones to increase HS tolerance in tomato and Brassica 

species, but not in cereals (Dhaubhadel et al. 1999). However, their role needs to be further 

explored.

Secondary metabolites

Secondary metabolites (SM) also play a significant role in plant survival under HS conditions. SM 

synthesis is based on intermediates of the primary carbon metabolism via shikimate, 

phenylpropanoid and mevalonate pathways (Wahid and Ghazanfar 2006). HS normally induces 

the production of different phenolic compounds, i.e., flavonoids and phenylpropanoids. HS 

increased the synthesis of phenolics and overpowered their oxidation, which increased the 

acclimation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) against HS (Rivero et 

al. 2001). Carotenoids are important SM protecting cell structures against different abiotic stresses 

(Wahid 2007). For instance, xanthophyll cycle plays an indispensable role in photo-protection; as 

zeaxanthin, it has a hydrophobic nature, and is located at the periphery of the light harvesting 

complex to protect the membrane lipids from the oxidative damages caused by HS (Horton 2002). 

It has been widely documented in the literature that carotenoids stabilize and protect the lipidic 
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component of thylakoid membranes (Velikova et al. 2005). The accumulation of xanthophyll 

decreases the fluidity of membranes and vulnerability to lipid per-oxidation (Havaux 1998).

Phenolics include different compounds, among which flavonoids, anthocyanins, lignin are most 

important SM playing several roles also related to HS tolerance (Chalker-Scott 2002; Wahid 

2007). The accumulation of phenolics under HT increases the amount of phenyl-ammonia-lyase 

(PAL) enzyme and the activities of peroxidase and polyphenol-lyase (Rivero et al. 2001). 

Anthocyanins are an important subclass of the flavonoids being modulated in plant tissues under 

HT. HT decreased their concentration, while low temperature increased their concentration in fruit 

and bud of aster (A. ericoides  A. pilosus) (Sachray et al. 2002). The lower anthocyanin 

concentration in plants under HT is associated with reduction in their synthesis and stability 

(Sachray et al. 2002). Conversely, a significant increase in the accumulation of anthocyanins was 

observed in few plants as sugarcane, where it induced HS tolerance (Wahid and Ghazanfar 2006). 

Anthocyanins also decreased the leaf water potential, which in turn increased the water uptake and 

reduced the transpirational losses under HT (Chalker-Scott 2002). 

Isoprenoids are also an important class of SM that are synthesized in plants by the mevalonate 

pathway (Taiz and Zeiger 2006). Isoprenoids are low molecular weight compounds, whose 

emission from plant leaves induces HS tolerance in the photosynthetic apparatus (Loreto et al. 

1998). Some other authors reported that bio-synthesis of isoprenoids is cost effective, and their 

bio-synthesis induces HS stress tolerance (Funk et al. 2004). Plants with good ability to emit high 

amounts of isoprenoids denote best photosynthetic performance under HS (Velikova and Loreto 

2005). Moreover, isoprenoids also protect the PS-II from ROS damages, and prevent the 

membrane from reacting with ROS, namely the singlet oxygen, by means of isoprene-conjugated 
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double bond (Velikova et al. 2005). In conclusion, plants accumulate a wide range of SM that 

ensure their survival under HS through various kinds of modifications. 

Molecular mechanisms of heat tolerance

Oxidative stress and antioxidants

Beside tissue dehydration, HS also triggers oxidative stress in plants, which is associated with the 

production of ROS. However, plants have different enzymatic and non-enzymatic anti-oxidant 

systems to scavenge these ROS (Sairam and Tyagi 2004). The activities of anti-oxidants 

considerably increase under HS, thus protecting plants from the damaging effects of HS (Babu and 

Devraj 2008).

For instance, increase in the expression of superoxide dismutase (SOD) under HS removes the 

H2O2, and affects the oxidation of toxic reductants, lignin bio-synthesis in cell wall, auxin 

metabolism, plant response to wounding and insect attack, and different respiratory processes 

(Scandalios 1993). Moreover, APX expression is associated to different physiological injuries 

caused by HS (Mazorra et al. 2002). The reduction in anti-oxidant activities under HS contributes 

to mitigate these injuries in plants (Fadzillah et al. 1996). The increase in activities of ascorbate 

and glutathione reduced the ROS in turfgrass species (Xu et al. 2006). 

Activity of anti-oxidant enzymes is sensitive to temperature, i.e., their activation occurs at varying 

temperature. However, Chakrabortty and Pradhan (2011) noted that CAT, APX and SOD activities 

showed an initial increase followed by a decline at temperature up to 50 °C, whereas peroxidase 

(POX) and GR activities considerably decreased across the range of temperatures from 20 to 50 

°C. Additionally, it was observed that activities of anti-oxidant enzymes was maximum at 35-40 

Page 27 of 93

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

28

°C, although this also depended upon crop HS tolerance, growing season and growth stages 

(Chakraborty and Pradhan 2011).

The increase in the synthesis of ascorbate (AsA) and glutathione (GSH) in turfgrass species 

reduced the production of ROS (Xu et al. 2006). Likewise, in the wheat crop it was noted that HS 

increased GSH accumulation and enhanced the enzymatic activities involved in GSH synthesis 

(Kocsy et al. 2002). Still in wheat, Balla et al. (2009) noticed a remarkable improvement in APX, 

CAT and glutathione S-transferase (GST) activities that induced HS tolerance by lowering ROS 

production. Almeselmani et al. (2009) noticed that anti-oxidants play a significant role associated 

with a considerable increase in CAT, APX, SOD, GR and POX activities at all growth stages in a 

HS tolerant wheat cultivar (C-306). Conversely, they noticed a significant reduction in these 

activities in a HS susceptible cultivar (PBW 343). Rani et al. (2013) noticed that activities of SOD, 

POD, CAT and APX were significantly higher in a tolerant cultivar of Indian mustard (Brassica 

juncea (L.) Czern.), compared to a susceptible cultivar. Moreover, they also reported that, under 

HS conditions, SOD and POX activities were decreased, whereas APX activity continuously 

increased from beginning to end in both cultivars. 

