Table of Contents

Scheme S1. Synthesis of Boc-L-DOPA-OMe 1
Scheme S2. Synthesis of Boc ₂ -L-DOPA-OMe <i>m</i> -2 + <i>p</i> -2S2
Scheme S3. Synthesis of Boc ₃ -L-DOPA-OMe 3S2
Scheme S4. Synthesis of Boc-(L-DOPA) ₂ -OMe 4S3
Figure S1. Zoom of the ¹ H-NMR spectrum of crude Boc ₂ -L-DOPA-OMe 2 S4
Figure S2. Insets of ¹ H NMR and g-COSY spectra of an inseparable mixture of <i>m</i> -2 and <i>p</i> -2S4
Figure S3. Pictures of the contact angles of dried surface of 1 with aqueous solutionsS5
Figure S4. Pictures of the contact angles of dried surface of 2 (<i>m</i> -2 + <i>p</i> -2) with aqueous solutionsS5
Figure S5. Pictures of the contact angles of dried surface of 3 with aqueous solutions
Figure S6. Rheometer tack tests for Boc-L-DOPA-OMe 1 in the three aqueous mediaS7
Figure S7. Pictures of the contact angles of dried surface of 4 with aqueous solutions
Figure S8. Contact angles and adhesion comparison for compounds 1-4
Synthesis and characterization of compounds 1-4 S10-S12
¹ H NMR, ¹³ C NMR, IR and HPLC-MS spectra of compounds 1-4 S13-S24

Scheme S1. Synthesis of Boc-L-DOPA-OMe, 1, with yields.

Scheme S2. Synthesis of Boc₂-L-DOPA-OMe, m-2 + p-2, with yield after flash chromatography. In this reaction some interferents are present: the starting material and the di-substituted product Boc₃-L-DOPA-OMe, 3, are found at the end of the process. The two species m-2 + p-2 are purified as an inseparable mixture with a 1:1 ratio

Scheme S3. Synthesis of Boc₃-L-DOPA-OMe, 3, with yield after flash chromatography.

Scheme S4. Synthesis of Boc-(L-DOPA)₂-OMe, 4, with yield.

Figure S1. Zoom on the range 6.45 - 7.2 ppm of the ¹H-NMR spectrum of the crude of the reaction for Boc₂-L-DOPA-OMe **2** synthesis. Each arrow indicates the shifts of the three H of the aromatic ring for each molecule, divided per color: blue for **3**, red for **p-2**, green for **m-2**, gold for **1**. It is possible to assign the relative ratio of each molecule in the crude: **3** : **p-2** : **m-2** : **1** = 1 : 2.5 : 2.5 : 0.5.

Figure S2. Insets of ¹H NMR and *g*-COSY spectra of an inseparable mixture of *m*-2 and *p*-2. The signals of the three aromatic hydrogens, belonging to the two species are highlighted in red and green.

 $58.0 \pm 1.8^{\circ}$

Figure S3. Pictures of the contact angles of dried surface of **1** with a drop of water, 1M CalCl₂ solution or a pH 7.4 PBS solution (from left to right).

vvater 78.2 ± 2.0°

54.7 ± 3.9°

 $CaCl_2$ 63.7 ± 1.0°

PBS pH 7.4 76.6 ± 5.4°

Figure S4. Pictures of the contact angles of dried surface of **2** (m-**2** + p-**2**) with a drop of water, 1M CalCl₂ solution or a pH 7.4 PBS solution (from left to right).

Water 94.0 ± 0.5°

CaCl₂ 81.1 ± 1.7°

PBS pH 7.4 84.9 ± 1.1°

Figure S5. Pictures of the contact angles of dried surface of **3** with a drop of water, 1M CalCl₂ solution or a pH 7.4 PBS solution (from left to right).

Figure S6. Rheometer tack tests for Boc-L-DOPA-OMe 1 in the three aqueous media.

Water 69.3 ± 2.5°

CaCl₂ 71.2 ± 2.2°

PBS pH 7.4 67.7 ± 3.9°

Figure S7. Pictures of the contact angles of dried surface of **4** with a drop of water, 1M CalCl₂ solution or a pH 7.4 PBS solution (from left to right).

Figure S8. Adhesive forces and contact angles comparison for compounds **1-4** in the three media. Increasing the Boc groups on the catechol (zero for molecules **1** and **4**, one for **2** and two for **3**) adhesive forces increase together with contact angles in all media.

