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Abstract The expectation-maximisation algorithm is employed to perform
maximum likelihood estimation in a wide range of situations, including re-
gression analysis based on clusterwise regression models. A disadvantage of
using this algorithm is that it is unable to provide an assessment of the sam-
ple variability of the maximum likelihood estimator. This inability is a conse-
quence of the fact that the algorithm does not require deriving an analytical
expression for the Hessian matrix, thus preventing from a direct evaluation of
the asymptotic covariance matrix of the estimator. A solution to this problem
when performing linear regression analysis through a multivariate Gaussian
clusterwise regression model is developed. Two estimators of the asymptotic
covariance matrix of the maximum likelihood estimator are proposed. In prac-
tical applications their use makes it possible to avoid resorting to bootstrap
techniques and general purpose mathematical optimisers. The performances of
these estimators are evaluated in analysing small simulated and real datasets;
the obtained results illustrate their usefulness and effectiveness in practical
applications. From a theoretical point of view, under suitable conditions, the
proposed estimators are shown to be consistent.

Keywords EM algorithm · Gaussian mixture model · Hessian matrix ·
Sandwich estimator · Score vector

Mathematics Subject Classification (2010) MSC 62J99

1 Introduction

Switching regression, clusterwise regression and finite mixtures of regressions
are terms used interchangeably to denote an approach to regression analy-
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sis in which the dependence of a p × 1 random vector Y of responses on
a q × 1 vector X of predictors is described by means of a finite mixture
(see, e.g., Frühwirth-Schnatter, 2006). Such an approach is mainly employed
when sample observations come from populations composed of several sub-
populations, each of which is characterised by a different regression model.
Examples can be found in many fields, such as economics, marketing, agri-
culture, education, quantitative finance, social sciences and transport systems
(see, e.g., Fair and Jaffe, 1972; Kamakura, 1988; Turner, 2000; Ding, 2006;
Tashman and Frey, 2009; Dyer et al., 2012; Van Horn et al., 2015; McDonald et al.,
2016; Elhenawy et al., 2017)). Mixtures of regression models naturally arise
when a categorical or dummy predictor is omitted from a regression model (see,
e.g., Hosmer, 1974). This approach can also be used in outlier detection or ro-
bust regression estimation; examples are provided by Aitkin and Tunnicliffe Wilson
(1980), Garćıa-Escudero et al. (2010), Garćıa-Escudero et al. (2017) andMazza and Punzo
(2017).

When the p responses are absolutely continuous random variables, a finite
mixture of Gaussian regressions is generally employed. This model has been
extensively investigated. A detailed treatment of the identifiability when the
response is univariate, both with random and fixed predictors, is given by
Hennig (2000) (see also Frühwirth-Schnatter, 2006, section 8.2.2). Identifiabil-
ity conditions for models with multivariate responses and random predictors
under a finite Gaussian mixture for the joint distribution of X and Y can
be found in Dang et al. (2017). Estimation has been developed in both the
Bayesian and likelihood-based frameworks. With respect to this latter ap-
proach, model parameters are usually estimated through the maximum likeli-
hood (ML) method by resorting to algorithms which are widely employed in
incomplete-data problems: namely, the expectation-maximisation (EM) algo-
rithm or some of its variants (see Faria and Soromenho, 2010, for a comparison
in the special case of univariate response). In a clusterwise regression model
the sample data {(xi,yi), i = 1, . . . , I} are incomplete because the specific
regression model that generates the I sample observations is missing. This
missing information is modelled through an unobserved variable coming from
a pre-specified multinomial distribution and is added to the observed data so
as to form the so-called complete data. Then, the ML estimate is computed
from the maximisation of the complete data log-likelihood. A by-product of a
linear regression analysis based on these methods is a set of estimated posterior
probabilities that each sample observation come from the different regression
models of the mixture. Thus, a by-product of this approach to linear regression
analysis is a clustering of the I sample observations, based on a rule that as-
signs an observation to the regression model of the mixture from which it has
the highest posterior probability of coming. Specific functions implementing
the EM algorithm for a finite mixture of Gaussian regressions are available,
for example, in some packages for the R software environment (R Core Team,
2019), such as flexmix (Grün and Leisch, 2008), mixtools (Benaglia et al.,
2009) and flexCWM (Mazza et al., 2018).
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A drawback of performing ML estimation through an EM algorithm is
that this algorithm does not automatically produce an estimate of the covari-
ance matrix of the ML estimator. The assessment of the sample variability
of the parameter estimates in a clusterwise regression model is a necessary
step in the subsequent development of inference methods for the model pa-
rameters, such as asymptotic confidence intervals, tests for the significance
of the effect of any predictor on a given response within any sub-population
and tests for the significance of the difference between the effects of the same
predictor on a given response in two different sub-populations. Examples of
modern applications in which such methods could be fruitfully employed are
the identification of significant differential effects of family environment on
children’s aggression (Dyer et al., 2012), children’s trauma (Van Horn et al.,
2015) and children’s social skills (McDonald et al., 2016). Thus, additional
computations are necessary to obtain an assessment of the sample variability
of model parameter estimates. In a finite mixture model the asymptotic covari-
ance matrix of the ML estimator is generally estimated by using the inverse
of the observed information matrix obtained from the incomplete data log-
likelihood (see, e.g., McLachlan and Peel, 2000, section 2.15). This matrix can
be computed or approximated in several ways. One approach involves using
the conditional moments of the gradient vector and the second-order derivative
matrix of the complete data log-likelihood (Louis, 1982). In the case of inde-
pendent and identically distributed observations only the conditional moments
of the gradient vector are required, and an approximation to the observed
information matrix is given by the so-called empirical observed information
matrix (Meilijson, 1989). Another approach is based on a direct evaluation of
the gradient vector and/or the second-order derivative matrix of the incom-
plete data log-likelihood (Boldea and Magnus, 2009). This second approach
is analytically more complex than the first one because the incomplete data
log-likelihood is given by a logarithm of a sum and, thus, its derivatives con-
tain ratios. Furthermore, estimates of the standard errors of the ML estimator
can be computed by bootstrap methods (see, e.g., Newton and Raftery, 1994;
Basford et al., 1997; McLachlan and Peel, 2000). As far as the Gaussian clus-
terwise regression model is concerned, only a limited number of methods has
been investigated. Namely, Arminger et al. (1999) describe an approximation
of the observed information matrix which is based on the first derivatives of
the complete data log-likelihood. The Louis’ approach is developed in Turner
(2000) when the response is univariate; the obtained solution is implemented
in the R package mixreg (Turner, 2014). Packages mixtools and flexmix pro-
vide standard errors of the ML estimates that are computed by the parametric
bootstrap and by resorting to a general purpose optimiser, respectively. As far
as the intercepts and regression coefficients are concerned, approximated stan-
dard error estimates are also computed by the flexCWM package according to
an approach in which a number of separate weighted linear regression analyses
are carried out (one for each linear regression model of the mixture), where the
sample observations are weighted with their estimated posterior probabilities
of coming from the different regression models of the mixture.
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In this paper the problem of assessing the sample variability of the parame-
ter estimates in a Gaussian clusterwise linear regression model is investigated.
Using arguments similar to the ones exploited in Boldea and Magnus (2009),
two estimators of the asymptotic covariance matrix of the ML estimator are
introduced: one is based on the second-order derivative matrix of the incom-
plete data log-likelihood; the other exploits a sandwich approach (see, e.g.,
White, 1982). The performances of the two estimators in the presence of small
samples are studied by simulation and are compared to the performance of the
parametric bootstrap-based estimator. Comparisons based on the analysis of
two real datasets are also provided.

The key contributions of this paper are:

– the development of analytical expressions for the gradient vector (Theorem
1) and the second-order derivative matrix (Theorem 2) of the incomplete-
data log-likelihood, which makes it feasible to compute the two asymptotic
covariance matrix estimates of the ML estimator;

– a numerical evaluation of the performances of the proposed estimators in
the presence of finite samples and their comparison with the parametric
bootstrap-based estimator;

– some theoretical results about strong consistency of the two proposed es-
timators (Theorems 3 and 4).

It is important to note that the estimators examined in this paper have been
previously studied under finite Gaussian mixture models (Boldea and Magnus,
2009). However, the treatment by Boldea and Magnus (2009) focuses on the
estimation of the asymptotic covariance matrix without reporting any proof of
the asymptotic properties considered here. Furthermore, since finite Gaussian
mixture models do not account for dependences via covariates, whenever the
main research interest is in capturing the effect of predictors on the responses,
the solutions due to Boldea and Magnus (2009) cannot be obviously exploited.
This latter task can be accomplished by means of the methods developed here.

The remainder of the paper is organised as follows. Section 2 contains
the definition of multivariate Gaussian clusterwise linear regression model,
the definition of the two estimators of the asymptotic covariance matrix of
the ML estimator and the analytical expressions of the first and second-order
derivative matrix of the incomplete data log-likelihood that are required for
their computation. Appendices A, B, C and D provide details of the derivation
of these analytical expressions. Section 3 summarises the experimental results
of the simulation study. The comparison based on two real datasets is given
in Section 4. The main asymptotic results are described in Section 5, along
with the regularity conditions needed. The corresponding proofs are given in
Appendices E, F and G. An additional document with supplementary material
contains a detailed description of simulation study settings and tables with
further results from the analyses described in Sections 3 and 4.
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2 Finite mixtures of Gaussian regression models

2.1 Model specification and ML estimation

Let Y = (Y1, . . . , Yp)
′ be the p × 1 random vector of absolutely continuous

dependent variables and X = (X1, . . . , Xq)
′ the q×1 random vector of predic-

tors, which may include continuous and/or dummy variables. A finite mixture
of Gaussian regression models can be defined as follows.

Definition 1 The random vector Y follows a finite mixture of Gaussian linear
regression models of order K if the conditional density function of Y|X = x
has the form

f(y|x; θ) =
K∑

k=1

πkφ (y;µk,Σk) , y ∈ R
p, (1)

with

µk = γk +Πkx, k = 1, . . . ,K, (2)

θ = (π′, θ′1, . . . , θ
′

K)′ ∈ Θ, where π = (π1, . . . , πK−1)
′
such that πk > 0

∀k, ∑K
k=1 πk = 1, θk =

(
γ′

k, (vec
(
Π ′

k

)
)′, (v (Σk))

′
)′

and φ (·;µ,Σ) denotes
the p-dimensional Gaussian density function with expected mean value µ and
positive definite covariance matrix Σ.