Kumar et al. (2012b) exposed maize and rice plants to HS, and noticed that the expression of 

enzymatic (CAT, APX and GR), and non-enzymatic anti-oxidants (GSH, AsA) was significantly 

higher in maize than rice. However, no variation was observed between maize and rice for SOD 

activity.  Since maize, a C4 plant, has an intrinsically higher tolerance to HS than rice, a C3 plant, 

these observations evidence the different sensitivity of these two groups to HS. Likewise, 

Hasanuzzaman et al. (2011) exposed wheat seedlings to HS (38 °C), and observed an increase in 

enzymatic and non-enzymatic anti-oxidant activity. In conclusion, an increase in temperature 

significantly increases the expression of anti-oxidants that induce HS tolerance in plants. However, 
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in tolerant cultivars a higher expression of anti-oxidants is shown, compared to heat susceptible 

cultivars.

Heat shock proteins

In response to HS, plants have the ability to produce heat shock protein (HSPs), which induce HS 

tolerance in plants and therefore, improve their performance under HS. The production of HPSs 

increases following sharp as well as gradual increases of temperature (Schoffl et al. 1999). The 

increase in HSPs under HS is a general occurrence in plants, humans and even bacteria (Vierling 

1991). In higher plants, HSPs are produced at any growth stage in response to HS. The majority 

of the HSPs are homologous among organisms (Vierling 1991). Three classes of HSPs have been 

identified on the basis of molecular weight: HSP-70 and HSP-90, and lower molecular weight 

proteins of 15-30 kDa. However, the proportions of the three classes can significantly vary among 

plant species. The HSP-70 and HSP-90 are expected to increase by 10 folds under HS, whereas 

the lower molecular weight proteins increase by 200 folds under HS (Feussner et al. 1997). 

Generally, HSPs are associated with specific cell structures, i.e., cell walls, chloroplasts, 

ribosomes, and mitochondria (Yang et al. 2006). Korotaeva et al. (2001) exposed rye (Secale 

cereale L.), wheat and maize seedlings to HS (42 °C). They noted that five lower molecular weight 

mitochondrial proteins (19, 20, 22, 23 and 28 kDa) were expressed in maize, but only one (20 kDa) 

was expressed in rye and wheat, indicating a higher heat tolerance in maize. Likewise, heat 

tolerance in maize showed an increase in the expression of HSPs, compared to heat susceptible 

lines (Moriarty et al. 2002). 

The expression of HSPs under HS protects the machinery of protein bio-synthesis 

(Miroshnichenko et al. 2005). HSPs also prevent protein denaturation caused by HS. It has been 
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reported that the state of aggregation and the structural conformations of small HSPs are crucial 

for their functions of heat tolerance in plants (Iba 2002). Small HSPs can gather into heat shock 

granules (HSGs) and subsequently dis-assemble, which is a prerequisite for plant survival under 

HS (Miroshnichenko et al. 2005).

Additionally, some other proteins have been identified in plants, in response to HS. HSP68 is a 

low molecular weight protein localized in cell mitochondria, whose expression has been reported 

in the barley, maize, tomato and soybean crop (Neumann et al. 1993). HSP101 is also an important 

HSP that promotes the renaturation of proteins under HS. The expression of HSP101 varies among 

plant tissues: in maize Young et al. (2001) noticed the maximum HSP101 expression in tassel, 

ears, embryo and endosperm, compared to root, leaf and floral region. There is a significant 

difference among plant species and genotypes for the production of HSPs (Wood et al. 1998). The 

accumulation of HSPs protects the cell apparatus from HS. In some plants, roots also synthesize 

HSPs that improve plant ability to cope with HS by ameliorating the working efficiency of roots 

(Nieto-Sotelo et al. 2002). 

The mechanisms underlying HS tolerance in plants are still unclear. Many authors have reported 

that HSPs ensure the stability and functioning of proteins under HS (Fig. 3). Moreover, HSPs also 

fold the de-natured proteins into proper shapes for their normal functioning (Bowen et al. 2002). 

HSPs also help protein displacement across compartments, and promote the transport of older 

proteins to sites of disposal inside the plant. HSPs also support protein translation and 

translocation, perform proteolysis and protein folding, and re-activate denatured proteins (Fig. 3) 

(Zhang et al. 2005). Moreover HSPs protect the PS-II from the oxidative stress (Neta-Sharir et al. 

2005), and participate in ATP dependent reactions for the unfolding of proteins, preventing their 
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denaturation (Iba 2002). Additionally, HSPs maintain membrane permeability and protect the PS-

II from adverse effects of HS (Barua et al. 2003).