Synthesis and characterization of compounds 1-4

Synthesis: General Remarks. Solvents were dried by distillation before use. All reactions were carried out in dried glassware. The melting points of the compounds were determined in open capillaries and are uncorrected. High quality infrared spectra (64 scans) were obtained at 2 cm⁻¹ resolution with an ATR-FT-IR Bruker Alpha System spectrometer. All spectra were obtained in 3 mM solutions in CH₂Cl₂. All compounds were dried *in vacuo* and all the sample preparations were performed in a nitrogen atmosphere. NMR spectra were recorded with a Varian Inova 400 spectrometer at 400 MHz (¹H NMR) and at 100 MHz (¹³C NMR). Chemical shifts are reported in δ values relative to the solvent peak. HPLC-MS was used to check the purity of compounds.

Boc-L-DOPA-OMe 1 - SOCl₂ (10 mL, 137 mmol) is added dropwise at 0 °C to a flask containing 60 mL of CH₃OH, then 5 g of L-DOPA (25.4 mmol) is added little by little. The reaction is left under stirring at RT for 24 hours. The solvent is then removed under vacuum, thus obtaining L-DOPA-OMe·HCl with a yield of 99%. The product L-DOPA-OMe·HCl is dissolved in a solution of NaHCO₃ (4.27 g, 50.8 mmol) and 58 mL of water, then a solution of Boc₂O (5.82 mL, 25.4 mmol) in THF (30 mL) is added. The solution is stirred for 18 hours. The THF is removed under reduced pressure, the residue is suspended in H₂O (10 mL) and extracted with ethyl acetate (150 mL x 3). The combined organic phase is washed with 1M HCI (2 x 20 mL), with a saturated aqueous NaHCO₃ solution (1 x 20 mL) and with $H_2O(1 \times 20 \text{ mL})$. The organic phase is then dried over Na_2SO_4 and the solvent is evaporated. Boc-L-DOPA-OMe **1** is obtained as a white solid with 98% yield. M.p. = 137-138 °C; $[\alpha]_D^{25}$ +18.0° (c = 0.5 in EtOAc); IR (ATR-IR): v 3342, 3297, 1739, 1695, 1606, 1514 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz): δ 1.38 (9H, s, t-Bu), 2.75 (1H, dd, J = 8.4, 13.6 Hz, ArCHHCH), 2.89 (1H, dd, J = 5.6, 13.6 Hz, ArCHHCH), 3.66 (3H, s, OCH₃), 4.25 (1H, dd, J = 5.6, 7.6 Hz, CH₂CHNH), 6.46 (1H, dd, J = 1.6, 8.0 Hz Hz, Ar), 6.61 $(1H, d, J = 1.6 Hz Ar), 6.66 (1H, d, J = 8.0 Hz, Ar); {}^{13}C (CD_3OD, 100 MHz): \delta 27.3, 36.8, 51.2, 55.3, 79.3,$ 114.9, 115.9, 120.3, 128.2, 143.8, 144.8, 156.3, 173.0. HPLC-MS (API-ES): 4.22 min, [M+Na]⁺=334. Anal. Calcd. for C₁₅H₂₁NO₆: C, 57.87; H, 6.80; N, 4.50. Found: C, 57.84; H, 6.77; N, 4.53.

m-(Boc)₂-L-DOPA-OMe *m*-2 + *p*-(Boc)₂-L-DOPA-OMe *p*-2 - Boc-L-DOPA-OMe 1 (0.60 g, 1.93 mmol) is dissolved in 4.4 mL of saturated NaHCO₃ solution, then Boc₂O (0.44 mL, 1.93 mmol) in THF (4.56 mL) is added. The solution is stirred for 18 hours at room temperature. The THF is removed under vacuum, the residue is suspended in 5 mL HCl 1M and extracted with ethyl acetate (15 mL x 3). The combined organic phase is washed twice with 2.5 mL of 1M HCI, once with 2 mL of a saturated aqueous NaHCO₃ solution and with 2 mL of H₂O. The organic phase is then dried over Na₂SO₄ and the solvent is evaporated. Products *m*-2 and *p*-2 were obtained as an inseparable mixture in 1:1 ratio after flash chromatography (cyclohexane:ethyl acetate 4:1) with 60% yield as a sticky liquid that becomes a transparent solid in 48 h. IR (ATR-IR): v 3367, 1756, 1742, 1717, 1685, 1607, 1510 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.40 (9H, s, *t*-Bu), 1.53 (9H, s, *t*-Bu), 2.89-3.08 (2H, m, ArCH₂CH), 3.69 (3H, s, OCH₃), 4.47-4.57 (1H, m, CH₂CHNH), 4.99 (1H, d, J = 6.4 Hz, NH), 5.87 (0.5H, bs, OH), 5.87 (0.5H, bs, OH), 6.63 (0.5H, d, J = 8.0 Hz, Ar), 6.75 (0.5H, s, Ar), 6.86 (2 x 0.5H, AB, J = 8.0 Hz), 6.93 (0.5H, s, Ar), 7.02 (0.5H, d, J = 8.0 Hz, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 27.6, 28.2, 37.4, 37.7, 52.2, 54.3, 54.4, 60.4, 80.1, 84.3, 117.4, 118.2, 121.4, 122.1, 122.9, 127.5, 128.4, 134.9, 137.9, 146.2, 147.1, 151.2, 151.3, 155.1, 171.2, 172.2. HPLC-MS (API-ES): 8.93 min, [M+Na]⁺=434. Anal. Calcd. for C₂₀H₂₉NO₈: C, 58.38; H, 7.10; N, 3.40. Found: C, 58.40; H, 7.12; N, 3.37.