The conditional density function f(y|x; θ) in equation (1) can be inter-
preted as a weighted average with weights πk, k = 1, . . . ,K. The k-th com-
ponent of this function represents a multivariate Gaussian linear regression
model with a p× 1 intercept vector γk, a p× q regression coefficients matrix
Πk and a symmetric and positive definite covariance matrix Σk. The defini-
tion of θk involves the vec(.) and v(.) operators. Namely, vec(A) is the column
vector obtained by stacking the columns of matrixA one underneath the other,
and v(B) denotes the column vector obtained from vec(B) by eliminating all
supradiagonal elements of a symmetric matrix B (thus, v(B) contains only
the distinct elements of B) (for more details see, e.g., Magnus and Neudecker,
1988). Hereafter the class of finite mixtures of Gaussian regression models just
defined is denoted as FK = {f(y|x; θ), θ ∈ Θ}.

Similarly to any other finite mixture model, any changing in the labels used
to distinguish the regression models that compose the mixture in equation (1)
modifies the model parameter without changing the conditional density func-
tion of Y|X = x. This problem can be dealt with by imposing appropriate
constraints on θ. A solution can be obtained by requiring that any two parame-
ter vectors θk and θk′ differ in at least one element, which need not be the same
for all the vectors θ1, . . . , θK (for further details see, e.g., Frühwirth-Schnatter,
2006, Section 1.3.3). A further problem with the regression mixture model (1)
is non-identifiability due to potential overfitting (Frühwirth-Schnatter, 2006,
Section 1.3.2). Conditions ensuring identifiability of models for clusterwise lin-
ear regression are provided in Hennig (2000). Hereafter it is assumed that those
conditions are satisfied, so that the model class FK is identifiable.
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Given a sample of I observations (x′

1,y
′

1)
′, . . . , (x′

I ,y
′

I)
′, the incomplete

data log-likelihood of the model (1) is equal to

l(θ) =

I∑

i=1

li(θ) =

I∑

i=1

log

(
K∑

k=1

πkφ (yi;γk +Πkxi,Σk)

)
, (3)

where li(θ) = log f(yi|xi; θ) = log
(∑K

k=1 πkφ (yi;γk +Πkxi,Σk)
)
. The ML

estimator θ̂ of θ can be computed using an EM algorithm (for details see
Jones and McLachlan, 1992).

2.2 Covariance matrix estimation of the ML estimator

Two estimators of the covariance matrix Cov(θ̂) of the ML estimator of θ are
proposed. They are obtained by exploiting some general results concerning
the ML estimator when the model is misspecified (White, 1982). In order
to provide the definition of these estimators, some preliminaries have to be

introduced. Let the model score vector and the Hessian matrix be s(θ) = ∂l(θ)
∂θ

and H(θ) = ∂2l(θ)
∂θ∂θ′ , respectively. The score vector can also be expressed as

s(θ) =
∑I

i=1 si(θ), where si(θ) =
∂li(θ)
∂θ

. In a similar way, the Hessian matrix

can be written as H(θ) =
∑I

i=1Hi(θ), where Hi(θ) =
∂2li(θ)
∂θ∂θ′ .

The two proposed estimators of Cov(θ̂) are defined as follows:

Ĉov1(θ̂) = −
(
H(θ̂)

)−1

, (4)

Ĉov2(θ̂) =
(
H(θ̂)

)−1
(

I∑

i=1

si(θ̂)
(
si(θ̂)

)′
)(

H(θ̂)
)−1

, (5)

where −H(θ̂) is the observed information matrix and si(θ̂) =
∂li(θ)
∂θ

∣∣∣
θ=θ̂

. The

first estimator is computed from the Hessian matrix; the second estimator
is based on the sandwich approach. In order to compute them, analytical
expressions for s(θ) and H(θ) are needed. Here are details about how such
expressions can be directly obtained from the incomplete-data log-likelihood
l(θ) defined in equation (3).

Since the vector θ = (π′, θ′1, . . . , θ
′

K)′, is composed of K + 1 subvectors,
s(θ) and H(θ) can be partitioned as follows:

s(θ) =




∂l(θ)
∂π
∂l(θ)
∂θ1

· · ·
∂l(θ)
∂θK


 , H(θ) =




∂2l(θ)
∂π∂π′

∂2l(θ)
∂π∂θ′

1

· · · ∂2l(θ)
∂π∂θ′

K

∂2l(θ)
∂θ1∂π′

∂2l(θ)
∂θ1∂θ

′

1

· · · ∂2l(θ)
∂θ1∂θ

′

K

· · · · · · · · · · · ·
∂2l(θ)
∂θK∂π′

∂2l(θ)
∂θK∂θ

′

1

· · · ∂2l(θ)
∂θK∂θ

′

K



.
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The explicit forms of such quantities, as developed in this paper, require
the introduction of some additional notation. Namely, let

fki = πkφ (yi;γk +Πkxi,Σk) , ∀k, ∀i, (6)

αki =
fki

(
∑K

l=1 fli)
, ∀k, ∀i, (7)

ak =
1

πk
ek, k = 1, . . . ,K − 1, (8)

aK = − 1

πK
1K−1,

where ek denotes the k-th column of IK−1 (the identity matrix of order K−1)
and 1K−1 is the (K − 1) × 1 vector having each component equal to 1. The
following vectors and matrices are also required:

bki = Σ
−1
k (yi − γk −Πkxi), ∀k, ∀i, (9)

Bki = Σ
−1
k − bkib

′

ki, ∀k, ∀i. (10)

Finally, let G be the duplication matrix, that is the unique matrix which
transforms v(B) into vec(B) (Gv(B) = vec(B)) (for more details see, e.g.,
Magnus and Neudecker, 1988).

The following theorems provide analytical expressions for s(θ) and H(θ).
Their proofs are available in Appendices A to D.

Theorem 1 The subvectors that compose s(θ) are given by

∂l (θ)

∂π
=

I∑

i=1

āi,

∂l (θ)

∂γk
=

I∑

i=1

αkibki, ∀k,

∂l (θ)

∂vec(Π ′

k)
=

I∑

i=1

αkivec (xib
′

ki) , ∀k,

∂l (θ)

∂v(Σk)
= −1

2

I∑

i=1

αkiG
′vec (Bki) , ∀k,

where āi =
∑K

k=1 αkiak.
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Theorem 2 The submatrices that compose H(θ) are given by

∂2l(θ)

∂π∂π′
= −

I∑

i=1

āiā
′

i,

∂2l(θ)

∂π∂γ′

k

=

I∑

i=1

αki (ak − āi)b
′

ki, ∀k,

∂2l(θ)

∂π∂
[
vec(Π ′

k)
]′ =

I∑

i=1

αki (ak − āi) [vec (xib
′

ki)]
′
, ∀k,

∂2l(θ)

∂π∂ [v(Σk)]
′
= −1

2

I∑

i=1

αki (ak − āi) [vec (Bki)]
′
G, ∀k,

∂2l(θ)

∂γk∂γ
′

k

= −
I∑

i=1

αki
[
Σ−1
k − (1− αki)bkib

′

ki

]
, ∀k,

∂2l(θ)

∂γk∂γ
′

l

= −
I∑

i=1

αkiαlibkib
′

li, ∀k 6= l,

∂2l(θ)

∂γk∂
[
vec(Π ′

k)
]′ = −

I∑

i=1

αki
{
Σ−1
k ⊗ x′

i +

− (1− αki)bki [vec (xib
′

ki)]
′
}
, ∀k,

∂2l(θ)

∂γk∂
[
vec(Π ′

l)
]′ = −

I∑

i=1

αkiαlibki [vec (xib
′

li)]
′
, ∀k 6= l,

∂2l(θ)

∂γk∂ [v(Σk)]
′
= −

I∑

i=1

αki
{
b′

ki ⊗Σ−1
k +

+
1

2
(1− αki)bki [vec (Bki)]

′

}
G, ∀k,

∂2l(θ)

∂γk∂ [v(Σl)]
′
=

1

2

I∑

i=1

αkiαlibki [vec (Bli)]
′ G, ∀k 6= l,

∂2l(θ)

∂vec
(
Π ′

k

)
∂
[
vec
(
Π ′

k

)]′ = −
I∑

i=1

αki
{
Σ−1
k ⊗ (xix

′

i)+

− (1− αki) vec (xib
′

ki) [vec (xib
′

ki)]
′
}
, ∀k,

∂2l(θ)

∂vec
(
Π ′

k

)
∂
[
vec
(
Π ′

l

)]′ = −
I∑

i=1

αkiαlivec (xib
′

ki) [vec (xib
′

li)]
′
, ∀k 6= l,

∂2l(θ)

∂vec
(
Π ′

k

)
∂ [v(Σk)]

′
= −

I∑

i=1

αki
{
Σ−1
k ⊗ (xib

′

ki)+

+
1

2
(1− αki) vec (xib

′

ki) [vec (Bki)]
′

}
G, ∀k,
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∂2l(θ)

∂vec
(
Π ′

k

)
∂ [v(Σl)]

′
=

1

2

I∑

i=1

αkiαlivec (xib
′

ki) [vec (Bli)]
′
G, ∀k 6= l,

∂2l(θ)

∂v(Σk)∂ [v(Σk)]
′
= −1

2

I∑

i=1

αkiG
′

{(
Σ−1
k − 2Bki

)′ ⊗Σ−1
k

−1

2
(1− αki) vec (Bki) [vec (Bki)]

′

}
G, ∀k,

∂2l(θ)

∂v(Σk)∂ [v(Σl)]
′
= −1

4

I∑

i=1

αkiαliG
′vec (Bki) [vec (Bli)]

′
G, ∀k 6= l.