Fig 3 has to be placed here 

Beside HSPs, plants synthesize other proteins as ubiquitin, cytosolic Cu/Zn-SOD and Mn-POD 

(Sun and Callis 1997), whose expression significantly increases HS tolerance: a significant 

improvement in the expression of ubiquitin was recorded in soybean under HS (Ortiz and Cardemil 

2001). Khanna-Chopra and Sabarinath (2004) noticed small fractions of Cu/Zn-SoD protecting 

plants from HS by maintaining the stability of chloroplasts. Late embryogenesis abundant (LEA) 

proteins are also important proteins produced under HS conditions. They protect the citrate 

synthase from desiccation under HS (Goyal et al. 2005). Majoul et al. (2003) noticed a significant 

increase in expression of 25 LEA proteins in wheat during late grain filling stage. Recently, some 

important lower molecular weight proteins, dehydrins, were identified in sugarcane, and their 

expression was significantly increased at HS onset (Wahid and Close 2007). 

Strategies to mitigate heat stress

Conventional breeding strategies 

Conventional breeding strategies based on genotype selection and inter-mating result in scarcity 

of genetic variation for characters that underwent domestication and selection (Gur and Zamir 

2004; McCouch 2004). Thus, improvement in crop performance under stress conditions needs 

extensive research to sort out the genetic variability in wild and cultivated plant species. 

Physiological and genetic inquiries provide a clear cut indication: genetic traits associated with 

abiotic stress tolerance are very complex, as they have a polygenic control and are highly sensitive 

to environmental conditions (Blum 1988). Moreover, HS tolerant genes and quantitative trait loci 
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(QTLs) must be explored within non-adapted genotypes and wild land races in order to improve 

HS tolerance in plants (Fernie et al. 2006). Impressive results have been reported in describing the 

genetic variation for HS. Additional efforts have been made to introduce heat tolerant genes in rice 

genotypes (Jiang-lin et al. 2011).

However, the quantification of tolerance in species results in serious problems. For instance, under 

field conditions direct selection is very difficult owing to uncontrolled environmental conditions 

significantly affecting the accuracy, precision and repetition of trials. Moreover, HT conditions 

cannot be granted in the field, and HS may occur or not. Since HS is a stage specific occurrence, 

HS tolerance at a specific growth stage cannot be correlated with that at another stage. Therefore, 

individual stages of plant growth must be evaluated for HS tolerance, and individual growth stages 

must also be properly evaluated to identify and characterize the genetic variation of tolerance 

components. Several circumstances as the low heritability and a wide network of minor and major 

QTLs undercut the possibilities of direct selection for improving crop behaviour under HS 

conditions (Manavalan et al. 2009).

Environmental and composite hurdles hinder the obtainment of lines with best performance under 

HS. Poor understanding of the inheritance of HS associated with poor availability of the QTLs for 

HS further constrain the progress in crop amelioration (Cossani and Reynolds 2012). The genetic 

tailoring of important physiological traits can be an effective strategy to incorporate the QTLs that 

determine multifaceted HS tolerance in crop plants (Fig. 4), in accordance with the scheme 

proposed for drought tolerance (Farooq et al. 2009a). Breeding strategies relying on physiological 

traits have a competitive edge over conventional breeding approaches (Reynolds and Trethown 

2007). Moreover, physiological approaches increase the profitability of added genes under adverse 

conditions (Reynolds and Trethown 2007). Breeding techniques must be aimed at various 
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physiological traits that are related to structure of plant canopy for HT acclimation (Table 4), delay 

in senescence, improved photosynthetic efficiency, reduced respiration, improved harvest index 

and reproductive traits (Cossani and Reynolds 2012; Gupta et al. 2012). Therefore, physiological 

trait-based breeding is an important strategy to develop HS tolerant cultivars without 

compromising yield (Table 4). 

Fig 4 has to be placed here 

Molecular and biotechnological approaches 

Molecular biology and molecular markers are the imperative field and techniques, respectively, to 

identify HS related QTLs (Maestri et al. 2002). Biotechnology played a significant role, recently, 

in identifying heat tolerant genes in crops including tomato and maize, where different genes were 

actually identified to be responsible for HSP synthesis (Momcilovic and Ristic 2007). Moreover, 

HS tolerance in plants can be regulated by variations in the activities of transcription and 

translation. Transcription is necessary during the stress period in order to support the translational 

activities required (Gallie and Pitto 1996). Generally, such activities in plants change quickly 

during seed germination, and similarly, during the heat and drought stress (Gallie et al. 1998).

Two biotechnological strategies are generally used to improve HS tolerance in plants: genetic 

transformation, and marker assisted selection (MAS) (Fig. 4). Both techniques have significantly 

contributed to understanding the genetic and bio-chemical bases of plant HS tolerance, as premise 

for the development of HS tolerant genotypes (Fig. 4). MAS is an imperative technique to improve 

HS tolerance in plants owing to complexity of HS, and difficulties in phenotypic selection for HS 

tolerance (Foolad 2005). However, the use of MAS implies the identification of proper genetic 

markers that are linked with QTLs/genes responsible for HS tolerance at whole plant or individual 
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component level. Various genetic markers linked with the different abiotic stresses have been 

identified in several crops in the recent past. Use of this technology has substantially identified 

and characterized numerous QTLs with excellent impacts on the HS at diverse plant growth stages 

(Foolad 2005). More recent techniques, i.e., gene expression and genetic transformation have 

fostered a well understanding of bio-chemical and genetic bases of plant HS tolerance, as premise 

for breeding genotypes with stronger tolerance to HS. The changes in gene expression and 

production of targeted genes, proteins and different enzymes with the help of transgenic techniques 

have led to increases in HS tolerance in diverse plant species (Zhang et al. 2001; Rontein et al. 

2002). In conclusion, biotechnological approaches are promising in view of developing HS 

tolerant cultivars. However, more research should be conducted in this field to understand 

physiological, molecular and genetic basis to develop cultivars with improved abilities to cope 

with the HS. 