Boc3-L-DOPA-OMe 3 - Boc-L-DOPA-OMe **1** (1 g, 3.2 mmol) is dissolved in 40 mL of CH₃CN, then 195 mg of DMAP (1.6 mmol) and 1.475 mL of Boc₂O (6.4 mmol) are added. The solution is stirred for 40 minutes at room temperature. The solvent is removed under vacuum, then the residue is suspended in 2 mL of HCl 1M, extracted with ethyl acetate (50 mL x 3) and washed with H₂O (1 x 20 mL). The organic layer is then dried over Na₂SO₄ and concentrated under *vacuum*. The product is eventually purified through flash chromatography (cyclohexane:ethyl acetate 4:1). The pure product is obtained with a 93% yield as a transparent, sticky liquid that becomes a white solid after about 24 hours. M.p: = 95-98 °C; $[\alpha]_D^{25}$ +33.0 ° (c = 0.5 in CH₂Cl₂); IR (ATR-IR): v 3334, 1737, 1690, 1659, 1587, 1516 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.40 (9H, s, *t*-Bu), 1.52 (18H, s, 2 x *t*-Bu), 3.01-3.10 (2H, m, ArCH₂CH), 3.68 (3H, s, OCH₃), 4.55 (1H, q, *J* = 6.8 Hz, CH₂CHNH), 4.99 (1H, d, *J* = 8.0 Hz, NH), 6.97 (1H, dd, *J* = 1.7, 8.4 Hz, Ar), 7.02 (1H, d, *J* = 1.7 Hz, Ar), 7.16 (1H, d, *J* = 8.4 Hz, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ 26.9, 27.6, 28.2, 37.5, 52.3, 54.2, 80.0, 83.7, 113.0, 124.0, 127.1, 134.7, 141.5, 142.3, 150.6, 150.7, 171.9. HPLC-MS (API-ES): 11.30 min, [M+Na]⁺=534. Anal. Calcd. for C₂₅H₃₇NO₁₀: C, 58.70; H, 7.29; N, 2.74. Found: C, 58.75; H, 7.32; N, 2.75.

Boc-(L-DOPA)₂**-OMe 4** - 1.8 g (3.67 mmol) of Boc-L-DOPA(OBn)₂-OMe ¹ is deprotected to obtain Boc-L-DOPA(OBn)₂-OH.¹

An equal amount of Boc-L-DOPA(OBn)₂-OMe (1.8 g, 3.67 mmol) is dissolved in 25 mL of CH_2Cl_2 , then 5.1 mL of TFA (64.8 mmol) are added. The solution is stirred at room temperature for 4 hours. The solvent is removed under reduced pressure and the whole residue, composed of the desired intermediate [F₃CCOO⁻⁺H₃N-L-DOPA(OBn)₂-OMe] **4i** and the remaining TFA, is used for the next step of the reaction, considering a quantitative yield for this one.

1.75 g of Boc-L-DOPA(OBn)₂-OH (3.67 mmol) is dissolved in 40 mL of CH₃CN together with 1.53 g of HBTU (4.0 mmol) and left under stirring at room temperature while a mixture of the previous residue containing **4i**, DIPEA (1.8 mL, 10.3 mmol) (the amount of DIPEA is calculated considering 2.2 equivalents plus 1 equivalent per equivalent of TFA remained in the residue after the solvent removal) and 10 mL of CH₃CN is added dropwise. After two hours the solvent is evaporated under vacuum, the residue is suspended in 10 mL of water, extracted with CH₂Cl₂ (50 mL x 3) and washed with 20 mL of water, HCl, saturated solution of NaHCO₃ and water again. The organic layer is dried over Na₂SO₄ and the solvent removed under vacuum. Boc-(L-DOPA(OBn)₂)₂-OMe is obtained as a white solid with a 94% yield.