3 Results from the analysis of simulated datasets

3.1 Settings, studies and scenarios

Two extensive Monte Carlo simulation studies are performed. In both studies,
two scenarios are examined: correct model specification and model misspec-
ification due to heteroscedasticity. In the first scenario of the first study the
datasets are generated under models belonging to the class F2 with p = 2
dependent variables and q = 2 predictors. Models from the class F3 with
p = 2 dependent variables and q = 4 predictors are employed to generate the
datasets in the first scenario of the second study. The specific values of the
model parameters θ are reported in Section A of the supplementary material
together with a detailed description of the procedure used to generate the
datasets. Using each of those values, R = 10000 datasets (of size I) have been
obtained. Assuming that the r-th dataset {(x′

1r,y
′

1r)
′, . . . , (x′

Ir,y
′

Ir)
′} is gen-

erated from a model belonging to the true model class, the ML estimate θ̂r of
θ is computed for r = 1, . . . , R. Technical details about the ML estimation are
reported in Section 3.2. Thus, in the first scenario of both studies the fitted
models are correctly specified. In the second scenario the procedure for gener-
ating the datasets coincides with the one in the first scenario, but it makes use
of matrices Σk that vary with the sample units. More specifically, variances
and covariances are generated as a quadratic function of the sample values of
the predictors (for more details see the supplementary material); thus, there
is heteroscedasticity in the data. Models fitted to these datasets still assume
that each sample data come from a model belonging to the classes F2 and F3

in the first and second studies, respectively. Thus, in the second scenario there
is a form of model misspecification due to the heteroscedasticity. The total
number of estimated parameters T is 19 in the first study, 41 in the second
study.

In each examined scenario the above illustrated Monte Carlo experiments
are performed twice, with samples of size I = 250 and I = 500. The R in-
dependent estimates of θ computed in each scenario are used to approximate
the true distribution of θ̂. Namely, denoting the t-th element of θ̂r as θ̂rt, an
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approximation of the true standard error of θ̂t is obtained as follows:

SE(θ̂t) =

√√√√ 1

R

R∑

r=1

(
θ̂rt − θ̄t

)2
, θ̄t =

1

R

R∑

r=1

θ̂rt.

For R1 = 1000 datasets obtained as described above, the estimated standard
error of θ̂rt is computed using the parametric bootstrap and the two proposed
information-based estimators. Specific R functions implementing these estima-
tors have been written and employed. Namely, denoting the estimated stan-
dard error of θ̂rt as ŝe(θ̂rt), three different estimated standard errors of θ̂rt are

obtained for r = 1, . . . , R1, t = 1, . . . , T : ŝe1(θ̂rt), ŝe2(θ̂rt) and ŝeB(θ̂rt), where
ŝe1(.) and ŝe2(.) are the standard errors estimated using equations (4) and (5),
respectively; ŝeB(.) is the notation employed for the parametric-bootstrap es-
timated standard error. For each dataset, this latter estimation is given by
the standard deviation of the parameter estimates over 100 bootstrap samples
drawn from the estimated model. The performances of the three examined ap-
proaches for computing ŝe(θ̂t) are evaluated on the basis of an estimate of their
biases and (squared root) mean squared errors. Namely, for each approach the
following quantities are computed:

BIAS
(
ŝe(θ̂t)

)
= M1

(
ŝe(θ̂t)

)
− SE(θ̂t), t = 1, . . . , T,

RMSE
(
ŝe(θ̂t)

)
=

√
V
(
ŝe(θ̂t)

)
+ BIAS2

(
ŝe(θ̂t)

)
, t = 1, . . . , T,

where

M1

(
ŝe(θ̂t)

)
=

1

R1

R1∑

r=1

ŝe(θ̂rt), M2

(
ŝe(θ̂t)

)
=

1

R1

R1∑

r=1

ŝe2(θ̂rt),

V
(
ŝe(θ̂t)

)
= M2

(
ŝe(θ̂t)

)
−M2

1

(
ŝe(θ̂t)

)
.

A comparative evaluation of the three approaches for computing ŝe(θ̂t) is
also carried out through the coverage probabilities (CP) of confidence intervals
based on the examined standard errors’ estimates and the standard normal
quantiles. Although biases, mean squared errors and coverage probabilities are
estimated for all model parameters, in this section the comparison is focused
on the regression coefficients (i.e. the parameters in Πk, k = 1, . . . ,K).

3.2 Technical details about ML estimation

As the flexmix package allows to estimate parameters of model (1) only when
the K covariance matrices are diagonal, a more general function implementing
the EM algorithm for the ML estimation has been developed in the R environ-
ment. In this function, the starting estimates of the model parameters are com-
puted using the results obtained through the flexmix function of the flexmix
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package. Thus, in the ML estimation process considered here, the p responses
are initially assumed to be conditionally independent within each component
of the mixture. As far as the convergence of the implemented EM algorithm
is concerned, the following criteria have been exploited. The EM algorithm is

stopped when the number of iterations reaches 500 or |l(r+1)
∞ − l(r)| < 10−8,

where l(r) is the log-likelihood value from iteration r, and l
(r+1)
∞ is the asymp-

totic estimate of the log-likelihood at iteration r + 1 (Dang and McNicholas,
2015). In order to avoid difficulties arising when the estimates of the K co-
variance matrices at any iteration of the EM algorithm are singular or nearly
singular, in the EM algorithm implemented here all such estimated covari-
ance matrices have been required to have eigenvalues greater than 10−20. Fur-
thermore, the ratio between the smallest and the largest eigenvalues of such
matrices is required to be not lower than 10−10.

3.3 Results from the first Monte Carlo study

The results obtained in the first scenario (correct specification) with I = 250
have been summarised in a graphical form in Figure 1. Each panel of this fig-
ure refers to a specific regression coefficient, denoted as Πk(jl), with k = 1, 2,
j = 1, 2 and l = 1, 2. The dashed line identifies the (approximated) true

standard error of the corresponding ML estimate (SE(Π̂k(jl))), whereas the

three black points represent the values ofM1

(
ŝe(θ̂t)

)
obtained with the three

estimators. Thus, this part of the plots makes it possible to graphically rep-
resent the bias associated with the use of each estimator. In order to provide
a graphical representation of the root mean squared errors, the quantities

SE(Π̂k(jl)) ± RMSE
(
ŝe(Π̂k(jl))

)
have been computed for each estimator

and horizontal lines have been drawn at each of these values. These horizontal
lines provide a summary description of the variability of each estimator around
the true standard error. Table A of the supplementary material shows the nu-
merical values used to draw Figure 1. It is worth noting that such values have
been multiplied by 100 to facilitate presentation. Biases and root mean square
errors are generally small. By focusing the attention on the bias, it is typically
negative. As far as the regression coefficients are concerned, the lowest ab-
solute bias in estimating the standard error is registered using the bootstrap
approach; for the other model parameters (results are not shown) the best
performance in terms of bias is obtained with the method based on the Hes-
sian matrix. Moving the attention on the accuracy in estimating the standard
error of the model parameters, the lowest root mean square errors are mostly
obtained using the Hessian-based method. The bootstrap approach is slightly
more accurate than the sandwich method in estimating the standard errors
of the regression coefficients. The effective confidence levels computed using
the three examined methods (Table 1) are very similar to one another and are
also quite close to the nominal ones. In particular, only two null hypotheses
of equality between the effective and the nominal confidence levels should be
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Table 1: Coverage probability of the 90% and 95% confidence intervals for Π1

and Π2, based on the three examined standard error estimators of θ̂ in the
first scenario (correct model specification) with I = 250. Coverage probabilities
significantly differing from the corresponding nominal ones (two-tailed normal
test with Bonferroni-corrected α = 0.00125) are reported in italics.

CP 90% CP 95%

θt ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t) ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t)
Π1(11) 0.913 0.917 0.911 0.957 0.960 0.952
Π1(12) 0.891 0.889 0.884 0.942 0.942 0.938
Π1(21) 0.884 0.883 0.888 0.938 0.936 0.931
Π1(22) 0.881 0.882 0.873 0.931 0.935 0.927
Π2(11) 0.877 0.876 0.875 0.936 0.938 0.928
Π2(12) 0.904 0.908 0.894 0.954 0.953 0.943
Π2(21) 0.888 0.892 0.878 0.950 0.948 0.934
Π2(22) 0.877 0.879 0.875 0.944 0.936 0.938

rejected, according to asymptotic two-tailed normal tests for a proportion at a
Bonferroni-corrected 0.01/8=0.00125 significance level. Namely, these two null
hypotheses refer to confidence intervals obtained using the sandwich approach
(see nominal confidence levels in italics in Table 1). The Bonferroni correction
is applied to account for multiple tests performed for each estimation method
and each nominal confidence level. The results obtained with I = 500 (see
Tables B and C in the supplementary material) are quite similar. Increasing
the sample size leads to a reduction in the gap between the RMSE of the
bootstrap and sandwich approaches.

When the fitted models assume homoscedasticity while data are heteroscedas-
tic (second scenario), biases and root mean square errors increase for all esti-
mated standard errors (see Figure 2 and Table D in the supplementary ma-
terial). The lowest absolute biases are mostly obtained through the sandwich
method. This method also provides the most accurate estimates of the stan-
dard error for the majority of the model parameters. As far as the confidence
intervals for the regression coefficients are concerned (Table 2), they are conser-
vative with all the examined estimators. It is worth mentioning that all effec-
tive coverage probabilities of the confidence intervals appear to be significantly
different from the corresponding nominal one, according to asymptotic two-
tailed normal tests for a proportion at a Bonferroni-corrected 0.01/8=0.00125
significance level. In particular, the effective coverage probabilities are remark-
ably lower than the nominal ones when using the bootstrap and the Hessian
approaches. Such reduction is less evident with the sandwich approach, that
allows to build intervals whose effective confidence levels are the closest to the
corresponding nominal ones. Similar results have been obtained with I = 500
(see Tables E and F in the supplementary material).
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Fig. 1 Graphical representation of the biases and root mean square errors of the three
examined estimators of SE(Π̂k(jl)) in the first scenario (correct model specification) with

I = 250. The dashed line identifies SE(Π̂k(jl)). For each estimator, the black point represents

the values of M1

(
ŝe(Π̂k(jl))

)
and the two wiskers are set to the values SE(Π̂k(jl)) ±

RMSE
(
ŝe(Π̂k(jl))

)
.