Table 4 has to be placed here 

Omics approaches in developing heat stress tolerance

Omics are the newly developed techniques providing an opportunity to identify translational, 

transcriptional and post translational mechanisms, and the signaling pathways that appreciably 

regulate plants responses to HS (Hasanuzzaman et al. 2013). Omics also help in systematic 

examining and determining the correlations between the variations in the genomes, micromes, and 

proteomes of different plants in response to HT. Plenty of genes playing potential roles against HS 

have been identified using gene expression and genetic screens (Yeh et al. 2012). 

Plants have the ability to regulate the post-transcription gene expression with the aid of non-proteic 

RNA, also called microRNAs (Chinnusamy et al. 2007). MicroRNAs play an important role in 
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micromics studies, helping to understand the mechanisms underlying HS tolerance in plants. 

Moreover, different microRNAs have been identified, which play an important role in plant 

accumulation of osmolytes in response to HS. MicroRNAs have different roles in plants; for 

example, stress down-regulated micro-RNA leads to accumulation of targeted RNAs and 

contributes to HS tolerance in plants, whereas stress up-regulated microRNA fails to target the 

specific RNAs and does not contribute to heat tolerance.

Moreover, the proper understanding of microRNA roles in cell tolerance, transcriptome 

homeostasis and developmental plasticity will help genetic engineering to develop HS tolerant 

cultivars. Microarray is a recently developed, important tool for analysis of the expression profiles 

of different genes induced by HS (Yeh et al. 2012; Liu et al. 2011). For example, transcripts of 

170 cDANs from drought stressed plants with and without HS was reported in tobacco (Rizhsky 

et al. 2002). Many genes have been shown to be up regulated by a combination of heat and drought, 

not by either factor. Microarray investigations also increase acquaintance of different functions 

associated with HS tolerance. Recently, Rizhsky et al. (2004) investigated the genome array from 

Arabidopsis to study the transcript changes in response to HS, drought stress, and the two stresses 

combined. They noticed a 262% increase in transcript response to HS. Moreover, Penueli et al. 

(2003), with the help of microarrays noticed that HSPs are also expressed under other stresses, 

although expression of HSP ensues as consequence of HS. All these explanations suggest that 

omics approaches can be promising to develop genotypes with HS tolerance.

Planting time

Planting time is a non-monetary management option to get optimum yields under different HS 

conditions. The selection of suitable planting/sowing time avoids the HT during later growth 
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stages, i.e., anthesis and grain filling, which improves crop yield under HS. Moreover, crop growth 

and development vary with the sowing time, and selection of suitable sowing times is an important 

approach to get maximum yield under such adverse conditions (Radmehr et al. 2003; Turner 2004). 

Different authors reported maximum yield of wheat with early sowing, whereas later sowing leads 

to significant yield reduction owing to HS at later growth stages (Bassu et al. 2009; Bannayan et 

al. 2013). Delayed sowing reduces crop yield by negatively affecting crop yield components. In 

fact, delayed sowing leads to production of kernels with lower weight, lower productive tillers and 

thousand grain weight (Radmehr et al. 2003). Therefore, knowledge of proper sowing time in a 

specific area facing HT conditions is critical to achieve a good yield (Ortiz-Monasterio et al. 1994). 

Late sown crops face HT during the flowering and grain filling stages, which results in significant 

reduction of the final yield due to pollen sterility and lower grain filling (Farré et al. 2002; 

Robertson and Holland 2004). Moreover, late sowing also decreases the growth period and leaf 

area duration, resulting in rapid maturation (Ozer 2003). The increase in temperature during the 

late stages leads to different effects on seed quality and vigor. For instance, late sown soybean 

produced seeds with lower protein and oil contents, and seeds had less vigor compared to seeds 

obtained from the crop sown at optimum date. 

Heat stress substantially reduces the rate of photosynthesis and increases ethylene production and 

therefore, triggers leaf senescence (Djanaguiraman and Prasad 2010). Proper sowing time allows 

plants to enjoy optimum weather conditions in view of maximum yield potential. Both sowing too 

early and too late can have devastating impacts on crop growth and productivity (Uzun et al. 2009). 

Likewise, late sown crops usually face the conditions of HT and high evapotranspiration during 

the reproductive stages, resulting in both heat and drought stress (Yau 2007). Therefore, to achieve 

the maximum yield potential crops should be sown at optimum time to avoid HT during later 

Page 36 of 93

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

37

growth stages; this strategy would significantly improve crop yield under the rising temperature 

scenario (Dordas et al. 2008; Nagarajan et al. 2010). 

Nutrient management 

Mineral nutrients play a significant role in final production. However, insufficient and unhinged 

supply of main nutrients, together with poor soil fertility, decrease crop production globally. It has 

been reported that more than 60% soils worldwide are nutrient deficient (Cakmak 2002). 

Therefore, adequate nutrient availability is necessary to achieve good yields. Optimum availability 

of nutrients maintains plant integrity by sustaining several physiological functions. N and Mg are 

important nutrients needed for the process of photosynthesis; P is a key component of nucleic 

acids, and required for energy production, while K is required for stomatal regulation and the 

activation of enzymes (Waraich et al. 2011; Hassan et al. 2017). Various authors have reported the 

beneficial roles of various nutrients against abiotic stresses; among them, Si and K are credited to 

improve crop salinity tolerance (Munns 2005; Tahir et al. 2011).