0.70 g of Boc-(L-DOPA(OBn)₂)₂-OMe (0.82 mmol) is dissolved in 50 mL of CH₃OH and 70 mg of Pd/C 10% w/w are added to the solution, then the reaction is left under vigorous stirring for 4 h under H₂ atmosphere. The solution is filtered over Celite, then the solvent is evaporated under vacuum. The product is further purified by washing with n-hexane (2 mL x 3) to obtain a sticky liquid that becomes a white solid in 48 h hours. $[\alpha]_D^{25}$ -3.0 ° (c = 0.5 in CH₃OH); IR (ATR-IR): v 3310, 1732, 1658, 1608, 1515 cm⁻¹; ¹H-NMR (CD₃OD, 400 MHz): δ 1.4 (s, 9H, *t*-Bu), 2.61 (dd, 1H, *J* = 3.2, 12.4 Hz, ArCH*H*NH), 2.81 – 2.97 (m, 3H, ArC*H*HNH + ArC*H*₂NH), 3.63 (s, 3H, OCH₃), 4.18 (t, 1H, *J* = 5.6 Hz, CH₂C*H*NH), 4.56 (t, 1H, *J* = 6.0 Hz, CHN*H*Boc), 6.44 (d, 1H, *J* = 7.6 Hz, CHN*H*CO), 6.49 (d, 1H, *J* = 8.4 Hz, CHN*H*CO), 6.58 – 6.65 (m, 4H, Ar); ¹³C NMR (CD₃OD, 100 MHz): δ 26.5, 27.3, 36.6, 37.2, 51.2, 53.8, 56.1, 79.3, 82.7, 89.7, 114.8, 115.9, 116.3, 117.4, 120.3, 122.0, 123.1, 127.2, 127.6, 128.4, 143.9, 144.8, 152.0, 156.1, 171.8, 172.8. HPLC-MS (API-ES): 8.00 min, [M+H]⁺=491. Anal. Calcd. for Chemical Formula: C₂₄H₃₀N₂O₉: C, 58.77; H, 6.17; N, 5.71. Found: C, 58.76; H, 6.19; N, 5.70.

References

A. Gaucher, L. Dutot, O. Barbeau, W. Hamchaoui, M. Wakselman and J. P. Mazaleyrat, *Tetrahedron Asymmetry*, 2005, 16, 857–864.

Boc-L-DOPA-OMe, 1

¹H-NMR spectrum of Boc-L-DOPA-OMe **1**, registered in CD₃OD. Traces of ethyl acetate (4.12, 2.05, 1.26 ppm) are present.

 $^{13}\text{C-NMR}$ spectrum of Boc-L-DOPA-OMe 1, registered in CD₃OD.

IR spectrum of Boc-L-DOPA-OMe, 1, acquired in ATR mode.

LC-DAD spectrum of Boc-L-DOPA-OMe, 1, the product elutes at 4.218 min.

MS spectrum of Boc-L-DOPA-OMe, 1, at the time 4.231 min.

Boc2-L-DOPA-OMe 2

¹H-NMR spectrum of Boc₂-L-DOPA-OMe, **2**, registered in CDCl₃. Traces of ethyl acetate (4.12, 2.05, 1.26 ppm) are present. The integrals in the aromatic zone suggest the presence of two different species in 1:1 ratio.

¹³C-NMR spectrum of Boc₂-L-DOPA-OMe, **2**, registered in CDCl₃. Ethyl acetate (4.12, 2.05, 1.26 ppm) is present.

IR spectrum of Boc₂-L-DOPA-OMe **2**, acquired in ATR mode.

LC-DAD spectrum of Boc₂-L-DOPA-OMe **2**, the products elute between 9.192 and 9.760 min.

MS spectrum of Boc₂-L-DOPA-OMe $\mathbf{2}$, at the time 9.282 min.

Boc3-L-DOPA-OMe 3

¹H-NMR spectrum of Boc₃-L-DOPA-OMe, **3**, registered in CDCl₃. Traces of ethyl acetate (4.12, 2.05, 1.26 ppm) are present.

¹³C-NMR spectrum of Boc₃-L-DOPA-OMe **3**, registered in CDCl₃.

IR spectrum of Boc₃-L-DOPA-OMe, **3**, acquired in ATR mode.

LC-DAD spectrum of Boc₃-L-DOPA-OMe, **3**, the product elutes at 11.278 min.

MS spectrum of Boc₃-L-DOPA-OMe, $\mathbf{3}$, at the time 11.253 min.

¹H-NMR spectrum of Boc-(L-DOPA)₂-OMe **4**, registered in CD₃OD. Traces of methanol (3.34 ppm) and tetramethyl urea (2.79 ppm) are present.

 13 C-NMR spectrum of Boc-(L-DOPA)₂-OMe **4**, registered in CD₃OD.

IR spectrum of Boc-(L-DOPA)₂-OMe **4**, acquired in ATR mode.

LC-DAD spectrum of Boc-(L-DOPA)₂-OMe 4, the product elutes at 7.854 min. Some impurities are present.

MS spectrum of Boc-(L-DOPA)₂-OMe 4, at the time 7.949 min.