14 Giuliano Galimberti, Lorenzo Nuzzi, Gabriele Soffritti

0.
2

0.
3

0.
4

0.
5

0.
6

se(Π1(11))
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0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

se(Π1(22))
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Fig. 2 Graphical representation of the biases and root mean square errors of the three
examined estimators of SE(Π̂k(jl)) in the second scenario (misspecification due to het-

eroscedasticity) with I = 250. The dashed line identifies SE(Π̂k(jl)). For each estimator,

the black point represents the values of M1

(
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)
and the two wiskers are set to the
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(
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)
.
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Table 2: Coverage probability of the 90% and 95% confidence intervals for
Π1 and Π2, based on the three examined standard error estimators of
θ̂ in the second scenario (misspecification due to heteroscedasticity) with
I = 250.Coverage probabilities significantly differing from the corresponding
nominal ones (two-tailed normal test with Bonferroni-corrected α = 0.00125)
are reported in italics.

CP 90% CP 95%

θt ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t) ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t)
Π1(11) 0.823 0.808 0.825 0.878 0.874 0.891
Π1(12) 0.759 0.739 0.803 0.829 0.813 0.861
Π1(21) 0.557 0.538 0.746 0.638 0.626 0.815
Π1(22) 0.572 0.570 0.748 0.652 0.649 0.811
Π2(11) 0.754 0.753 0.792 0.832 0.836 0.854
Π2(12) 0.721 0.708 0.770 0.796 0.780 0.834
Π2(21) 0.422 0.437 0.633 0.495 0.515 0.718
Π2(22) 0.423 0.443 0.635 0.497 0.510 0.717

3.4 Results from the second Monte Carlo study

The results from the second study are in line with those of the first study. In
particular, with correctly specified models, the bootstrap-based estimator and
the estimator based on the Hessian matrix have the lowest absolute biases and
the lowest root mean square errors, respectively. Such estimators also register
quite similar performances with respect to the coverage probabilities of the
confidence intervals. When there is misspecification due to heteroscedasticity,
the sandwich method has the lowest absolute biases and is also the most
accurate; furthermore, it allows to compute confidence intervals whose effective
levels are the closest to the nominal ones. All tables with these results are
reported in Section B.2 of the supplementary material.

4 Results from the analysis of real datasets

4.1 Aphids data

The aphids dataset (Boiteau et al., 1998) provides information collected from
51 independent experiments performed to study the spread of a viral infec-
tion among potato plants. In the experiments, varying numbers of aphids were
released in a flight chamber containing 81 tobacco plants (69 healthy, 12 in-
fected) arranged in a 9×9 grid, and the number of healthy plants that resulted
to be infected after an exposition of 24 hours was recorded. For each experi-
ment, the dataset indicates the number of aphids released in the flight chamber
(X1) and the resulting number (out of a possible 69) of infected plants (Y1).
This dataset is available in the R package mixreg (Turner, 2014); the results
of a linear regression analysis carried out through a mixture of two simple
univariate Gaussian linear regression models are reported in Turner (2000).
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Table 3: Parameter estimates θ̂ and standard error estimates of θ̂ in the aphids
dataset.

θt θ̂t ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t)
π1 0.5016 0.0930 0.0803 0.0796
γ1 3.4745 1.2961 1.0704 0.9922
Π1 0.0553 0.0074 0.0065 0.0073
Σ1 9.7051 2.7937 3.0131 2.4009
γ2 0.8586 0.7039 0.3678 0.2778
Π2 0.0024 0.0035 0.0025 0.0023
Σ2 1.2653 1.0607 0.4076 0.4179

Estimates of the standard error for the model parameter estimates, based on
the second-order derivatives of the complete log-likelihood, are also provided.

Table 3 reports the parameter estimates (obtained through the R function
summarised in Section 3.2) of the same model examined in Turner (2000) to-
gether with their standard errors estimated using both equations (4) and (5).
For comparison purposes also parametric bootstrap-based estimated standard
errors are provided; they are computed from 100 independent samples drawn
from the mixture of two Gaussian linear regression models with parameters
fixed at their estimated values. The estimates of the standard error obtained
using the second order derivatives are in accordance to the finding reported in
Turner (2000). The sandwich standard errors are somewhat smaller than the
bootstrap ones for all parameter estimates; the same result holds for four of
the seven parameters when comparing ŝe2(θ̂t) with ŝe1(θ̂t). The latter result
may be linked to the fact that a mixture of two binomial logistic regressions
would be a more plausible model for this dataset and, thus, the analysis suffers
from problems of heteroschedasticity due to model misspecification. Approxi-
mated 95% confidence intervals for the model parameters are also computed
by exploiting the asymptotic Gaussian distribution for the ML estimator (see
Table O in the supplementary material). The three interval estimates of the
regression coefficient Π2 contain the zero value, thus suggesting that the null
hypothesis H0 :Π2 = 0 should not be rejected at a 5% significance level. The
bootstrap intervals for γ2 and Σ2 are much larger than the ones obtained
using the two information-based estimation methods.

4.2 Canned tuna data

The canned tuna dataset (Chevalier et al., 2003) contains the weekly sales
for seven of the top 10 U.S. brands in the canned tuna product category for
I = 338 weeks between September 1989 and May 1997. Furthermore, a mea-
sure of the display activity and the log price of each brand is provided. This
dataset is available within the R package bayesm (Rossi, 2019). In this appli-
cation, the focus is on the evaluation of the effect of prices and promotional
activities on sales for two brands: Star Kist 6 oz. and Bumble Bee Solid 6.12
oz. The analysed dataset contains information about the following variables:
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Table 4: Maximised log-likelihood and Bayesian information criterion of four
Gaussian linear regression models fitted to the canned tuna dataset.

K lI (θ̂) BIC

1 −646.7672 −1369.2340
2 −271.8119 −700.8461
3 −210.7231 −660.1911
4 −187.6005 −695.4686

Yi = (Yi1, Yi2)
′ and Xi = (Xi1, Xi2, Xi3, Xi4)

′, where Yi1, Xi1 and Xi2 are
the log unit sale, a measure of the display activity and the log price, respec-
tively, registered in week i for Star Kist 6 oz.; Yi2, Xi3 and Xi4 provide the
same information for Bumble Bee Solid 6.12 oz. This same dataset was previ-
ously analysed in Galimberti et al. (2016) by means of mixtures of constrained
Gaussian linear regression models, in which the effects of both the display ac-
tivity and the log price were assumed to be equal across the mixture regression
models; it was also assumed that the display activity and the log price for a
brand do not affect the sales of the other brand.

Mixtures of Gaussian linear regression models of order K = 1, 2, 3, 4 are
estimated through the R function summarised in Section 3.2. Table 4 shows
the values of the maximised log-likelihood and the Bayesian information cri-
terion (BIC) (Schwarz, 1978) for the four estimated models, where BIC =

2l(θ̂)−npar ln(I), with l(θ̂) and npar denoting the maximum value of l(θ) and
number of estimated parameters in the model, respectively. Thus, according to
this criterion, the best solution is obtained with a mixture of three Gaussian
linear regression models. The same order was also obtained for the constrained
Gaussian linear regression mixture selected in Galimberti et al. (2016).

The estimates of the regression coefficients for such a mixture are reported
in the second column of Table 5. This table also reports the standard errors
of θ̂ estimated using the two solutions described in Section 2.2 and the para-
metric bootstrap with 100 bootstrap samples. The same information for π,
γ1, γ2, and γ3 is available in Table P of the supplementary material. For this
dataset, the three standard error estimators lead to quite similar results. For
ten out of the 24 regression coefficients, the null hypothesis H0 : Πk(jl) = 0
should not be rejected according to all compared strategies (see Table Q in the
supplementary material). Contrary to what was assumed in the constrained
mixture regression model examined by Galimberti et al. (2016), the log price
for the brand Star Kist 6 oz. (X2) seems to have a significant positive effect
on the log sales of the brand Bumble Bee Solid 6.12 oz. (Y2) in two of the
three regression models of the selected mixture (see the 14th and 22nd rows in
Tables 5 and Q). Moreover, the effect of the display activity for the brand Star
Kist 6 oz. (X1) on the sales of the same brand (Y1) appears to be significant
only in the second regression model of the mixture (see the first, ninth and
17th rows in Tables 5 and Q). This latter result suggests that the assumption
of equal effects of the display activity across all mixture regression models
could be inadequate. Finally, an interesting feature emerging from both the
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Table 5: Estimates of the regression coefficients and their standard error esti-
mates in the canned tuna dataset.

θt θ̂t ŝeB(θ̂t) ŝe1(θ̂t) ŝe2(θ̂t)
Π1(11) −0.2192 0.4098 0.3491 0.4076
Π1(12) −3.5468 1.0798 1.0204 1.1287
Π1(13) 0.2991 0.4425 0.3585 0.3258
Π1(14) 1.0538 3.3366 3.2542 3.2486
Π1(21) −0.2264 0.1274 0.0852 0.1281
Π1(22) −0.2688 0.4328 0.2602 0.3718
Π1(23) 0.1251 0.2195 0.0677 0.0492
Π1(24) −3.2157 0.8607 0.6439 0.4278
Π2(11) 0.2990 0.0620 0.0689 0.0756
Π2(12) −3.0103 0.1756 0.2439 0.3627
Π2(13) −0.2804 0.0670 0.0710 0.0735
Π2(14) −1.8009 0.5659 0.7239 0.9461
Π2(21) 0.0929 0.0560 0.0566 0.0663
Π2(22) 0.4128 0.1433 0.1717 0.2004
Π2(23) 0.1017 0.0538 0.0526 0.0528
Π2(24) −4.1043 0.4953 0.5204 0.7092
Π3(11) 0.0869 0.3035 0.3398 0.6105
Π3(12) −4.9454 0.9617 0.4628 0.4033
Π3(13) 0.0978 0.3801 0.3455 0.5889
Π3(14) 3.1429 3.0822 3.7078 6.6238
Π3(21) 1.0053 0.6983 0.7519 0.7775
Π3(22) 4.2550 2.0007 1.0455 0.6998
Π3(23) 2.6237 0.7476 0.7042 0.8088
Π3(24) −18.4834 7.1063 6.6339 7.2836

constrained and unconstrained linear regression mixtures is that the smallest
cluster of weeks detected by these models comprises 17 consecutive weeks in
which Bumble Bee Solid 6.12 oz. tuna sales registered a relatively low mean
level. These weeks correspond to the period from mid-October 1990 to mid-
February 1991, just after a worldwide boycott campaign promoted against
Bumble Bee tuna because Bumble Bee was found to be buying yellow-fin tuna
caught by dolphin-unsafe techniques (Baird and Quastel, 2011).