N plays an imperative role in carbon metabolism and utilization of absorbed light energy (Huang 

et al. 2004). However, N deficient plants feature an excess of unusable energy leading to oxidative 

damage. Moreover, N deficiency leads to lipid peroxidation under HS conditions (Huang et al. 

2004). K deficiency reduces CO2 fixation and impairs the partitioning and use of assimilates. Such 

changes lead to excess of photosynthetic electrons, in turn stimulating ROS production (Waraich 

et al. 2011). Mg is also an important nutrient for plants; small changes in Mg concentration affect 

chloroplast enzymes and lead to alteration in the photosynthetic process (Shaul 2002). Also Mg 

deficiency is shown to considerably decrease photosynthesis in plants under stress conditions 

(Hermans and Verbruggen 2005). Boron is an important micro-nutrient that substantially improves 
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the activity of the anti-oxidant system and alleviates the toxic effects of ROS produced by HS 

(Waraich et al. 2011). Mn also alleviates the adverse impact of HT by improved rate of 

photosynthesis and N metabolism in plants (Waraich et al. 2012). ROS are produced under both 

high and low temperatures conditions, and they have devastating impacts on plants (Srivalli and 

Khanna-Chopra 2004). Likewise, Selenium (Se) plays a structural role in GPX synthesis and 

therefore, protects plants from the negative effects of ROS (Lobanov et al. 2008). Being an 

important micronutrient, Zn substantially maintains membrane permeability, and optimum Zn 

supply protects plants from devastating impacts of HS (Alison and McDonald 2010). Ca is also 

required for activity of anti-oxidant enzymes (Jiang and Haung 2001); under HT, Ca requirement 

significantly increases to mitigate the negative effects of HS (Kleinhenz and Palta 2002). All these 

explanations suggest that adequate mineral nutrition is mandatory to maintain plant performance 

under stress in view of ensuring a good production. 

Seed priming

Seed priming (SP) is a promising and economical approach being used globally to improve crop 

stand establishment (Farooq et al. 2009b). SP substantially improves seed germination, seedling 

emergence, crop stand and growth. SP using CaCl2 and KCl significantly improves growth, dry 

matter production and crop yield components (Farooq et al. 2006). Seed priming of normal and 

low vigor seeds has been shown to improve root length, and root and shoot growth (Kausar et al. 

2009; Moosavi et al. 2009). 

Seed priming with various agents also improves crop performances under abiotic stresses 

including HS, drought and low temperate stress (Farooq et al. 2008). Likewise, SP led to optimum 

germination, better growth and early flowering, and resulted in maximum production under semi-
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arid conditions in maize, rice and chickpea (Cicer arietinum L.) (Harris et al. 2001). SP led to early 

flowering (8-10 days), maturity (9-10 days), and reduced chances of HS occurrence at flowering, 

resulting in maximum yield of rice and wheat (Harris et al. 1999; Sattar et al. 2010). 

Tomato seeds primed before sowing showed improved osmotic adjustment, stomatal conductance, 

plant growth and development under HT conditions (Morales et al. 2003). Similarly, the leaves of 

cool-season turfgrass species showed a higher membrane stability and lower lipid peroxidation 

under HS conditions with primed vs. unprimed seed (Xu et al. 2006). In another study, Wahid and 

Shabbir (2005) found that barley seeds primed with glycine-betaine (GB) under HS had a lower 

membrane damage and better photosynthetic rate, osmotic adjustment, root and shoot dry biomass 

as compared to unprimed seeds. 

Seed priming enhanced cell division and growth of apical meristems, resulting in vigorous wheat 

growth (Shakirova et al. 2003). SP with different substances prevents the photosynthetic system 

from damages determined by HS, via improving the activities of the anti-oxidant system (Ananieva 

et al. 2004; Hui-Jie et al. 2011). Moreover, seed priming with Calpurnia aurea (Ait.) Benth. leaf 

extract neutralized the free radicals under HS conditions, increasing the concentration of 

photosynthetic pigments (Adedapo et al. 2008). Seed priming also maintains higher cell membrane 

stability, helping plants to maintain the water potential under HT conditions (Mahboob et al. 2018). 

Seed priming also improves the production of different metabolites (proline, GB), which maintain 

osmotic adjustment, relative water content, and stabilize the HSPs to secure the photosynthetic 

system (Ahmad and Hasan 2011; Wang et al. 2014). In addition, GB production protects Rubisco 

activase near thylakoids, preventing Rubisco inactivation owing to HT (Allakhverdiev et al. 2008). 

Additionally, SP substantially increases sugar concentration under HS (Wahid et al. 2007). The 

increased accumulation of sugars mitigates the damaging effects of HS by preserving the water 
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balance and osmotic adjustment, and by protecting the cellular structures (Farooq et al. 2008). 

Seed priming also favours the bio-synthesis of phenolics (Mahboob et al. 2018), which have the 

ability to act as hydrogen donors by detoxifying ROS in the stabilization of membranes (Rice-

Evans 2001).

Spray of osmo-protectants

Osmo-protectants have been recently identified as important molecules that have beneficial effects 

on plants subjected to HS, as they substantially improve plant growth and the activity of anti-

oxidants under HS conditions (Hasanuzzaman et al. 2011). In a study conducted on sugarcane, 

Rasheed et al. (2011) found that exogenously applied GB (20 mM) and proline (20mM) improved 

various physiological processes and anatomical features in heat stressed plants. They also noticed 

that application of GB and proline increased the concentration of K+, Ca2+, proline and sugar, 

therefore reducing the negative impacts of HS by improving membrane stability and activity of 

the anti-oxidant system. In another study, Kaushal et al. (2011) noticed that exogenously applied 

proline protects various enzymes of carbon metabolism and anti-oxidant systems, which are the 

basis for HS tolerance in chickpea. They also found that exogenous proline results in lower 

membrane injury, improved water potential and chlorophyll content under HS. Moreover, Kumar 

et al. (2012) reported that exogenously applied proline and GB upgrade the growth and yield of 

chickpea under HS. Likewise, Chhabra et al. (2009) noted that application of phyto-hormones 

induces heat tolerance in chickpea by improving anti-oxidant activity and membrane stability.

Salicylic acid (SA) is an important osmo-protectant that significantly improves crop performance 

under HS. Wang and Li (2006) found that SA spray decreases electrolyte leakage, increases the 

activity of anti-oxidant systems and therefore, induces HS tolerance in grapevine. Similarly, SA 
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induced heat tolerance in grapevine by reducing the effects of HS on PS-II, and maintaining the 

activity of photosynthesis and Rubisco under HS (Wang et al. 2010).

Kumar et al. (2012c) studied the response of ABA on growth of chickpea seedlings under HS. 

They found that exogenously applied ABA improves plant growth by increasing the concentration 

of endogenous ABA. Similarly, these authors studied the effect of variable concentrations of 24-

epibrassinolide (24-EBL) on mustard behaviour under HS conditions: the exogenously applied 24-

EBL induced HS tolerance in mustard by improving the activities of the anti-oxidant system. Nitric 

oxide (NO) is an important compound involved in various plant physiological processes, and 

improves crop performance against the HS (Waraich et al. 2012). The exogenously applied NO 

significantly alleviated the HS by decreasing ion leakage, and improving the activities of different 

anti-oxidant enzymes (Song et al. 2006).

Polyamines (PAs) are another group of lower molecular weight compounds found in plants, 

animals and bacteria (Alcázar et al. 2006). PAs significantly accumulate in plants under HS and 

improve plant performance by increasing membrane stability and anti-oxidant enzyme activity 

(Hussain et al. 2011). PAs regulate the photosynthetic apparatus, maintain membrane stability and 

improve the photosynthetic efficiency under HS (Kusano et al. 2007). PAs also influence the 

synthesis of HSPs that maintain cell integrity and membrane stability under HS (Königshofer et 

al. 2002).  

Hitherto, selenium is not considered an essential element for plants. However, it has proved his 

role as relevant osmo-protectant under various stress conditions including HS. Djanaguiraman et 

al. (2010) studied the role of Se on plant physiological activities, yield and its components in 

sorghum under HS (40 °C). They noticed that HS substantially reduces the chlorophyll contents, 

photosynthetic rate and activity of the anti- oxidant system. The reduction in activities of the anti-
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oxidant system resulted in membrane damage and led to electrolyte leakage owing to production 

of ROS. However, they noticed that application of Se improves membrane permeability and 

activities of anti-oxidant system, and therefore, improves yield and its components under HS 

conditions. In conclusion, osmo-protectants improve the activities of the anti-oxidant system, 

photosynthetic efficiency, membrane permeability, and reduce the production of ROS. This all 

results in improved crop performance under HS conditions.

Bacterial seed treatment

The use of biological agents including bacteria and fungi could determine improved HS tolerance 

in crops (Raaijmakers et al. 2009). Plant growth promoting rhizo-bacteria (PGPR) exert beneficial 

effects on growth under HS conditions (Nain et al. 2010). Seed inoculation with rhizo-bacteria 

substantially increased HS tolerance in the wheat crop (Yang et al. 2009; Anderson and Habiger 

2012). Likewise, in another study Abd-El-Daim et al. (2014) reported that seed treatments with 

Bacillus spp. and Azospirillum spp. improve the tolerance against the HS by reducing the 

production of ROS. Hitherto, a few work have been done to explore the effects of microbes to 

improve HS tolerance in plants. More studies need to be conducted to determine the effects of 

biological agents against HS, and the mechanisms lying behind HS alleviation through microbial 

treatments.

Soil moisture conservation

Soil moisture conservation is an important practice that could be viable for plant production under 

HS conditions. A continuous water supply is essential to sustain the duration and rate of grain 

filling, and final grain size. Soil moisture can be conserved through different ways as mulching 
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that is an imperative technique to maintain the moisture and thermal regime in the soil system. 

Straw mulching significantly saves soil moisture by reducing evaporation (Chen et al. 2007; Glab 

and Kulig 2008), ensuring higher productions under HS and water limited conditions (Chakraborty 

et al. 2008). Moreover, organic mulch saves soil moisture and improves water and nitrogen use 

efficiency, i.e. the overall plant performance (Singh et al. 2011). 

Water management

Heat stress is generally associated with water scarcity. Therefore, water management is crucial to 

improve crop production under the HS. It has been observed that plants can easily cope with HS 

as long as they can transpire easily. Moreover, many field crops can easily withstand HT (up to 40 

°C) with sufficient water supply, whereas insufficient water supply dehydrates plant leaves and 

leads to substantial reduction in the final yield. The reasons for the lower production at high 

temperature lies in the fact that water stressed plants try to save water by closing their stomata; as 

a result, evaporative cooling considerably diminishes, and without cooling, leaf temperature 

reaches up to 50 °C. At such HT, plant physiological processes are significant curbed, and all these 

changes lead to lower production. 