5 Asymptotic results

The consistency of the estimators developed in Section 2.2 can be easily proved
when some assumptions and regularity conditions are introduced with respect
to the joint distribution of the regressors and dependent variables. This allows
to exploit some general results about the asymptotic behaviour of the ML
estimator when the model is misspecified (White, 1982).

Let Zi = (X′

i,Y
′

i)
′. In this Section the following model for the joint density

function of Zi is considered:

h(zi;ψ) = q(xi;ϑ)f(yi|xi; θ), zi = (x′

i,y
′

i)
′ ∈ R

G+D, (11)

for some ψ = (ϑ′, θ′)′ ∈ Ψ = Υ × Θ. The parametric function q(x;ϑ) =
dQ (x;ϑ) /dµ represents the Radon-Nikodym density of Q (x;ϑ), the marginal
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distribution of X, with Q (x;ϑ) ∈ B = {Q (x;ϑ) ;ϑ ∈ Υ}. The conditional
density function of Y|X = x is given in equation (1). Hereafter the class of
finite mixtures of Gaussian linear regression models with random predictors
just defined is denoted as F∗

K = {h(z;ψ),ψ ∈ Ψ}, where K is the order of the
mixture model (1). Identifiability conditions for finite mixtures of univariate
Gaussian linear regression models with random predictors are discussed in
Hennig (2000), and can be easily extended to the multivariate scenario. In this
Section it is assumed that such conditions are satisfied, in order to guarantee
the identifiability of the model class F∗

K . Note that in this model, the parameter
vector ψ is partitioned into two non-overlapping subvectors: the first subvector
is related to the marginal distribution of X, while the second one contains
the parameters of the conditional distribution of Y|X = x. This partition of

the parameter vector ψ has an impact on the properties of θ̂. Namely, this
estimator results to be independent of the ML estimator of ϑ. Section 5.2
shows how to exploit this independence to derive some consistency results for
the covariance matrix estimators described in Section 2.2, starting from some
asymptotic results for the ML estimator of ψ. This implies that ϑ does not
need to be estimated (unless it is of independent interest).

5.1 Regularity conditions

Here is the list of (standard) regularity conditions for the existence, consistency
and asymptotic normality of the ML estimator of the parameter characterising
the family F∗

K = {h(z;ψ) = q(x;ϑ)f(y|x; θ),ψ = (ϑ, θ) ∈ Ψ = Υ × Θ}
of (possibly misspecified) finite mixtures of Gaussian regression models with
random predictors. These conditions coincide with those introduced by White
(1982) and are formulated with respect to random vectors Z1, . . . ,Zi, . . . ,ZI
with Zi = (Xi,Yi) and by assuming that Zi takes values on a measurable
Euclidean space Ω ∀i and that the model parameter ψ is a vector of length d.
Matrices A(ψ) and B(ψ) in condition (C6) are defined as follows:

A(ψ) = E

(
∂2 log h(zi;ψ)

∂ψ∂ψ′

)
,

B(ψ) = E

((
∂ log h(zi;ψ)

∂ψ

)(
∂ log h(zi;ψ)

∂ψ

)′
)
.

(C1) Z1, . . . ,Zi, . . . ,ZI are independent and identically distributed random vec-
tors with common joint distribution function G and measurable Radon-
Nikodym density g = dG/dν.

(C2) The parametric family of distribution functions H(z,ψ) specified for Zi
has Radon-Nikodym densities h(z;ψ) = dH(z,ψ)/dµ that are equal to
q(x;ϑ)f(y|x; θ); these densities are measurable in z ∀ψ ∈ Ψ̄ , and contin-
uous in ψ ∀z ∈ Ω, where Ψ̄ = Ῡ × Θ̄ is a compact subset of Ψ ⊂ R

d.



20 Giuliano Galimberti, Lorenzo Nuzzi, Gabriele Soffritti

(C3) (a) E (log g(Zi)) exists and | log h(z;ψ)| ≤ m(z) ∀ψ ∈ Ψ̄ , where m is

integrable with respect to G; (b) E
(
log g(Z)

h(Z;ψ)

)
has a unique minimum at

ψ̆ ∈ Ψ̄ .

(C4) Derivatives ∂ log h(z;ψ)
∂ψj

, j = 1, . . . , d, are measurable functions of z ∀ψ ∈ Ψ̄ ,

and continuously differentiable functions of ψ ∀z ∈ Ω.

(C5) Functions |∂
2 log h(z;ψ)
∂ψj∂ψj′

| and ∂ log h(z;ψ)
∂ψj

· ∂ log h(z;ψ)
∂ψj′

, j, j′ = 1, . . . , d, are dom-

inated by functions integrable with respect to G ∀z ∈ Ω and ∀ψ ∈ Ψ̄ .
(C6) (a) ψ̆ is interior to Ψ̄ ; (b) the matrix B(ψ̆) is nonsingular; (c) ψ̆ is a

value for ψ such that the matrix A(ψ) has constant rank in some open
neighborhood of ψ̆.

(C7) |∂[∂h(z;ψ)
∂ψj

·h(z;ψ)]/∂ψj′ |, j, j′ = 1, . . . , d, are dominated by functions inte-

grable with respect to ν ∀ψ ∈ Ψ̄ , and the minimal support of h(z;ψ) does
not depend on ψ.

Condition (C2) requires compactness of the parameter space. This restric-
tion has been exploited in several papers providing asympotic results related to
mixtures of regression models (see, e.g., Städler et al., 2010; Yao et al., 2011;
Tang and Karunamuni, 2013). To guarantee compactness of Ψ̄ it is necessary
that both Ῡ and Θ̄ are compact. Similarly to Maugis et al. (2009), compact-
ness of Θ̄ can be achieved under the following constraints on the parameters
of equation (1):

(co1) (π1, . . . πK)′ ∈ P(K), where P(K) = {p = (p1, . . . , pK)′ ∈ [0, 1]K :∑K

k=1 pk = 1};
(co2) γk ∈ A(ǫ, p) ∀k, where A(ǫ, r) = {a ∈ R

r : ‖a‖ ≤ ǫ}, 0 < ǫ < ∞ and
‖ · ‖ is the Euclidean norm;

(co3) Πk ∈ B(ρ, p, q) ∀k, where B(ρ, p, q) = {B ∈ Mp×q : |||B||| ≤ ρ}, with
Mp×q denoting the set of p × q matrices with real elements, 0 < ρ < ∞
and ||| · ||| being the following matrix norm:

|||B||| = sup {‖Bx‖ : x ∈ R
q with ‖x‖ = 1} , ∀ B ∈ Mp×q.

(co4) Σk ∈ Dp ∀k, where Dp denotes the set of the p × p positive definite
matrices with eigenvalues in [a, b], with 0 < a < b <∞.

Condition (C3)(a) is required for the Kullback-Leibler information crite-

rion E

(
log g(Z)

h(Z;ψ)

)
to be well-defined. Condition (C3)(b) is equivalent to an

identification condition that makes ψ̆ globally identifiable (Bowden, 1973). It
is then necessary to guarantee that the model class FK is identifiable. Clearly,
identifiability of FK requires that πk > 0 ∀k, so as to avoid empty compo-
nents. In order to preserve compactness, Constraint (co1) should be modified
as follows:

(co1′) if K > 1, then (π1, . . . πK)′ ∈ P(K, δK), where P(K, δK) = {p ∈
[δK , 1− δK ]K :

∑K

k=1 pk = 1}, 0 < δK < 0.5.
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Furthermore, in order to prevent non-identifiability issues related to label-
switching mentioned in Section 2.1, an ordering of the components can be
explicitly imposed by introducing additional constraints on the parameters.
Such ordering constraints can be applied either to the weights π1, . . . , πK or
to a specific element of the vectors θ1, . . . , θK . For example, constraint (co1′)
can be replaced with:

(co1′′) if K > 1, then (π1, . . . πK)′ ∈ P(K, δK , ηK), where P(K, δK , ηK) =

{p ∈ [δK , 1 − δK ]K : pk − pk−1 ≥ ηK , k = 2, . . . ,K,
∑K
k=1 pk = 1}, 0 <

δK < 0.5, 0 < ηK < 0.5.

Being an intersection between the compact set [δK , 1 − δK ]K and two closed
sets, that is {p ∈ RK : pk − pk−1 ≥ ηK , k = 2, . . . ,K} and {p ∈ RK :∑K

k=1 pk = 1} also P(K, δK , ηK) is a compact set. It is worth mentioning
that the actual values of δK and ηK must decrease as K increases, in order
to guarantee that P(K, δK , ηK) 6= ∅. The introduction of constraint (co1′′)
excludes all finite mixtures of Gaussian regression models with (at least) two
components with equal weights. Such exclusion can be circumvented by re-
placing the ordering constraint on the weights with ordering constraints on
any other component-specific parameter while preserving compactness of Θ̄.
For example, by focusing on the first element of the K intercept vectors, one
could require that γk(11) − γk−1(11) ≥ ν, k = 2, . . . ,K, where 0 < ν <∞.

Condition (C5) ensures that matrices A(ψ) and B(ψ) are continuous in ψ
and a uniform law of large numbers can be applied to the following matrices:

1

I

I∑

i=1

∂2 log h(zi;ψ)

∂ψ∂ψ′
and

1

I

I∑

i=1

(
∂ log h(zi;ψ)

∂ψ

)(
∂ log h(zi;ψ)

∂ψ

)′

.