Therefore, irrigation scheduling and water application by appropriate irrigation methods can be 

assumed as the good practice for water management. Irrigation scheduling according to the critical 

growth stages, water availability and environmental conditions enable to achieve the maximum 

production with additional benefits of mitigating the negative effects of HS. When water supply is 

limited, crop irrigation should be applied at an IW/CPE (irrigation water/cumulative pan 

evaporation) ratio of 0.75, whereas, with unlimited water supply this may be increased up to 1.2 

from tiller to flowering in wheat to get maximum crop yield (Chaudhary and Kumar 1980). The 

Page 43 of 93

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

44

irrigation control system (ICS) based on the reference crop evapotranspiration to schedule 

irrigation clearly influences the crop yield and yield traits, as compared to the intelligent irrigation 

system (IIS), which utilizes evapotranspiration models based on different sensors to measure actual 

weather conditions, i.e., wind speed, rainfall, radiation and temperature, and calculates 

evapotranspiration automatically (Al-Ghobari et al. 2013). Similarly, the application of irrigation 

water can play a significant role in mitigating HS. However, all this depends upon the availability 

of water. As the water resources are continuously being limited globally, sometimes full irrigation 

becomes impossible. Therefore, the irrigation schedule based on water availability and critical crop 

stages can determine a significant effect on the final production under limited water supply (Zhang 

et al. 2002; Tahar et al. 2011). In conclusion, irrigation scheduling based on critical growth stage, 

efficient irrigation method, supply of extra amount of water (depending on water availability), and 

application of irrigation based on soil moisture improves crop productivity by mitigating the 

effects of HS.

Conclusions and future prospects

Heat stress is an incumbent catastrophe prone to curb agricultural production throughout the globe. 

Plants show a wide array of responses to HS, consisting in substantial changes in growth, 

morphology and functioning. Overall, HS has a potentially devastating impact on plant growth and 

development. However, reproductive growth is the major phase being affected by HS. Thus, the 

occurrence of HS during the reproductive stages (anthesis - seed filling) determines the most 

serious losses in final production. Additionally, HS causes noticeable impacts of different nature, 

including oxidative stress, damaged photosynthetic machinery, reduction in photosynthesis, ATP 

production and membrane permeability. 
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In contrast to this, a wide range of morphological, physiological and molecular mechanisms enable 

plant survival under HS. The physiological and molecular mechanisms are the imperative ones, 

because they can help the breeders to develop genotypes with superior heat tolerance. At present, 

the physiological mechanisms of HS are quite well understood, but deeper insights are needed in 

several fields, especially to better understand the physiological basis of assimilate partitioning 

from source to sink. The need for additional studies is also envisaged concerning the response of 

plant roots to HS, involving root-shoot signaling and consequent effects on water and nutrient 

uptake.

One of the major motives for the inscrutable nature of HS tolerance in plants is the dismemberment 

of a narrow range of genetic pools that do not provide sufficient information to explore HS 

tolerance in major world crops as wheat, rice, maize, cotton and soybean. Therefore, it is necessary 

to assess and test the wild relatives, and the accessions and genetic materials having strong 

tolerance against HS. Modern technologies, i.e., genetic engineering, molecular markers, 

genomics, QTLs appreciablly contribute to understand complex traits in plants. However, there is 

a wide room for further improvements. As the genotype  environment interactions are still 

modestly understood, candidate QTLs identified in a specific background may not always perform 

well in a different background. Similarly, the transgenic plants developed for HS tolerance may 

not perform well under field conditions, or their field performance is unpredictable. However, 

application of research findings requires further validation of developed genetic materials in 

farmers’ fields. Moreover, climate change models that differ geographically will also help the 

breeders to identify and develop HS tolerant genotypes for specific environments. Furthermore, 

plant performance under HS can be improved by proper water and nutrient management, and foliar 

application of osmo-protectants. 
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Microbial seed treatments can also play a significant role in the reduction of HS negative effects. 

However, future studies are direly needed to understand the mechanisms lying behind heat 

tolerance in plants. All these efforts will surely help to mitigate the negative effects of HS, and 

contribute to improved plant productivity and food security under the current scenarios of climate 

change and global warming. 
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Table 1

Wheat

(T aestivum L.) 

Rice

(O. sativa L.) 

Maize

(Z. mays L.) 

Soybean

(G. max (L.) Merr.)

Country Reduction Country Reduction Country Reduction Country Reduction

USA >4% China >1% USA >9% USA >6%

China >2% India >5% China >7% China >2%

France >5% Vietnam >3% France >1% Paraguay >3%

Russia >7% Indonesia >1% Brazil >4% Brazil >4%

India >8% Bangladesh >2% India >4% Argentina >0.5%

(Zhao et al. 2017)
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Table 2

Crop Temperature Effects Reference 

Lentil

(Lens culinaris 

Medik.)

30 °C Reduction in membrane permeability, 

rate of photosynthesis and Rubisco 

activity, and increase in stomatal 

conductance

Sehgal et al. 

2017

Olive 

(Olea europaea L.)

40 °C Reduction in activities of Rubisco, 

stomatal conductance and carbon 

assimilation efficiency 

Haworth et al. 

2018

Wild barley

(Hordeum vulgare 

L.)

42 °C Inhibition of functionality and quantum 

efficiency of PS-II, and reduction in 

photo-synthetic rate 

Jedmowski et al. 

2015 

Poplar

(Populus simonii 

Carrière)

42 °C Reduction in photosynthetic and 

transpiration rate, in water use 

efficiency, and decrease in membrane 

permeability 

Song et al. 2014 

Citron

(Citurs limon (L.) 

Osbek)

45 °C Reduction in photosynthetic rate, CO2 

assimilation. Alterations in chloroplast, 

matrix zone expanding and loosing of 

lamella structure 

Chen et al. 2014

Pea

(Pisum sativum L.)