5.2 Consistency of Ĉov1(θ̂) and Ĉov2(θ̂)

The consistency results about Ĉov1(θ̂) and Ĉov2(θ̂) require some preliminar-
ies. Let (x′

1,y
′

1)
′, . . . , (x′

I ,y
′

I)
′ be I independent and identically distributed

sample observations of (X′,Y′)′. Their joint density under the model defined
by equations (1), (2) and (11) is equal to

I∏

i=1

h(zi;ψ) =

I∏

i=1

q(xi;ϑ)f(yi|xi; θ).

Thus, the corresponding log-likelihood is equal to lI(ψ) =
∑I

i=1 li(ψ), where
li(ψ) = log h(zi;ψ). This log-likelihood can also be expressed as lI(ϑ)+ lI(θ),

where lI(ϑ) =
∑I

i=1 li(ϑ), with li(ϑ) = log q(xi;ϑ) and lI(θ) is defined ac-

cording to equation (3). Thus, the score vector s(ψ) = ∂lI(ψ)
∂ψ

can be ex-

pressed as s(ψ) =
∑I

i=1 si(ψ), where si(ψ) = ∂li(ψ)
∂ψ

. In a similar way, the

Hessian matrix H(ψ) = ∂2lI (ψ)
∂ψ∂ψ′ can be written as H(ψ) =

∑I

i=1Hi(ψ), where
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Hi(ψ) = ∂2li(ψ)
∂ψ∂ψ′ . Clearly, s(ψ) and H(ψ) are defined only when the partial

derivatives exist. Furthermore, they can be partitioned as follows:

s(ψ) =

(
s(ϑ)
s(θ)

)
, H(ψ) =

[
H(ϑ) 0
0 H(θ)

]
,

where s(ϑ) = ∂l(ϑ)
∂ϑ

, s(θ) = ∂l(θ)
∂θ

, H(ϑ) = ∂2l(ϑ)
∂ϑ∂ϑ′ and H(θ) = ∂2l(θ)

∂θ∂θ′
. As a con-

sequence of above, ψ̂I = (ϑ̂I , θ̂I), the ML estimator of ψ based on I sample
observations, can be obtained by a separate maximisation of lI(ϑ) and lI(θ).
As far as ϑ is concerned, its estimator will depend on the probability distribu-
tion specified for the predictors. As already mentioned, θ̂I can be computed
using an EM algorithm.

Let g(z) be the true density function of Z and admit that g(z) may not
belong to F∗

K for a given value of K. This means that model (11) is correctly
specified if g(z) = h(z;ψ0) for some ψ0 = (ϑ′

0, θ
′

0)
′ ∈ Ψ ; otherwise it is not.

Under all the above mentioned conditions, the following proposition sum-
marises some results concerning ψ̂I that hold true provided that the appro-
priate inverses and expectations (taken with respect to the true distribution)
exist. A proof is reported in Appendix E.

Proposition 1
(a) Given the conditions (C1)-(C2) the existence of ψ̂I is ensured for all

I.
(b) Given the conditions (C1)-(C3) the following convergence holds true:

ψ̂I
a.s.−−→ ψ̆, with ψ̆ = argmin

ψ∈Ψ

E

(
log

g(Z)

h(Z;ψ)

)
.

(c) Given the conditions (C1)-(C6) the following convergences hold true:

√
I·
(
ψ̂I − ψ̆

)
L−→ N(0,C(ψ̆)), (12)

I·(H(ψ̂I))
−1

(
I∑

i=1

si(ψ̂I)
(
si(ψ̂I)

)′
)
(H(ψ̂I))

−1 a.s.−−→ C(ψ̆) element by element,

(13)

I·H(ψ̂I)
a.s.−−→ E(Hi(ψ̆)) element by element, (14)

where C(ψ̆) = C(ψ)|
ψ=ψ̆, with

C(ψ) = (E(Hi(ψ)))
−1

(E(si(ψ)si(ψ)
′)) (E(Hi(ψ)))

−1
,

H(ψ̂I) = H(ψ)|
ψ=ψ̂I

and si(ψ̂I) = si(ψ)|ψ=ψ̂I
.

(d) Given the conditions (C1)-(C7) and if g(z) = h(z;ψ0) for some ψ0 ∈
Ψ , then ψ̆ = ψ0, E(Hi(ψ0)) = −E(si(ψ0)si(ψ0)

′) and

C(ψ0) = − (E(Hi(ψ0)))
−1 = (E(si(ψ0)si(ψ0)

′))
−1
, (15)

where −E(Hi(ψ0)) represents the Fisher’s information matrix evaluated at ψ0.
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Part (b) of Proposition 1 states that, since g(z) may not belong to F∗

K , ψ̂I is

in fact a strongly consistent estimator of the parameter vector ψ̆ = (ϑ̆
′

, θ̆
′

)′ ∈
Ψ which minimises E

(
log g(Z)

h(Z;ψ)

)
, that is the Kullback-Leibler information

criterion (Kullback and Leibler, 1951); this is a consequence of the fact that,
when g(z) /∈ FK , lI(ψ)/I represents a natural estimation of E (log h(Z;ψ))

(Akaike, 1973). If g(z) = h(z;ψ0) then E

(
log g(Z)

h(Z;ψ)

)
will attain its minimum

at ψ̆ = ψ0 and ψ̂I will be a strongly consistent estimator of ψ0. According
to the results described in the parts (c) and (d) of the proposition, when the
model is correctly specified and all the considered regularity conditions are
met, the classical equivalence of the Hessian and outer product forms of the
Fisher’s information matrix holds true; both forms can be employed to obtain
a consistent estimation of the asymptotic covariance matrix of ψ̂I .

Finally, the asymptotic properties of Ĉov1(θ̂) and Ĉov2(θ̂) can be eas-
ily investigated by exploiting the block-diagonal structure of matrices H(ψ),
E(Hi(ψ)) and C(ψ). Their block-diagonal structure implies that the corre-
sponding submatrices related to the parameters θ do not depend on the pa-
rameters of the marginal distribution of X, as these submatrices involve only
first and second partial derivatives of the conditional distribution of Y|X = x.

In particular, consistency of Ĉov1(θ̂) and Ĉov2(θ̂) is given by following theo-
rems. Their proofs are reported in Appendix F and Appendix G.

Theorem 3 Given the conditions (C1)-(C7) and if g(z) = h(z;ψ0) for some
ψ0 = (ϑ′

0, θ
′

0)
′ ∈ Ψ

I · Ĉov1(θ̂I) a.s.−−→ − (E(Hi(θ0)))
−1 , (16)

where −E(Hi(θ0)) is the submatrix of −E(Hi(ψ0)) that refers to θ0.

Theorem 4 Given the conditions (C1)-(C6)

I · Ĉov2(θ̂I) a.s.−−→ C(θ̆), (17)

where C(θ̆) is the submatrix of C(ψ̆) that refers to θ̆.

Thus, the estimator of Cov(θ̂I) defined in equation (5), based on the sand-
wich approach, is strongly consistent when the model is misspecified; the es-
timator computed from the Hessian matrix given in equation (4) results to be
consistent under the classical assumption of a correctly specified model.

6 Conclusions

In this paper formulae for computing the score vector and Hessian matrix of
the incomplete log-likelihood for multivariate mixtures of Gaussian linear re-
gression models are provided. These formulae are used to define two estimators
of the covariance matrix of the ML estimator. From a practical point of view
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the main advantage in using the proposed estimators is to avoid resorting to
bootstrap-based methods and general purpose optimisers. Another advantage
associated with an analytical evaluation of the Hessian matrix is that it can be
used as a diagnostic tool to detect convergence failures of the EM algorithm.
Using the suggested information-based estimators also allows to compute both
approximated confidence intervals and Wald statistics for testing hypotheses
about model parameters. With small samples and correctly specified models,
the estimator based on the observed Hessian-based information matrix and
the parametric bootstrap-based estimator show similar performances in terms
of biases, root mean square errors and coverage probabilities of confidence in-
tervals. Thus, in correctly specified models, the main benefits associated with
the estimator based on the observed Hessian-based information matrix over
the bootstrap are a gain in the time required to compute the standard errors,
a simplification of the overall computational process and a protection against
possible convergence failures of the EM algorithm on the bootstrap replicates.
When models are characterised by misspecification due to heteroscedasticity,
the estimator based on the sandwich matrix is to be preferred: it not only has
the smallest absolute bias and the smallest root mean squared error but also
produces effective confidence levels that are the closest to the desired nominal
ones.

The clusterwise regression models examined in this paper allow to per-
form multivariate linear regression analysis with fixed predictors in the pres-
ence of unobserved heterogeneity. However, when the predictors are not under
the control of the experimenter, clusterwise regression models with random
predictors should be employed (Hennig, 2000; Wedel, 2002). In particular,
multivariate linear cluster-weighted models (see, e.g., Dang et al., 2017) are
able to capture both the linear dependencies among responses and the linear
effects of the predictors on the responses from sample observations coming
from unknown heterogeneous populations, each of which is characterised by
a different joint distribution of (X′,Y′)′. We are currently in the process of
extending the covariance matrix estimators of the ML estimator described in
this paper under multivariate Gaussian linear cluster-weighted models. Fur-
ther developments could be obtained under models in which the predictors may
also affect the membership to the unknown heterogeneous populations (see,
e.g., Dayton and Macready, 1988; Ingrassia and Punzo, 2016; Lamont et al.,
2016).

References

Aitkin M, Tunnicliffe Wilson G (1980) Mixture models, outliers, and the EM
algorithm. Technometrics 22: 325–331

Aitkin M, Rubin DB (1985) Estimation and hypothesis testing in finite mixture
models. J R Stat Soc Ser B 47: 67–75



Covariance matrix estimation in clusterwise linear regression 25

Akaike H (1973) Information theory and an extension of the maximum likeli-
hood principle. In: Petrov BN, Csaki F (eds), Second International Sympo-
sium on Information Theory, Akademiai Kiado, pp 267–281

Arminger G, Stein P, Wittenberg J (1999) Mixtures of conditional mean and
covariance structure models. Psychometrika 64: 475–494

Baird, I. G. and N. Quastel (2011). Dolphin-safe tuna from California to Thai-
land: localisms in environmental certification of global commodity networks.
Ann Assoc Am Geogr 101: 337–355.