50 °C More than 30% reduction in malate 

inhibited PEPC activity

Chinthapalli et 

al. 2003 

Maize

(Zea mays L.)

45 °C Complete inactivation of Rubisco and 

substantial reduction in photosynthesis 

and malate-inhibited PEPC activity

Crafts and 

Salvucci 2002

Wheat

(Triticum aestivum 

L.)

45 °C Suppressed synthesis of some proteins, 

loss of the normal thylakoid structure, 

extremely convoluted membranes. 

Satpathy and 

Mohanty 2000

Cotton

(Gossypium 

hirsutum L.)

40 °C Reduced activation of Rubisco Feller et al. 1998
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Table 3
Temperature Crop Effects Reference

42 °C Mung bean
(Vigna radiata L.)

Increase in ROS lipid peroxidation, H2O2 
and proline content; reduction in 
chlorophyll and relative water content 

Nahar et al. 2015

40 °C Maize
(Z. mays L.)

Reduction in biomass of maize plant, 
decrease in concentration of chlorophyll a, 
b and carotenoids, decrease in RWC 

Zhu et al. 2011

40 °C Potato
(Solanum 
tuberosum L.)

Reduction in photosynthetic rate, 
chlorophyll and carotenoid content, 
decrease in stomatal conductance

Aien et al. 2011

45 °C Wheat
(Triticum 
aestivum L.)

Reduction in chlorophyll and 
photosynthetic pigment content, decrease 
in protein synthesis

 Efeoglu and 
Serpil 2009

33 °C Rice
(Oryza sativa L.)

Reduction in chlorophyll content, PS-II 
activity, and in grain content of starch and 
its amylose component

Zhong-Hua et al. 
2009

40 °C Sugarcane
(Saccharum 
officinarum L.)

Reduction in leaf water potential, relative 
growth rate, increase in the level of 
anthocyanins and soluble phenolics, 
production of ROS lipid peroxidation and 
damage of chloroplast membranes

Wahid and Close 
2007

38 °C Pea
(Pisum sativum 
L.)

Reduction in chlorophyll a, b and total 
carotenoid contents, Increase in 
chlorophyll florescence ratio, reduction in 
chlorophyll a, b protein pigments  

 Georgieva and 
Lichtenthale 
2006

45 °C Tomato
(Lycopersicon 
esculentum L.)

Reduction in CO2 assimilation rate, 
reduction in chlorophyll to carotenoid 
ratio

Camejo et al. 
2005

40 °C Cotton Restriction in photosynthesis, 
enhancement of photorespiration affecting 

Wise et al. 2004
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(Gossypium 

barbadense L.)

the photosynthetic apparatus, and 
reduction in mesophyll conductance

50 °C Maize
(Z. mays L.)

Reduction in PS-II activity, 
photosynthetic rate and chlorophyll 
contents

Sinsawat et al. 
2004

Page 86 of 93

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Table 4

Trait Source

Membrane stability Kumar et al. 2012a

Plant stay-green character Kumar et al. 2010

Leaf with waxy cuticle Richards 1996

Improved stomata conductance and photosynthetic rate Nagarajan et al. 2010

Better filling duration and fruit setting Fahad et al. 2017 

Grain yield  Yang et al. 2002
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Figure 1

Occurrence of HS in plants
i) Increase in soil and air 
temperature
ii) Reduction in soil moisture
iii) Changes in soil physical 
properties and plant canopy 
properties
iv) Reduction in photosynthesis 

Plant response to HS 
i) Loss of turgor
ii) Poor germination and stand 
establishment 
iii) Leaf senescence 
iv) Tissue dehydration
v) Increase in pollen sterility
vi) Poor seed setting
vii) Reduction in grain growth 

Adaptation to HS 
i) Growing HS tolerant 
cultivars
ii) Changes in sowing time
iii) Proper nutrient and 
irrigation management 
iv) Seed priming and spray of 
osmo-protectants 
v) Anti-oxidant defense 
vi) Transpiration cooling 

Page 89 of 93

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 2
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Figure 3
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Figure 4
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Figures Caption

Fig. 1: Main effects of heat stress (HS) on plant growth, physiological and bio-chemical processes, 

and yield related factors. 

Fig. 2: Effects of heat stress (HS) occurrence in farm fields, and adaptation mechanisms.

Fig. 3: Mechanisms of heat stress (HS) tolerance induced by heat stress proteins (HSPs) in plants. 

HSPs prevent protein denaturation under HS, and protect the machinery of protein synthesis. HSPs 

also favour protein transport across the membranes and organelles, and facilitate the proteolytic 

degradation of unstable proteins. Moreover, HSPs unfold the denatured proteins, fold the newly 

synthesized proteins into proper shape, aggregation and disaggregation under HS, and thus 

improve plant ability to cope with HS conditions. 

Fig. 4: Strategies involved in the development of heat stress (HS) tolerant genotypes, in 

accordance with the scheme for drought tolerance genotypes (Farooq et al. 2009a). The first step 

is the identification and selection of HS tolerance in cultivars. Afterwards, the selected genotypes 

are analyzed for HS tolerance, and genetic material is developed for further analysis. In the next 

step, gene mapping and QTL analysis are performed. The major identified genes and QTLs are 

analyzed using a large population, in view of gene cloning. Then, cloned genes bearing HS 

tolerance are transferred into different genotypes. Marker assisted selection is also used to develop 

cultivars having genes and QTLs for HS tolerance. 
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