Basford KE, Greenway DR, McLachlan GJ, Peel D (1997) Standard errors of
fitted means under normal mixture models. Comput Stat 12: 1–17

Benaglia T, Chauveau D, Hunter DR, Young D (2009) mixtools: an R package
for analyzing finite mixture models. J Stat Softw 32(6): 1–29

Boiteau G, Singh M, Singh RP, Tai GCC, Turner TR (1998) Rate of spread
of PVY-n by alate Myzus persicae (Sulzer) from infected to healthy plants
under laboratory conditions. Potato Research 41: 335 – 344

Boldea O, Magnus JR (2009) Maximum likelihood estimation of the multi-
variate normal mixture model. J Am Stat Assoc 104: 1539–1549

Bowden R (1973) The theory of parametric identification. Econometrica 41:
1069–1074

Chevalier, J. A., A. K. Kashyap and P. E. Rossi (2003). Why don’t prices rise
during periods of peak demand? Evidence from scanner data. Am Econ Rev
93: 15–37

Dang UJ, McNicholas PD (2015) Families of parsimonious finite mixtures of
regression models. In: Morlini I, Minerva T, Vichi M (eds) Advances in
statistical models for data analysis. Springer, Cham, pp 73–84

Dang UJ, Punzo A, McNicholas PD, Ingrassia S, Browne RP (2017) Multivari-
ate response and parsimony for Gaussian cluster-weighted models. J Classif
34(1) 4–34

Dayton CM, Macready GB (1988) Concomitant-variable latent-class models.
J Am Stat Assoc 83: 173–178

Ding C (2006) Using regression mixture analysis in educational research. Prac-
tical Assessment Research & Evaluation 11: 1–11

Dyer WJ, Pleck J, McBride B (2012) Using mixture regression to identify vary-
ing effects: a demonstration with paternal incarceration. Journal of Marriage
and Family 74: 1129–1148

Elhenawy M, Rakha H, Chen H (2017) An automatic traffic congestion iden-
tification algorithm based on mixture of linear regressions. In: Helfert M,
Klein C, Donnellan B, Gusikhin O (eds) Smart Cities, Green Technologies,
and Intelligent Transport Systems, Springer, Cham, pp 242–256

Fair RC, Jaffe DM (1972) Methods of estimation for markets in disequilibrium.
Econometrica 40: 497–514

Faria S, Soromenho G (2010) Fitting mixtures of linear regressions. J Stat
Comput Simul 80: 201–225
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A Proof of Theorem 1

Using equations (3) and (6) it is possible to write l(θ) =
∑I

i=1 li(θ), where li(θ) =

log(
∑K

k=1 fki). By exploiting the result given by equation (A.1) in Boldea and Magnus
(2009), the first order differential of l(θ) is equal to

dl(θ) =
I∑

i=1

dli(θ) =
I∑

i=1

(
K∑

k=1

αkid log fki

)

, (18)

where αki is defined in equation (7). d log fki, the first order differential of log fki, is equal
to (see Appendix C)

dlog fki = (dπ)′ ak + (dγk)
′ bki +

[
dvec(Π ′

k)
]′
vec
(
xib

′

ki

)
+

−
1

2
[dv(Σk)]

′ G′vec (Bki) , (19)
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where ak, bki and Bki are defined in equations (8), (9) and (10), respectively.

Inserting equation (19) in equation (18) gives

dl(θ) = (dπ)′
I∑

i=1

K∑

k=1

αkiak +
K∑

k=1

(dγk)
′

I∑

i=1

αkibki+

+
K∑

k=1

[
dvec(Π ′

k)
]′

I∑

i=1

αkivec
(
xib

′

ki

)
+

−
1

2

K∑

k=1

[dv(Σk)]
′

I∑

i=1

αkiG
′vec (Bki) .

Taking the derivatives with respect to π, γk, vec(Π
′

k) and v(Σk) completes the proof.

B Proof of Theorem 2

The second order differential of l(θ) is given by

d2l (θ) =
I∑

i=1

d2li (θ) ,

where

d2li (θ) =
K∑

k=1

αkid
2 log fki +

K∑

k=1

αki (d log fki)
2 −

(
K∑

k=1

αkid log fki

)2

(20)

(see equation (A.2) in Boldea and Magnus, 2009).

Equation (36) gives an expression for d2log fki, the second order differential of log fki.

Furthermore, expressions for (d log fki)
2 and

(∑K
k=1 αkid log fki

)2
can be obtained, after

some algebra, by noting that:

(d log fki)
2 = (d log fki)

′ (d log fki) ,
(

K∑

k=1

αkid log fki

)2

=

(
K∑

k=1

αkid log fki

)′( K∑

k=1

αkid log fki

)

,
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and by exploiting the result for d log fki given in equation (19). This results in:

(d log fki)
2 = (dπ)′ aka

′

kdπ + (dπ)′ akb
′

kidγk+

+ (dπ)′ ak

[
vec
(
xib

′

ki

)]
′
(
dvec(Π ′

k)
)
+

−
1

2
(dπ)′ ak [vec (Bki)]

′
Gdv(Σk) + (dγk)

′
bkia

′

kdπ+

+ (dγk)
′
bkib

′

kidγk+

+ (dγk)
′ bki

[
vec
(
xib

′

ki

)]′
dvec(Π ′

k)+

−
1

2
(dγk)

′ bki [vec (Bki)]
′ Gdv(Σk)+

+
[
dvecΠ ′

k

]
′
vec
(
xib

′

ki

)
a′

kdπ+

+
[
dvec(Π ′

k)
]′
vec
(
xib

′

ki

)
b′

kidγk+

+
[
dvec(Π ′

k)
]
′
vec
(
xib

′

ki

) [
vec
(
xib

′

ki

)]
′
dvec(Π ′

k)+

−
1

2

[
dvec(Π ′

k)
]
′
vec
(
xib

′

ki

)
[vec (Bki)]

′
Gdv(Σk)+

−
1

2
[dv(Σk)]

′
G′vec (Bki)a

′

kdπ+

−
1

2
[dv(Σk)]

′
G′vec (Bki)b

′

kidγk+

−
1

2
[dv(Σk)]

′
G′vec (Bki)

[
vec
(
xib

′

ki

)]
′
dvec(Π ′

k)+

+
1

4
[dv(Σk)]

′
G′vec (Bki) [vec (Bki)]

′
Gdv(Σk), (21)

(
K∑

k=1

αkid ln fki

)2

= (dπ)′ āiā
′

idπ + (dπ)′ āi

(
K∑

k=1

αkib
′

kidγk

)

+

+ (dπ)′ āi

{
K∑

k=1

αki

[
vec
(
xib

′

ki

)]′ [
dvec(Π ′

k)
]
}

+

−
1

2
(dπ)′ āi

{
K∑

k=1

αki [vec (Bki)]
′ Gdv (Σk)

}

+

+

[
K∑

k=1

(dγk)
′ αkibki

]

ā′

idπ +
K∑

k=1

K∑

l=1

(dγk)
′ αkiαlibkib

′

lidγl+

+
K∑

k=1

K∑

l=1

(dγk)
′ αkiαlibki

[
vec
(
xib

′

li

)]
′
dvec(Π ′

l)+

−
1

2

K∑

k=1

K∑

l=1

(dγk)
′ αkiαlibki [vec (Bli)]

′
Gdv(Σl)+
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+

[
K∑

k=1

[
dvec(Π ′

k)
]
′
αkivec

(
xib

′

ki

)
]

ā′

idπ+

+
K∑

k=1

K∑

l=1

[
dvec

(
Π ′

k

)]
′
αkiαlivec

(
xib

′

ki

)
b′

lidγl+

+
K∑

k=1

K∑

l=1

[
dvec

(
Π ′

k

)]
′
αkiαlivec

(
xib

′

ki

) [
vec
(
xib

′

li

)]
′
dvec(Π ′

l)+

−
1

2

K∑

k=1

K∑

l=1

[
dvec

(
Π ′

k

)]′
αkiαlivec

(
xib

′

ki

)
[vec (Bli)]

′ Gdv(Σl)+

−
1

2

[
K∑

k=1

[dv (Σk)]
′ αkiG

′vec (Bki)

]

ā′

idπ+

−
1

2

K∑

k=1

K∑

l=1

[dv (Σk)]
′ αkiαliG

′vec (Bki)b
′

lidγl+

−
1

2

K∑

k=1

K∑

l=1

[dv (Σk)]
′ αkiαliG

′vec (Bki)
[
vec
(
xib

′

li

)]′
dvec

(
Π′

l

)
+

+
1

4

K∑

k=1

K∑

l=1

[dv (Σk)]
′ αkiαliG

′vec (Bki) [vec (Bli)]
′ Gdv (Σl) . (22)

Inserting equations (36), (21) and (22) in equation (20) and taking the second order
derivatives leads to

∂2li(θ)

∂π∂π′
= −āiā

′

i,

∂2li(θ)

∂π∂γ′
k

= αki (ak − āi)b
′

ki ∀k,

∂2li(θ)

∂π∂
[
vec(Π ′

k)
]
′
= αki (ak − āi)

[
vec
(
xib

′

ki

)]′
∀k,

∂2li(θ)

∂π∂ [v(Σk)]
′
= −

1

2
αki (ak − āi) [vec (Bki)]

′ G ∀k,

∂2li(θ)

∂γk∂γ
′

k

= −αki

[
Σ−1

k
− (1− αki)bkib

′

ki

]
∀k,

∂2li(θ)

∂γk∂γ
′

l

= −αkiαlibkib
′

li ∀k 6= l,

∂2li(θ)

∂γk∂
[
vec(Π ′

k

]
′
= −αki

[
Σ−1

k
⊗ x′

i − (1− αki)bki

[
vec
(
xib

′

ki

)]′]
∀k,

∂2li(θ)

∂γk∂
[
vec(Π ′

l)
]′ = −αkiαlibki

[
vec
(
xib

′

li

)]
′
∀k 6= l,

∂2li(θ)

∂γk∂ [v(Σk)]
′
= −αki

[(
b′

ki ⊗Σ
−1
k

)
+

1

2
(1− αki)bki [vec (Bki)]

′

]
G ∀k,

∂2li(θ)

∂γk∂ [v(Σl)]
′
=

1

2
αkiαlibki [vec (Bli)]

′ G ∀k 6= l,

∂2li(θ)

∂vec
(
Π ′

k

)
∂
[
vec(Π ′

l)
]
′
= −αkiαlivec

(
xib

′

ki

) [
vec
(
xib

′

li

)]′
∀k 6= l,
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∂2li(θ)

∂vec
(
Π ′

k

)
∂
[
vec(Π ′

k)
]
′
= −αki

[(
Σ−1

k
⊗ (xix

⊤

i )
)
+

− (1− αki) vec
(
xib

⊤

ki

)
vec
(
xib

⊤

ki

)
⊤
]

∀k,

∂2li(θ)

∂vec
(
Π ′

k

)
∂ [v(Σk)]

′
= −αki

[(
Σ−1

k
⊗ (xib

′

ki)
)

+
1

2
(1− αki) vec

(
xib

′

ki

)
[vec (Bki)]

′

]
G ∀k,

∂2li(θ)

∂vec
(
Π ′

k

)
∂ [v(Σl)]

′
=

1

2
αkiαlivec

(
xib

′

ki

)
[vec (Bli)]

′ G ∀k 6= l,

∂2li(θ)

∂v(Σk)∂ [v(Σk)]
′
= −

1

2
αkiG

′

[(
Σ−1

k
− 2Bki

)′
⊗Σ−1

k
+

−
1

2
(1− αki) vec (Bki) [vec (Bki)]

′

]
G ∀k,

∂2li(θ)

∂v(Σk)∂ [v(Σl)]
′
= −

1

4
αkiαliG

′vec (Bki) [vec (Bli)]
′ G ∀k 6= l.

Summing the contributions for the I observations completes the proof.

C First order differential of log fki

Up to an additive constant, log fki in equation (18) is equal to

log πk −
1

2
log det (Σk)−

1

2
tr
(
Σ−1

k
(yi − γk −Πkxi) (yi − γk −Πkxi)

′

)
.

Thus, its first order differential results to be equal to

dlog fki = dk0 + dki1 + dki2 + dki3, (23)

where

dk0 = dlog πk = (dπ)′ ak, (24)

dki1 = −
1

2
d (log det (Σk)) ,

dki2 = −
1

2
tr
[
d
(
Σ−1

k

)
(yi − γk −Πkxi) (yi − γk −Πkxi)

′

]
,

dki3 = −
1

2
tr
[
Σ−1

k
d (yi − γk −Πkxi) (yi − γk −Πkxi)

′

]
.

Using Corollary 9.1.1 and Theorem 1.3 in Schott (2005), it results that

dki1 = −
1

2
tr
[
(dΣk)Σ

−1
k

]
. (25)

Furthermore, since d(Σ−1
k

) = −Σ−1
k

d(Σk)Σ
−1
k

(see, e.g., Magnus and Neudecker, 1988, p.
183), it is possible to write

dki2 =
1

2
tr
[
(dΣk)bkib

⊤

ki

]
. (26)

By exploiting Theorem 8.10 in Schott (2005), some results for the differential of matrix
functions (see, e.g., Magnus and Neudecker, 1988, p. 182) and some properties of the vector
operator (see, e.g., Schott, 2005, pages 313 and 356), we find

dki1 + dki2 = −
1

2
[dv(Σk)]

′
G′vec (Bki) , (27)

dki3 = (dγk)
′ bki +

[
dvec

(
Π ′

k

)]′
vec
(
xib

′

ki

)
. (28)
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Substituting equations (24), (27) and (28) in (23) leads to

dlog fki = (dπ)′ ak + (dγk)
′ bki +

[
dvec(Π ′

k)
]′
vec
(
xib

′

ki

)
+

−
1

2
[dv(Σk)]

′ G′vec (Bki) .

D Second order differential of log fki

Using equation (6), the second order differential of log fki can be expressed as

d2log fki = d2logπk + d2log φ (yi; γk +Πkxi,Σk), (29)

where

d2log πk = − (dπ)′ aka
′

kdπ, (30)

d2logφ (yi;γk +Πkxi,Σk) = d(dki1) + d(dki2) + d(dki3),

and dki1, dki2 and dki3 are defined in equations (25), (26), and (28), respectively. Thus, it
is possible to write

d (dki1) = −
1

2
tr
[
(dΣk)

(
dΣ−1

k

)]
=

1

2
tr
[
(dΣk)Σ

−1
k

(dΣk)Σ
−1
k

]
. (31)

where the last equation holds because of the rule for the differential of the inverse of a
nonsingular matrix (see, e.g., Magnus and Neudecker, 1988, page 183). Furthermore,

d (dki2) = d

(
1

2
tr
[
Σ−1

k
(dΣk)Σ

−1
k

(yi − γk −Πkxi) (yi − γk −Πkxi)
′

])

=
1

2
tr
[
d
(
Σ−1

k

)
(dΣk)Σ

−1
k

(yi − γk −Πkxi) (yi − γk −Πkxi)
′

]
+

+
1

2
tr
[
Σ−1

k
(dΣk) d

(
Σ−1

k

)
(yi − γk −Πkxi) (yi − γk −Πkxi)

′

]
+

+
1

2
tr
[
Σ−1

k
(dΣk)Σ

−1
k

d (yi − γk −Πkxi) (yi − γk −Πkxi)
′

]

= −tr
[
(dΣk)Σ

−1
k

(dΣk)Σ
−1
k

(yi − γk −Πkxi) (yi − γk −Πkxi)
′Σ−1

k

]
+

− (dγk)
′

(
b′

ki ⊗Σ
−1
k

)
dvec (Σk) +

−
[
dvec

(
Π ′

k

)]
′
[
Σ−1

k
⊗
(
xib

′

ki

)]
dvec (Σk) , (32)

where the last equation is obtained using some properties of the trace and vec operators
(see, e.g., Schott, 2005, Theorems 8.9, 8.10 and 8.11). As far as d(dki3) is concerned, since

d (dki3) = (dγk)
′ dbki +

[
dvec

(
Π′

k

)]
dvec

(
xib

′

ki

)
, (33)

an expression for dbki is required. This results to be

d (bki) = −Σ−1
k

d (Σk)bki −Σ
−1
k

(dγk)−Σ
−1
k

(dΠk)xi. (34)

Substituting equation (34) in (33) and using some properties of the vec operator and the
Kronecker product leads to the following result:

d (dki3) = − [dv (Σk)]
′ G′

(
bki ⊗Σ

−1
k

)
dγk − (dγk)

′Σ−1
k

dγk +

− (dγk)
′

[
Σ−1

k
⊗ x′

i

]
dvec

(
Π ′

k

)
− [dv (Σk)]

′G′

[
Σ−1

k
⊗
(
bkix

′

ki

)]
dvec

(
Π ′

k

)
+

−
[
dvec

(
Π ′

k

)]′ (
Σ−1

k
⊗ xi

)
dγk −

[
dvec

(
Π ′

k

)]′ [
Σ−1

k
⊗
(
xix

′

i

)]
dvec

(
Π ′

k

)
.(35)



Covariance matrix estimation in clusterwise linear regression 33

By inserting equations (30), (31), (32) and (35) in (29) and after some algebra, the following
expression for the second order differential of log fki is obtained:

d2log fki = − (dπ)′ aka
′

kdπ −
1

2
[dv (Σk)]

′
G′

[(
Σ−1

k
− 2Bki

)
′

⊗Σ−1
k

]
Gdv (Σk) +

− (dγk)
′

(
b′

ki ⊗Σ
−1
k

)
Gdv (Σk) −

[
dvec

(
Π ′

k

)]′ [
Σ−1

k
⊗
(
xib

′

ki

)]
Gdv (Σk) +

− [dv (Σk)]
′ G′

(
bki ⊗Σ

−1
k

)
dγk − (dγk)

′Σ−1
k

dγk +

− (dγk)
′

[
Σ−1

k
⊗ x′

i

]
dvec

(
Π ′

k

)
− [dv (Σk)]

′G′

[
Σ−1

k
⊗
(
bkix

′

ki

)]
dvec

(
Π′

k

)
+

−
[
dvec

(
Π′

k

)]
′
(
Σ−1

k
⊗ xi

)
dγk +

−
[
dvec

(
Π′

k

)]
′
[
Σ−1

k
⊗
(
xix

′

i

)]
dvec

(
Π ′

k

)
. (36)

E Proof of Proposition 1

The results given in parts (a), (b), (c) and (d) follow immediately from the Theorems 2.1,
2.2, 3.2 and 3.3 of White (1982), respectively.

F Proof of Theorem 3

Let

CI (ψ) = I · (H(ψ))−1

(
I∑

i=1

si(ψ)si(ψ)
′

)

(H(ψ))−1 .

According to the model properties, matrices H(ψ), E(Hi(ψ)), C(ψ) and CI(ψ) have a
block-diagonal structure. Specifically:

E(Hi(ψ)) =

[
E(Hi(ϑ)) 0

0 E(Hi(θ))

]
,

C(ψ) =

[
C(ϑ) 0

0 C(θ)

]
,

CI(ψ) =

[
CI(ϑ) 0

0 CI (θ)

]
,

where

CI(ϑ) = I · (H(ϑ))−1

(
I∑

i=1

si(ϑ)si(ϑ)
′

)

(H(ϑ))−1 ,

CI(θ) = I · (H(θ))−1

(
I∑

i=1

si(θ)si(θ)
′

)

(H(θ))−1 ,

C(ϑ) = (E(Hi(ϑ)))
−1

E
(
si(ϑ)si(ϑ)

′
)
(E(Hi(ϑ)))

−1 ,

C(θ) = (E(Hi(θ)))
−1

E
(
si(θ)si(θ)

′
)
(E(Hi(θ)))

−1 ,

with si(ϑ) =
∂li(ϑ)
∂ϑ

and si(θ) =
∂li(θ)
∂θ

.
Thus, the result given in equation (16) follows from equations (12), (14) and (15).

G Proof of Theorem 4

Since the matrices H(ψ), E(Hi(ψ)), C(ψ) and CI(ψ) have a block-diagonal structure, the
result in equation (17) follows immediately from equations (12) and (13).
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